JP4772307B2 - 乾式脱硫装置、乾式脱硫装置内からの水銀除去方法、及び再生塔 - Google Patents

乾式脱硫装置、乾式脱硫装置内からの水銀除去方法、及び再生塔 Download PDF

Info

Publication number
JP4772307B2
JP4772307B2 JP2004259505A JP2004259505A JP4772307B2 JP 4772307 B2 JP4772307 B2 JP 4772307B2 JP 2004259505 A JP2004259505 A JP 2004259505A JP 2004259505 A JP2004259505 A JP 2004259505A JP 4772307 B2 JP4772307 B2 JP 4772307B2
Authority
JP
Japan
Prior art keywords
tower
mercury
regeneration tower
gas
carbonaceous catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004259505A
Other languages
English (en)
Other versions
JP2006075670A (ja
Inventor
一憲 神谷
幸洋 平林
康規 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
J Power Entech Inc
Original Assignee
Electric Power Development Co Ltd
J Power Entech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, J Power Entech Inc filed Critical Electric Power Development Co Ltd
Priority to JP2004259505A priority Critical patent/JP4772307B2/ja
Publication of JP2006075670A publication Critical patent/JP2006075670A/ja
Application granted granted Critical
Publication of JP4772307B2 publication Critical patent/JP4772307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、排ガスなどの処理を行うための乾式脱硫装置、乾式脱硫装置内からの水銀除去方法、及び再生塔に関するものである。
ボイラー、焼却炉あるいは焼結炉からの排ガス等を処理する装置としては、吸着塔内に導入された活性コークスをはじめとする炭素質触媒に排ガスを接触させて、SO(硫黄酸化物)やNO(窒素酸化物)等といったガス中の各種物質を炭素質触媒に吸着させて除去する、乾式脱硫(脱硝)装置が知られている。この装置においては、排ガス中のSOは、硫酸として活性コークス(炭素質触媒)に吸着されて除去される。また、前処理として、排ガス中にアンモニアを注入した場合には、SOはアンモニウム塩として吸着されるとともに、NOは窒素に還元されて無害化される。更に、排ガス中に水銀のような重金属が含有されている場合にも、活性コークスに吸着される。
吸着塔において排ガス処理に使用された活性コークスには、硫酸、アンモニウム塩あるいは水銀等の各種物質が多量に付着しており、その活性度が低下している。そのため、こうした活性コークスを再生塔に送って加熱再生し、吸着物質を脱離させて、活性度を元に戻す必要がある。このように加熱再生する際には、活性コークスからの脱離物をパージするためのガス(キャリアガス)として、不活性ガスが用いられる。
再生塔において加熱再生する方式としては、再生塔内を流下する活性コークスの流れ方向と同方向に不活性ガスを流す並流方式(並流接触法)と、逆方向に流す向流方式(向流接触法)とが知られている。並流方式においては、脱離物中にアンモニアなどの不純物が存在し、脱離ガスから副生品を製造する際に問題となる。しかし向流方式においては、アンモニア等は活性コークスに再吸着されるために、脱離物中に殆ど存在しないという利点があることが、既に知られている(特許文献1)。
向流方式を採用する再生塔の一例を、図7に示す。この再生塔Rにおいては、上下に延在する長尺筒状の塔本体20内に、活性コークスCを上方から下方へと流すとともに、不活性ガスIを下方から上方に流して、活性コークスCと不活性ガスIとを向流接触させるように構成されている。塔本体20内は、上側から下側へと順に、貯留ゾーン21、予熱ゾーン22、分離ゾーン23、加熱ゾーン24、ガス導入ゾーン25,冷却ゾーン26、及び整流ゾーン27といった、各ゾーンに区分されている。ガス導入ゾーン25には、キャリアガスとしての不活性ガスIを導入するための不活性ガス導入路31が設けられており、分離ゾーン23には、脱離ガスGを導出するための脱離ガス導出路32が設けられている。また、予熱ゾーン22には予熱ガス導入路41及び予熱ガス導出路42が、加熱ゾーン24には加熱ガス導入路51及び加熱ガス導出路52が、各々設けられており、予熱ガスh1及び加熱ガスh2が各々導入・導出されるようになっている。更に冷却ゾーン26には、冷却媒体導入路61及び冷却媒体導出路62が設けられており、冷却空気あるいは冷却水といった冷却媒体が導入・導出されるようになっている。なお、塔本体20の上下両端側には、塔本体20内への活性コークスCの導入・導出を規制するための開閉弁V1,V2が設けられている。
