JPS63277511A - Production of magnesium hydroxide and surface-treated magnesium hydroxide - Google Patents

Production of magnesium hydroxide and surface-treated magnesium hydroxide

Info

Publication number
JPS63277511A
JPS63277511A JP11239187A JP11239187A JPS63277511A JP S63277511 A JPS63277511 A JP S63277511A JP 11239187 A JP11239187 A JP 11239187A JP 11239187 A JP11239187 A JP 11239187A JP S63277511 A JPS63277511 A JP S63277511A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
slurry
salt
carboxylic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11239187A
Other languages
Japanese (ja)
Inventor
Keita Nakanishi
圭太 中西
Isao Yamoto
功 八本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Kagaku Kogyo KK
Original Assignee
Shin Nihon Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Kagaku Kogyo KK filed Critical Shin Nihon Kagaku Kogyo KK
Priority to JP11239187A priority Critical patent/JPS63277511A/en
Publication of JPS63277511A publication Critical patent/JPS63277511A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Mg(OH)2 having excellent dispersibility, by hydrating MgO in a slurry containing an Mg salt of a carboxylic acid having a specific number or more of carbon atoms. CONSTITUTION:An aqueous slurry of an Mg salt of a carboxylic acid expressed by the formula CnH2n+1COOH (provided that n is 2<=n) is prepared. For example, propionic acid or n-butyric acid or a mixture thereof may be used as the above- mentioned carboxylic acid. The concentration of the afore-mentioned Mg salt is preferably about 0.01-0.5mol./l. MgO is then added into the above-mentioned slurry to provide about 50-300g concentration and hydrothermally reacted while stirring to afford the aimed Mg(OH)2. The afore-mentioned reaction temperature is room temperature - about 50 deg.C in the case of the MgO fired at, e.g. about 800-1,000 deg.C. The Mg(OH)2 obtained by the above-mentioned method is even directly used as a filler for synthetic resins, sizing agents, etc. In use especially as the filler for synthetic resins, the surface can be treated with a metal carboxylate to further improve compatibility with the resins and dispersibility therein.

Description

【発明の詳細な説明】 本発明は水酸化マグネシウム、特に任意粒径の分散性の
よい水酸化マグネシウムを製造する方法および表面処理
水酸化マグネシウムの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnesium hydroxide, particularly magnesium hydroxide having a desired particle size and good dispersibility, and a method for producing surface-treated magnesium hydroxide.

[従来の技術] 水酸化マグネシウムは熱可塑性樹脂の難燃剤として非常
に優れた性質を有する。すなわち、400℃前後の比較
的低温で分解をはじめて樹脂の燃焼をさまたげる。その
ため、最近では電線被覆用難燃剤として用いられ始めて
いる。樹脂用難燃剤として水酸化マグネシウムを使用す
るに当たって最も重要である性質の一つは、樹脂中での
分散性である。樹脂中での分散性が悪くなると、樹脂本
来の衝撃強度、特に低温での脆性および引張り強度が極
めて悪くなる。そのため、マグネシアクリンカ−原料用
、舌皮肥料用あるいは排煙脱硫用として、従来使われて
きたような凝集の強い水酸化マグネシウムは、一般に難
燃剤用途に適さない。そこで、難燃剤などの合成樹脂充
填剤、および、紙のサイジング剤および充填剤、電磁鋼
板用焼鈍分離剤などのファインケミカル用途の分散性の
よい水酸化マグネシウムとして、次のような提案がなさ
れてきた。
[Prior Art] Magnesium hydroxide has excellent properties as a flame retardant for thermoplastic resins. That is, the resin begins to decompose at a relatively low temperature of around 400° C., thereby inhibiting the combustion of the resin. Therefore, it has recently begun to be used as a flame retardant for coating electric wires. One of the most important properties when using magnesium hydroxide as a flame retardant for resins is its dispersibility in the resin. If the dispersibility in the resin deteriorates, the inherent impact strength of the resin, especially the brittleness and tensile strength at low temperatures, will become extremely poor. Therefore, strongly agglomerated magnesium hydroxide, which has been conventionally used as a raw material for magnesia clinker, tongue fertilizer, or flue gas desulfurization, is generally not suitable for use as a flame retardant. Therefore, the following proposals have been made as magnesium hydroxide with good dispersibility for fine chemical applications such as synthetic resin fillers such as flame retardants, paper sizing agents and fillers, and annealing separators for electrical steel sheets. .

