JP4774236B2 - Magnesium hydroxide particles, method for producing the same, and resin composition containing the same - Google Patents

Magnesium hydroxide particles, method for producing the same, and resin composition containing the same Download PDF

Info

Publication number
JP4774236B2
JP4774236B2 JP2005131149A JP2005131149A JP4774236B2 JP 4774236 B2 JP4774236 B2 JP 4774236B2 JP 2005131149 A JP2005131149 A JP 2005131149A JP 2005131149 A JP2005131149 A JP 2005131149A JP 4774236 B2 JP4774236 B2 JP 4774236B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
resin composition
hydroxide particles
particles
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005131149A
Other languages
Japanese (ja)
Other versions
JP2006306658A (en
Inventor
厚哉 川瀬
裕文 栗栖
正明 國重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Kagakukogyo KK
Original Assignee
Tateho Kagakukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Kagakukogyo KK filed Critical Tateho Kagakukogyo KK
Priority to JP2005131149A priority Critical patent/JP4774236B2/en
Priority to TW095114857A priority patent/TWI365851B/en
Priority to MYPI20061924 priority patent/MY142249A/en
Priority to KR1020060038371A priority patent/KR100843874B1/en
Priority to CNB2006100765189A priority patent/CN100455513C/en
Publication of JP2006306658A publication Critical patent/JP2006306658A/en
Application granted granted Critical
Publication of JP4774236B2 publication Critical patent/JP4774236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、環境性、難燃性、及び樹脂に対する流動性、充填性、分散性、並びに経済性に優れた水酸化マグネシウム粒子及びその製造方法、並びに、この水酸化マグネシウムを難燃剤として含む樹脂組成物に関する。   The present invention relates to magnesium hydroxide particles excellent in environmental properties, flame retardancy, and fluidity, filling properties, dispersibility, and economic efficiency for a resin, a method for producing the same, and a resin containing the magnesium hydroxide as a flame retardant. Relates to the composition.

水酸化マグネシウムは、焼結時に有毒ガスの発生がなく環境性に優れているため、樹脂組成物、例えば半導体装置の封止用樹脂組成物に難燃剤として配合されている。このような水酸化マグネシウム難燃剤には、難燃性が良好であることはもちろん、樹脂に対する充填性が良好であることなどの特性が要求されている。   Magnesium hydroxide does not generate toxic gas during sintering and is excellent in environmental properties. Therefore, it is blended as a flame retardant in a resin composition, for example, a resin composition for sealing a semiconductor device. Such magnesium hydroxide flame retardant is required not only to have good flame retardancy but also to have good properties such as good filling property to the resin.

従来の水酸化マグネシウム難燃剤は、水酸化マグネシウムの微細結晶が凝集し、二次粒子径が平均10〜100μm程度の凝集体を形成している。そのため、この水酸化マグネシウム難燃剤を樹脂に添加する場合には、分散性が悪く、難燃剤としての機能が十分に発揮されないという問題があった。   In the conventional magnesium hydroxide flame retardant, fine crystals of magnesium hydroxide aggregate to form an aggregate having an average secondary particle size of about 10 to 100 μm. Therefore, when this magnesium hydroxide flame retardant is added to the resin, there is a problem that the dispersibility is poor and the function as the flame retardant is not sufficiently exhibited.

そこで、任意粒径の分散性の良好な水酸化マグネシウムを製造する方法(特許文献1)、高温、高圧下の水熱合成工程による六角柱状結晶の水酸化マグネシウムの製造方法(特許文献2)、流動性を改善した特殊形状の水酸化マグネシウム複合体(特許文献3)、多面体形状の複合化金属水酸化物の粒度分布を特定したもの(特許文献4)、並びに、鉱物由来の水酸化マグネシウムの表面を表面処理剤で被覆した難燃剤で、不純物の鉄(Fe)化合物、ケイ素(Si)化合物の含有量を規定するとともに、平均粒径と粒度分布を特定したもの(特許文献5)などが提案されている。   Therefore, a method for producing magnesium hydroxide having an arbitrary particle size and good dispersibility (Patent Document 1), a method for producing magnesium hydroxide of hexagonal columnar crystals by a hydrothermal synthesis process under high temperature and high pressure (Patent Document 2), Specially shaped magnesium hydroxide composite with improved fluidity (Patent Document 3), one specifying the particle size distribution of polyhedral complex metal hydroxide (Patent Document 4), and mineral-derived magnesium hydroxide A flame retardant whose surface is coated with a surface treatment agent that regulates the content of impurities such as iron (Fe) compounds and silicon (Si) compounds, and specifies the average particle size and particle size distribution (Patent Document 5). Proposed.

しかしながら、上記の水酸化マグネシウム難燃剤は、樹脂に配合した場合の分散性や流動性が必ずしも十分ではない、あるいは、製造工程が煩雑でコストが高いなど、すべてに満足すべきものはなく、未だ改善の余地が残されている。特に、上記特許文献2に記載された六角柱形状の水酸化マグネシウム粒子は扁平で厚みが十分ではなく、また、特許文献3に記載された多面体形状の水酸化マグネシウム粒子も結晶の厚みが十分とはいえず、ともに満足すべき流動性が得られていない。   However, the above-mentioned magnesium hydroxide flame retardants are not necessarily satisfactory in terms of dispersibility and fluidity when blended with resin, or the manufacturing process is complicated and expensive, and it is still improved. There is room for. In particular, the hexagonal columnar magnesium hydroxide particles described in Patent Document 2 are flat and insufficient in thickness, and the polyhedral magnesium hydroxide particles described in Patent Document 3 also have a sufficient crystal thickness. However, both have not achieved satisfactory liquidity.