排ガス処理に使用され各種物質を吸着している活性コークスCは、開閉弁V1を通って塔本体20の頂部から貯留ゾーン21へと導入され、ここで一旦貯留される。そして、予熱ゾーン22に導入されて温度が漸次上昇された後、分離ゾーン23を経て加熱ゾーン24へと導入される。なお活性コークスCは、予熱ゾーン22で180℃程度に予熱が加えられた後、加熱ゾーン24で400℃以上、好ましくは450℃前後の高温まで加熱される。この加熱ゾーン24の高温環境下にて、活性コークスCに吸着されていた吸着物質は、その殆ど全てが脱離する。
一方、キャリアガスとしての不活性ガスIは、ガス導入ゾーン25から塔本体20内に導入されて下方から上方へと流れていき、加熱ゾーン23にて活性コークスCと向流接触する。すなわち、SOや水銀等といった活性コークスCからの脱離物は、不活性ガスIに含有されて上方へと運ばれていく。そして、このSO等を含有した不活性ガスIは、脱離ガスGとして脱離ガス導出路32から再生塔R外へと導出されて、図示しない水洗設備、硫酸製造設備等へと送られて、処理される。
特公平6−59408号公報 特開平9−108569号公報 特開2003−181472号公報
向流方式の再生塔Rにおいては、アンモニアのみならず水銀も同様に脱離物中には存在しない。このようになるのは、加熱ゾーン24、つまり400℃以上の高温環境下において、活性コークスCからガスとして脱離した水銀が、キャリアガスとともに比較的低温な加熱ゾーン24上側つまり分離ゾーン23まで運ばれて、ここで滞留し、活性コークスCに再吸着することによることが知られている(特許文献2)。
水銀は、その大部分がHgSOの形態で吸着されていると考えられており、SOを吸着していない活性コークスCを再生塔R頂部から供給すれば、水銀は活性コークスCに蓄積されることなく、SO等とともに脱離ガスG中に放出されていくと考えられていた。
また、活性コークスCにSOを吸着した状態で装置を停止すると発熱等の危険があるため、装置を長期停止する場合、装置内のSOを全脱離した状態とする必要があるが、全脱離の過程で再生塔に再生済み活性コークスCが供給され、蓄積していた水銀を一気に放出させる危険が予想された。このため、装置を長期停止する場合、SOが再生塔内に残っている間に水銀が蓄積した活性コークスCを抜き出す必要があると考えられていた。
ところが本願発明者等は、独自に鋭意検討を重ねたところ、再生塔Rにて再生が完了した高活性度の活性コークスCを再生塔R内に再度供給しても、水銀が放出されないことを見出した。すなわち、SOを吸着している活性コークスCが供給された場合と同様に、加熱ゾーン24上部つまり分離ゾーン23に水銀が蓄積されていくことがわかった。この水銀蓄積部を、図7に符号Mとして示している。
再生された活性コークスCが再生塔に供給されると、水銀は再生塔内に残存しているSOと反応し、HgSOとして活性コークスCに再吸着される。また、再生塔内にSOが残存していない場合、水銀は活性コークスCに物理吸着しているものと考えられる。
並流方式の再生塔Rにおいては、脱離物中にアンモニア及び水銀などの不純物が存在し、脱離ガスから副生品を製造する際に問題となる。水銀をガスとして回収し除去処理を行うといった方法では、再生塔R内から水銀を的確に除去することができないと考えられる。
水銀をガスとして回収する方法では、ガス中には水銀以外の不純物や活性コークス粉等が含まれている。したがって、ガス中から水銀を回収するためには、その前段として、活性コークス粉をガス中から除去するための水洗処理を行う必要がある。こうすると水銀は、ガス中にはHgの形態として、また水洗水中にはHg2+の形態として、双方に各々存在することとなる。
一例として、特許文献2に記載されているような2段式の再生塔(再生器)R2を用いて水銀を処理する方法について、図8に示す。この例においては、脱離温度の低いSO等の脱離物は、再生塔R2の上側から、脱離温度の高い水銀等は下側から、各々塔外へと導出される。このうち、水銀を含むガスを処理するためには、図中Wで示すような水銀除去処理を行わなくてはならない。すなわち、水銀を含む水洗水中に還元剤を投入するための設備、これを曝気・気散させるための設備、及び、ガス中の水銀とともに水銀吸着剤で処理するための設備(特許文献3等)等が必要となる。さらには、水銀が除去された後のSOを回収するための設備も必要となる。このような付帯設備が必要となるため、装置構成が大規模化、複雑化するとともに、設備費などの初期コストや、その後の処理コスト、メンテナンスコストも高いものとなっていた。
本発明は上記事情に鑑みてなされたもので、再生塔内の特定箇所の炭素質触媒に、水銀等の特定の脱離物が蓄積する性質を利用して、効率良く水銀等を除去し、また、特別な付帯設備を必要とせず、低コストで水銀等を除去することのできる乾式脱硫装置、及び乾式脱硫装置内からの水銀除去方法を提供することを目的とする。