例えば、特開昭52−5963号には、嵩密度が0.3
5〜0.70g1clで比表面積が10〜3077f/
gでかつ結晶格子における(110)面に垂直な方向の
結晶子の厚みと(001)面のそれとの比が1,7〜2
.7である水酸化マグネシウムの利用が提案されている
For example, in JP-A No. 52-5963, the bulk density is 0.3.
Specific surface area is 10-3077f/5-0.70g/cl
g, and the ratio of the crystallite thickness in the direction perpendicular to the (110) plane in the crystal lattice to that of the (001) plane is 1.7 to 2.
.. The use of magnesium hydroxide, which is No. 7, has been proposed.

更に、例えば、特公昭60−57457号では、BET
比表面積の比が1乃至約3の範囲にある水酸化マグネシ
ウムの利用が提案されている。
Furthermore, for example, in Japanese Patent Publication No. 60-57457, BET
The use of magnesium hydroxide with a specific surface area ratio in the range of 1 to about 3 has been proposed.

更にまた、例えば、特開昭56−109820号では、
1400℃以上で焼成した酸化マグネシウムを原料酸化
マグネシウムの当量数の0.5%以上の当量数に相当す
る酸基および原料中の酸化カルシウムの当量数に相当す
る酸基の合計量を酸またはマグネシウム塩として含む水
懸濁スラリー状態で水和することを特徴とする水酸化マ
グネシウムの製造方法が提案されている。
Furthermore, for example, in JP-A-56-109820,
Magnesium oxide calcined at 1,400°C or higher is converted into acid or magnesium by the total amount of acid groups corresponding to an equivalent number of 0.5% or more of the equivalent number of raw material magnesium oxide and acid groups corresponding to the equivalent number of calcium oxide in the raw material. A method for producing magnesium hydroxide has been proposed, which is characterized by hydration in the form of a water-suspended slurry containing it as a salt.

[発明が解決しようとする問題点] 上記提案方法で合成された水酸化マグネシウムあるいは
表面処理水酸化マグネシウムは分散性が改善されている
。しかし、樹脂に混練したとき、その樹脂組成物の低温
脆性に未だ問題があり、これは、樹脂中での水酸化マグ
ネシウムの分散が不十分であることが原因であると考え
られている。また、特開昭56−109820 @のマ
グネシア水和法では、小粒径(高比表面積)から大粒径
(低比表面積)の水酸化マグネシウムが1qられるが、
この方法では、なお凝集の点等で改善する余地がある。
[Problems to be Solved by the Invention] The magnesium hydroxide synthesized by the above-mentioned proposed method or the surface-treated magnesium hydroxide has improved dispersibility. However, there is still a problem with low-temperature brittleness of the resin composition when kneaded into a resin, and this is thought to be caused by insufficient dispersion of magnesium hydroxide in the resin. Furthermore, in the magnesia hydration method of JP-A-56-109820@, 1q of magnesium hydroxide with small particle size (high specific surface area) to large particle size (low specific surface area) is produced.
With this method, there is still room for improvement in terms of aggregation and the like.

[問題点を解決するための手段] 本発明者らは、マグネシア水和法の改善によって任意粒
径の分散性のよい水酸化マグネシウムを容易に得るため
鋭意努力を続けた結果、水酸化マグネシウム製造方法お
よび表面処理水酸化マグネシウムの製造方法に関する全
く新しい知見を得た。
[Means for Solving the Problems] The present inventors continued their earnest efforts to easily obtain magnesium hydroxide with a desired particle size and good dispersibility by improving the magnesia hydration method, and as a result, they succeeded in producing magnesium hydroxide. Completely new knowledge regarding the production method and surface treatment of magnesium hydroxide was obtained.

そこで、本発明では分散性の優れた水酸化マグネシウム
および表面処理水酸化マグネシウムを得る方法として、
次の構成を有するものである。
Therefore, in the present invention, as a method for obtaining magnesium hydroxide with excellent dispersibility and surface-treated magnesium hydroxide,
It has the following configuration.