特開昭63−277510号公報JP-A 63-277510 特開平03−170325号公報Japanese Patent Laid-Open No. 03-170325 特開平11−11945号公報Japanese Patent Laid-Open No. 11-11945 特開2000−53876号公報JP 2000-53876 A 特開2003−3171号公報JP 2003-3171 A

本発明の目的は、上記の課題を解決し、樹脂に配合した場合の流動性、充填性及び分散性が良好であり、燃焼時の環境性にも優れる水酸化マグネシウム、及び低コストでこの水酸化マグネシウムを製造する方法、この水酸化マグネシウムを難燃剤として含む樹脂組成物、さらにこの樹脂組成物を封止剤として使用した半導体装置を提供することである。   The object of the present invention is to solve the above-mentioned problems and to have good fluidity, filling property and dispersibility when blended in a resin, and excellent in environmental properties at the time of combustion. A method for producing magnesium oxide, a resin composition containing this magnesium hydroxide as a flame retardant, and a semiconductor device using this resin composition as a sealant are provided.

上記の課題を解決するために本発明者らは種々検討を重ねた結果、水酸化マグネシウム粒子の結晶形状に着目し、六角柱形状であって、しかも、従来の結晶に比べて厚みが非常に大きい、すなわち六角柱形状のc軸方向に十分成長させた水酸化マグネシウム粒子を難燃剤材料として使用したときに優れた効果が得られることを見出した。さらに、従来法に比べて少ない工程数で、c軸方向に十分成長させた水酸化マグネシウム粒子を得ることが可能な製造方法を見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventors have made various studies. As a result, the inventors focused on the crystal shape of the magnesium hydroxide particles, and have a hexagonal column shape, which is much thicker than the conventional crystal. It has been found that an excellent effect can be obtained when magnesium hydroxide particles that are large, that is, having a hexagonal column shape and sufficiently grown in the c-axis direction, are used as a flame retardant material. Furthermore, the inventors have found a production method capable of obtaining magnesium hydroxide particles sufficiently grown in the c-axis direction with a smaller number of steps than the conventional method, and have completed the present invention.

すなわち、本発明によれば、結晶外形が、互いに平行な上下2面の六角形の基底面と、これらの基底面間に形成される外周6面の角柱面とからなる六角柱形状粒子であって、前記六角柱形状粒子のc軸方向の大きさが、1.5×10−6〜6.0×10−6mである、水酸化マグネシウム粒子が提供される。 That is, according to the present invention, the crystal outer shape is hexagonal prism-shaped particles composed of two parallel upper and lower hexagonal basal planes and six outer peripheral prismatic planes formed between these basal planes. Thus, magnesium hydroxide particles having a size in the c-axis direction of the hexagonal column-shaped particles of 1.5 × 10 −6 to 6.0 × 10 −6 m are provided.

本発明の水酸化マグネシウム難燃剤は、図1に示すような六角柱形状であり、c軸方向の大きさ(以下、「Lc」という)が、所定の範囲である水酸化マグネシウム粒子を含む。具体的には、Lcは、1.5×10−6〜6.0×10−6mであり、Lcは、1.5×10−6〜3.0×10−6mであることがより好ましい。 The magnesium hydroxide flame retardant of the present invention has a hexagonal column shape as shown in FIG. 1 and includes magnesium hydroxide particles whose c-axis direction size (hereinafter referred to as “Lc”) is within a predetermined range. Specifically, Lc is 1.5 × 10 −6 to 6.0 × 10 −6 m, and Lc is 1.5 × 10 −6 to 3.0 × 10 −6 m. More preferred.

Lcが1.5×10−6m以上であると、水酸化マグネシウム粒子の樹脂に対する充填性、流動性が良好となる。これは、Lcの値が大きいほど六角柱形状の粒子が相対的にc軸方向に発達していることを表している。水酸化マグネシウム粒子と樹脂との界面には、なんらかの相互作用が存在し、粒子形状が樹脂の自由運動を束縛する原因となる。一般に、この傾向は、粒子形状の影響を受ける。すなわち、形状異方性の程度が大きくなるほど影響が大きくなる。本発明の水酸化マグネシウム粒子は、c軸方向に十分成長させた粒子であるので、従来のものと比べて形状異方性が小さく、樹脂の自由運動を妨げる要因が少ないという理由による。なお、水酸化マグネシウム粒子の平均粒径dは、特に限定されるものではないが、通常、0.1×10−6〜10×10−6mの範囲とすることが好ましい。 When Lc is 1.5 × 10 −6 m or more, the filling property and fluidity of the magnesium hydroxide particles to the resin are improved. This indicates that the larger the value of Lc, the more the hexagonal columnar particles are developed in the c-axis direction. Some interaction exists at the interface between the magnesium hydroxide particles and the resin, and the particle shape causes the free movement of the resin to be constrained. In general, this tendency is affected by the particle shape. In other words, the effect increases as the degree of shape anisotropy increases. This is because the magnesium hydroxide particles of the present invention are particles sufficiently grown in the c-axis direction, so that they have a smaller shape anisotropy than the conventional particles and there are few factors that hinder the free movement of the resin. In addition, although the average particle diameter d of a magnesium hydroxide particle is not specifically limited, Usually, it is preferable to set it as the range of 0.1 * 10 < -6 > -10 * 10 <-6> m.

