JP2018003432A - Double pipe structure of pile head part and design method thereof - Google Patents

Double pipe structure of pile head part and design method thereof Download PDF

Info

Publication number
JP2018003432A
JP2018003432A JP2016131481A JP2016131481A JP2018003432A JP 2018003432 A JP2018003432 A JP 2018003432A JP 2016131481 A JP2016131481 A JP 2016131481A JP 2016131481 A JP2016131481 A JP 2016131481A JP 2018003432 A JP2018003432 A JP 2018003432A
Authority
JP
Japan
Prior art keywords
pile
outer pipe
main
pile head
main pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016131481A
Other languages
Japanese (ja)
Other versions
JP6733905B2 (en
Inventor
寿昭 新井
Toshiaki Arai
寿昭 新井
康浩 郡司
Yasuhiro Gunji
康浩 郡司
竹内 章博
Akihiro Takeuchi
章博 竹内
岡 賢治
Kenji Oka
賢治 岡
由紀 山名
Yuki Yamana
由紀 山名
博史 崎浜
Hiroshi Sakihama
博史 崎浜
晃一 内田
Koichi Uchida
晃一 内田
正晃 西
Masaaki Nishi
正晃 西
宏謙 堀井
Hirokane Horii
宏謙 堀井
利弘 森
Toshihiro Mori
利弘 森
正美 遠藤
Masami Endo
正美 遠藤
敦 小川
Atsushi Ogawa
敦 小川
裕 西村
Yutaka Nishimura
裕 西村
繁尚 松江
Shigenao Matsue
繁尚 松江
加藤 洋一
Yoichi Kato
洋一 加藤
雅樹 横山
Masaki Yokoyama
雅樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Kumagai Gumi Co Ltd
Hazama Ando Corp
Mitani Sekisan Co Ltd
Toyo Asano Foundation Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Kumagai Gumi Co Ltd
Hazama Ando Corp
Mitani Sekisan Co Ltd
Toyo Asano Foundation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Kumagai Gumi Co Ltd, Hazama Ando Corp, Mitani Sekisan Co Ltd, Toyo Asano Foundation Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2016131481A priority Critical patent/JP6733905B2/en
Publication of JP2018003432A publication Critical patent/JP2018003432A/en
Application granted granted Critical
Publication of JP6733905B2 publication Critical patent/JP6733905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce transmission of earthquake time horizontal force to a main pile from an outer pipe in a double pipe structure of a pile head part installed so as to be put on a head part of the main pile for supporting a vertical load, and having the outer pipe for burdening a part of the earthquake time horizontal force.SOLUTION: The top end of a main pile 1-head part is projected more than the top end of an outer pipe 2, the top end of the main pile 1-head part and the top end of the outer pipe 2 are buried in a pile cap 3, and soil cement or water-soil-muddy water or a cavity 8 being 0.1-5.0 N/mmin uniaxial compressive strength is formed between the main pile 1-head part and the outer pipe 2 under the pile cap 3. The lower end of a fixation reinforcement 5 is welded to a top end outer peripheral surface of the outer pipe 2, and this fixation reinforcement 5 is buried in the pile cap 3. The lower end of the fixation reinforcement 4 is welded to the top end outer peripheral surface of the main pile 1-head part, or the lower end of the fixation reinforcement 4 is welded or fixed by a screw to a top end upper surface of the main pile 1-head part, and this fixation reinforcement 4 is buried in the pile cap 3.SELECTED DRAWING: Figure 4

Description

本発明は、鉛直荷重を支持する本杭の頭部に、地震時水平力の一部を負担する外管を被せるように設置する杭頭部の二重管構造と、その設計方法に関する。   The present invention relates to a double pipe structure of a pile head that is installed so as to cover an outer pipe that bears a part of the horizontal force during an earthquake on the head of the main pile that supports a vertical load, and a design method thereof.

一般に大きな地震時水平力を受ける本杭は、耐震性の高いSC杭等を選ぶことや、杭頭部を大径化したり、径が大きいと既製杭をあきらめて場所打ち杭に変更するなどの方法があったが、性能やコスト面などで課題を残すものであった。   In general, this pile that receives a horizontal force during a large earthquake can be selected from SC piles with high earthquake resistance, or the head of the pile can be enlarged, or if the diameter is large, the ready-made pile can be given up and changed to a cast-in-place pile. There was a method, but it left problems in terms of performance and cost.

そこで、杭頭部のみを耐震補強する構造が考えられ、例えば、建物基礎の下に、主に鉛直荷重を受ける本杭と、主に水平荷重を受けて本杭の負担を軽減する役割を持つ水平抵抗部材とを両方配置することが既に様々な形態で実施されている。
その主なものとして、スペース節約や施工効率が良いことから、杭頭部の外側もしくは内側に、円筒状の水平抵抗部材を本杭と同一中心軸として配置し、その隙間をコンクリート等で充填するなどした合成構造が好まれている。
Therefore, it is possible to consider a structure in which only the pile head is seismically reinforced. For example, under the building foundation, this pile mainly receives vertical loads and has the role of reducing the load of this pile mainly by receiving horizontal loads. Arranging both the horizontal resistance members has already been implemented in various forms.
As the main thing, space saving and construction efficiency are good, so a cylindrical horizontal resistance member is placed on the same center axis as the main pile outside or inside the pile head, and the gap is filled with concrete etc. Such a synthetic structure is preferred.

しかし、従来の合成構造は、本杭と水平抵抗部材とが一体化したものとして、杭体及びパイルキャップとの接合部を設計するものであり、杭体の設計が面倒であることに加えて、設計上の制約が多いものであった。   However, the conventional composite structure is designed to design the joints between the pile body and the pile cap, assuming that this pile and the horizontal resistance member are integrated, and the design of the pile body is troublesome. There were many design constraints.

そして、従来の本杭の杭頭接合部は、杭外周、杭頂部、杭体内のいずれかに定着筋を設置するか、もしくは定着筋を設置せずに、杭体をパイルキャップ内に杭径程度埋め込む方法のいずれかで杭頭部の応力をパイルキャップに伝達させている。
建築分野では、定着筋を設置する方法が主流であるが、杭1本に作用する地震時水平力が大きく、定着筋の設置だけで杭頭応力をパイルキャップに伝達できない場合には、パイルキャップ内に杭頭を埋込み、杭側面のコンクリートによる抵抗分を減じた応力に対して定着筋を設置している。
And the pile head joint part of the conventional main pile is the pile diameter in the pile cap without installing the fixing bar in the pile outer periphery, the pile top, or the pile body, or without installing the fixing bar. The pile head stress is transmitted to the pile cap by one of the methods of embedding.
In the construction field, the method of installing anchorage is the mainstream. However, when the earthquake horizontal force acting on one pile is large and the pile head stress cannot be transmitted to the pilecap only by installing anchorage, the pile cap The pile head is embedded inside, and the anchoring bar is installed against the stress that reduces the resistance caused by the concrete on the side of the pile.

このような従来の既製杭に対して、特許文献1において、水平抵抗部材を管体で構成し、この管体の内部に杭が貫通するように設置することで、上部構造からの水平力による杭の破壊、特に杭頭での破壊を防止することが可能な杭の免震構造が提案されている。
この免震構造では、杭頭部と管体との間に弾性材(ゴム体)が充填される。
With respect to such a conventional ready-made pile, in Patent Document 1, the horizontal resistance member is constituted by a tubular body, and is installed so that the pile penetrates inside the tubular body, so that the horizontal force from the upper structure A seismic isolation structure for piles that can prevent pile breakage, particularly at the head of the pile, has been proposed.
In this seismic isolation structure, an elastic material (rubber body) is filled between the pile head and the pipe body.