すなわち、一般式CnH2゜+1COOH(ただし、2
≦n)で表されるカルボン酸のマグネシウム塩の存在す
るスラリー中でマグネシアを水和させる水酸化マグネシ
ウムの製造方法、ならびに、この水酸化マグネシウムを
、更にカルボン酸金属塩で表面処理する表面処理水酸化
マグネシウムの製造方法である。
That is, the general formula CnH2゜+1COOH (however, 2
A method for producing magnesium hydroxide in which magnesia is hydrated in a slurry containing a magnesium salt of a carboxylic acid represented by ≦n), and a surface-treated water in which the magnesium hydroxide is further surface-treated with a carboxylic acid metal salt. This is a method for producing magnesium oxide.

本発明の方法において反応系中にマグネシウム塩を存在
させるためには、酸を加えて原料マグネシアとの反応に
よってマグネシウム塩を生成させてもよいし、マグネシ
ウム塩を加えてもよい。
In order to have a magnesium salt present in the reaction system in the method of the present invention, an acid may be added to generate the magnesium salt by reaction with the raw material magnesia, or a magnesium salt may be added.

酸としては、例えば、プロピオン酸、ノルマル酪酸、イ
ソ酪酸、吉草酸などの有機酸、あるいは、それらの混合
物を用いることができる。
As the acid, for example, organic acids such as propionic acid, n-butyric acid, isobutyric acid, and valeric acid, or mixtures thereof can be used.

マグネシウム塩としては、上記酸の塩であるプロピオン
酸マグネシウム、ノルマル酪酸マグネシウム、イン酪酸
マグネシウム、吉草酸マグネシウムなどの有機酸塩、あ
るいはそれらの混合物などを用いることができる。この
酸(あるいはその塩)を用いると生成水酸化マグネシウ
ムの分散性が改善されるが、酸の炭素数が5以上では水
に溶解しないので効果がない。
As the magnesium salt, organic acid salts such as magnesium propionate, magnesium n-butyrate, magnesium imbutyrate, and magnesium valerate, which are salts of the above acids, or mixtures thereof can be used. Use of this acid (or its salt) improves the dispersibility of the produced magnesium hydroxide, but if the acid has 5 or more carbon atoms, it will not dissolve in water and will not be effective.

添加する酸あるいは塩の濃度が高いほど反応は早くなる
。したがって反応の操作性および経済性から、それらの
濃度を決めればよいが、一般に0.01〜0.5mol
/I程度が好ましく、より好ましくは、0.05〜0.
2mof/Iである。ただし酸を用いて反応させる方法
で、原料マグネシアが不純物としてCaOなとの酸溶解
成分を含んでいる場合には、その当量以上の酸あるいは
塩濃度を用いることが好ましい。
The higher the concentration of acid or salt added, the faster the reaction. Therefore, their concentration can be determined based on the operability and economy of the reaction, but generally 0.01 to 0.5 mol.
/I is preferable, more preferably 0.05 to 0.
It is 2mof/I. However, in the case where the raw material magnesia contains an acid-soluble component such as CaO as an impurity in a reaction method using an acid, it is preferable to use an acid or salt concentration equal to or higher than the equivalent amount.

マグネシアの水和のためにスラリー中に水が存在する必
要がおる。したがって、水懸濁スラリーを用いることが
最も簡便である。ただし、スラリーにアルコール等を添
加することによって反応速度や分散性を調節することも
できる。
Water needs to be present in the slurry for hydration of the magnesia. Therefore, it is most convenient to use a water suspension slurry. However, the reaction rate and dispersibility can also be adjusted by adding alcohol or the like to the slurry.

反応温度は、用いるマグネシアの活性度に応じて選べば
よい。一般に800〜1000℃程度で焼成されたマグ
ネシアの場合、室温から50°C程度の温度、1400
℃以上で焼成されたマグネシアの場合、90〜100℃
程度の温度で反応させることが好ましい。
The reaction temperature may be selected depending on the activity of the magnesia used. In general, in the case of magnesia fired at a temperature of about 800 to 1000°C, the temperature is from room temperature to about 50°C,
For magnesia fired at temperatures above ℃, 90-100℃
It is preferable to carry out the reaction at a temperature of about 100%.

マグネシアの粒度は、1400℃以上で焼成されたもの
の場合、反応時間の点から100μm以下、より好まし
くは50μm以下がよい。
In the case of magnesia fired at 1400° C. or higher, the particle size of magnesia is preferably 100 μm or less, more preferably 50 μm or less, from the viewpoint of reaction time.