なお、本発明において、水酸化マグネシウム粒子のc軸方向の大きさLcは、走査型電子顕微鏡観察において視野中最大の長さを有する粒子の測定値であり、体積Vは、さらにその粒子の基底面の六角形の一片の長さを測定して算出した。また、水酸化マグネシウム粒子の平均粒径dは、レーザ回折・散乱法による粒度分布測定装置により測定された粉末試料の50%径の値である。   In the present invention, the size Lc of the magnesium hydroxide particles in the c-axis direction is a measured value of the particles having the maximum length in the field of view in the scanning electron microscope observation, and the volume V is the basis of the particles. The length of the hexagonal piece of the surface was measured and calculated. Further, the average particle diameter d of the magnesium hydroxide particles is a value of a 50% diameter of the powder sample measured by a particle size distribution measuring apparatus by a laser diffraction / scattering method.

また、上記の所定の範囲のLcを有する本発明の水酸化マグネシウム粒子は、8.0×10−18〜600×10−18の体積を有することが好ましい。さらに、本発明の水酸化マグネシウム粒子は、結晶子径が50×10−9m以上の酸化マグネシウムを水和して得られるものであることが好ましい。これは、結晶子径の大きい結晶の発達した酸化マグネシウムは、水和活性が低いため、微細粒子の生成を抑制し、c軸方向へ大きく成長した水酸化マグネシウムが得られるという理由による。なお、この結晶子径は、X線回折法を用いてScherrer式により算出した値をいう。 Further, the magnesium hydroxide particles of the present invention having Lc in a predetermined range described above, preferably has a volume of 8.0 × 10 -18 ~600 × 10 -18 m 3. Furthermore, the magnesium hydroxide particles of the present invention are preferably obtained by hydrating magnesium oxide having a crystallite diameter of 50 × 10 −9 m or more. This is because magnesium oxide in which crystals having a large crystallite diameter have developed has low hydration activity, so that formation of fine particles is suppressed and magnesium hydroxide that grows greatly in the c-axis direction can be obtained. The crystallite diameter is a value calculated by the Scherrer equation using the X-ray diffraction method.

本発明の水酸化マグネシウムの製造方法は、酸化マグネシウム(MgO)原料を粉砕し、ふるい分けして得られた結晶子径が50×10−9m以上のMgO粉末を、有機酸を添加した100℃以下の温水中に添加し、次いで、高剪断撹拌下にて、MgOの水和反応を行い、次いで、生成した固形分をろ別し、水洗、乾燥させる工程を含む。 In the method for producing magnesium hydroxide of the present invention, MgO powder having a crystallite diameter of 50 × 10 −9 m or more obtained by pulverizing and sieving a magnesium oxide (MgO) raw material is added to an organic acid at 100 ° C. It includes the steps of adding the following warm water, then carrying out a hydration reaction of MgO under high shear stirring, and then filtering off the generated solid, washing with water and drying.

上記有機酸としては、特に限定されるものではないが、好ましくは、モノカルボン酸、オキシカルボン酸(オキシ酸)等があげられる。モノカルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、アクリル酸、クロトン酸等があげられ、オキシカルボン酸(オキシ酸)としては、例えば、グリコール酸、乳酸、ヒドロアクリル酸、α−オキシ酪酸、グリセリン酸、サリチル酸、安息香酸、没食子酸等があげられる。   Although it does not specifically limit as said organic acid, Preferably, monocarboxylic acid, oxycarboxylic acid (oxyacid), etc. are mention | raise | lifted. Examples of the monocarboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, acrylic acid, crotonic acid, and the like. Examples of the oxycarboxylic acid (oxyacid) include glycolic acid, lactic acid, Examples include hydroacrylic acid, α-oxybutyric acid, glyceric acid, salicylic acid, benzoic acid, and gallic acid.

本発明の水酸化マグネシウムの製造方法において、原料として使用されるMgOは、結晶子径が50×10−9m以上であれば、特に限定されるものではないが、電融法により得られたものであることが好ましく、電融MgOを使用することにより、1回の水和反応のみで所定厚みの水酸化マグネシウム粒子を得ることができる。 In the method for producing magnesium hydroxide of the present invention, MgO used as a raw material is not particularly limited as long as the crystallite diameter is 50 × 10 −9 m or more, but was obtained by an electrofusion method. It is preferable that magnesium hydroxide particles having a predetermined thickness can be obtained by only one hydration reaction by using electrofused MgO.

上記の水和反応は、100℃以下、例えば、50〜100℃の温水中において、高剪断撹拌下にて行われる。具体的には、タービン羽根を備えた高速撹拌機等を使用することが好ましい。温水の温度は、好ましくは、60〜100℃である。   The above hydration reaction is performed under high shear stirring in warm water of 100 ° C. or lower, for example, 50 to 100 ° C. Specifically, it is preferable to use a high-speed stirrer equipped with turbine blades. The temperature of the hot water is preferably 60 to 100 ° C.