また、特許文献2において、鉛直力を本杭に、水平力を外管にそれぞれ負担させて、鉛直力と水平力の負担を分担させ、本杭の頭部の周囲と外管の周囲との間にコンクリートが充填される構造に加えて、外管の頭部に外管と基礎との接合のための接続材を配置する異径組合せ杭及びその施工方法が提案されている。
この特許文献2で提案されている杭頭接合部は、杭頭部に生じる応力に対して、本杭と外管が一体化した合成構造として抵抗するものと考えられ、水平力に対して抵抗できる鉄筋量を、本杭と外管間に充填するコンクリート内に配置することが必要となる。
Further, in Patent Document 2, the vertical force is applied to the main pile, the horizontal force is applied to the outer pipe, the vertical force and the horizontal force are shared, and the periphery of the head of the main pile and the outer pipe are separated. In addition to the structure in which concrete is filled in between, a different-diameter combination pile in which a connecting material for joining the outer tube and the foundation is arranged at the head of the outer tube and a construction method therefor have been proposed.
The pile head joint proposed in Patent Document 2 is considered to resist the stress generated in the pile head as a composite structure in which the main pile and the outer tube are integrated, and resists horizontal force. It is necessary to arrange the amount of reinforcing bars that can be placed in the concrete filled between the main pile and the outer pipe.

なお、既存の本杭の上端部外側に外管をジャッキにより圧入して被せる耐震補強構造において、従来は、本杭及び外管の面一の上端部を基礎に僅かに埋め込んで、特許文献2と同様、本杭及び外管の間にコンクリートを充填していた。   In addition, in the seismic reinforcement structure in which an outer tube is press-fitted with a jack on the outer side of the upper end of the existing main pile, conventionally, the upper end of the main pile and the outer tube are slightly embedded on the basis, and Patent Document 2 Similar to the above, concrete was filled between the main pile and the outer pipe.

特許第3575733号公報Japanese Patent No. 3575733 特開2001−107356号公報JP 2001-107356 A

しかしながら、特許文献1では、本杭の上端部のみが上部構造物に僅かに埋め込まれているだけで、パイルキャップとの杭頭接合部の具体的な構造は示されておらず、杭頭接合部を設計することができない。
また、特許文献2では、本杭の上端部のみが基礎に僅かに埋め込まれていて、本杭と外管間に配置できる鉄筋量は限られており、杭頭接合部の耐力が、本杭と外管がコンクリートで一体化した耐力よりも小さい場合には、本構造の性能を十分に発揮できない可能性がある。
However, in patent document 1, only the upper end part of this pile is slightly embedded in the upper structure, and the concrete structure of the pile head joint part with a pile cap is not shown, but a pile head joint is shown. The part cannot be designed.
Moreover, in patent document 2, only the upper end part of this pile is slightly embedded in the foundation, the amount of reinforcing bars which can be arrange | positioned between this pile and an outer pipe is limited, and the proof stress of a pile head junction part is this pile. If the outer tube is smaller than the yield strength integrated with concrete, the performance of this structure may not be fully demonstrated.

そして、特許文献1や特許文献2のように、本杭と外管との間に弾性材またはコンクリートを充填した構造では、地震時水平力が外管から弾性材またはコンクリートを経て本杭に伝達されてしまう問題がある。   And, as in Patent Document 1 and Patent Document 2, in the structure in which the elastic material or concrete is filled between the main pile and the outer pipe, the horizontal force during earthquake is transmitted from the outer pipe to the main pile through the elastic material or concrete. There is a problem that will be done.

本発明の課題は、鉛直荷重を支持する本杭の頭部に被せるように設置されて、地震時水平力の一部を負担する外管を備える杭頭部の二重管構造において、地震時水平力が外管から本杭に伝達されるのを低減することである。   The subject of the present invention is a double pipe structure of a pile head provided with an outer pipe that is installed so as to cover the head of the main pile supporting a vertical load and bears a part of the horizontal force at the time of an earthquake. It is to reduce the transmission of horizontal force from the outer pipe to the main pile.

以上の課題を解決するため、請求項1に記載の発明は、
鉛直荷重を支持する本杭の頭部に被せるように設置されて、地震時水平力の一部を負担する外管を備える杭頭部の二重管構造であって、
前記本杭頭部の天端を前記外管の天端よりも突出させて、前記本杭頭部の天端と前記外管の天端をパイルキャップに埋め込んで、
前記パイルキャップ下の前記本杭頭部と前記外管の間に一軸圧縮強度が0.1〜5.0N/mm2となるソイルセメントまたは水・土・泥水もしくは空隙が形成されることを特徴とする。
In order to solve the above problems, the invention described in claim 1
It is a double pipe structure of the pile head that is installed so as to cover the head of the main pile that supports the vertical load and has an outer pipe that bears a part of the horizontal force at the time of the earthquake,
The top end of the main pile head protrudes from the top end of the outer pipe, and the top end of the main pile head and the top end of the outer pipe are embedded in a pile cap,
A soil cement or water / soil / muddy water or voids having a uniaxial compressive strength of 0.1 to 5.0 N / mm 2 is formed between the main pile head under the pile cap and the outer pipe. And

請求項2に記載の発明は、
請求項1に記載の杭頭部の二重管構造であって、
前記外管の天端外周面に定着筋の下端を溶接して、この定着筋を前記パイルキャップに埋め込むとともに、
前記本杭頭部の天端外周面に定着筋の下端を溶接、あるいは天端上面に定着筋の下端を溶接もしくはネジ嵌合して、この定着筋を前記パイルキャップに埋め込んだことを特徴とする。
The invention described in claim 2
The double pipe structure of the pile head according to claim 1,
Welding the lower end of the fixing bar to the outer peripheral surface of the top end of the outer tube, and embedding the fixing bar in the pile cap,
The lower end of the fixing bar is welded to the outer peripheral surface of the top end of the main pile head, or the lower end of the fixing bar is welded or screwed to the upper surface of the upper end, and the fixing bar is embedded in the pile cap. To do.

請求項3に記載の発明は、
請求項2に記載の杭頭部の二重管構造であって、
前記本杭は外殻鋼管付きコンクリート杭、遠心力プレストレスト鉄筋コンクリート杭またはプレテンション方式遠心力高強度プレストレスコンクリート杭であって、
前記外管の前記パイルキャップへの埋め込み深さを、前記外管に溶接した前記定着筋の必要溶接長に被りを加えた値、かつ100mm以上として、
前記本杭の前記パイルキャップへの埋め込み深さを、前記外管の前記埋め込み深さに、100mm以上を加えたことを特徴とする。
The invention according to claim 3
The double pipe structure of the pile head according to claim 2,
The main pile is a concrete pile with a shell steel pipe, a centrifugal prestressed reinforced concrete pile or a pretension centrifugal high strength prestressed concrete pile,
The embedding depth of the outer pipe into the pile cap is a value obtained by adding a covering to the necessary welding length of the fixing muscle welded to the outer pipe, and 100 mm or more,
The embedding depth of the main pile into the pile cap is 100 mm or more added to the embedding depth of the outer pipe.

請求項4に記載の発明は、
請求項2または3に記載の杭頭部の二重管構造を設計する方法であって、
前記外管が負担する水平荷重による前記外管頂部の杭頭曲げモーメントM1、前記外管の杭頭接合部曲げ耐力T1、前記外管に溶接した前記定着筋の引張圧縮抵抗と前記外管の鉛直方向の圧縮抵抗A、相互作用係数αの関係において、下式
M1<T1=A×α ・・・式〔1〕
を満足するよう前記外管に溶接した前記定着筋の仕様及び本数を決定して設計することを特徴とする。
The invention according to claim 4
A method for designing a double pipe structure of a pile head according to claim 2 or 3,
The pile head bending moment M1 of the outer pipe top due to the horizontal load borne by the outer pipe, the pile head joint bending strength T1 of the outer pipe, the tensile compression resistance of the fixing muscle welded to the outer pipe, and the outer pipe In the relationship between the compression resistance A in the vertical direction and the interaction coefficient α, the following equation M1 <T1 = A × α Equation [1]
The design and the number of the fixing bars welded to the outer pipe are determined so as to satisfy the requirements.

