JP4765537B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP4765537B2
JP4765537B2 JP2005304420A JP2005304420A JP4765537B2 JP 4765537 B2 JP4765537 B2 JP 4765537B2 JP 2005304420 A JP2005304420 A JP 2005304420A JP 2005304420 A JP2005304420 A JP 2005304420A JP 4765537 B2 JP4765537 B2 JP 4765537B2
Authority
JP
Japan
Prior art keywords
phase
phase difference
latent image
mirror
vibrating mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005304420A
Other languages
English (en)
Other versions
JP2007114376A (ja
JP2007114376A5 (ja
Inventor
晃宏 五味
雄二郎 野村
健 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005304420A priority Critical patent/JP4765537B2/ja
Publication of JP2007114376A publication Critical patent/JP2007114376A/ja
Publication of JP2007114376A5 publication Critical patent/JP2007114376A5/ja
Application granted granted Critical
Publication of JP4765537B2 publication Critical patent/JP4765537B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Laser Beam Printer (AREA)

Description

この発明は、振動する振動ミラーによって光ビームを潜像担持体上に走査させて潜像を形成するタンデム型の画像形成装置及び該装置における画像形成方法に関するものである。
カラー画像を形成する画像形成装置としては、例えば特許文献1に記載のようなタンデム型の画像形成装置が知られている。このようなタンデム型の画像形成装置は、その表面が副走査方向に駆動される潜像担持体を複数有するとともに、該複数の潜像担持体それぞれの表面に互いに異なる色のトナー像を形成する。潜像担持体表面にトナー像を形成するにあたっては、まず、帯電手段により潜像担持体の表面を一様に帯電した後に、露光手段が有する偏向器により偏向された光ビームを、上述の通り副走査方向に駆動される潜像担持体表面に主走査方向(副走査方向に略直交する方向)に走査して潜像を形成する。次に、潜像担持体表面に形成された潜像を、トナーにより現像してトナー像を形成する。このようなトナー像形成を全ての潜像担持体について実行することで、複数の潜像担持体それぞれの表面に互いに異なる色のトナー像を形成する。そして、これら互いに異なる色のトナー像を、副走査方向に搬送移動される転写媒体の表面に重ね合わせることでカラー画像を形成する。
ところで、偏向器の小型化及び高速化を図るべく、例えば特許文献2に記載があるような、振動ミラーを偏向器として用いることが従来より提案されている。すなわち、この装置では、振動ミラーに所定の駆動周波数を有する駆動信号を与えて該駆動周波数で振動ミラーを振動させるとともに、このように振動する振動ミラーにより光ビームを偏向して潜像担持体表面に主走査方向に走査することで潜像を形成する。
特開2003−043776号公報 特開平01−302317号公報(第2頁、第2〜4図)
しかしながら、上述のようなタンデム型の画像形成装置における偏向器として振動ミラーを採用するにあたっては、次のような問題があった。つまり、振動ミラーを製造する場合の加工の仕方や振動ミラーの周辺環境などにより、振動ミラーの位相特性にバラツキが生じることがある。つまり、振動ミラーを駆動する駆動信号と振動ミラーの振動との位相差にバラツキが生じる場合がある。そして、上述したとおり、潜像担持体表面に潜像を形成するにあたっては、該潜像担持体表面を副走査方向に駆動しながら振動ミラーにより偏向された光ビームを該潜像担持体表面に主走査方向に走査する。よって、駆動信号に対する振動ミラーの位相差のバラツキは、潜像担持体表面における潜像の形成位置の副走査方向へのバラツキを引き起こす。特に、タンデム型の画像形成装置においてカラー画像を形成する場合、複数の振動ミラー間で駆動信号に対する振動ミラーの位相差にバラツキが発生すると、即ち複数の振動ミラー相互間で位相のバラツキが発生することとなる。そして、このような複数の振動ミラー相互間で位相のバラツキが発生すると、複数の潜像担持体それぞれの表面に形成された互いに異なる色の複数のトナー像を転写媒体表面に重ね合わせる際に、これら複数のトナー像が副走査方向に相互にずれて重ね合わされることとなり、いわゆる色ずれが発生する場合があった。