また、再生塔内の炭素質触媒を効率良くかつ安全にサンプリングすることができ、炭素質触媒の水銀蓄積状況を把握し、炭素質触媒の抜き出し時期などを的確に判断することができる再生塔を提供することを目的とする。
請求項1に記載の発明は、ガス中に含まれる各種物質のうちの少なくとも硫黄酸化物と水銀とを炭素質触媒に吸着させる吸着塔と、前記炭素質触媒を不活性ガスと接触させて吸着物質を脱離させる再生塔と、前記吸着塔と前記再生塔との間で前記炭素質触媒を循環させる循環流路とが設けられた乾式脱硫装置において、前記炭素質触媒を前記乾式脱硫装置外へと排出可能な排出流路と、前記再生塔内からの前記炭素質触媒の流れを前記循環流路方向と前記排出流路方向とに切替可能な分岐器と、が備えられていることを特徴とする。
このように、排出流路と分岐器とを備えるようにしているので、分岐器を切り替えるだけで、再生塔内の炭素質触媒を抜き出して乾式脱硫装置外へと排出することができる。このため、簡易な装置構成としながら、再生塔内の特定箇所の炭素質触媒に蓄積する性質を有する水銀等の脱離物を、炭素質触媒とともに容易且つ的確に排出し、乾式脱硫装置外にて適切な処理を行うことができる。
請求項2に記載の発明は、ガス中に含まれる各種物質のうちの少なくとも硫黄酸化物と水銀とを炭素質触媒に吸着させる吸着塔と、前記炭素質触媒を不活性ガスと接触させて吸着物質を脱離させる再生塔と、前記吸着塔と前記再生塔との間で前記炭素質触媒を循環させる循環流路とが設けられた乾式脱硫装置内から、水銀を除去する方法であって、
前記再生塔内の分離ゾーンに存在する炭素質触媒に吸着された水銀の量が所定値未満である時には、前記炭素質触媒を前記吸着塔と前記再生塔との間で循環させ、
前記再生塔内の分離ゾーンに存在する炭素質触媒に吸着された水銀の量が所定値以上である時には、前記再生塔内の炭素質触媒を、吸着された水銀とともに前記乾式脱硫装置外へと排出することを特徴とする。
乾式脱硫装置の定常運転を継続して行うと、再生塔内の特定箇所の炭素質触媒に水銀が蓄積していくが、本方法のように、水銀が蓄積した炭素質触媒を抜き出すことで、再生塔内に固定化されて蓄積している水銀を一度にまとめて効率良くかつ容易に抜き出し、乾式脱硫装置外へと排出して乾式脱硫装置外にて適切な廃棄処理を行うことができる。また、本方法によれば、装置の長期停止時のSO完全脱離過程においても水銀は放出されることなく、安全に装置を停止しながら水銀が蓄積した炭素質触媒を抜き出すことができる。
請求項3に記載の発明は、少なくとも硫黄酸化物と水銀とが吸着された炭素質触媒を塔本体内に流し、該炭素質触媒を不活性ガスと接触させて吸着物質を脱離させる再生塔において、前記塔本体の側方には、開口孔と、該開口孔を開閉する開閉弁とが設けられているとともに、前記開閉弁の外側には、前記塔本体内の炭素質触媒及びガスをサンプリング可能なサンプリング装置が設けられ、該サンプリング装置には、前記開閉弁から外方に向けて延在する長尺管状のサンプリング管と、前記塔本体内に向けて出没可能なように前記サンプリング管内に収容され、側方に孔が形成された筒状のノズルと、前記サンプリング管内を不活性ガスでシールするシール手段と、前記ノズルからサンプリングされた前記塔本体内のガスを前記サンプリング管外へと導出するガスサンプリング手段と、が備えられていることを特徴とする。
再生塔をこのような構成としたことで、通常時は開閉弁を閉じたまま再生塔を運転することができる。
そして、サンプリング時においては、シール手段によってサンプリング管内を予め不活性ガスでシールして、運転中の再生塔内と同等の雰囲気とすることができるので、外気等によってサンプリングに影響が生じることを防止することができる。こうしておいて、開閉弁を開いてノズルを塔本体内に突出させて、ノズルの孔から塔本体内の炭素質触媒およびガスをノズル内に取り込んだ後、このノズルをサンプリング管内に収容して開閉弁を閉じて、炭素質触媒をサンプリングすることができる。更に、ガスサンプリング手段によって、サンプリング管内に取り込んだガスの分析も行うことができる。
請求項4に記載の発明は、請求項3に記載の再生塔であって、前記塔本体と前記サンプリング装置とが着脱可能とされていることを特徴とする。
このように、サンプリング装置を塔本体から着脱可能としているので、サンプリング時以外つまり通常時はサンプリング装置を取り外しておくことができ、再生塔周辺の突起物を無くして広いスペースを確保することができる。加えて、通常時はサンプリング装置を高温条件下に晒す必要がないので、サンプリング装置の長寿命化を図ることができる。
本発明に係る乾式脱硫装置、及び乾式脱硫装置内からの水銀除去方法によれば、再生塔内に固定化されて蓄積する水銀を、一度にまとめて容易且つ的確に乾式脱硫装置外へと排出し、乾式脱硫装置外にて適切な処理を行うことができる。これにより、乾式脱硫装置に、水銀除去のための特別な付帯設備等を設けることを必要とせず、装置構成を小規模化、簡素化させることができるので、初期コストあるいはメンテナンスコストを低廉化させることができる。そして、水銀が固定化された炭素質触媒を、例えば産業廃棄物として廃棄処理することも容易にできるので、処理コストの低廉化を図ることができる。
更に、本発明に係る再生塔によれば、再生塔の運転中であっても塔本体内の炭素質触媒及びガスのサンプリングを行うことができるとともに、ガスと炭素質触媒とを速やかに分離して別個に分析することができるので、運転中の再生塔内の状況を迅速且つ的確に把握することができる。