請求項5に記載の発明は、
請求項2または3に記載の杭頭部の二重管構造を設計する方法であって、
前記本杭が負担する水平荷重による前記本杭頂部の杭頭曲げモーメントM2、前記本杭の杭頭接合部曲げ耐力T2、前記本杭に溶接またはネジ嵌合した前記定着筋の引張圧縮抵抗と前記本杭の鉛直方向の圧縮抵抗B、前記本杭の側面抵抗C、相互作用係数βの関係において、下式
M2<T2=B+C×β ・・・式〔2〕
を満足するよう前記本杭に溶接またはネジ嵌合した前記定着筋の仕様及び本数、本杭の埋込み深さを決定して設計することを特徴とする。
The invention described in claim 5
A method for designing a double pipe structure of a pile head according to claim 2 or 3,
The pile head bending moment M2 at the top of the main pile due to the horizontal load borne by the main pile, the pile head joint bending strength T2 of the main pile, and the tensile and compression resistance of the fixing bar welded or screwed to the main pile In relation to the compression resistance B in the vertical direction of the main pile, the side resistance C of the main pile, and the interaction coefficient β, the following formula M2 <T2 = B + C × β Formula [2]
The design and the number of the fixing bars welded or screwed to the main pile and the embedding depth of the main pile are determined and designed so as to satisfy the requirements.

本発明によれば、鉛直荷重を支持する本杭の頭部に被せるように設置されて、地震時水平力の一部を負担する外管を備える杭頭部の二重管構造において、地震時水平力が外管から本杭に伝達されるのを低減することができる。   According to the present invention, in the double pipe structure of the pile head that is installed so as to cover the head of the main pile that supports the vertical load and includes the outer pipe that bears a part of the horizontal force at the time of the earthquake, Transmission of horizontal force from the outer pipe to the main pile can be reduced.

本発明を適用した杭頭部の二重管構造の一実施形態の構成を示すもので、杭頭部の概略斜視図である。1 is a schematic perspective view of a pile head according to an embodiment of a double pipe structure of a pile head to which the present invention is applied. 図1の杭全体を示す一部断面の概略側面図である。It is a schematic side view of the partial cross section which shows the whole pile of FIG. 本杭に生じる曲げモーメントを示すグラフである。It is a graph which shows the bending moment which arises in this pile. 実施例1の杭頭接合構造を示す一部断面の概略側面図である。It is a schematic side view of the partial cross section which shows the pile head junction structure of Example 1. FIG. 実施例2の杭頭接合構造を示す一部断面の概略側面図である。It is a schematic side view of the partial cross section which shows the pile head junction structure of Example 2. FIG. 杭頭補強構造の設計のフローチャートである。It is a flowchart of the design of a pile head reinforcement structure. 本杭と外管の水平荷重分担割合を示すグラフである。It is a graph which shows the horizontal load share ratio of this pile and an outer pipe. 外管の曲げ耐力算定を説明する概略側面図(a)と、仮想円柱の平面図(b)である。It is the schematic side view (a) explaining the bending strength calculation of an outer tube, and the top view (b) of a virtual cylinder. 相互作用係数αを示すグラフである。It is a graph which shows interaction coefficient (alpha). 外管の杭頭曲げモーメントM1と耐力T1(実験値M1と計算値T1)の比較を示すグラフである。It is a graph which shows the comparison of pile head bending moment M1 of an outer pipe, and proof stress T1 (experimental value M1 and calculation value T1). 外管の曲げ耐力算定のフローチャートである。It is a flowchart of bending strength calculation of an outer tube. 本杭の曲げ耐力算定を説明する概略側面図(a)と、仮想円柱の平面図(b)である。It is the schematic side view (a) explaining the bending strength calculation of this pile, and the top view (b) of a virtual cylinder. 相互作用係数βを示すグラフである。It is a graph which shows interaction coefficient (beta). 本杭の杭頭曲げモーメントM2と耐力T2(実験値M2と計算値T2)の比較を示すグラフである。It is a graph which shows the comparison of pile head bending moment M2 and proof stress T2 (experimental value M2 and calculation value T2) of this pile. 本杭の曲げ耐力算定のフローチャートである。It is a flowchart of bending strength calculation of this pile.

(概要)
本発明では、鉛直荷重を負担する杭と水平荷重を負担する杭を一体化させた合成構造とした考え方に基づく杭頭接合構造とは異なり、本杭と外管がそれぞれ水平力を負担する二重管杭の性能を発揮させるための杭頭補強構造と、本杭と外管それぞれの負担水平力に応じて、別々に杭頭接合部を設計する。
(Overview)
In the present invention, unlike a pile head joint structure based on a combined structure in which a pile that bears a vertical load and a pile that bears a horizontal load are integrated, the pile and the outer pipe each bear a horizontal force. The pile head joints are designed separately according to the pile head reinforcement structure for demonstrating the performance of the heavy pipe piles and the load horizontal force of the main pile and the outer pipe.

本発明は、外管天端よりも本杭天端を突出させること、本杭と外管の杭頭に定着筋を配置して、建物基礎、より具体的には、杭頭と建物基礎を連結するパイルキャップへ定着することを特徴とする。
これにより、本杭と外管とを各々独立して構造設計できるようになり、課題であった杭頭接合部の設計を容易とする。
ここで、杭頭接合部とは、それぞれパイルキャップに埋め込まれている本杭と外管と定着筋からなる。
In the present invention, the top of the pile is protruded from the top of the outer pipe, and the anchorage is disposed on the pile head of the main pile and the outer pipe to connect the building foundation, more specifically, the pile head and the building foundation. It is characterized by fixing to a pile cap.
As a result, the main pile and the outer pipe can be structurally designed independently, and the design of the pile head joint, which has been a problem, is facilitated.
Here, the pile head joint portion is composed of a main pile, an outer pipe, and a fixing muscle embedded in a pile cap.

以下、図を参照して本発明を実施するための形態を詳細に説明する。
(実施形態)
図1及び図2は本発明を適用した杭頭部の二重管構造の一実施形態の構成を示すもので、1は本杭、2は外管、3はパイルキャップである。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
(Embodiment)
1 and 2 show a configuration of an embodiment of a double pipe structure of a pile head to which the present invention is applied, wherein 1 is a main pile, 2 is an outer pipe, and 3 is a pile cap.

図示のように、既製杭による本杭1の頭部外周に、本杭1よりも大径且つ長さの短い鋼管による外管2が設けられて、その本杭1及び外管2の天端はパイルキャップ3に埋め込まれている。
そして、本杭1及び外管2ともに、パイルキャップ3と接合するための鉄筋4・5を設置する。すなわち、パイルキャップ3には、本杭1の天端あるいは外周に設けた定着筋4と、外管2の天端外周面に設けた定着筋5も埋め込まれている。
As shown in the figure, an outer pipe 2 made of a steel pipe having a diameter larger than that of the main pile 1 and a length shorter than that of the main pile 1 is provided on the outer periphery of the head of the main pile 1 made of ready-made piles. Is embedded in the pile cap 3.
Then, both the pile 1 and the outer pipe 2 are provided with reinforcing bars 4 and 5 for joining with the pile cap 3. That is, the pile cap 3 is also embedded with a fixing bar 4 provided on the top end or the outer periphery of the main pile 1 and a fixing bar 5 provided on the top end outer peripheral surface of the outer tube 2.

また、本杭1の下端に、根固め液を注入して撹拌固化した先端根固め部6が形成されて、本杭1及び外管2の周囲に、杭周固定液を注入して撹拌固化した杭周固定部7が形成されて、本杭1の頭部と外管2との間には固化した後の一軸圧縮強度が0.1〜5.0N/mm2となるソイルセメントまたは水・土・泥水8が形成されているほか、土・空隙で構成されていてもよい。 In addition, a root consolidation part 6 is formed at the lower end of the main pile 1 by injecting root solidification liquid and stirring and solidifying. Soil cement or water in which a fixed uniaxial compressive strength is 0.1 to 5.0 N / mm 2 after the pile fixed portion 7 is formed and solidified between the head of the main pile 1 and the outer tube 2 -In addition to the formation of soil / mud water 8, it may be composed of soil / voids.