この発明は上記課題に鑑みなされたものであり、タンデム型の画像形成装置の偏向器として振動ミラーを採用した場合における、振動ミラーの位相特性バラツキに起因した色ずれを抑制して、良好なカラー画像形成を可能とする技術を提供することを目的としている。
この発明の第1態様にかかる画像形成装置は、トナー像が表面に形成されるとともに当該表面が第1の方向に駆動する、複数の潜像担持体と、複数の潜像担持体に形成されたトナー像が重ねられて画像が形成される転写媒体と、複数の潜像担持体における各々の潜像担持体に対応して設けられ、且つ光を射出する光源部、弾性変形する弾性部材の振動に伴って振動可能に構成された振動ミラー及び振動ミラーの位相を調整する位相調整部を有し、光源部から射出される光を振動ミラーにより偏向させて光を第1の方向の略垂直方向となる第2の方向に走査することによって潜像担持体に潜像を形成する、複数の露光手段と、複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ振動ミラーを駆動信号に基づく振動周波数で駆動する、複数の駆動手段と、複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ駆動信号に対する振動ミラーの位相差を求める、複数の位相差検出手段と、複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ位相差検出手段の結果に基づいて位相差が所定の位相差となるように位相調整部を制御する複数の位相制御手段とを有し、弾性部材バネ定数は、温度上昇に伴って低下し、位相調整部は、振動ミラーの弾性部材を加熱する発熱源を備え、位相差検出手段は、振動ミラーの位相から駆動信号の位相を引いた角度を位相差として求めるとともに、位相制御手段は、所定タイミングにて複数の位相差検出手段によって検出された各々の位相差のうち最小の位相差を所定の位相差として、発熱源を制御することを特徴としている。
この発明の第1態様にかかる画像形成装置は、トナー像が表面に形成されるとともに当該表面が第1の方向に駆動する、複数の潜像担持体と、複数の潜像担持体に形成されたトナー像が重ねられて画像が形成される転写媒体と、複数の潜像担持体における各々の潜像担持体に対応して設けられ、且つ光を射出する光源部、弾性変形する弾性部材の振動に伴って振動可能に構成された振動ミラー及び振動ミラーの位相を調整する位相調整部を有し、光源部から射出される光を振動ミラーにより偏向させて光を第1の方向の略垂直方向となる第2の方向に走査することによって潜像担持体に潜像を形成する、複数の露光手段と、複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ振動ミラーを駆動信号に基づく振動周波数で駆動する、複数の駆動手段と、複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ駆動信号に対する振動ミラーの位相差を求める、複数の位相差検出手段と、複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ位相差検出手段の結果に基づいて位相差が所定の位相差となるように位相調整部を制御する複数の位相制御手段とを有し、弾性部材バネ定数は、温度上昇に伴って低下し、位相調整部は、振動ミラーの弾性部材を加熱する発熱源を備え、位相差検出手段は、振動ミラーの位相から駆動信号の位相を引いた角度を位相差として求めるとともに、位相制御手段は、所定タイミングにて複数の位相差検出手段によって検出された各々の位相差のうち最小の位相差以下の角度を所定の位相差として、発熱源を制御することを特徴としている。
このように構成された発明(画像形成装置および画像形成方法)では、複数の潜像担持体それぞれの表面に形成された潜像を、互いに異なる色のトナーにより現像することで、互いに異なる色の複数のトナー像を形成する。そして、これら複数のトナー像を副走査方向(第1の方向)に搬送移動される転写媒体表面に重ね合わせてカラー画像を形成する。そして、潜像担持体表面に潜像を形成するにあたっては、駆動信号により駆動される振動ミラーにより偏向された光ビームを、副走査方向に駆動される潜像担持体表面に主走査方向(第2の方向)に走査して潜像を形成する。したがって、複数の振動ミラー相互間で位相特性のバラツキが発生した場合、副走査方向への色ずれが発生することとなる。しかしながら、本発明では、位相調整部により振動ミラーの位相が調整可能に構成されている。そして、位相差検出手段により、駆動信号に対する複数の振動ミラー各々の位相差を求める(位相差検出工程)とともに、位相制御手段により、位相差検出手段の結果に基づいて駆動信号に対する複数の振動ミラー各々の位相差全てが所定の目標位相差となるように位相調整部を制御する(位相制御工程)。よって、駆動信号に対する複数の振動ミラーの位相差が略同一となるため、複数の振動ミラー相互間の位相のバラツキは、ほぼ無くすことができる。よって、上述したような副走査方向への色ずれの発生を抑制でき、良好なカラー画像形成が可能となる。