以下、本発明の実施の形態について、図面を用いて説明する。
図1に示す乾式脱硫装置Dは、ボイラー、焼却炉あるいは焼結炉といった各種プラントからの排ガス(ガス)を処理するものであって、吸着塔1と、再生塔2と、吸着塔1と再生塔2との間で活性コークスCを循環させる循環流路3A,3Bと、活性コークスCを乾式脱硫装置D外へと排出可能とする排出流路4と、循環流路3Bと排出流路4との間で流路を切り替える二股シュート(分岐器)5、等を備えている。
吸着塔1は、排ガス導入口11から排ガスを導入し、塔内にて活性コークス(炭素質触媒)Cと接触させて、SO(硫黄酸化物)、NO(窒素酸化物)及び水銀等といったガス中の各種物質を活性コークスCに吸着させて除去する処理を行うものである。各種物質が吸着除去された排ガスは、排ガス導出口12から吸着塔1外へと導出され、直接あるいは他のガス処理が施された後、煙突13から大気中へと放出される。なお、活性コークスCの導入・導出は、開閉弁V3,V4を操作することによって行われる。
再生塔2は、吸着塔1において各種物質を吸着し活性が低下した活性コークスCを導入し、加熱再生するものである。なおこの再生塔2は、上記した再生塔Rの構成の一部を変更して、後述するサンプリング装置8を付加した構成となっている。そのため、再生塔Rにおけると同一の構成要素には同一の符号を付して、その詳しい説明は省略することとする。
なお、図1中における符号50は熱風炉、符号52fはブロワ、符号Fは熱風炉50への燃料供給手段である。すなわち、熱風炉50内で燃焼を行い、発生した高温ガスを、再生塔2の加熱ガス導入路51から加熱ガスとして加熱ゾーン24へと導入するとともに、加熱後の低温ガスを、ブロワ52fによって加熱ガス導出路52から導出して再び熱風炉50へと戻す。このように高温ガスを循環させることによって、加熱ゾーン24内は高温環境下に維持されるので、加熱ゾーン24内の活性コークスCは、400℃以上、好ましくは450℃前後の高温まで加熱される。
ここで、再生塔2に設けたサンプリング装置8について説明する。
図5に示すように、再生塔2の分離ゾーン23における塔本体20の側方には、塔本体20の内外を開口させる開口孔20aと、開口孔20aを開閉する開閉弁20vとが設けられている。この開閉弁20vの外側に、塔本体20内の活性コークスC及び脱離ガスなど(ガス)をサンプリング可能なサンプリング装置8が、着脱可能に設けられるようになっている。すなわち、サンプリング時にのみ、サンプリング装置8を取付固定するとともに開閉弁20vを操作するようにして、サンプリング時以外つまり通常時においては、開閉弁20vを閉じておくとともにサンプリング装置8を取り外しておくようにする。
このサンプリング装置8は、開閉弁20vから外方に向けて延在する長尺管状のサンプリング管81と、塔本体20内に向けて出没可能なようにサンプリング管81内に収容されているノズル82と、サンプリング管81内を不活性ガスでシールするシール用管路(シール手段)85と、ノズル82からサンプリングされた塔本体20内の脱離ガスをサンプリング管81外へと導出するガスサンプリング用管路(ガスサンプリング手段)86と、を備えている。
ノズル82は、側方に孔82hが形成された筒状をなしており、その後端側にはハンドル83が一体に連結されている。つまり、再生塔2外からハンドル83を操作することで、ノズル82を、塔本体20内に向けて出没させたり回転させることができるようになっている。なお、サンプリング管81とハンドル83との間にはパッキン81pが設けられており、サンプリング管81内の不活性ガス等が外部へとリークすることがないようになっている。
シール用管路85は、一端側がサンプリング管81に連結されているとともに、他端側が窒素等の不活性ガスの供給手段(図示省略)に連結されており、管路途中の弁85vを操作することによって、サンプリング管81内に不活性ガスを供給してシールすることができるようになっている。
また、ガスサンプリング用管路86は、一端側がサンプリング管81に連結されているとともに、他端側が脱離ガスの貯留手段あるいは分析手段(ともに図示省略)に連結されており、管路途中の弁86vを開閉することによって、ノズル82からサンプリング管82内を流れてきた脱離ガスをサンプリングすることができるようになっている。
サンプリング時においては、開閉弁81の外側にサンプリング管81の先端側を取付固定し、シール用管路85の弁85vを開いて、サンプリング管81内を予め窒素等の不活性ガスでシールする。こうすることで、サンプリング管81内を、運転中の再生塔2内と同等の雰囲気とすることができるので、外気等によってサンプリングに影響が生じることを防止することができる。
こうしておいて、図6に示すように、開閉弁20vを開くとともに、ハンドル83を操作してノズル82を塔本体20内へと突出させる。このとき、ノズル82の孔82hは下向きとしておき、ノズル82内に活性コークスCが入らないようにしておく。ノズル82を塔本体20内の所定位置まで挿入して、挿入が完了したら、ハンドル83を操作してノズル82の孔82hを上向きとし、ノズル82内に活性コークスCを入れる。このとき、ノズル82内には脱離ガスも入ってくることは勿論である。