ここで得られた水酸化マグネシウム粒子の平均粒径dは0.5×10−6〜1.0×10−6mであるが、新たな水和反応時に、これを種結晶として全体の3割程度存在させることにより、さらに粒径の大きな、本発明の所定のLcを有する水酸化マグネシウム粒子を得ることができる。そして、当初得られた小粒径の水酸化マグネシウム粒子と後者の大粒径の水酸化マグネシウム粒子とをV型混合機等により乾式で混合、あるいは、水和後のスラリー状態のままで湿式で撹拌、混合することにより、さらに樹脂に対する充填性を向上させることが可能となる。 The average particle diameter d of the magnesium hydroxide particles obtained here is 0.5 × 10 −6 to 1.0 × 10 −6 m, and this is used as a seed crystal during the new hydration reaction. By being present in a proportion, magnesium hydroxide particles having a larger particle size and having the predetermined Lc of the present invention can be obtained. Then, the initially obtained small particle size magnesium hydroxide particles and the latter large particle size magnesium hydroxide particles are mixed by a dry method using a V-type mixer or the like, or wet in a slurry state after hydration. By stirring and mixing, it is possible to further improve the filling property to the resin.

また、上記の水和反応後、得られた水酸化マグネシウムを引き続き公知の方法により各種の表面処理を実施してもよい。樹脂に対する親和性を高めるための表面処理剤としては、例えば、高級脂肪酸またはそのアルカリ金属塩、リン酸エステル、シランカップリング剤類、多価アルコールの脂肪酸エステル類等があげられる。   Further, after the above hydration reaction, the obtained magnesium hydroxide may be subsequently subjected to various surface treatments by known methods. Examples of the surface treatment agent for increasing the affinity for the resin include higher fatty acids or alkali metal salts thereof, phosphate esters, silane coupling agents, fatty acid esters of polyhydric alcohols, and the like.

一方、耐酸性、撥水性等を高めるためには、例えば、アルミナコーティング、シリカコーティング後に約500〜1000℃で焼成することによるケイ酸金属塩コーティング、シリコーンオイル、ポリフルオロアルキルリン酸エステル塩等によるコーティング等を行なう表面処理方法があげられる。紫外線吸収性を高めるためには、例えば、硫酸チタニルを加水分解反応させて二酸化チタンを被覆する表面処理方法などがあげられる。また、これらの表面処理を複数組み合わせてもよい。   On the other hand, in order to increase acid resistance, water repellency, etc., for example, by coating with silica metal salt by baking at about 500 to 1000 ° C. after alumina coating, silica coating, silicone oil, polyfluoroalkyl phosphate ester salt, etc. Examples of the surface treatment method include coating. In order to enhance the ultraviolet absorptivity, for example, a surface treatment method in which titanyl sulfate is hydrolyzed to coat titanium dioxide can be used. A plurality of these surface treatments may be combined.

なお、上記の水酸化マグネシウム粒子を製造する過程で、特開平11−11945号公報に記載されているように、酸化亜鉛や塩化亜鉛等の亜鉛化合物を添加し、水酸化マグネシウムを複合金属水酸化物として製造することも可能である。   In the process of producing the above magnesium hydroxide particles, as described in JP-A-11-11945, a zinc compound such as zinc oxide or zinc chloride is added, and the magnesium hydroxide is mixed with a composite metal hydroxide. It is also possible to manufacture as a product.

本発明の樹脂組成物は、上記により得られた水酸化マグネシウムを難燃剤として、エポキシ樹脂、硬化剤、無機充填剤等とともに混練して得られるものである。この樹脂組成物において、水酸化マグネシウム難燃剤の配合量は、樹脂組成物全体の1〜35質量%であることが好ましく、さらに好ましくは、無機物の合計、すなわち、水酸化マグネシウム難燃剤と、無機充填剤との合計配合量が、樹脂組成物全体の60〜95質量%となるようにすることである。   The resin composition of the present invention is obtained by kneading together with an epoxy resin, a curing agent, an inorganic filler, etc., using magnesium hydroxide obtained as described above as a flame retardant. In this resin composition, the compounding amount of the magnesium hydroxide flame retardant is preferably 1 to 35% by mass of the entire resin composition, and more preferably the total of the inorganic substances, that is, the magnesium hydroxide flame retardant and the inorganic It is to make the total compounding quantity with a filler be 60-95 mass% of the whole resin composition.

上記の樹脂組成物は、難燃性、耐湿性、耐酸性などの耐環境性にも優れており、半導体用の封止剤として有用であるため、この樹脂組成物により封止された各種半導体装置を製造することができる。   The above resin composition is excellent in environmental resistance such as flame retardancy, moisture resistance, and acid resistance, and is useful as a sealing agent for semiconductors. Therefore, various semiconductors sealed with this resin composition The device can be manufactured.

半導体封止用樹脂組成物は、各種原材料を均一に分散混合できるものであれば、調製法は特に限定されるものではない。具体例をあげると、例えば、ミキサー等によって十分混合し、ミキシングロール、押出機等によって溶融混練した後、冷却、粉砕し、これを顆粒状に成形したもの、成形条件に合うような寸法及び重量でタブレット化したもの、あるいは、上記樹脂組成物の各成分の混合物をパレット上に受け入れ、これを冷却後、プレス圧延、ロール圧延、又は溶媒を混合したものを塗工してシート化するなどの方法によりシート状に成形したもの等様々な形態のものとすることができる。   The method for preparing the semiconductor sealing resin composition is not particularly limited as long as various raw materials can be uniformly dispersed and mixed. Specific examples include, for example, sufficient mixing with a mixer, etc., melt-kneading with a mixing roll, an extruder, etc., cooling, pulverizing, and molding this into granules, dimensions and weight that match the molding conditions Or a mixture of each component of the resin composition received on a pallet, and after cooling it, press rolling, roll rolling, or a mixture of solvent is applied to form a sheet, etc. It can be made into various forms such as one formed into a sheet by a method.