また、上記発明では、弾性部材バネ定数は、温度上昇に伴って低下し、位相調整部は、振動ミラーの弾性部材を加熱する発熱源を備えるように構成している。このように構成された発明では、弾性部材のバネ定数が温度上昇に伴って低下するため、弾性部材を発熱源により暖めることで、駆動信号に対して振動ミラーの位相を遅らせることができる。この理由について次に説明する。
上述してきたような振動ミラーは、与えられる駆動周波数の周波数変化に応じて、その位相が変化するという周波数−位相特性を示す。つまり、周波数の低いところでは駆動信号に対する位相差は略0°であるが、周波数の増加に伴って駆動信号に対する位相が遅れていき、周波数が十分高い領域では駆動信号に対する位相差は略−180°となる。また、本発明では、振動ミラーを支持する弾性部材のバネ定数が温度上昇に伴って低下するように構成している。よって、振動ミラーの周波数−位相特性も弾性部材の温度変化に伴って変化することとなる。かかる周波数−位相特性の温度変化を示したものが図6である。図6における3つの曲線は、それぞれ弾性部材の温度をT1,T2,T3(T1<T2<T3)と変化させた際の、周波数−位相特性を示している。このように、温度の上昇にともなって周波数−位相特性は周波数が低くなる方向にシフトすることが判る。よって、例えば、温度T1において駆動信号に対する位相差がθ1であった場合、温度の上昇にともなってθ2,θ3と駆動信号に対して位相が遅れる方向に変化することとなる。このように、弾性部材を発熱源により暖めることで、駆動信号に対して振動ミラーの位相を遅らせることができる。よって、弾性部材を発熱源により適当に加熱することで、振動ミラーの位相調整を実現することができる。
上述のように、発熱源により振動ミラーの位相を調整する場合、位相を遅らせる方向の位相調整は加熱により迅速に行うことができるが、位相を進める方向の位相調整は弾性部材からの放熱により行うしかなく迅速に行うことができない。そこで、この発明の第1態様では、位相差検出手段は、振動ミラーの位相から駆動信号の位相を引いた角度を位相差として求めるとともに、位相制御手段は、所定タイミングにて複数の位相差検出手段によって検出された各々の位相差のうち最小の位相差を所定の位相差として、発熱源を制御するように構成している。このように構成された発明では、所定タイミングにおいて複数の振動ミラー各々の位相から駆動信号の位相を引いて求まる位相差のうち最小の位相差を目標位相差(所定の位相差)としている。つまり、複数の振動ミラーのうち駆動信号に対して最も位相が遅れている振動ミラーの位相差を目標位相差としている。よって、最も位相が遅れている振動ミラー以外の振動ミラーの位相差を目標位相差にまで遅らせることで、複数の振動ミラー相互間での位相バラツキをほぼ無くすことができる。したがって、発熱源による加熱のみによって位相調整が可能であるため、迅速に位相制御を行うことができ好適である。
また、この発明の第2態様では、位相差検出手段は、振動ミラーの位相から駆動信号の位相を引いた角度を位相差として求めるとともに、位相制御手段は、所定タイミングにて複数の位相差検出手段によって検出された各々の位相差のうち最小の位相差以下の角度を所定の位相差として、発熱源を制御するように構成している。さらに、所定の位相差は、−90°よりも小さい角度であっても良い。このように構成した場合、より高精度に位相制御を行うことが可能となり好適である。この理由について次に説明する。
上述したように、発熱源により振動ミラーの位相を調整する場合、位相を遅らせる方向の位相調整は加熱により迅速に行うことができるが、位相を進める方向の位相調整は弾性部材からの放熱により行うしかなく迅速に行うことができない。つまり、このような温度調整では、加熱速度と比較して冷却速度が遅い。したがって、急峻な加熱による位相が遅れる方向への位相変化は急峻に起こる一方、緩やかな冷却による位相が進む方向への位相変化は緩やかに起こり、位相変化の速度がその変化の方向により異なる場合があった。そして、その結果、位相制御が高精度に行えないという問題が生じる場合があった。