塔本体20内の活性コークスCおよび脱離ガスをノズル82内に取り込んだ後、このノズル82をサンプリング管81内に収容して、開閉弁20vを閉じる。なお、サンプリング直後の活性コークスCおよび脱離ガスは高温であるため、そのまま所定時間放置して、サンプリング管81とともに冷却する。
サンプリング管81が十分に冷却された後、ガスサンプリング用管路86の弁86vを開いて、脱離ガスのみをサンプリング管81内から導出する。こうすることにより、迅速且つ的確に脱離ガスの分析を行うことができる。ここでの分析とは、脱離ガス中のSO残存量がほぼ0であることを確認するために行う。
その後、ノズル82を取り外し、ノズル82内のサンプリングした活性コークスCが十分に冷却されていることを確認して、ノズル82内から活性コークスCをサンプルとして取り出し、分析する。このように、脱離ガスが分離された後の活性コークスCを分析することができるので、ガス中の成分による影響を排除して活性コークスCのみを的確に分析することができる。ここでの分析とは、主に活性コークスCに吸着されている水銀の量を測定するために行う。
こうして、サンプリングは完了するので、サンプリング装置8を塔本体20から取り外しておく。
図1に示すように、循環流路3Aは、吸着塔1の底部と再生塔2の頂部との間にわたって設けられており、また循環流路3Bは、再生塔2の底部と吸着塔1の頂部との間にわたって設けられている。これら循環流路3A,3Bによって、活性コークスCを吸着塔1と再生塔2との間で循環させることができる。なお、循環流路3Bの流路途中には、振動篩sが設けられており、灰や細かな活性コークス粉等を活性コークスC内から分離除去できるようになっている。また、循環流路3A又は3Bに、活性コークスCの減少分を外部から追加補給するための補給路(図示省略)が設けられている。
また、再生塔2内の活性コークスCを自己循環させるための流路として、循環流路3Aと3Bとをバイパスする自己循環用流路(図示省略)が適宜設けられていてもよい。
再生塔2の下側には、循環流路3Bから分岐して乾式脱硫装置D外まで延在する排出流路4が設けられているとともに、この分岐部には二股シュート5が設けられている。二股シュート5は、再生塔2内からの活性コークスCの流れを、循環流路3B方向と排出流路4方向とに切替可能な構成となっている。すなわち、この二股シュート5を循環流路3B方向に位置させた場合には、再生塔C内の活性コークスCは吸着塔1へと送られるが、排出流路4方向に位置させた場合には、再生塔C内の活性コークスCを乾式脱硫装置D外へと排出することができるようになっている。
こうした構成の乾式脱硫装置Dにおいては、定常運転時には、図1に示すように、二股シュート5を循環流路3B方向に位置させておき、活性コークスCを吸着塔1と再生塔2との間で循環流路3A,3Bを介して循環させ、排ガスを連続的に処理するとともに、活性コークスCを連続的に加熱再生する。
ここで、上述したように、乾式脱硫装置Dの定常運転を所定期間継続して行っていくと、再生塔2内の特定箇所、すなわち加熱ゾーン24上側の分離ゾーン23に、水銀が徐々に固定化されて蓄積していくこととなる。この分離ゾーン23内の水銀量は、サンプリング装置8を用いて定期的に測定することが好ましい。測定の結果、水銀量が所定値以上を示した場合、あるいは定常運転が所定時間を経過した場合等においては、乾式脱硫装置Dを非定常運転に切り替えて、活性コークスCの循環を停止させるとともに、再生塔2内の活性コークスCを所定量抜き出すようにする。
非定常運転時には、図2に示すように、先ず、開閉弁V1〜V4を閉じて活性コークスCの循環を停止させるとともに、熱風炉50への燃料供給を遮断して加熱ゾーン24への高温ガスの供給を停止して、再生塔2の加熱を停止する。そしてこの状態で、再生塔2を自然冷却する。なおここで、再起動時における活性コークスCの吸着性能低下を防ぐために、再生塔2内の活性コークスCを適宜自己循環させるようにしてもよい。
また、この非定常運転時には、吸着塔1の運転は継続してもよいが、排ガスの流量を下げて処理量を減らす等の処置を施すことが好ましい。
そして、二股シュート5を排出流路4方向に切り替えておき、再生塔2が十分に冷却されたら、開閉弁V2を開いて再生塔2内の活性コークスCを所定量抜き出し、排出流路4へと導出する。ここでいう所定量、つまり再生塔2内から抜き出す必要のある活性コークスCの量は、予熱ゾーン22と加熱ゾーン24との間、つまり分離ゾーン23に存在する活性コークスCである。なお、加熱ゾーン24に存在する活性コークスCもともに抜き出すようにすれば、より的確に水銀を除去することができるので好ましい。また、サンプリング装置8を用いた測定結果によって、活性コークスCの抜き出し時期や抜き出し量を決定するようにすれば、より好ましい。
排出流路4を通って乾式脱硫装置D外へと排出された活性コークスCは、トラックTのような搬送手段に移し替えられ、最終処分施設へと搬送され、適切な処理が行われる。例えば、水銀が固定化されたままの活性コークスCを、産業廃棄物として廃棄するといった処理が挙げられる。
このように、水銀を活性コークスCに固定化・蓄積させて処理するようにすれば、図3に示すように、脱離ガス中にはSO以外の脱離物は殆ど含有されなくなる。そのため、分離ゾーン23からの脱離ガスの処理は、水洗設備、硫酸製造設備等において行うだけでよく、その他の付帯設備等は必要とはならない。一例として、図8に示した方法において必要となる設備費と、図3に示した方法において必要となる設備費とを試算したところ、前者が100に対して、後者は約5.4となった。すなわち本処理方法を採用すれば、初期コストからして大幅に低廉化することができ、極めて経済的であることがわかる。