このようにして得られる半導体封止用樹脂組成物を用いた半導体素子の封止方法は、特に限定されるものではなく、例えば通常のトランスファー成形等の公知の成形方法を使用することができる。   The method for sealing a semiconductor element using the resin composition for sealing a semiconductor thus obtained is not particularly limited, and for example, a known molding method such as ordinary transfer molding can be used.

本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.

合成例1
<水酸化マグネシウム粒子の製造>
結晶子径58.3×10−9mの電融MgO(タテホ化学工業株式会社製)をボールミルで粉砕し、湿式法で200メッシュのふるいを通過させた。ふるいを通過した粒子を、濃度0.02mol/Lの酢酸10Lを入れた内容積20Lの容器に、酸化物(MgO)濃度が100g/Lとなるように添加した。得られたMgO含有混合溶液を90℃に保持しながら、高速撹拌機(特殊機化社製、商品名:ホモミクサー)を使用し、タービン羽根の周速を10m/sとして撹拌しながら、4時間水和反応を行った。得られた反応生成物を500メッシュのふるいにかけ、ふるいを通過した微小粒子を引き続き、ろ過、水洗、乾燥を行い、水酸化マグネシウム粒子を得た。得られた水酸化マグネシウム粒子の粒子形状、c軸方向の大きさ(Lc)及び体積(V)などを表1に示した。また、得られた水酸化マグネシウム粒子の走査型電子顕微鏡写真を図2に示した。
Synthesis example 1
<Manufacture of magnesium hydroxide particles>
Electrofused MgO having a crystallite diameter of 58.3 × 10 −9 m (manufactured by Tateho Chemical Co., Ltd.) was pulverized with a ball mill and passed through a 200-mesh sieve by a wet method. The particles that passed through the sieve were added to a 20 L container with 10 L of acetic acid having a concentration of 0.02 mol / L so that the oxide (MgO) concentration was 100 g / L. While maintaining the obtained MgO-containing mixed solution at 90 ° C., using a high-speed stirrer (trade name: Homomixer, manufactured by Tokushu Kika Co., Ltd.), stirring the peripheral speed of the turbine blade at 10 m / s for 4 hours A hydration reaction was performed. The obtained reaction product was passed through a 500 mesh sieve, and the fine particles that passed through the sieve were subsequently filtered, washed with water, and dried to obtain magnesium hydroxide particles. Table 1 shows the particle shape, size (Lc) and volume (V) of the obtained magnesium hydroxide particles in the c-axis direction. Further, a scanning electron micrograph of the obtained magnesium hydroxide particles is shown in FIG.

<評価試験>
この水酸化マグネシウム粒子を表2に示した割合でエポキシ樹脂に混練し、得られた樹脂組成物のスパイラルフロー及び難燃性を下記の条件で測定して結果を表2に示した。ここで、スパイラルフローは、熱可塑性樹脂及び熱硬化性樹脂の流動性を表す値である。
なお、エポキシ樹脂としては、クレゾールノボラック型エポキシ樹脂(エポキシ当量198)、硬化剤としては、フェノールノボラック樹脂(水酸基当量105)、硬化促進剤としては、トリフェニルホスフィン、無機充填材としては、球状溶融シリカをそれぞれ使用した。
<Evaluation test>
The magnesium hydroxide particles were kneaded with the epoxy resin at the ratio shown in Table 2, and the spiral flow and flame retardancy of the obtained resin composition were measured under the following conditions. The results are shown in Table 2. Here, the spiral flow is a value representing the fluidity of the thermoplastic resin and the thermosetting resin.
The epoxy resin is a cresol novolac type epoxy resin (epoxy equivalent 198), the curing agent is a phenol novolac resin (hydroxyl equivalent 105), the curing accelerator is triphenylphosphine, and the inorganic filler is a spherical melt. Each silica was used.

(難燃性測定方法)
エポキシ樹脂組成物を用いて、厚み1/16インチの難燃性試験片を作製し(成形条件:温度175℃、時間120秒間、ポストキュア175℃×6時間)、UL−94 V−0規格の方法に準じて難燃性を評価した。
(スパイラルフロー測定方法)
スパイラルフロー測定用金型を用い、温度175℃、圧力6086MPaの条件で、EMMI 1−66に準じてスパイラルフロー値を測定した。
(Flame resistance measurement method)
A flame retardant test piece having a thickness of 1/16 inch was prepared using the epoxy resin composition (molding conditions: temperature 175 ° C., time 120 seconds, post cure 175 ° C. × 6 hours), UL-94 V-0 standard The flame retardancy was evaluated according to the method.
(Spiral flow measurement method)
A spiral flow value was measured according to EMMI 1-66 using a spiral flow measurement mold under the conditions of a temperature of 175 ° C. and a pressure of 6086 MPa.