一方、図6を用いて上述したように、周波数−位相特性は、温度上昇にともなって低周波方向に単調にシフトする。よって、駆動信号に対する振動ミラーの位相差が弾性部材の温度変化にともなって変化する様子は、次に説明する図12のようになる。図12は、駆動周波数を一定の周波数で固定しつつ弾性部材の温度を変化させた場合における、駆動信号に対する振動ミラーの位相差の変化を模式的に示した図である。図12から判るように、温度の低い領域では曲線の傾きは小さく(傾き小)、温度が上昇するに連れて曲線の傾きが大きくなる。そして、駆動信号に対する位相遅れが90°となる点で曲線の傾きは最大値(傾き大)をとった後、今度は温度上昇とともに傾きが小さくなる(傾き小)。つまり、位相が0°〜−90°の範囲では、温度上昇とともに曲線の傾きは減少していくのに対して、位相が−90°〜−180°の範囲では、温度上昇とともに曲線の傾きは減少していく。言い換えれば、位相が−90°より大きい領域では、温度の上昇に対しては位相変化は鈍感であるとともに、温度の下降に対しては位相変化は敏感である。したがって、目標位相差を−90°よりも小さい角度とした場合、比較的速く行われる加熱に対しては位相は緩やかに変化するとともに、比較的遅く行われる冷却に対しては位相は急峻に変化する。つまり、加熱速度と冷却速度との差が、温度変化の方向によって異なる位相変化の速度によって相殺されることとなる。よって、加熱速度と冷却速度との差に起因して位相変化の方向により位相変化の速度が異なるという問題を抑制することができ、高精度の位相制御が実現可能となり好適である。
<第1実施形態>
図1はこの発明にかかる画像形成装置の基本構成を示す図である。また、図2は図1の画像形成装置の電気的構成を示すブロック図である。この画像形成装置は、いわゆるタンデム方式のカラープリンタであり、潜像担持体としてイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色の感光体2Y、2M、2C、2Kを装置本体5内に並設している。すなわち、この画像形成装置では、ユーザからの画像形成要求に応じてホストコンピュータなどの外部装置から画像形成指令がCPUやメモリなどを有するメインコントローラ11に与えられると、この画像形成指令に対応する画像信号や制御信号などがメインコントローラ11からエンジンコントローラ10に与えられる。そして、エンジンコントローラ10のCPUがエンジン部EGの各部を制御して複写紙、転写紙、用紙およびOHP用透明シートなどのシートSに画像形成指令に対応する画像を形成する。
このエンジン部EGでは、4つの感光体2Y、2M、2C、2K(潜像担持体)のそれぞれに対応して帯電ユニット、現像ユニット、露光ユニットおよびクリーニング部が設けられている。このように、各トナー色ごとに、感光体(潜像担持体)、帯電ユニット、現像ユニット、露光ユニット(露光手段)およびクリーニング部を備えて該トナー色のトナー像を形成する画像形成手段が設けられている。なお、これらの画像形成手段(感光体、帯電ユニット、現像ユニット、露光ユニットおよびクリーニング部)の構成はいずれの色成分についても同一であるため、ここではイエローに関する構成について説明し、その他の色成分については相当符号を付して説明を省略する。
感光体2Y(潜像担持体)は図1の矢印方向(副走査方向)に回転自在に設けられている。また、感光体2Yの周りにその回転方向に沿って、帯電ユニット3Y、現像ユニット4Yおよびクリーニング部(図示省略)がそれぞれ配置されている。帯電ユニット3Yは例えばスコロトロン帯電器で構成されており、帯電バイアス印加によって感光体2Yの外周面を所定の表面電位に均一に帯電させる。そして、この帯電ユニット3Yによって帯電された感光体2Yの外周面に向けて露光ユニット6Y(露光手段)から走査光ビームLyが照射される。これによって画像形成指令に含まれるイエロー画像データに対応する静電潜像が感光体2Y上に形成される。なお、露光ユニット6(6Y,6M,6C,6K)の構成および動作については後で詳述する。
こうして形成された静電潜像は現像ユニット4Yによってトナー現像される。この現像ユニット4Yはイエロートナーを内蔵している。そして、現像バイアスが現像ローラ41Yに印加されると、現像ローラ41Y上に担持されたトナーが感光体2Yの表面各部にその表面電位に応じて部分的に付着する。その結果、感光体2Y上の静電潜像がイエローのトナー像として顕像化される。
現像ユニット4Yで現像されたイエロートナー像は、一次転写領域TRy1で転写ユニット7の中間転写ベルト71(転写媒体)の表面に一次転写される。また、イエロー以外の色成分についても、イエローと全く同様に構成されており、感光体2M、2C、2K上にマゼンタトナー像、シアントナー像、ブラックトナー像がそれぞれ形成されるとともに、一次転写領域TRm1、TRc1、TRk1でそれぞれ中間転写ベルト71(転写媒体)の表面に一次転写される。