原料マグネシアを溶液中によく分散させるため、および
、生成水酸化マグネシウムの凝集を防ぐために、反応は
撹拌下で行うことが好ましい。原料マグネシアの濃度は
撹拌が可能であるかぎり、いくらでもよいが操作性およ
び経済性の面から50〜300g/l程度が好ましく、
100〜200g/Iが特に好ましい。
In order to disperse the raw material magnesia well in the solution and to prevent the produced magnesium hydroxide from agglomerating, the reaction is preferably carried out under stirring. The concentration of the raw material magnesia may be any value as long as it can be stirred, but from the viewpoint of operability and economy, it is preferably about 50 to 300 g/l.
Particularly preferred is 100 to 200 g/I.

上記方法で得た水酸化マグネシウムはそのままでも合成
樹脂用充填剤、サイジング剤などとして用いられるほか
、軽焼して酸化マグネシウムとして電磁鋼板用焼鈍剤と
して用いることができる。
Magnesium hydroxide obtained by the above method can be used as it is as a filler for synthetic resins, a sizing agent, etc., and can also be lightly calcined to produce magnesium oxide and used as an annealing agent for electrical steel sheets.

これらの用途には、本方法で得られる水酸化マグネシウ
ムのうち、比表面積が1〜15rd/9、X線回折によ
る(011)面に垂直な方向の結晶子が200〜150
0A、遠心沈降法による粒径が0.5〜3μm特に合成
樹脂用難燃剤として好ましくは3〜15−IIi/gお
よび300〜1000人、1.8〜2.5μmが適して
いる。
For these uses, magnesium hydroxide obtained by this method has a specific surface area of 1 to 15rd/9 and crystallites in the direction perpendicular to the (011) plane by X-ray diffraction of 200 to 150.
0A, the particle size measured by centrifugal sedimentation is 0.5 to 3 μm, and particularly suitable as a flame retardant for synthetic resins is 3 to 15-IIi/g, 300 to 1000 particles, and 1.8 to 2.5 μm.

合成樹脂用充填剤として用いる際には、カルボン酸金属
塩で表面処理をすることによって樹脂との相溶性、樹脂
中での分散性がさらに改善される。
When used as a filler for synthetic resins, compatibility with the resin and dispersibility in the resin are further improved by surface treatment with a metal carboxylate.

表面処理は、水酸化マグネシウムスラリー中にカルボン
酸金属塩を溶解して行う方法が簡便であり、表面処理の
効率もよい。スラリー溶媒としては、アルコール、キシ
レンなどの有機溶媒も使えるが、水を用いるのが簡便で
あり好ましい。例えば、撹拌した水酸化マグネシウム水
スラリーにカルボン酸金属塩の水溶液を添加して表面処
理すればよい。この場合、カルボン酸金属塩の濃度は、
表面処理効果および経済性の点から、0゜1〜1g/l
、より好ましくは0.2〜0.5g/lがよい。また、
水酸化マグネシウムの濃度は50〜2009/lで行う
のが好ましい。
The surface treatment is performed by dissolving a carboxylic acid metal salt in a magnesium hydroxide slurry, which is simple and efficient. Although organic solvents such as alcohol and xylene can be used as the slurry solvent, it is preferable to use water because it is convenient. For example, the surface treatment may be performed by adding an aqueous solution of a carboxylic acid metal salt to a stirred aqueous magnesium hydroxide slurry. In this case, the concentration of carboxylic acid metal salt is
From the point of view of surface treatment effect and economy, 0゜1~1g/l
, more preferably 0.2 to 0.5 g/l. Also,
The concentration of magnesium hydroxide is preferably 50 to 2009/l.

反応は50〜100℃程度に加熱することによって、数
分から数十分で完了する。カルボン酸金属塩としては、
不飽和カルボン酸、飽和カルボン酸、モノカルボン酸、
ジカルボン酸などの種々のカルボン酸の金属塩を用いる
ことができるが、炭素数8以上のアルカリ金属塩を用い
ることが好ましく、より好ましくは炭素数12以上のア
ルカリ金属塩が適している。なかでも、ステアリン酸カ
リウム、ステアリン酸ナトリウム、オレイン酸カリウム
、オレイン酸ナトリウムなどは、安価である上に水に容
易に溶けるために特に好ましい。
The reaction is completed in several minutes to several tens of minutes by heating to about 50 to 100°C. As carboxylic acid metal salts,
unsaturated carboxylic acids, saturated carboxylic acids, monocarboxylic acids,
Although metal salts of various carboxylic acids such as dicarboxylic acids can be used, it is preferable to use an alkali metal salt having 8 or more carbon atoms, and more preferably an alkali metal salt having 12 or more carbon atoms. Among these, potassium stearate, sodium stearate, potassium oleate, sodium oleate, and the like are particularly preferred because they are inexpensive and easily soluble in water.