図3は本杭1に生じる曲げモーメントを示すグラフで、図示のように、二重管杭の本杭1に生じる地震時応力(破線で示した曲げモーメント)を従来の既製杭に生じる地震時応力(実線で示した曲げモーメント)よりも低減させることで、今まで設計できなかった地震時水平力に対しても、既製コンクリート杭で設計可能となる。
また、在来工法に比べて、杭の仕様あるいは杭径を低減できることから、杭のコストダウンが可能になる。
FIG. 3 is a graph showing the bending moment generated in the main pile 1, and as shown in the figure, the earthquake stress (bending moment indicated by the broken line) generated in the main pile 1 of the double pipe pile is generated in the conventional ready-made pile. By reducing the stress (bending moment shown by the solid line), it is possible to design with ready-made concrete piles for earthquake horizontal forces that could not be designed so far.
Moreover, since the specification of a pile or a pile diameter can be reduced compared with the conventional construction method, the cost of a pile can be reduced.

次に、本発明の杭頭接合構造の具体的な仕様を図4と図5に示す。   Next, the concrete specification of the pile head joint structure of this invention is shown in FIG. 4 and FIG.

(実施例1)
図4は実施例1の杭頭接合構造を示すもので、本杭がSC杭(Steel Composite Concrete Piles;外殻鋼管付きコンクリート杭)の場合である。
実施例1では、図示のように、本杭1頭部の天端外周面に定着筋4の下端を溶接もしくは天端上面に溶接あるいはネジ嵌合して、外管2の天端外周面に定着筋5の下端を溶接して、これら本杭1頭部の天端及び定着筋4と外管2の天端及び定着筋5をパイルキャップ3に埋め込む。
Example 1
FIG. 4 shows the pile head joint structure of Example 1, and this pile is a case of SC pile (Steel Composite Concrete Piles; concrete pile with shell steel pipe).
In the first embodiment, as shown in the drawing, the lower end of the fixing bar 4 is welded to the top end outer peripheral surface of the head of the main pile 1 or welded or screwed to the upper surface of the top end. The top end of the head 1 and the fixing muscle 4 and the top end of the outer tube 2 and the fixing muscle 5 are embedded in the pile cap 3 by welding the lower end of the fixing muscle 5.

(実施例2)
図5は実施例2の杭頭接合構造を示すもので、本杭がPRC杭(Pretensioned & Reinforced Spun High Strength Concrete Piles;遠心力プレストレスト鉄筋コンクリート杭)・PHC杭(Pretensioned Spun High Strength Concrete Piles;プレテンション方式遠心力高強度プレストレスコンクリート杭)の場合である。
実施例2では、図示のように、本杭1頭部の天端上面に定着筋4の下端を溶接あるいはネジ嵌合して、外管2の天端外周面に定着筋5の下端を溶接して、これら本杭1頭部の天端及び定着筋4と外管2の天端及び定着筋5をパイルキャップ3に埋め込む。
(Example 2)
FIG. 5 shows a pile head joint structure of Example 2, and this pile is a PRC pile (Pretensioned & Reinforced Spun High Strength Concrete Piles) / PHC pile (Pretensioned Spun High Strength Concrete Piles). This is the case of the centrifugal force high strength prestressed concrete pile).
In the second embodiment, as shown in the figure, the lower end of the fixing bar 4 is welded or screwed to the upper surface of the top end of the head of the main pile 1 and the lower end of the fixing bar 5 is welded to the outer peripheral surface of the outer end of the outer pipe 2. Then, the top end and fixing muscle 4 of the head of the main pile 1 and the top end and fixing muscle 5 of the outer tube 2 are embedded in the pile cap 3.

以上において、図4及び図5に示すように、パイルキャップ3内に埋め込む外管2天端よりも本杭1天端を突出させる。その突出高さは、100mm以上、かつ本杭1に設置する定着筋4の必要溶接長さ以上とする。
ここで、パイルキャップ3への外管2の埋め込み深さは、外管2に設置する定着筋5の必要溶接長に被りを加えた値、かつ100mm以上とする。
In the above, as shown in FIGS. 4 and 5, the top end of the main pile 1 protrudes from the top end of the outer tube 2 embedded in the pile cap 3. The protruding height is 100 mm or more and the required welding length of the fixing bars 4 installed on the main pile 1.
Here, the embedding depth of the outer tube 2 in the pile cap 3 is set to a value obtained by adding a covering to the necessary welding length of the fixing bar 5 installed in the outer tube 2 and 100 mm or more.

すなわち、実施例1のSC杭の場合は、図4に示すように、パイルキャップ3への本杭1の埋め込み深さは、外管2の埋め込み深さに、本杭1に設置する定着筋4の必要溶接長、かつ100mm以上を加えたものとする。   That is, in the case of the SC pile of the first embodiment, as shown in FIG. 4, the embedding depth of the main pile 1 in the pile cap 3 is set to the embedding depth of the outer pipe 2 and the fixing bars installed in the main pile 1. The required weld length of 4 and 100 mm or more are added.

また、実施例2のPRC杭・PHC杭の場合は、図5に示すように、パイルキャップ3への本杭1の埋め込み深さは、外管2の埋め込み深さに、100mm以上を加えたものとする。   Further, in the case of the PRC pile / PHC pile of Example 2, as shown in FIG. 5, the embedding depth of the main pile 1 in the pile cap 3 is 100 mm or more added to the embedding depth of the outer tube 2. Shall.

図6は杭頭補強構造の設計のフローチャートで、先ず、本杭1と外管2の負担水平力を算定する(ステップS1)。次に、外管2の定着筋5の仕様・必要本数を仮定する(ステップS2)。次に、本杭1の定着筋4の仕様・必要本数、パイルキャップ3への埋込み深さを仮定する(ステップS3)。次に、相互作用係数αを算定する(ステップS4)。次に、相互作用係数βを算定する(ステップS5)。次に、外管2の定着筋5の仕様・本数を決定する(ステップS6)。次に、本杭1の定着筋4の仕様・本数、必要埋め込み深さを決定する(ステップS7)。
なお、相互作用係数とは、本杭1と外管2それぞれが水平力を負担することによって、パイルキャップ3内で変形することから、外管2に及ぼす本杭1の影響を相互作用係数α、本杭1に及ぼす外管2の影響を相互作用係数βとする。
FIG. 6 is a flowchart of the design of the pile head reinforcement structure. First, the horizontal load force of the main pile 1 and the outer pipe 2 is calculated (step S1). Next, the specification and the required number of fixing muscles 5 of the outer tube 2 are assumed (step S2). Next, the specification / necessary number of fixing bars 4 of the main pile 1 and the depth of embedding in the pile cap 3 are assumed (step S3). Next, the interaction coefficient α is calculated (step S4). Next, the interaction coefficient β is calculated (step S5). Next, the specification and number of the fixing muscles 5 of the outer tube 2 are determined (step S6). Next, the specification / number of anchoring bars 4 of the main pile 1 and the necessary embedding depth are determined (step S7).
The interaction coefficient means that the main pile 1 and the outer pipe 2 are deformed in the pile cap 3 by bearing a horizontal force, and therefore the influence of the main pile 1 on the outer pipe 2 is expressed by the interaction coefficient α. The influence of the outer tube 2 on the main pile 1 is defined as an interaction coefficient β.

ここで、本杭1は、本杭1が負担する水平荷重(全体荷重の50〜20%)によって本杭1頂部に生じる杭頭曲げモーメントを上回るような曲げ耐力を有するように、杭頭接合部(定着筋4の仕様・本数やパイルキャップ3への埋め込み深さ等)を設計する。   Here, the main pile 1 is pile head bonded so that it has a bending strength exceeding the pile head bending moment generated at the top of the main pile 1 by the horizontal load (50 to 20% of the total load) borne by the main pile 1. The part (specification / number of fixing muscles 4 and the embedding depth in the pile cap 3) is designed.