また、通常、分離ゾーン23の容量は、乾式脱硫装置D全体の活性コークスCの保有量(全活性コークス保有量)の約1%、再生塔2内の活性コークスCの保有量の約10%に設定されている。そして、再生塔C内からの活性コークスCの抜き出し量は、加熱ゾーン24も加えて、全活性コークス保有量の約3%、再生塔2内の活性コークスCの保有量の約30%となる。これらの比率は、プラントでの使用燃料中の水銀含有量、プラントの運転条件(運転時間・負荷パターン)、プラント停止間隔等といった各種条件に応じて、任意に変えることによって、水銀が蓄積した活性コークスCの最適な抜き出し量や抜き出し間隔を決定することが可能となる。例えば、プラントで使用する燃料中の水銀含有量が少ないと想定される場合には、図4(a)に示すように、分離ゾーン23の高さを低くして(高さ:ta)容量が小さくなるように設計し、燃料中の水銀含有量が多いと予想される場合には、図4(b)に示すように、分離ゾーン23の高さを高くして(高さ:ta+tb)容量が大きくなるように設計するようにすればよい。
なお、上記の乾式脱硫装置Dにおいては、水銀を除去する場合を例にとって説明したが、これに限定されるものではなく、水銀と同様の挙動を示すような脱離物、つまり再生塔2内の特定箇所の活性コークスCに蓄積する性質を有する他の重金属等を除去する場合であれば、この乾式脱硫装置Dを適用可能であることは勿論である。
本実施形態に係る乾式脱硫装置Dにおいては、活性コークスCを乾式脱硫装置D外へと排出可能な排出流路4と、再生塔2内からの活性コークスCの流れを循環流路3B方向と排出流路4方向とに切替可能な二股シュート5とを備えるようにしている。そのため、二股シュート5を切り替えるだけで、再生塔2内の活性コークスCを抜き出して乾式脱硫装置D外へと排出することができるので、簡易な装置構成としながら、再生塔2内の特定箇所の活性コークスCに蓄積する性質を有する水銀等の脱離物を、活性コークスCとともに容易且つ的確に排出し、乾式脱硫装置D外にて適切な処理を行うことができる。これにより、特別な付帯設備等を必要とせず、装置構成を小規模化、簡素化させることができるとともに、初期コスト、処理コストあるいはメンテナンスコスト等の各種コストを低廉化させて、的確に脱離物を除去することができる。
また、本実施形態に係る乾式脱硫装置D内からの水銀除去方法においては、定常運転時には、活性コークスCを吸着塔1と再生塔2との間で循環させ、非定常運転時には、再生塔2内の活性コークスCを、吸着された水銀とともに乾式脱硫装置D外へと排出するようにしている。そのため、再生塔2内の特定箇所に水銀が固定化・蓄積されていったとしても、このような水銀を活性コークスCとともに一度にまとめて容易且つ的確に抜き出し、乾式脱硫装置D外へと排出して、乾式脱硫装置D外にて適切な処理を行うことができる。これにより、乾式脱硫装置Dに、水銀除去のための特別な付帯設備等を設けることを必要とせず、装置構成を小規模化、簡素化させることができるので、初期コストあるいはメンテナンスコストを低廉化させることができる。そして、水銀が固定化された活性コークスCを、例えば産業廃棄物として廃棄処理することも容易にできるので、処理コストの低廉化を図ることができる。
更に、本実施形態に係る再生塔2においては、サンプリング装置8を設けて、再生塔2の運転中であっても塔本体20内の活性コークスC及び脱離ガスのサンプリングを行うことができるとともに、脱離ガスと活性コークスCとを速やかに分離して別個に分析することができるので、運転中の再生塔2内の状況を迅速且つ的確に把握することができる。これにより、再生塔2内の特定箇所の活性コークスCに水銀が固定化・蓄積されていった場合に、活性コークスCの抜き出し時期や抜き出し量を決定するための有効な指標を得ることができる。
本発明の一実施形態に係る乾式脱硫装置を示す概略図であって、定常運転時におけるフローを示す図である。 図1において示した乾式脱硫装置の、非定常運転時におけるフローを示す図である。 本発明の一実施形態に係る乾式脱硫装置における再生塔を示す概略図であって、水銀除去のフローを示す図である。 本発明の一実施形態に係る再生塔を示す概略図であって、(a)は分離ゾーンの高さを低くした状態を、(b)は分離ゾーンの高さを高くした状態を示す図である。 本発明の一実施形態に係る再生塔を示す概略側断面図である。 本発明の一実施形態に係る再生塔を示す概略側断面図である。 向流方式の再生塔について示す概略構成図である。 従来の再生塔の一例を示す概略図であって、水銀除去のフローを示す図である。
符号の説明
D 乾式脱硫装置
1 吸着塔
2 再生塔
3A,3B 循環流路
4 排出流路
5 二股シュート(分岐器)
8 サンプリング装置
20 塔本体
20a 開口孔
20v 開閉弁
22 予熱ゾーン
23 分離ゾーン
24 加熱ゾーン
25 ガス導入ゾーン
81 サンプリング管
82 ノズル
82h 孔
85 シール用管路(シール手段)
86 ガスサンプリング用管路(ガスサンプリング手段)
C 活性コークス(炭素質触媒)