実施例1
合成例1で得られた水酸化マグネシウム粒子30gを種結晶として、0.02mol/L酢酸10L中に予め懸濁させておいた以外は、合成例1と同様にして操作を行い、合成例1で得られた粒子よりさらに結晶成長させた水酸化マグネシウム粒子を得た。この水酸化マグネシウム粒子の粒子形状を表す各数値を表1に、走査型電子顕微鏡写真を図3にそれぞれ示した。そして、この水酸化マグネシウム粒子を表2に示した割合でエポキシ樹脂に混練し、得られた樹脂組成物のスパイラルフロー及び難燃性を上記の条件で測定して結果を表2に示した。
Example 1
The same operation as in Synthesis Example 1 was carried out except that 30 g of the magnesium hydroxide particles obtained in Synthesis Example 1 were previously suspended in 10 L of 0.02 mol / L acetic acid as seed crystals. Thus, magnesium hydroxide particles obtained by further crystal growth from the particles obtained in the above were obtained. Each numerical value representing the particle shape of the magnesium hydroxide particles is shown in Table 1, and a scanning electron micrograph is shown in FIG. And this magnesium hydroxide particle was knead | mixed with the epoxy resin in the ratio shown in Table 2, the spiral flow and flame retardance of the obtained resin composition were measured on said conditions, and the result was shown in Table 2.

実施例2
合成例1で得られた水酸化マグネシウム粒子500gと実施例1で得られた水酸化マグネシウム粒子500gをV型混合機に入れ、20分間混合処理を実施し、水酸化マグネシウム粒子を得た。この水酸化マグネシウム粒子の粒子形状を表す各数値を表1に、走査型電子顕微鏡写真を図4にそれぞれ示した。そして、この水酸化マグネシウム粒子を表2に示した割合でエポキシ樹脂に混練し、得られた樹脂組成物のスパイラルフロー及び難燃性を上記の条件で測定して結果を表2に示した。
Example 2
500 g of the magnesium hydroxide particles obtained in Synthesis Example 1 and 500 g of the magnesium hydroxide particles obtained in Example 1 were placed in a V-type mixer and mixed for 20 minutes to obtain magnesium hydroxide particles. Each numerical value representing the particle shape of the magnesium hydroxide particles is shown in Table 1, and a scanning electron micrograph is shown in FIG. And this magnesium hydroxide particle was knead | mixed with the epoxy resin in the ratio shown in Table 2, the spiral flow and flame retardance of the obtained resin composition were measured on said conditions, and the result was shown in Table 2.

比較例1
水酸化マグネシウム粒子として、タテホ化学工業株式会社製エコーマグ(登録商標)Z−10をそのまま用いた。この水酸化マグネシウム粒子の粒子形状を表す各数値を表1に、走査型電子顕微鏡写真を図5にそれぞれ示した。そして、この水酸化マグネシウム粒子を表2に示した割合でエポキシ樹脂に混練し、得られた樹脂組成物のスパイラルフロー及び難燃性を上記の条件で測定して結果を表2に示した。
Comparative Example 1
As the magnesium hydroxide particles, Echo Mag (registered trademark) Z-10 manufactured by Tateho Chemical Industry Co., Ltd. was used as it was. Each numerical value representing the particle shape of the magnesium hydroxide particles is shown in Table 1, and a scanning electron micrograph is shown in FIG. And this magnesium hydroxide particle was knead | mixed with the epoxy resin in the ratio shown in Table 2, the spiral flow and flame retardance of the obtained resin composition were measured on said conditions, and the result was shown in Table 2.

比較例2
水酸化マグネシウム粒子として、TMG株式会社製ファインマグ(登録商標)MOをそのまま用いた。この水酸化マグネシウム粒子の粒子形状を表す各数値を表1に、走査型電子顕微鏡写真を図6にそれぞれ示した。そして、この水酸化マグネシウム粒子を表2に示した割合でエポキシ樹脂に混練し、得られた樹脂組成物のスパイラルフロー及び難燃性を上記の条件で測定して結果を表2に示した。
Comparative Example 2
Fine magnesium (registered trademark) MO manufactured by TMG Corporation was used as it was as magnesium hydroxide particles. Each numerical value representing the particle shape of the magnesium hydroxide particles is shown in Table 1, and a scanning electron micrograph is shown in FIG. And this magnesium hydroxide particle was knead | mixed with the epoxy resin in the ratio shown in Table 2, the spiral flow and flame retardance of the obtained resin composition were measured on said conditions, and the result was shown in Table 2.

表2の結果からも明らかなように、本発明の水酸化マグネシウム粒子は、Lcが1.5×10−6〜6.0×10−6mとなる水酸化マグネシウム粒子を含んでいるので、難燃剤として樹脂に混練した際、従来の水酸化マグネシウム粒子よりもスパイラルフローが大きく流動性が良好であることが確認された。 As apparent from the results in Table 2, the magnesium hydroxide particles of the present invention include magnesium hydroxide particles having Lc of 1.5 × 10 −6 to 6.0 × 10 −6 m. When kneaded into a resin as a flame retardant, it was confirmed that the spiral flow was larger and the flowability was better than conventional magnesium hydroxide particles.