[実施例] 以下、実施例および比較例により本発明を具体的に説明
する。
[Examples] Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples.

実施例1 表1のマグネシアクリンカ−を2009/I、およびプ
ロピオン酸を0.2511101/lの割合で混合して
水スラリーとし、100’Cで撹拌しながら24時間反
応させた。
Example 1 The magnesia clinker shown in Table 1 was mixed with 2009/I and propionic acid at a ratio of 0.2511101/l to form a water slurry, and the mixture was reacted at 100'C with stirring for 24 hours.

得られた水酸化マグネシウムスラリーを16μmの網で
ふるい、濾過水洗復水に解じょして100g/lに調製
した。
The resulting magnesium hydroxide slurry was sieved through a 16 μm mesh, filtered, washed with water, and dissolved in condensate to give a concentration of 100 g/l.

このスラリー中固形分の約99%以上は水酸化マグネシ
ウムであった。水酸化マグネシウムの比表面積およびX
線回折による(001)面に垂直な方向の結晶子の大き
ざ(ε001という)を表2に示す。
About 99% or more of the solid content in this slurry was magnesium hydroxide. Specific surface area of magnesium hydroxide and X
Table 2 shows the crystallite size (referred to as ε001) in the direction perpendicular to the (001) plane as determined by line diffraction.

この水酸化マグネシウムスラリーを80℃に加熱し、撹
拌化にオレイン酸ナトリウムを0.49/lになるよう
に添加し1時間表面処理をした。スラリーを濾過後、1
20’Cで12時間乾燥した。
This magnesium hydroxide slurry was heated to 80° C., and while stirring, sodium oleate was added to the slurry at a concentration of 0.49/l, and surface treatment was carried out for 1 hour. After filtering the slurry, 1
Dry at 20'C for 12 hours.

この表面処理水酸化マグネシウムを解砕し、水酸化マグ
ネシウム130型理部、エチレンビニルアセテート10
0重量部の割合でバンバリー型ミキサーで140℃、1
0分間混練しペレットにした。このベレットを40Kg
/cr/l、  160℃で厚さ2IrIIr1のシー
トに成型した。このシートからの切出し片を用いてJI
S6301により低温脆性試験、JIS7113により
引張り試験を行なった。また、電子顕微鏡によって分散
性を観察した。
This surface-treated magnesium hydroxide was crushed, magnesium hydroxide 130 type RIBU, ethylene vinyl acetate 10
0 parts by weight at 140°C in a Banbury mixer.
The mixture was kneaded for 0 minutes to form pellets. This beret weighs 40kg
/cr/l, and molded into a sheet having a thickness of 2IrIIr1 at 160°C. JI using cut pieces from this sheet
A low temperature brittleness test was conducted according to S6301, and a tensile test was conducted according to JIS7113. Further, dispersibility was observed using an electron microscope.

これらの結果を表2に示す。混線時のトルクの尺度とし
て、ミキサー空運転時の電流値と混線10分後の電流値
との差(A>を表2に示す。
These results are shown in Table 2. As a measure of the torque at the time of crosstalk, Table 2 shows the difference (A>) between the current value when the mixer is running idly and the current value 10 minutes after crosstalk.

実施例2 表1のマグネシアクリンカ−を2009/lおよびイソ
酪酸を0.5mol/Iの割合で混合して水スラリーと
し、100℃で撹拌しながら24時間反応させた。
Example 2 A water slurry was prepared by mixing 2009/l of the magnesia clinker shown in Table 1 and 0.5 mol/l of isobutyric acid, and the mixture was reacted at 100° C. for 24 hours with stirring.

得られた水酸化マグネシウムスラリーを16μmの網で
ふるい、濾過、水洗後、水に解じょして100g/lに
調製した。このスラリー中固形分の約99%以上は水酸
化マグネシウムであった。
The obtained magnesium hydroxide slurry was sieved through a 16 μm mesh, filtered, washed with water, and then dissolved in water to prepare a concentration of 100 g/l. About 99% or more of the solid content in this slurry was magnesium hydroxide.