Claims (4)

  1. ガス中に含まれる各種物質のうちの少なくとも硫黄酸化物と水銀とを炭素質触媒に吸着させる吸着塔と、前記炭素質触媒を不活性ガスと接触させて吸着物質を脱離させる再生塔と、前記吸着塔と前記再生塔との間で前記炭素質触媒を循環させる循環流路とが設けられた乾式脱硫装置において、
    前記炭素質触媒を前記乾式脱硫装置外へと排出可能な排出流路と、
    前記再生塔内からの前記炭素質触媒の流れを前記循環流路方向と前記排出流路方向とに切替可能な分岐器と、
    が備えられていることを特徴とする乾式脱硫装置。
  2. ガス中に含まれる各種物質のうちの少なくとも硫黄酸化物と水銀とを炭素質触媒に吸着させる吸着塔と、前記炭素質触媒を不活性ガスと接触させて吸着物質を脱離させる再生塔と、前記吸着塔と前記再生塔との間で前記炭素質触媒を循環させる循環流路とが設けられた乾式脱硫装置内から、水銀を除去する方法であって、
    前記再生塔内の分離ゾーンに存在する炭素質触媒に吸着された水銀の量が所定値未満である時には、前記炭素質触媒を前記吸着塔と前記再生塔との間で循環させ、
    前記再生塔内の分離ゾーンに存在する炭素質触媒に吸着された水銀の量が所定値以上である時には、前記再生塔内の炭素質触媒を、吸着された水銀とともに前記乾式脱硫装置外へと排出することを特徴とする乾式脱硫装置内からの水銀除去方法。
  3. 少なくとも硫黄酸化物と水銀とが吸着された炭素質触媒を塔本体内に流し、該炭素質触媒を不活性ガスと接触させて吸着物質を脱離させる再生塔において、
    前記塔本体の側方には、開口孔と、該開口孔を開閉する開閉弁とが設けられているとともに、前記開閉弁の外側には、前記塔本体内の炭素質触媒及びガスをサンプリング可能なサンプリング装置が設けられ、
    該サンプリング装置には、
    前記開閉弁から外方に向けて延在する長尺管状のサンプリング管と、
    前記塔本体内に向けて出没可能なように前記サンプリング管内に収容され、側方に孔が形成された筒状のノズルと、
    前記サンプリング管内を不活性ガスでシールするシール手段と、
    前記ノズルからサンプリングされた前記塔本体内のガスを前記サンプリング管外へと導出するガスサンプリング手段と、
    が備えられていることを特徴とする再生塔。
  4. 前記塔本体と前記サンプリング装置とが着脱可能とされていることを特徴とする請求項3に記載の再生塔。
JP2004259505A 2004-09-07 2004-09-07 乾式脱硫装置、乾式脱硫装置内からの水銀除去方法、及び再生塔 Active JP4772307B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259505A JP4772307B2 (ja) 2004-09-07 2004-09-07 乾式脱硫装置、乾式脱硫装置内からの水銀除去方法、及び再生塔