この転写ユニット7は、2つのローラ72、73に掛け渡された中間転写ベルト71と、ローラ72を回転駆動することで中間転写ベルト71を所定の回転方向R2に回転させるベルト駆動部(図示省略)とを備えている。また、中間転写ベルト71を挟んでローラ73と対向する位置には、該ベルト71表面に対して不図示の電磁クラッチにより当接・離間移動可能に構成された二次転写ローラ74が設けられている。そして、一次転写タイミングを制御することで各トナー像を重ね合わせてカラー画像を中間転写ベルト71上に形成するとともに、カセット8から取り出されて中間転写ベルト71と二次転写ローラ74との間の二次転写領域TR2に搬送されてくるシートS上にカラー画像を二次転写する。また、こうして画像の2次転写を受けたシートSは定着ユニット9を経由して装置本体の上面部に設けられた排出トレイ部に向けて搬送される。
なお、中間転写ベルト71へトナー像を一次転写した後の各感光体2Y、2M、2C、2Kは、不図示の除電手段によりその表面電位がリセットされ、さらに、その表面に残留したトナーがクリーニング部により除去された後、帯電ユニット3Y、3M、3C、3Kにより次の帯電を受ける。
また、ローラ72の近傍には、転写ベルトクリーナ75および濃度センサが配置されている。これらのうち、クリーナ75は図示を省略する電磁クラッチによってローラ72に対して近接・離間移動可能となっている。そして、ローラ72側に移動した状態でクリーナ75のブレードがローラ72に掛け渡された中間転写ベルト71の表面に当接し、二次転写後に中間転写ベルト71の外周面に残留付着しているトナーを除去する。
図3は図1の画像形成装置に装備された露光ユニット(露光手段)の構成を示す主走査断面図であり、図4は図3の偏向器の構成を示す図であり、図5は図1の画像形成装置の露光ユニットおよび露光ユニットを制御するための露光制御ユニットを示す図である。以下、これらの図面を参照しつつ、露光ユニット6、露光制御ユニット12の構成および動作について詳述する。なお、露光ユニット6および露光制御ユニット12の構成はいずれの色成分についても同一であるため、ここではイエローに関する構成について説明し、その他の色成分については相当符号を付して説明を省略する。
図3に示すように、露光ユニット6Yは露光筐体61を有している。そして、露光筐体61に単一のレーザー光源(光源)62が固着されており、レーザー光源62から光ビームを射出可能となっている。このレーザー光源62はメインコントローラ11からの画像信号Svに基づきON/OFF制御されて該画像信号Svに対応して変調された光ビームがレーザー光源62から前方に射出される。すなわち、この実施形態では、メインコントローラ11にビデオクロック発生部111が設けられており、基準周波数、例えば68MHzのビデオクロック信号VCを出力している。そして、このビデオクロック信号VCを基準として画像出力部112がメインコントローラ11に与えられた画像形成指令に含まれるイエロー画像データに対応する画像信号Svを作成する。この画像信号Svは露光ユニット6Yのレーザー光源62に出力され、該画像信号Svに応じて光ビームは変調され、該変調された光ビームがレーザー光源62から前方に射出される。
また、この露光筐体61の内部には、レーザー光源62からの光ビームを感光体2の表面(図示省略)に走査露光するために、コリメータレンズ631、シリンドリカルレンズ632、ミラー64、偏向器65、走査レンズ66およびミラー68が設けられている。すなわち、レーザー光源62からの光ビームは、コリメータレンズ631により適当な大きさのコリメート光にビーム整形された後、副走査方向Yにのみパワーを有するシリンドリカルレンズ632に入射される。そして、シリンドリカルレンズ632を調整することでコリメート光は副走査方向Yにおいて偏向器65の振動ミラー651のミラー面付近で結像される。このように、この実施形態では、コリメータレンズ631およびシリンドリカルレンズ632がレーザー光源62からの光ビームを整形するビーム整形系63として機能している。なお、この実施形態では、ビーム整形系63と偏向器65の振動ミラー面651との間にミラー64を設け、いわゆる斜め入射構造を構成している。すなわち、レーザー光源62からの光ビームは、ビーム整形系63によりビーム整形された後、ミラー64により折り返されて偏向器65の振動ミラー651の揺動軸(同図紙面に対して垂直な軸)と直交する基準面(紙面と平行な面)に対して鋭角をなすように振動ミラー651のミラー面に入射される。