また、外管2は、外管2が負担する水平荷重(50〜80%)によって外管2頂部に生じる杭頭曲げモーメントを上回るような曲げ耐力を有するように、杭頭接合部(定着筋5の本数等)を設計する。   Further, the outer pipe 2 has a pile head joint (fixing muscle) so that the outer pipe 2 has a bending strength exceeding the pile head bending moment generated at the top of the outer pipe 2 by a horizontal load (50 to 80%) borne by the outer pipe 2. 5 etc.).

具体的には、以下の手順により本杭1と外管2の杭頭接合部の構造設計を行う。
なお、本杭1と外管2それぞれに水平荷重が作用することにより、相互作用が生じることから、その影響を考慮した構造設計方法とする。
Specifically, the structural design of the pile head joint between the main pile 1 and the outer pipe 2 is performed according to the following procedure.
In addition, since an interaction arises when a horizontal load acts on each of this pile 1 and the outer tube 2, it is set as the structural design method which considered the influence.

1)本杭1と外管2の負担水平力を算定する(ステップS1)。
同一中心軸の本杭1と外管2の一組が受ける地震時水平力に対して、本杭1の仕様(径、長さ、コンクリート強度など)及び外管2の仕様(径、長さ、肉厚など)に、地盤の状態(地質、深さ、N値など)を考慮した応力解析モデルを構築して、本杭1と外管2の水平荷重分担割合(例えば、図7)を算定する。
具体的には、杭頭補強構造を実際に現場で構築し、水平載荷試験を実施した結果、本杭1と外管2の水平荷重分担割合は、図7に示すとおり、本杭:外管=5:5〜2:8の範囲であることが示された。従って、この水平荷重分担割合を参考に、応力解析結果に基づいて、本杭1と外管2の杭頭接合部を設計する。
1) The horizontal load force of the main pile 1 and the outer pipe 2 is calculated (step S1).
For the horizontal force during an earthquake experienced by a pair of main pile 1 and outer pipe 2 with the same central axis, specifications of main pile 1 (diameter, length, concrete strength, etc.) and specifications of outer pipe 2 (diameter, length) The stress analysis model considering the ground condition (geology, depth, N value, etc.), and the horizontal load sharing ratio of the main pile 1 and the outer pipe 2 (for example, FIG. 7) Calculate.
Specifically, as a result of actually building a pile head reinforcement structure on site and conducting a horizontal loading test, the horizontal load sharing ratio between the main pile 1 and the outer pipe 2 is as shown in FIG. = 5: 5 to 2: 8. Therefore, the pile head joint between the main pile 1 and the outer pipe 2 is designed based on the stress analysis result with reference to the horizontal load sharing ratio.

2)外管2の定着筋5の仕様・必要本数を仮定する(ステップS2)。
仮定段階では、例えば、相互作用係数を無視して、一般の設計方法に準じて定着筋の仕様および必要本数を仮定する。
なお、外管2のパイルキャップ3への埋め込み深さL1は、定着筋5の溶接長+被りを考慮した値、かつ100mm以上とする。
ここで、上記一般の設計方法とは、外管径D2+(100〜200)mmの仮想円柱を想定した鉄筋コンクリート断面による曲げ耐力が、外管2の負担水平力による曲げモーメントを上回るように鉄筋の仕様および本数を決定する。
2) The specifications and necessary number of fixing muscles 5 of the outer tube 2 are assumed (step S2).
In the hypothesis stage, for example, the interaction coefficient is ignored, and the specification and the necessary number of anchors are assumed according to a general design method.
The embedding depth L1 of the outer tube 2 in the pile cap 3 is set to a value that takes into account the weld length + cover of the fixing bar 5 and 100 mm or more.
Here, the general design method is that the bending strength of the reinforced concrete cross section assuming a virtual cylinder having an outer tube diameter D2 + (100 to 200) mm exceeds the bending moment due to the horizontal force applied to the outer tube 2. Determine the specifications and number.

3)本杭1の定着筋4の仕様・必要本数、パイルキャップ3への埋込み深さを仮定する(ステップS3)。
仮定段階では、例えば、相互作用係数を無視して、一般の設計方法に準じて定着筋の仕様および必要本数と埋込み深さを仮定する。
本杭1のパイルキャップ3への埋め込み深さL2は、例えばSC杭の場合(図4)には、本杭1への定着筋4の溶接長を考慮して、外管2の埋め込み深さL1に、本杭1に設置する定着筋4の必要溶接長、かつ100mm以上を加えたものとする。
3) Assuming the specification / necessary number of fixing bars 4 of the main pile 1 and the depth of embedding in the pile cap 3 (step S3).
In the hypothesis stage, for example, the interaction coefficient is ignored, and the specification of the anchorage and the necessary number and embedding depth are assumed according to a general design method.
For example, in the case of an SC pile (FIG. 4), the embedding depth L2 of the main pile 1 in the pile cap 3 is determined by considering the weld length of the fixing bar 4 to the main pile 1. It is assumed that the necessary weld length of the fixing bar 4 installed in the main pile 1 and 100 mm or more are added to L1.

また、PRC杭・PHC杭の場合(図5)には、本杭1のパイルキャップ3への埋め込み深さL2は、外管2の埋め込み深さL1に、100mm以上を加えたものとする。
ここで、上記一般の設計方法とは、本杭径D1+(100〜200)mmの仮想円柱を想定した鉄筋コンクリート断面による曲げ耐力が、本杭1の負担水平力による曲げモーメントを上回るように鉄筋の仕様および本数を決定する。
In the case of the PRC pile / PHC pile (FIG. 5), the embedding depth L2 of the main pile 1 in the pile cap 3 is assumed to be 100 mm or more added to the embedding depth L1 of the outer pipe 2.
Here, the general design method is that the bending strength of the reinforced concrete cross section assuming a virtual cylinder with a main pile diameter D1 + (100 to 200) mm exceeds the bending moment due to the horizontal load of the main pile 1. Determine the specifications and number.

4)相互作用係数αを算定する(ステップS4)。
外管2に及ぼす本杭1の影響係数である相互作用係数αは、図8に示すように、パイルキャップ3への外管2の埋め込み深さL1と、本杭1と外管2の埋め込み深さL2・L1の差(外管2天端から本杭1天端の突出長)から、図9をもとに決定する。この関係は、本杭1と外管2からなる杭頭補強構造の室内構造実験に基づいて定めた。
4) The interaction coefficient α is calculated (step S4).
As shown in FIG. 8, the interaction coefficient α, which is an influence coefficient of the main pile 1 on the outer pipe 2, is embedded depth L 1 of the outer pipe 2 into the pile cap 3 and the embedding of the main pile 1 and the outer pipe 2. Based on the difference between the depths L2 and L1 (the protruding length from the top end of the outer pipe 2 to the top end of the main pile 1), it is determined based on FIG. This relationship was determined based on an indoor structural experiment of a pile head reinforcing structure composed of the main pile 1 and the outer pipe 2.

なお、相互作用係数αは、本杭1と外管2からなる杭頭補強構造の室内構造実験結果において、実験結果に対して、後述する評価式〔1〕による外管2の杭頭接合部曲げ耐力T1が安全側(実験結果が上回る)となるように定めた。   It should be noted that the interaction coefficient α is a pile head joint portion of the outer pipe 2 according to an evaluation formula [1] to be described later with respect to the experimental result in the indoor structure test result of the pile head reinforcing structure composed of the main pile 1 and the outer pipe 2. The bending strength T1 was determined to be on the safe side (experimental result exceeded).

実験結果と評価式〔1〕による杭頭接合部曲げ耐力T1の対比を図10に示す。   FIG. 10 shows a comparison between the experimental results and the pile head joint bending strength T1 based on the evaluation formula [1].