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259505A JP4772307B2 (ja) 2004-09-07 2004-09-07 乾式脱硫装置、乾式脱硫装置内からの水銀除去方法、及び再生塔

Publications (2)

Publication Number Publication Date
JP2006075670A JP2006075670A (ja) 2006-03-23
JP4772307B2 true JP4772307B2 (ja) 2011-09-14

Family

ID=36155577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259505A Active JP4772307B2 (ja) 2004-09-07 2004-09-07 乾式脱硫装置、乾式脱硫装置内からの水銀除去方法、及び再生塔

Country Status (1)

Country Link
JP (1) JP4772307B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082884A (ja) * 2007-10-03 2009-04-23 J-Power Entech Inc 乾式脱硫装置
JP5124407B2 (ja) * 2008-09-26 2013-01-23 ジェイパワー・エンテック株式会社 乾式排ガス処理装置のコンベヤシステム
WO2010106623A1 (ja) 2009-03-16 2010-09-23 ジェイパワー・エンテック株式会社 再生塔及び乾式排ガス処理装置
WO2010106624A1 (ja) * 2009-03-16 2010-09-23 ジェイパワー・エンテック株式会社 再生塔、乾式脱硫装置、吸着材の再生方法及び乾式脱硫方法
JP6066191B2 (ja) * 2013-03-11 2017-01-25 太平洋セメント株式会社 排ガス中の水銀回収方法
KR101495493B1 (ko) * 2013-07-29 2015-02-25 한국산업은행 수은 제거 장치와 수은 제거 방법
CN104014231B (zh) * 2014-06-20 2015-11-11 上海龙净环保科技工程有限公司 一种集成脱硫脱硝脱汞烟气净化系统及净化工艺
DE102015211326A1 (de) * 2015-06-19 2016-12-22 Rwe Power Aktiengesellschaft Verfahren zur Abscheidung von Quecksilber aus Rauchgasen von Verbrennungsanlagen
CN105080484A (zh) * 2015-08-28 2015-11-25 嘉兴市富译环保工程有限公司 活性焦再生系统及方法
CN111346605B (zh) * 2020-04-08 2023-07-25 西安热工研究院有限公司 一种适用于大型燃煤电厂的污染物综合治理系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681133A (en) * 1979-12-05 1981-07-02 Mitsubishi Heavy Ind Ltd Desulfurization adsorbent
JPS60145346U (ja) * 1984-03-08 1985-09-26 出光興産株式会社 触媒採取装置
JPH0929046A (ja) * 1995-07-21 1997-02-04 Kubota Corp 吸着剤を利用した排ガス処理方法
JP2000051652A (ja) * 1998-08-07 2000-02-22 Hitachi Ltd 脱硫液性能判定方法と判定装置および湿式脱硫システム
JP2002058962A (ja) * 2000-08-14 2002-02-26 Sumitomo Heavy Ind Ltd 排ガス処理装置および方法
JP2003286020A (ja) * 2002-03-27 2003-10-07 Electric Power Dev Co Ltd 高賦活活性コークス粉とその製造方法

Also Published As

Publication number Publication date
JP2006075670A (ja) 2006-03-23

Similar Documents

Publication Publication Date Title
JP5425586B2 (ja) 二酸化炭素と硫化水素の除去方法および除去装置
RU2685136C1 (ru) Способ десульфуризации и денитрации отходящего газа и устройство
ES2411332T3 (es) Recuperación de metano a partir de gas de vertederos
KR101837535B1 (ko) 메탄 회수방법 및 메탄 회수장치
CN104168978B (zh) 用于从气流中去除二氧化碳的工艺
JP3237795U (ja) 低温吸着原理に基づく煙道ガスの一体化脱硫と脱硝システム
JP4772307B2 (ja) 乾式脱硫装置、乾式脱硫装置内からの水銀除去方法、及び再生塔
KR20130097723A (ko) 물, 실록산들, 황, 산소, 염화물들 및 휘발성 유기 화합물들을 제거하기 위한 통합된 바이오 가스 클리닝 시스템
JP5917190B2 (ja) 排ガス中の水銀回収装置
US5405812A (en) Method and arrangement for purifying a carbon-containing adsorption medium
WO2011068007A1 (ja) 二酸化炭素分離回収装置
CN105944499B (zh) 一种变温吸附脱除工业尾气中二氧化硫的方法
EP2069231A1 (en) Process for removal of metal carbonyls from a synthesis gas stream
JP6449296B2 (ja) 水素化物リザーバから出る熱を利用した水素中不純物用のトラップの再生
WO2015115275A1 (ja) ガス吸収・再生装置及びその運転方法
JP5291794B2 (ja) 再生塔及び乾式排ガス処理装置
CN109789365A (zh) 从垃圾填埋气体中除去硅氧烷的方法
JP5074116B2 (ja) 再生式脱硫装置及び脱硫システム
CN103459791A (zh) 废气净化方法及其设备
JP5088794B2 (ja) 水銀除去装置
WO2010106624A1 (ja) 再生塔、乾式脱硫装置、吸着材の再生方法及び乾式脱硫方法
JP6965169B2 (ja) 気体精製装置及び気体精製方法
CA3030049A1 (en) A process for the combined removal of siloxanes and sulfur-containing compounds from biogas streams
JPS63291986A (ja) 高温還元性ガスの精製方法
JP2010075847A (ja) 乾式排ガス処理装置のコンベヤシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4772307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250