この偏向器65は半導体製造技術を応用して微小機械を半導体基板上に一体形成するマイクロマシニング技術を用いて形成されるものであり、振動する振動ミラーで構成されている。すなわち、偏向器65では、振動する振動ミラー651のミラー面により光ビームを主走査方向Xに偏向可能となっている。より具体的には、弾性部材であるねじりバネ654に軸支された振動ミラー651は、該ねじりバネ654を遥動軸として該遥動軸周りに遥動自在であるとともに、作動部652から与えられる外力に応じて遥動軸周りに遥動する。そして、かかる遥動軸は主走査方向Xに対して略直交する方向に構成されているため、振動ミラー651により偏向された光は主走査方向Xに走査されることとなる。また、この作動部652はイエロー用の露光制御ユニット12Yのミラー駆動部121からのミラー駆動信号に基づき振動ミラー651に対して静電気的、電磁気的あるいは機械的な外力を作用させて振動ミラー651をミラー駆動信号の周波数(駆動周波数)で揺動させる。なお、作動部652による駆動方式は静電吸着、電磁気力あるいは機械力などのいずれの方式を採用してもよく、それらの駆動方式は周知であるため、ここでは説明を省略する。
この実施形態では、偏向器65の振動動作をON/OFF制御するために、エンジンコントローラ10にミラー駆動制御部101が設けられており、エンジンコントローラ10のCPUがミラー駆動制御部101の機能を担っている。すなわち、このミラー駆動制御部101は適当なタイミングで、駆動周波数(例えば5KHz)を有する駆動信号Sdをミラー駆動部121に与えて偏向器65を振動させる。このように、第1実施形態では、ミラー駆動制御部101とミラー駆動部121が、本発明における「駆動手段」として機能している。
また、このように駆動される偏向器65の振動ミラー651は、与えられる駆動周波数の周波数変化に応じて、その位相が変化するという周波数−位相特性を示す。つまり、周波数の低いところでは駆動信号に対する位相差は略0°であるが、周波数の増加に伴って駆動信号に対する位相が遅れていき、駆動周波数が振動ミラー641の共振周波数と一致する点で駆動信号に対する位相差は−90°となった後、周波数が十分高い領域では駆動信号に対する位相差は略−180°となる。なお、駆動周波数を共振周波数に一致させた場合、入力信号の振幅に対する振動ミラー651の振幅のゲインが最大となる。
さらに、偏向器65のねじりバネ654には、例えば特開平9−197334号公報に記載されたような電気抵抗素子653(位相調整部)が形成されるとともに(図4)、該電気抵抗素子653が露光制御ユニット12Yの位相制御部122と電気的に接続されている。そして、位相制御部122(位相制御手段)による電気抵抗素子653への通電制御により、ねじりバネ654の温度を変化させている。つまり、必要に応じて、発熱源として機能する電気抵抗素子653に通電する(電流を流す)ことで、ねじりバネ654を加熱して該ねじりバネ654のバネ定数を低下させる一方、通電を停止することで、ねじりバネ654を放熱により冷却して該ねじりバネ654のバネ定数を増大させる。その結果、次に示すように、振動ミラー651の周波数−位相特性が変化する。
図6は、周波数−位相特性の温度変化を示す図である。図6における3つの曲線は、それぞれ弾性部材の温度をT1,T2,T3(T1<T2<T3)と変化させた際の、周波数−位相特性を示している。このように、温度の上昇にともなって周波数−位相特性は周波数が低くなる方向にシフトすることが判る。よって、例えば、温度T1において駆動信号に対する位相差がθ1であった場合、温度の上昇にともなってθ2,θ3と駆動信号に対して位相が遅れる方向に変化することとなる。そこで、第1実施形態では、位相制御部122(位相制御手段)により電気抵抗素子653への通電を制御することで、振動ミラー651の駆動信号に対する位相差を制御するように構成している。なお、振動ミラー651の位相を変化させる具体的な構成はこれに限定されるものではなく、従来より周知の構成を採用することができる。
また、ミラー駆動部121はミラー駆動信号の電圧や電流などの駆動条件を変更設定することができるように構成されている。したがって、必要に応じてミラー駆動信号の電圧を変更設定することが可能となっており、電圧変更によって偏向器65の振幅値を調整することも可能となっている。
そして、偏向器65の振動ミラー面651で偏向された光ビームは走査レンズ66に向けて偏向される。この実施形態では、走査レンズ66は、感光体2の表面上の有効画像領域の全域においてF値が略同一となるように構成されている。したがって、走査レンズ66に向けて偏向された光ビームは、走査レンズ66を介して感光体2Yの表面の有効画像領域に略同一のスポット径で結像される。これにより、光ビームが主走査方向Xと平行に走査して主走査方向Xに伸びるライン状の潜像が感光体2の表面上に形成される。
また、この実施形態では、図3に示すように、走査光ビームの走査経路の一方端を折り返しミラー69により光検知センサ60に導いている。この折り返しミラー69は、主走査方向Xにおいて有効走査領域を外れた位置を移動する走査光ビームを光検知センサ60に導光する。そして、光検知センサ60により該走査光ビームが受光されてセンサ位置を通過するタイミングで信号(Hsync信号)が光検知センサ60から出力される。このように、この実施形態では、光検知センサ60を、光ビームが有効走査領域を主走査方向Xに走査する際の同期信号、つまり水平同期信号Hsyncを得るための水平同期用読取センサとして機能させている。