図11は外管2の曲げ耐力算定のフローチャートで、先ず、定着筋5による曲げ耐力1を入力し(ステップS11)、その曲げ耐力1が設計曲げモーメント以上か否かを判別し(ステップS12)、以上であれば設計を終了する(ステップS13)。
また、ステップS12において、曲げ耐力1が設計曲げモーメント未満であれば、パイルキャップ3への外管2天端の埋め込みによる曲げ耐力2を入力し(ステップS14)、定着筋5による曲げ耐力1にパイルキャップ3への外管2天端の埋め込みによる曲げ耐力2を加えて(ステップS15)、その和の曲げ耐力1+2が設計曲げモーメント以上か否かを判別し(ステップS16)、以上であれば設計を終了する(ステップS17)。
FIG. 11 is a flowchart for calculating the bending strength of the outer tube 2. First, the bending strength 1 by the fixing bar 5 is input (step S11), and it is determined whether or not the bending strength 1 is equal to or greater than the design bending moment (step S12). If so, the design is completed (step S13).
In step S12, if the bending strength 1 is less than the design bending moment, the bending strength 2 by embedding the top end of the outer tube 2 in the pile cap 3 is input (step S14), and the bending strength 1 by the fixing bar 5 is input. Add bending strength 2 by embedding outer tube 2 top end into pile cap 3 (step S15), and determine whether or not the sum of bending strength 1 + 2 is greater than the design bending moment (step S16). If so, the design is terminated (step S17).

また、ステップS16において、曲げ耐力1+2が設計曲げモーメント未満であれば、埋込み深さを増大して(ステップS18)、その埋込み深さに応じた曲げ耐力2を曲げ耐力1に加えて、その和の曲げ耐力1+2が設計曲げモーメント以上か否かを判別し(ステップS19)、以上であれば設計を終了する(ステップS20)。ステップS19において、曲げ耐力1+2が設計曲げモーメント未満であれば、杭径を増大して(ステップS21)、その杭径に応じた定着筋5による曲げ耐力1を入力し(ステップS11)、以下同様の処理を行う。   In step S16, if the bending strength 1 + 2 is less than the design bending moment, the embedding depth is increased (step S18), and the bending strength 2 corresponding to the embedding depth is added to the bending strength 1. It is determined whether or not the sum bending resistance 1 + 2 is greater than or equal to the design bending moment (step S19). In step S19, if the bending strength 1 + 2 is less than the design bending moment, the pile diameter is increased (step S21), the bending strength 1 by the fixing bar 5 corresponding to the pile diameter is input (step S11), and so on. Perform the process.

5)相互作用係数βを算定する(ステップS5)。
本杭1に及ぼす外管2の影響係数である相互作用係数βは、図8に示すように、パイルキャップ3への外管2の埋め込み深さL1と、本杭1と外管2の埋め込み深さL2・L1の差(外管2天端から本杭1天端の突出長)から、図13をもとに決定する。この関係は、本杭と外管からなる杭頭補強構造の室内構造実験に基づいて定めた。
5) The interaction coefficient β is calculated (step S5).
As shown in FIG. 8, the interaction coefficient β, which is an influence coefficient of the outer pipe 2 on the main pile 1, is embedded depth L 1 of the outer pipe 2 into the pile cap 3 and the embedding of the main pile 1 and the outer pipe 2. It is determined based on FIG. 13 from the difference between the depths L2 and L1 (the protruding length from the top end of the outer pipe 2 to the top end of the main pile 1). This relationship was determined based on an indoor structural experiment of a pile head reinforcement structure consisting of this pile and an outer pipe.

なお、相互作用係数βは、本杭1と外管2からなる杭頭補強構造の室内構造実験結果において、実験結果に対して、後述する評価式〔2〕による本杭1の杭頭接合部曲げ耐力T2が安全側(実験結果が上回る)となるように定めた。   It should be noted that the interaction coefficient β is a pile head joint portion of the main pile 1 according to an evaluation formula [2] to be described later with respect to the experimental result in the indoor structure experimental result of the pile head reinforcing structure composed of the main pile 1 and the outer pipe 2. The bending strength T2 was determined to be on the safe side (experimental result exceeded).

実験結果と評価式〔2〕による杭頭接合部曲げ耐力T2の対比を図14に示す。   FIG. 14 shows a comparison between the experimental results and the pile head joint bending strength T2 based on the evaluation formula [2].

6)外管2の定着筋5の仕様・本数を決定する(ステップS6)。
外管2が負担する水平荷重による外管2頂部の杭頭曲げモーメントM1、外管2の杭頭接合部曲げ耐力T1、外管定着筋5の引張圧縮抵抗と外管2の鉛直方向の圧縮抵抗A、相互作用係数αの関係において、下式〔1〕を満足するような外管定着筋5の仕様及び本数を決定する。
M1<T1=A×α ・・・式〔1〕
6) The specification and number of the fixing muscles 5 of the outer tube 2 are determined (step S6).
Pile head bending moment M1 at the top of the outer pipe 2 due to the horizontal load borne by the outer pipe 2, the pile head joint bending strength T1 of the outer pipe 2, the tensile compression resistance of the outer pipe anchoring muscle 5 and the vertical compression of the outer pipe 2 In relation to the resistance A and the interaction coefficient α, the specifications and the number of the outer tube anchoring muscles 5 satisfying the following expression [1] are determined.
M1 <T1 = A × α (1)

ただし、外管定着筋5の引張圧縮抵抗と外管2の鉛直方向の圧縮抵抗Aは、図8に示すように、外管径D2+(100〜200)mmの仮想円柱を想定した鉄筋コンクリート断面による曲げ耐力により算定する。   However, as shown in FIG. 8, the tensile compression resistance of the outer tube fixing muscle 5 and the vertical compression resistance A of the outer tube 2 are based on a reinforced concrete section assuming a virtual cylinder having an outer tube diameter D2 + (100 to 200) mm. Calculated based on bending strength.

7)本杭1の定着筋4の仕様・本数、必要埋め込み深さを決定する(ステップS7)。
本杭1が負担する水平荷重による本杭1頂部の杭頭曲げモーメントM2、本杭1の杭頭接合部曲げ耐力T2、本杭定着筋4の引張圧縮抵抗と本杭1の鉛直方向の圧縮抵抗B、本杭側面抵抗C、相互作用係数βの関係において、下式〔2〕を満足するような本杭定着筋4の仕様及び本数を決定する。
M2<T2=B+C×β ・・・式〔2〕
7) The specifications and number of anchoring bars 4 of the main pile 1 and the necessary embedding depth are determined (step S7).
The pile head bending moment M2 at the top of the main pile 1 due to the horizontal load borne by the main pile 1, the pile head joint bending strength T2 of the main pile 1, the tensile compression resistance of the main pile anchoring bar 4, and the vertical compression of the main pile 1 In relation to the resistance B, the main pile side resistance C, and the interaction coefficient β, the specifications and the number of the main pile fixing bars 4 that satisfy the following equation [2] are determined.
M2 <T2 = B + C × β (2)

ただし、本杭定着筋4の引張圧縮抵抗と本杭1の鉛直方向の圧縮抵抗Bは、図12に示すように、本杭径D1+(100〜200)mmの仮想円柱を想定した鉄筋コンクリート断面による曲げ耐力により算定する。   However, the tensile compression resistance of the main pile anchoring bar 4 and the vertical compression resistance B of the main pile 1 are based on a reinforced concrete cross section assuming a virtual cylinder with a main pile diameter D1 + (100 to 200) mm, as shown in FIG. Calculated based on bending strength.

また、本杭側面抵抗Cは、図12内に示すように、主に、外管2天端より突出した部分の側面コンクリートの支圧抵抗を考える。
すなわち、本杭側面抵抗Cは、外管2天端から突出している本杭1側面のコンクリート支圧抵抗であり、一般的に用いられている下式から算出される。
C=D×l/6×fc―Q×l/6
ここで、D:本杭径、l:外管天端から本杭の突出長、fc:パイルキャップコンクリートの短期許容圧縮応力度(さらに支圧係数を考慮する場合もある)、Q:本杭の負担水平力である。
Moreover, this pile side resistance C considers the bearing resistance of the side concrete of the part which protruded from the outer pipe 2 top end mainly, as shown in FIG.
That is, the main pile side resistance C is the concrete bearing resistance of the main pile 1 side surface protruding from the top end of the outer pipe 2 and is calculated from the following commonly used equation.
C = D × l 2/6 × fc-Q 0 × l / 6
Here, D: main pile diameter, l: protrusion length of the main pile from the top of the outer pipe, fc: short-term allowable compressive stress degree of pile cap concrete (a bearing coefficient may be further considered), Q 0 : main This is the horizontal force of the pile.