以下実施例1と同様に表面処理、試験を行なった。各測
定、試験結果を表2に示す。
Thereafter, surface treatment and tests were performed in the same manner as in Example 1. Table 2 shows the results of each measurement and test.

実施例3 表1のマグネシアクリンカ−を2009/lおよびノル
マル酪酸を0.5mol/lの割合で混合して水スラリ
ーとし、100℃で撹拌しながら24時間反応させた。
Example 3 A water slurry was prepared by mixing 2009/l of the magnesia clinker shown in Table 1 and 0.5 mol/l of n-butyric acid, and the mixture was reacted at 100° C. for 24 hours with stirring.

得られた水酸化マグネシウムスラリーを16μmの網で
ふるい、濾過、水洗後、水に解じょして100g/Iに
調製した。このスラリー中固形分の約99%以上は水酸
化マグネシウムであった。
The obtained magnesium hydroxide slurry was sieved through a 16 μm mesh, filtered, washed with water, and then dissolved in water to prepare a slurry of 100 g/I. About 99% or more of the solid content in this slurry was magnesium hydroxide.

以下実施例1と同様に表面処理、試験を行なった。各測
定、試験結果を表2に示す。
Thereafter, surface treatment and tests were performed in the same manner as in Example 1. Table 2 shows the results of each measurement and test.

実施例4 表1のマグネシアクリンカ−を2009/lおよび吉草
酸を0.5mol/Iの割合で混合して水スラリーとし
、100℃で撹拌しながら24時間反応させた。
Example 4 The magnesia clinker shown in Table 1 was mixed at a ratio of 2009/l and valeric acid at a ratio of 0.5 mol/I to form a water slurry, and the mixture was reacted at 100°C for 24 hours with stirring.

得られた水酸化マグネシウムスラリーを16μmの網で
ふるい、濾過、水洗後、水に解じょして100g/lに
調製した。このスラリー中固形分の約99%以上は水酸
化マグネシウムであった。
The obtained magnesium hydroxide slurry was sieved through a 16 μm mesh, filtered, washed with water, and then dissolved in water to prepare a concentration of 100 g/l. About 99% or more of the solid content in this slurry was magnesium hydroxide.

以下実施例1と同様に表面処理、試験を行なった。各測
定、試験結果を表2に示す。
Thereafter, surface treatment and tests were performed in the same manner as in Example 1. Table 2 shows the results of each measurement and test.

実施例5 実施例2と同様に水酸化マグネシウムを合成し、更に実
施例2におけるオしイン酸ナトリウムの代りにステアリ
ン酸ナトリウム0.4g/lを用い、実施例2と同様の
方法で表面処理を行なった。その試験結果を表2に示す
Example 5 Magnesium hydroxide was synthesized in the same manner as in Example 2, and 0.4 g/l of sodium stearate was used instead of sodium oleate in Example 2, and the surface was treated in the same manner as in Example 2. I did this. The test results are shown in Table 2.

比較例1 表1.のマグネシアクリンカ−を2009/Iおよび塩
化マグネシウムを0.1mol/Iの割合で混合して水
スラリーとし、100℃で撹拌しながら24時間反応さ
せた。
Comparative Example 1 Table 1. Magnesia clinker 2009/I and magnesium chloride were mixed at a ratio of 0.1 mol/I to form a water slurry, and the mixture was reacted at 100° C. for 24 hours with stirring.

得られた水酸化マグネシウムスラリーを16μmの網で
ふるい、濾過、水洗後、水に解じょして100g/lに
調製した。このスラリー中固形分の約99%以上は水酸
化マグネシウムであった。
The obtained magnesium hydroxide slurry was sieved through a 16 μm mesh, filtered, washed with water, and then dissolved in water to prepare a concentration of 100 g/l. About 99% or more of the solid content in this slurry was magnesium hydroxide.

以下実施例1と同様に表面処理、試験を行なった。各測
定、試験結果を表2に示す。
Thereafter, surface treatment and tests were performed in the same manner as in Example 1. Table 2 shows the results of each measurement and test.

比較例2 表1のマグネシアクリンカ−を200CJ/Iおよびギ
酸を0.1mol/lの割合で混合して水スラリ−とし
、100℃で撹拌しながら24時間反応させた。
Comparative Example 2 The magnesia clinker shown in Table 1 was mixed with 200 CJ/I and formic acid at a ratio of 0.1 mol/l to form a water slurry, and the mixture was reacted at 100° C. for 24 hours with stirring.