このようにして検知される信号Hsyncはエンジンコントローラ10の書込タイミング調整部102に与えられる。この書込タイミング調整部102には、エンジンコントローラ10のカウントクロック発生部103から計時用クロック信号が与えられており、この計時用クロック信号に基づき書込タイミング調整部102は信号Hsyncからの経過時間を計測し、適当なタイミングで画像出力部112にビデオリクエスト信号を出力する。そして、この信号を受けた画像出力部112がビデオクロック信号VCを基準として画像信号Svを出力する。このように書込タイミング調整部102がビデオリクエスト信号の出力タイミングを調整することによって感光体2への潜像の書込位置が調整される。なお、この実施形態では、計時用クロック信号の周波数をビデオクロック信号VCのそれよりも大きな値、例えばビデオクロック信号VCの周波数の4倍に設定している。これによって、ビデオリクエスト信号を高分解能で制御して潜像の書込開始位置を正確に制御することができる。
また、光検知センサ60による走査光ビームの検知信号Hsyncは露光制御ユニット12Yの計測部123にも伝達される。また、該計測部123には、ミラー駆動部121から駆動信号に関する情報が伝達されている。そして、該計測部123において、信号Hsyncおよび駆動信号に関連する情報から、駆動信号に対する振動ミラー651の位相遅れに関する情報が求められる。第1実施形態では、振動ミラー651の位相から駆動信号の位相を引いて求められる位相差(振動ミラー651の位相差)を、駆動信号に対する振動ミラー651の位相遅れに関する情報として算出する。このように、第1実施形態では光検知センサ60と計測部123が本発明における「位相差検出手段」として機能している。そして、この計測部123において算出された振動ミラー651の位相差が位相制御部122(位相制御手段)に伝達され、以下に説明するように、位相制御部122は、偏向器65の振動ミラー651の位相差が目標位相差となるように調整を行う。
図7は図1の画像形成装置の動作を示すフローチャートである。また、図8は、図7における起動処理サブルーチンを示すフローチャートである。また、図9は、図7における目標位相差Φt決定サブルーチンを示すフローチャートである。また、図10は、印加電流を求めるサブルーチンを示すフローチャートである。第1実施形態では、電源投入時やパワーセーブモード等からの復帰に伴って、まず、振動ミラー651を所定の駆動周波数で且つ所定以上の振幅で振動させるための起動処理(ステップS11)を実行する。かかる起動処理では、ミラー駆動制御部101より、駆動周波数(例えば5KHz)を有する駆動信号Sdをミラー駆動部121に与えて偏向器65の振動ミラー651を振動させる(ステップS111)。その次に、レーザー光源62を点灯させて、光ビームを主走査方向Xに走査させる(ステップS112)。そして、所定時間が経過した後(ステップS113)、各色に対応して設けられた全ての光検知センサ60からHsync信号が出力されたか否かをエンジンコントローラ10において判定する(ステップS114)。そして、ステップS114での判定が「NO」である場合は、再びステップ113に戻るとともに、「YES」である場合は、図7のステップS12へと進む。つまり、起動処理(ステップS11)では、全ての光検知センサ60からHsync信号が出力されたことをもって、全ての振動ミラー651が所定以上の振幅で振動していることを確認している。このように、第1実施形態では、光検知センサ60及びエンジンコントローラ10が本発明における「振幅判定手段」として機能している。
また、目標位相差Φtの決定(ステップS12)は、次のように行う。まず、各色に対応して設けられた複数の計測部123それぞれにおいて、振動ミラー651の位相から駆動信号の位相を引いて振動ミラー561の位相差を算出することで、イエロー(Y)の振動ミラーの位相差Φy、マゼンタ(M)の振動ミラーの位相差Φm、シアン(C)の振動ミラーの位相差Φc、ブラック(K)の振動ミラーの位相差Φkを求める(ステップS121)。そして、これら4つの位相差Φy,Φm,Φc,Φkのうち最小の位相差、つまり駆動信号に対して最も位相が遅れている振動ミラーの位相差を目標位相差Φtとする(ステップS122)。
次に、ステップS13において、再び、各色に対応して設けられた複数の計測部123それぞれにおいて、振動ミラー651の位相から駆動信号の位相を引いて振動ミラー651の位相差を算出することで、イエロー(Y)の振動ミラーの位相差Φy、マゼンタ(M)の振動ミラーの位相差Φm、シアン(C)の振動ミラーの位相差Φc、ブラック(K)の振動ミラーの位相差Φkを求める(位相差検出工程)。そして、ステップS13において求められた各色に対応する4つの位相差と、ステップS12で求められた目標位相差との差Δy=Φy−Φt、Δm=Φm−Φt、Δc=Φc−Φt、Δk=Φk−Φtを算出する(ステップS14)。