図15は本杭1の曲げ耐力算定のフローチャートで、先ず、定着筋4による曲げ耐力1を入力し(ステップS31)、その曲げ耐力1が設計曲げモーメント以上か否かを判別し(ステップS32)、以上であれば設計を終了する(ステップS33)。
また、ステップS32において、曲げ耐力1が設計曲げモーメント未満であれば、パイルキャップ3への本杭1天端の埋め込みによる曲げ耐力2を入力し(ステップS34)、定着筋4による曲げ耐力1にパイルキャップ3への本杭1天端の埋め込みによる曲げ耐力2を加えて(ステップS35)、その和の曲げ耐力1+2が設計曲げモーメント以上か否かを判別し(ステップS36)、以上であれば設計を終了する(ステップS37)。
FIG. 15 is a flowchart for calculating the bending strength of the main pile 1. First, the bending strength 1 by the fixing bar 4 is input (step S31), and it is determined whether the bending strength 1 is equal to or greater than the design bending moment (step S32). If so, the design is finished (step S33).
In step S32, if the bending strength 1 is less than the design bending moment, the bending strength 2 by embedding the top end of the main pile 1 in the pile cap 3 is input (step S34), and the bending strength 1 by the fixing bar 4 is input. Add bending strength 2 by embedding main pile 1 in pile cap 3 (step S35), and determine whether or not the sum of bending strength 1 + 2 is greater than the design bending moment (step S36). If so, the design is terminated (step S37).

また、ステップS36において、曲げ耐力1+2が設計曲げモーメント未満であれば、埋込み深さを増大して(ステップS38)、その埋込み深さに応じた曲げ耐力2を曲げ耐力1に加えて、その和の曲げ耐力1+2が設計曲げモーメント以上か否かを判別し(ステップS39)、以上であれば設計を終了する(ステップS40)。ステップS39において、曲げ耐力1+2が設計曲げモーメント未満であれば、杭径を増大して(ステップS41)、その杭径に応じた定着筋4による曲げ耐力1を入力し(ステップS31)、以下同様の処理を行う。   In step S36, if the bending strength 1 + 2 is less than the design bending moment, the embedding depth is increased (step S38), and the bending strength 2 corresponding to the embedding depth is added to the bending strength 1. It is determined whether or not the sum bending resistance 1 + 2 is greater than or equal to the design bending moment (step S39), and if so, the design is terminated (step S40). In step S39, if the bending strength 1 + 2 is less than the design bending moment, the pile diameter is increased (step S41), the bending strength 1 by the fixing bar 4 corresponding to the pile diameter is input (step S31), and so on. Perform the process.

8)図11、図15に示したように、外管2、本杭1ともに、定着筋4・5の曲げ耐力が不足する場合には、図15に示したように、例えば、定着筋4・5の本数を増やしたり、強度の大きい定着筋を用いたり、パイルキャップ3への埋め込み深さを大きくする。
なお、パイルキャップ3下端までの本杭1と外管2の間には、ソイルセメント8を掘削・排出してパイルキャップ3と同じコンクリートを打設する。
8) As shown in FIG. 11 and FIG. 15, when the bending strength of the fixing bars 4 and 5 is insufficient for both the outer tube 2 and the main pile 1, as shown in FIG. -Increase the number of 5s, use strong anchoring streaks, or increase the depth of embedding in the pile cap 3.
In addition, between the main pile 1 and the outer pipe 2 to the lower end of the pile cap 3, the soil cement 8 is excavated and discharged, and the same concrete as the pile cap 3 is placed.

以上により、本杭1と外管2に生じる杭頭応力をパイルキャップ3に確実に伝達することが可能になる。   As described above, the pile head stress generated in the main pile 1 and the outer pipe 2 can be reliably transmitted to the pile cap 3.

以上の設計方法で杭頭接合部を構築することにより、本杭1と外管2それぞれが負担する荷重をパイルキャップ3に確実に伝達することが可能となるとともに、二重管の鉛直・水平力負担を担保することができる。   By constructing the pile head joint by the above design method, it is possible to reliably transmit the load borne by the main pile 1 and the outer pipe 2 to the pile cap 3, and the vertical and horizontal of the double pipe The burden of power can be secured.

以上、実施形態の杭頭部の二重管構造によれば、本杭1頭部の天端を外管2の天端よりも突出させて、その本杭1頭部の天端と外管2の天端をパイルキャップ3に埋め込んで、そのパイルキャップ3下の本杭1頭部と外管2の間にソイルセメント・水・泥水・土・空隙8が形成されるので、地震時水平力が外管2から本杭1に伝達されるのを低減することができる。   As mentioned above, according to the double pipe structure of the pile head of the embodiment, the top end of the head of the main pile is protruded from the top end of the outer pipe 2, and the top end of the head of the main pile and the outer pipe 2 is embedded in the pile cap 3, and the soil cement, water, mud, soil, and void 8 are formed between the head of the main pile 1 and the outer pipe 2 under the pile cap 3. Transmission of force from the outer tube 2 to the main pile 1 can be reduced.

(変形例)
以上の実施形態の他、具体的な細部構造や手法等について適宜に変更可能であることは勿論である。
(Modification)
In addition to the above-described embodiments, it is needless to say that specific detailed structures and methods can be appropriately changed.

1 本杭
2 外管
3 パイルキャップ
4 本杭定着筋
5 外管定着筋
6 先端根固め部
7 杭周固定部
8 ソイルセメントまたは水(もしくは土・泥水・空隙)
1 Pile 2 Outer pipe 3 Pile cap 4 Pile anchoring muscle 5 Outer pipe anchoring muscle 6 Tip root fixing part 7 Pile circumference fixing part 8 Soil cement or water (or soil, muddy water, void)

Claims (5)