得られた水酸化マグネシウムスラリーを16μmの網で
ふるい、濾過、水洗後、水に解じょして100g/lに
調製した。このスラリー中固形分の約99%以上は水酸
化マグネシウムであった。
The obtained magnesium hydroxide slurry was sieved through a 16 μm mesh, filtered, washed with water, and then dissolved in water to prepare a concentration of 100 g/l. About 99% or more of the solid content in this slurry was magnesium hydroxide.

以下実施例1と同様に表面処理、試験を行なった。各測
定、試験結果を表2に示す。
Thereafter, surface treatment and tests were performed in the same manner as in Example 1. Table 2 shows the results of each measurement and test.

表1 表2 ■ 低温脆性はF2O値 [発明の効果] 以上説明したように本発明の方法で製造された水酸化マ
グネシウムは樹脂に混練したときの分散性がよく、その
樹脂組成物の脆化温度が低くなる。すなわち、本発明の
方法によって樹脂用難燃剤として極めて優れた水酸化マ
グネシウムが製造できる。
Table 1 Table 2 ■ Low-temperature embrittlement is F2O value [Effects of the invention] As explained above, the magnesium hydroxide produced by the method of the present invention has good dispersibility when kneaded into a resin, and the embrittlement of the resin composition. temperature becomes lower. That is, by the method of the present invention, magnesium hydroxide which is extremely excellent as a flame retardant for resins can be produced.

Claims (4)

【特許請求の範囲】[Claims] (1)一般式C_nH_2_n_+_1COOH(ただ
し、2≦n)で表されるカルボン酸のマグネシウム塩の
存在するスラリー中でマグネシアを水和させることを特
徴とする水酸化マグネシウムの製造方法。
(1) A method for producing magnesium hydroxide, which comprises hydrating magnesia in a slurry in which a magnesium salt of a carboxylic acid represented by the general formula C_nH_2_n_+_1COOH (2≦n) is present.
(2)一般式において、2≦n≦4である特許請求の範
囲(1)記載の水酸化マグネシウムの製造方法。
(2) The method for producing magnesium hydroxide according to claim (1), wherein in the general formula, 2≦n≦4.
(3)一般式C_nH_2_n_+_1COOH(ただ
し、2≦n)で表されるカルボン酸のマグネシウム塩の
存在するスラリー中でマグネシアを水和させて得られた
水酸化マグネシウムをカルボン酸金属塩で表面処理する
ことを特徴とする表面処理水酸化マグネシウムの製造方
法。
(3) Surface treatment of magnesium hydroxide obtained by hydrating magnesia in a slurry containing a magnesium salt of a carboxylic acid represented by the general formula C_nH_2_n_+_1COOH (where 2≦n) with a carboxylic acid metal salt. A method for producing surface-treated magnesium hydroxide, characterized by:
(4)一般式において、2≦n≦4である特許請求の範
囲(3)記載の表面処理水酸化マグネシウムの製造方法
(4) The method for producing surface-treated magnesium hydroxide according to claim (3), wherein in the general formula, 2≦n≦4.
JP11239187A 1987-05-11 1987-05-11 Production of magnesium hydroxide and surface-treated magnesium hydroxide Pending JPS63277511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11239187A JPS63277511A (en) 1987-05-11 1987-05-11 Production of magnesium hydroxide and surface-treated magnesium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11239187A JPS63277511A (en) 1987-05-11 1987-05-11 Production of magnesium hydroxide and surface-treated magnesium hydroxide

Publications (1)

Publication Number Publication Date
JPS63277511A true JPS63277511A (en) 1988-11-15

Family

ID=14585496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11239187A Pending JPS63277511A (en) 1987-05-11 1987-05-11 Production of magnesium hydroxide and surface-treated magnesium hydroxide

Country Status (1)