以上のことから、本発明の水酸化マグネシウム難燃剤は、難燃性、及び、樹脂に対する充填性に優れており、また、1回の水和反応により低コストで製造することが可能であるため経済性にも優れている。しがたって、トランジスタ、IC、LSI等の半導体装置に封止用樹脂の充填剤として極めて有用であり、その工業的価値は極めて大である。   From the above, the magnesium hydroxide flame retardant of the present invention is excellent in flame retardancy and resin filling properties, and can be produced at a low cost by a single hydration reaction. It is also economical. Therefore, it is extremely useful as a filler for sealing resins in semiconductor devices such as transistors, ICs, and LSIs, and its industrial value is extremely large.

本発明の水酸化マグネシウム粒子の外形を示す説明図である。It is explanatory drawing which shows the external shape of the magnesium hydroxide particle of this invention. 合成例1の水酸化マグネシウムを示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing the magnesium hydroxide of Synthesis Example 1. 実施例1の水酸化マグネシウムを示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing magnesium hydroxide of Example 1. FIG. 実施例2の水酸化マグネシウムを示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing magnesium hydroxide of Example 2. FIG. 比較例1の水酸化マグネシウムを示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing magnesium hydroxide of Comparative Example 1. 比較例2の水酸化マグネシウムを示す走査型電子顕微鏡写真である。4 is a scanning electron micrograph showing magnesium hydroxide of Comparative Example 2.

Claims (7)

結晶外形が、互いに平行な上下2面の六角形の基底面と、これらの基底面間に形成される外周6面の角柱面とからなる六角柱形状粒子であって、前記六角柱形状粒子のc軸方向の大きさが、1.5×10−6〜6.0×10−6mである、水酸化マグネシウム粒子。 A hexagonal columnar particle having a hexagonal basal plane of two upper and lower surfaces parallel to each other and six outer peripheral prismatic surfaces formed between these basal planes, Magnesium hydroxide particles having a size in the c-axis direction of 1.5 × 10 −6 to 6.0 × 10 −6 m. 前記水酸化マグネシウム粒子が、8.0×10−18〜600×10−18の体積を有する、請求項1記載の水酸化マグネシウム粒子。 The magnesium hydroxide particle according to claim 1, wherein the magnesium hydroxide particle has a volume of 8.0 × 10 −18 to 600 × 10 −18 m 3 . 前記水酸化マグネシウム粒子が、結晶子径が50×10−9m以上の酸化マグネシウムを水和して得られる、請求項1又は2記載の水酸化マグネシウム粒子。 The magnesium hydroxide particle according to claim 1, wherein the magnesium hydroxide particle is obtained by hydrating magnesium oxide having a crystallite diameter of 50 × 10 −9 m or more. (a)エポキシ樹脂、
(b)硬化剤
(c)無機充填剤、及び
(d)請求項1〜のいずれか1項記載の水酸化マグネシウム粒子
を含む樹脂組成物。
(A) epoxy resin,
A resin composition comprising (b) a curing agent, (c) an inorganic filler, and (d) a magnesium hydroxide particle according to any one of claims 1 to 3 .
前記水酸化マグネシウム粒子の配合量が、前記樹脂組成物の1〜35質量%である、請求項記載の樹脂組成物。 The resin composition of Claim 4 whose compounding quantity of the said magnesium hydroxide particle is 1-35 mass% of the said resin composition. 請求項又は記載の樹脂組成物よりなる半導体封止剤。 The semiconductor sealing agent which consists of a resin composition of Claim 4 or 5 . 請求項記載の半導体封止剤を使用した半導体装置。 A semiconductor device using the semiconductor sealing agent according to claim 6 .
JP2005131149A 2005-04-28 2005-04-28 Magnesium hydroxide particles, method for producing the same, and resin composition containing the same Active JP4774236B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005131149A JP4774236B2 (en) 2005-04-28 2005-04-28 Magnesium hydroxide particles, method for producing the same, and resin composition containing the same
TW095114857A TWI365851B (en) 2005-04-28 2006-04-26 Magnesium hydroxide particle and fabricating method thereof and resin composition containing the same
MYPI20061924 MY142249A (en) 2005-04-28 2006-04-26 Magnesium hydroxide particulate material, method for producing the same, and resin composition comprising the same
KR1020060038371A KR100843874B1 (en) 2005-04-28 2006-04-27 Magnesium hydroxide particle, manufacturing method thereof and resin composition containing the particle
CNB2006100765189A CN100455513C (en) 2005-04-28 2006-04-28 Magnesium hydrate particles and its manufacturing method and resin composite including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131149A JP4774236B2 (en) 2005-04-28 2005-04-28 Magnesium hydroxide particles, method for producing the same, and resin composition containing the same

Publications (2)

Publication Number Publication Date
JP2006306658A JP2006306658A (en) 2006-11-09
JP4774236B2 true JP4774236B2 (en) 2011-09-14

Family

ID=37194575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131149A Active JP4774236B2 (en) 2005-04-28 2005-04-28 Magnesium hydroxide particles, method for producing the same, and resin composition containing the same

Country Status (5)