鉛直荷重を支持する本杭の頭部に被せるように設置されて、地震時水平力の一部を負担する外管を備える杭頭部の二重管構造であって、
前記本杭頭部の天端を前記外管の天端よりも突出させて、前記本杭頭部の天端と前記外管の天端をパイルキャップに埋め込んで、
前記パイルキャップ下の前記本杭頭部と前記外管の間に一軸圧縮強度が0.1〜5.0N/mm2となるソイルセメントまたは水・土・泥水もしくは空隙が形成されることを特徴とする杭頭部の二重管構造。
It is a double pipe structure of the pile head that is installed so as to cover the head of the main pile that supports the vertical load and has an outer pipe that bears a part of the horizontal force at the time of the earthquake,
The top end of the main pile head protrudes from the top end of the outer pipe, and the top end of the main pile head and the top end of the outer pipe are embedded in a pile cap,
A soil cement or water / soil / muddy water or voids having a uniaxial compressive strength of 0.1 to 5.0 N / mm 2 is formed between the main pile head under the pile cap and the outer pipe. Double pipe structure of the pile head.
前記外管の天端外周面に定着筋の下端を溶接して、この定着筋を前記パイルキャップに埋め込むとともに、
前記本杭頭部の天端外周面に定着筋の下端を溶接、あるいは天端上面に定着筋の下端を溶接もしくはネジ嵌合して、この定着筋を前記パイルキャップに埋め込んだことを特徴とする請求項1に記載の杭頭部の二重管構造。
Welding the lower end of the fixing bar to the outer peripheral surface of the top end of the outer tube, and embedding the fixing bar in the pile cap,
The lower end of the fixing bar is welded to the outer peripheral surface of the top end of the main pile head, or the lower end of the fixing bar is welded or screwed to the upper surface of the upper end, and the fixing bar is embedded in the pile cap. The double pipe structure of the pile head according to claim 1.
前記本杭は外殻鋼管付きコンクリート杭、遠心力プレストレスト鉄筋コンクリート杭またはプレテンション方式遠心力高強度プレストレスコンクリート杭であって、
前記外管の前記パイルキャップへの埋め込み深さを、前記外管に溶接した前記定着筋の必要溶接長に被りを加えた値、かつ100mm以上として、
前記本杭の前記パイルキャップへの埋め込み深さを、前記外管の前記埋め込み深さに、100mm以上を加えたことを特徴とする請求項2に記載の杭頭部の二重管構造。
The main pile is a concrete pile with a shell steel pipe, a centrifugal prestressed reinforced concrete pile or a pretension centrifugal high strength prestressed concrete pile,
The embedding depth of the outer pipe into the pile cap is a value obtained by adding a covering to the necessary welding length of the fixing muscle welded to the outer pipe, and 100 mm or more,
The double pipe structure of the pile head according to claim 2, wherein the embedding depth of the main pile in the pile cap is added to the embedding depth of the outer pipe by 100 mm or more.
請求項2または3に記載の杭頭部の二重管構造を設計する方法であって、
前記外管が負担する水平荷重による前記外管頂部の杭頭曲げモーメントM1、前記外管の杭頭接合部曲げ耐力T1、前記外管に溶接した前記定着筋の引張圧縮抵抗と前記外管の鉛直方向の圧縮抵抗A、相互作用係数αの関係において、下式
M1<T1=A×α ・・・式〔1〕
を満足するよう前記外管に溶接した前記定着筋の仕様及び本数を決定して設計することを特徴とする杭頭部の二重管構造の設計方法。
A method for designing a double pipe structure of a pile head according to claim 2 or 3,
The pile head bending moment M1 of the outer pipe top due to the horizontal load borne by the outer pipe, the pile head joint bending strength T1 of the outer pipe, the tensile compression resistance of the fixing muscle welded to the outer pipe, and the outer pipe In the relationship between the compression resistance A in the vertical direction and the interaction coefficient α, the following equation M1 <T1 = A × α Equation [1]
The design method of the double pipe structure of the pile head characterized by determining and designing the specification and the number of the fixed reinforcements welded to the outer pipe so as to satisfy the above.
請求項2または3に記載の杭頭部の二重管構造を設計する方法であって、
前記本杭が負担する水平荷重による前記本杭頂部の杭頭曲げモーメントM2、前記本杭の杭頭接合部曲げ耐力T2、前記本杭に溶接あるいはネジ嵌合した前記定着筋の引張圧縮抵抗と前記本杭の鉛直方向の圧縮抵抗B、前記本杭の側面抵抗C、相互作用係数βの関係において、下式
M2<T2=B+C×β ・・・式〔2〕
を満足するよう前記本杭に溶接あるいはネジ嵌合した前記定着筋の仕様及び本数を決定して設計することを特徴とする杭頭部の二重管構造の設計方法。
A method for designing a double pipe structure of a pile head according to claim 2 or 3,
The pile head bending moment M2 at the top of the main pile due to the horizontal load borne by the main pile, the bending strength T2 of the pile head joint of the main pile, and the tensile and compression resistance of the fixing bar welded or screwed to the main pile In relation to the compression resistance B in the vertical direction of the main pile, the side resistance C of the main pile, and the interaction coefficient β, the following formula M2 <T2 = B + C × β Formula [2]
The design method of the double pipe structure of the pile head characterized by determining and designing the specification and the number of the fixing bars welded or screwed to the main pile so as to satisfy the requirements.
JP2016131481A 2016-07-01 2016-07-01 Double pipe structure of pile head and its designing method Active JP6733905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016131481A JP6733905B2 (en) 2016-07-01 2016-07-01 Double pipe structure of pile head and its designing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016131481A JP6733905B2 (en) 2016-07-01 2016-07-01 Double pipe structure of pile head and its designing method

Publications (2)

Publication Number Publication Date
JP2018003432A true JP2018003432A (en) 2018-01-11
JP6733905B2 JP6733905B2 (en) 2020-08-05

Family

ID=60947778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016131481A Active JP6733905B2 (en) 2016-07-01 2016-07-01 Double pipe structure of pile head and its designing method

Country Status (1)

Country Link
JP (1) JP6733905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007904A (en) * 2018-06-29 2020-01-16 ジャパンパイル株式会社 Concrete pile with double steel pipe, method for manufacturing the same, manufacturing device, pile head joint structure and jointed pile structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837263B1 (en) * 2007-02-16 2008-06-11 (주)석탑엔지니어링 Composite pile making method
JP2009046879A (en) * 2007-08-20 2009-03-05 Jfe Steel Kk Pile head structure of double tube type
JP2010248811A (en) * 2009-04-16 2010-11-04 Sansei:Kk Double tube-type pile head structure
JP4863120B2 (en) * 2007-03-05 2012-01-25 住友金属工業株式会社 Foundation pile
JP2015218516A (en) * 2014-05-20 2015-12-07 三谷セキサン株式会社 Construction method of foundation pile whose pile head is reinforced, foundation pile structure whose pile head is reinforced

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837263B1 (en) * 2007-02-16 2008-06-11 (주)석탑엔지니어링 Composite pile making method
JP4863120B2 (en) * 2007-03-05 2012-01-25 住友金属工業株式会社 Foundation pile
JP2009046879A (en) * 2007-08-20 2009-03-05 Jfe Steel Kk Pile head structure of double tube type
JP2010248811A (en) * 2009-04-16 2010-11-04 Sansei:Kk Double tube-type pile head structure
JP2015218516A (en) * 2014-05-20 2015-12-07 三谷セキサン株式会社 Construction method of foundation pile whose pile head is reinforced, foundation pile structure whose pile head is reinforced

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007904A (en) * 2018-06-29 2020-01-16 ジャパンパイル株式会社 Concrete pile with double steel pipe, method for manufacturing the same, manufacturing device, pile head joint structure and jointed pile structure
JP7410505B2 (en) 2018-06-29 2024-01-10 ジャパンパイル株式会社 Concrete piles with double steel pipes, their manufacturing equipment, pile cap joint structure and joint pile structure

Also Published As

Publication number Publication date
JP6733905B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP5955108B2 (en) Pile reinforcement structure of existing building and its construction method
JP5991132B2 (en) Seismic reinforcement structure and construction method
KR101204040B1 (en) precast concrete member and assembled concrete abutment of bridge
CN108571070A (en) A kind of Prefabricated concrete-filled steel tube ring beam connection structure and construction method
Rehmat et al. Experimental study on concrete filled steel tubes to footing connection using ultra-high performance concrete
KR101001107B1 (en) Double pipe connection type enlarged steel pipe pile head reinforcement
JP2018003432A (en) Double pipe structure of pile head part and design method thereof
JP2002004271A (en) Composite pile and execution method therefor
JP4017766B2 (en) Hollow cylindrical body and its construction method
JPH0547685B2 (en)
JP2015025314A (en) Construction method for precast concrete skeleton
JP6102010B2 (en) Pile reinforcement structure of existing building and its construction method
JP3787109B2 (en) Pile foundation and its construction method
CN109779155A (en) Prefabricated cylinder, building structure and the construction method of the building structure
JP6416139B2 (en) Cast-in-place pile and its construction method
JP2005139731A (en) Connection structure of pipe pile head, and method of constructing pipe pile head
JP6461690B2 (en) Foundation structure and foundation construction method
JP3681367B2 (en) Joint structure of steel column and foundation concrete
JP2021188354A (en) Precast prestressed concrete foundation structure and its construction method
KR101195551B1 (en) PHC Pile for Support of Tensile Force and Construction Method of Foot Reinforcement Using the Same
JP2011202471A (en) Structural member
JP6052460B2 (en) Seismic reinforcement structure and construction method
KR102394061B1 (en) Earth proof phc hybrid pile using small diameter steel pipe and construction method for the same
JP3624194B2 (en) Verification method of load capacity after reinforcement of existing pipes
JP6461457B2 (en) Pile and pile construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R150 Certificate of patent or registration of utility model

Ref document number: 6733905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250