Country Link
JP (1) JPS63277511A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035808A1 (en) * 1998-12-14 2000-06-22 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
JP2006306658A (en) * 2005-04-28 2006-11-09 Tateho Chem Ind Co Ltd Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
JP2006306659A (en) * 2005-04-28 2006-11-09 Tateho Chem Ind Co Ltd Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
US7686986B2 (en) 2006-01-05 2010-03-30 Headwaters Technology Innovation, Llc Magnesium hydroxide nanoparticles, methods of making same and compositions incorporating same
WO2015058236A1 (en) 2013-10-24 2015-04-30 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
WO2016031803A1 (en) * 2014-08-26 2016-03-03 協和化学工業株式会社 Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676920B1 (en) 1998-12-14 2004-01-13 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
JP2005200300A (en) * 1998-12-14 2005-07-28 Kyowa Chem Ind Co Ltd Manufacturing method of magnesium hydroxide particle
WO2000035808A1 (en) * 1998-12-14 2000-06-22 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
JP2006306658A (en) * 2005-04-28 2006-11-09 Tateho Chem Ind Co Ltd Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
JP2006306659A (en) * 2005-04-28 2006-11-09 Tateho Chem Ind Co Ltd Magnesium hydroxide particle, method for producing the same, and resin composition containing the same
US7686986B2 (en) 2006-01-05 2010-03-30 Headwaters Technology Innovation, Llc Magnesium hydroxide nanoparticles, methods of making same and compositions incorporating same
US10358364B2 (en) 2013-10-24 2019-07-23 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
WO2015058236A1 (en) 2013-10-24 2015-04-30 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
US11401183B2 (en) 2013-10-24 2022-08-02 Calix Ltd Process for manufacture of hydroxide slurry
US10800683B2 (en) 2013-10-24 2020-10-13 Calix Ltd Process for manufacture of hydroxide slurry
CN106573869A (en) * 2014-08-26 2017-04-19 协和化学工业株式会社 Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
EP3187483A4 (en) * 2014-08-26 2018-04-11 Kyowa Chemical Industry Co., Ltd Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
US10233305B2 (en) 2014-08-26 2019-03-19 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
US20170260356A1 (en) * 2014-08-26 2017-09-14 Kyowa Chemical Industry Co., Ltd. Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
JPWO2016031803A1 (en) * 2014-08-26 2017-06-08 協和化学工業株式会社 Novel magnesium hydroxide-based solid solution, resin composition containing the same, and precursor of highly active magnesium oxide
WO2016031803A1 (en) * 2014-08-26 2016-03-03 協和化学工業株式会社 Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same

Similar Documents

Publication Publication Date Title
KR100200082B1 (en) Composite metal hydroxide and its use
KR20050042039A (en) Process for preparing zirconium-cerium-based mixed oxides
KR100214057B1 (en) Fibrous composite metal hydroxide and its production
CN104045821B (en) Phosphoric flame-proof copolyester ionomer/nano composite material and preparation method thereof
JPH02141418A (en) Highly dispersible magnesium oxide and its production
CN102040381A (en) Method for preparing superfine zirconia powder
JP4663690B2 (en) Magnesium hydroxide particles for flame retardant, method for producing the same, and surface treatment method
JP2020040859A (en) Magnesium hydroxide particles and method for producing the same
CN113023730B (en) Preparation method of silicon-containing layered double hydroxide
JPS63277511A (en) Production of magnesium hydroxide and surface-treated magnesium hydroxide
JP3107926B2 (en) Flame retardant and flame retardant resin composition
JP2826973B2 (en) Composite metal hydroxide
CN1699175A (en) Manufacturing method of granular high-activity magnesia
US6254847B1 (en) Metal hydroxide solid solution, metal oxide solid solution and processes for their production
JP2002079101A (en) Catalyst precursor for methanol steam reforming, catalyst for methanol steam reforming and its manufacturing method
JP3749682B2 (en) Magnesium hydroxide flame retardant, method for producing the same, and flame retardant resin composition using the flame retardant
JPH02111625A (en) High-activity, high-dispersibility magnesium hydroxide and its production
JPS63277510A (en) Production of magnesium hydroxide and surface-treated magnesium hydroxide
JPH04362012A (en) Production of high-dispersive magnesium hydroxide
CN110104666B (en) Method for preparing anhydrous magnesium carbonate based on hydrothermal carbonization reaction
JPS6335571B2 (en)
KR100413086B1 (en) Magnesium hydroxide having uniformity and high dispersibility and method for preparing the same
JP4071943B2 (en) Magnesium hydroxide flame retardant, method for producing the same, and water-resistant flame retardant resin composition using the same
JPH0248414A (en) Production of magnesium hydroxide
JP3626323B2 (en) Process for producing hydroxystannate and flame retardant