Country Link
JP (1) JP4774236B2 (en)
KR (1) KR100843874B1 (en)
CN (1) CN100455513C (en)
MY (1) MY142249A (en)
TW (1) TWI365851B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745713B2 (en) * 2005-04-28 2011-08-10 タテホ化学工業株式会社 Magnesium hydroxide particles, method for producing the same, and resin composition containing the same
JP5181219B2 (en) * 2005-07-13 2013-04-10 日立化成株式会社 Epoxy resin composition for sealing and electronic component device
JP2010030882A (en) * 2008-06-25 2010-02-12 Kyowa Chem Ind Co Ltd Composite magnesium hydroxide particle, flame retardant composition and flame-retardant polyolefin resin composition
JP4778111B1 (en) * 2010-06-29 2011-09-21 貴夫 舩田 Magnesium hydroxide and method for producing the same
JP5877745B2 (en) * 2012-03-27 2016-03-08 タテホ化学工業株式会社 Composite metal hydroxide particles and resin composition containing the same
JP5944714B2 (en) * 2012-03-27 2016-07-05 タテホ化学工業株式会社 Magnesium hydroxide particles and resin composition containing the same
JP6059577B2 (en) * 2012-11-13 2017-01-11 タテホ化学工業株式会社 Magnesium hydroxide particles and resin composition containing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277511A (en) * 1987-05-11 1988-11-15 Shin Nippon Kagaku Kogyo Co Ltd Production of magnesium hydroxide and surface-treated magnesium hydroxide
JP2602436B2 (en) * 1987-11-17 1997-04-23 宇部化学工業株式会社 Method for producing highly dispersible magnesium hydroxide
JPH03170325A (en) * 1989-11-27 1991-07-23 Mitsubishi Materials Corp Production of magnesium hydroxide
JPH04362012A (en) * 1991-06-06 1992-12-15 Mitsubishi Materials Corp Production of high-dispersive magnesium hydroxide
JPH0881216A (en) * 1994-09-09 1996-03-26 Daicel Amiboshi Sangyo Kk Water suspension of magnesium hydroxide and its production
JP2944928B2 (en) * 1995-02-13 1999-09-06 ダイセル網干産業株式会社 Method for producing magnesium hydroxide and its aqueous suspension
JPH1059711A (en) * 1996-08-12 1998-03-03 Daicel Amiboshi Sangyo Kk Magnesium hydroxide and production of aqueous liquid suspension thereof
JP2000233924A (en) * 1998-12-14 2000-08-29 Kyowa Chem Ind Co Ltd Magnesium hydroxide particle and its production
DE69935666T2 (en) * 1998-12-14 2007-12-06 Kyowa Chemical Industry Co. Ltd., Takamatsu MAGNESIUM HYDROXIDE PARTICLES, PROCESS FOR MAKING THE SAME AND RESIN THEREOF
KR100538527B1 (en) * 1999-07-08 2005-12-22 제일모직주식회사 Epoxy Molding Compound for Semiconductor Encapsulement
JP4765150B2 (en) * 2000-05-29 2011-09-07 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP4961635B2 (en) * 2001-05-30 2012-06-27 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
KR100523621B1 (en) * 2003-02-11 2005-10-24 주식회사 케이씨씨 Epoxy resin composition for environmental frendly sealing semiconductor element
JP4745713B2 (en) * 2005-04-28 2011-08-10 タテホ化学工業株式会社 Magnesium hydroxide particles, method for producing the same, and resin composition containing the same

Also Published As

Publication number Publication date
KR100843874B1 (en) 2008-07-03
TWI365851B (en) 2012-06-11
MY142249A (en) 2010-11-15
CN100455513C (en) 2009-01-28
KR20060113521A (en) 2006-11-02
TW200637794A (en) 2006-11-01
JP2006306658A (en) 2006-11-09
CN1854067A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP4774236B2 (en) Magnesium hydroxide particles, method for producing the same, and resin composition containing the same
TWI481563B (en) Magnesium oxide particles, a method for producing the same, a heat-dissipating filler, a resin composition, a heat-dissipating grease, and a heat-dissipating paint composition
JP4745713B2 (en) Magnesium hydroxide particles, method for producing the same, and resin composition containing the same
EP3530701A1 (en) Polyarylene sulfide resin powder granular article mixture and method for producing three-dimensional molded article
JP6059577B2 (en) Magnesium hydroxide particles and resin composition containing the same
JP5944714B2 (en) Magnesium hydroxide particles and resin composition containing the same
JP2017145155A (en) Zinc oxide particle and method for producing the same, and application of the same
JP2018030942A (en) Method for producing heat-conductive sheet
JP6501570B2 (en) Filler comprising aluminum phosphate composition fixed or coated with inorganic compound, method for producing the same, and thermally conductive composition containing the filler
JP2003034523A (en) Method for manufacturing coated magnesium oxide powder
JP6261296B2 (en) Laminate
JP5877745B2 (en) Composite metal hydroxide particles and resin composition containing the same
JP6196779B2 (en) Insulating heat dissipation filler and method for producing the same
JP6665397B2 (en) Method for producing zinc oxide particles and method for producing heat radiation composition
WO2022185648A1 (en) Powder, filler, composition, and filler production method
JP3476386B2 (en) Resin composition for semiconductor encapsulation, semiconductor device using the same, and method of manufacturing semiconductor device
JP6393956B2 (en) Zinc oxide, its production method and its use
JP2017145156A (en) Zinc oxide particle, its production method and its use
JP5010072B2 (en) Aluminum hydroxide powder for resin filling and resin composition using the same
WO2022163524A1 (en) Resin powder mixture, method for producing same, and method for producing three-dimensional model
JP2003119019A (en) Ceramic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4774236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250