そして、このようにして求められた各色に対応する4つの位相差と目標位相差Φtとの差から、ステップS15(位相制御工程)において、各色の電気抵抗素子653に流す印加電流Iy,Im,Ic,Ikを算出する。かかる印加電流を求めるサブルーチンについて、イエロー(Y)により代表して説明する。すなわち図10に示すとおり、まず振動ミラー651の位相差と目標位相差との差Δyが0より大きいか否かを判定する(ステップS151Y)。そして、ステップS151Yにおいて「YES」と判定された場合は、印加電流としてIy=KΔyを設定する。但し、Kは、差Δyを印加電流Iyに変換する比例定数である。つまり、振動ミラー651の位相差が目標位相差Φtよりも大きい場合は、電気抵抗素子653に印加電流Iyを流してイエロー(Y)の振動ミラー651の位相を遅らせることで、イエロー(Y)の振動ミラー651の位相差Φyを目標位相差Φtに近づける。一方、ステップS51Yにおいて「NO」と判定された場合は、印加電流Iy=0とする。つまり、振動ミラー651の位相差が目標位相差Φtよりも大きい場合は、電気抵抗素子653に印加電流を流さずにねじりバネ654を放熱冷却し、イエロー(Y)の振動ミラー651の位相を進ませることで、イエロー(Y)の振動ミラー651の位相差Φyを目標位相差Φtに近づける。そして、上記ステップS151Y〜S153Yと同様の動作を、マゼンタ(M),シアン(C),ブラック(K)についても行って、Im,Ic,Ikを求める(図10)。
上述のように、ステップS5において各色の振動ミラーの位相差Φy,Φm,Φc,Φkと目標位相差Φtとの差に応じて、それぞれに対応する電気抵抗素子653に印加電流Iy,Im,Ic,Ikを印加した後、所定時間待つ(ステップS16)。そして、ステップS17において振動ミラー651の駆動を終了するか否かを判定し、「NO」の場合は再びステップS3に戻る一方、「YES」の場合は、振動ミラー651の駆動を終了する。
このように、本発明では、電気抵抗素子653(位相調整部)により振動ミラー651の位相が調整可能に構成されている。そして、光検知センサ60と計測部123(位相差検出手段)により、駆動信号に対する複数の振動ミラー651各々の位相差Φy,Φm,Φc,Φkを求める(位相差検出工程)とともに、位相制御部122(位相制御手段)により、位相差検出手段の結果に基づいて駆動信号に対する複数の振動ミラー651各々の位相差全てが所定の目標位相差Φtとなるように電気抵抗素子653(位相調整部)に印加する電流を制御する(位相制御工程)。よって、駆動信号に対する複数の振動ミラー651の位相差が略同一となるため、複数の振動ミラー651相互間の位相のバラツキは、ほぼ無くすことができる。よって、上述したような主走査方向Xに略直交する副走査方向への色ずれの発生を抑制でき、良好なカラー画像形成が可能となる。
また、第1実施形態では、電源投入時やパワーセーブモード等からの復帰時における4つの位相差Φy,Φm,Φc,Φkのうち最小の位相差を目標位相差Φtとしているため、電気抵抗素子653の加熱による制御であっても迅速な位相制御を実現しており、好適である。つまり、電気抵抗素子653等の発熱源により振動ミラーの位相を調整する場合、位相を遅らせる方向の位相調整は加熱により迅速に行うことができるが、位相を進める方向の位相調整は弾性部材からの放熱により行うしかなく迅速に行うことができない。しかしながら、第1実施形態では、目標位相差Φtを上記のように設定しているため、最も位相が遅れている振動ミラー651以外の振動ミラー651の位相差を目標位相差Φtにまで遅らせることで、複数の振動ミラー651相互間での位相バラツキをほぼ無くすことができる。したがって、電気抵抗素子653による加熱のみによって位相調整が可能であるため、迅速に位相制御を行うことができ好適である。
<第2実施形態>
第1実施形態では、目標位相差Φtを4つの振動ミラー651の位相差のうち最小位相差を目標位相差としていた。これに対して、第2実施形態では、目標位相差Φtを、4つの振動ミラー651の位相差のうち最小位相差で且つ−90°以下の角度としている。図11は、本発明にかかる画像形成装置の第2実施形態の特徴部分を示すフローチャートである。なお、該特徴部分以外については第1実施形態と同様であるため、相当符号を付して説明を省略する。
第2実施形態においても、第1実施形態と同様に振動ミラー651の起動処理(ステップS11)を行った後、目標位相差Φtを決定する(ステップS12)(図7)。ただし、上述の通り、目標位相差Φtの決定動作が第1実施形態と異なる。これについて、図11を用いて詳述する。第2実施形態での目標位相差Φtの決定(ステップS12)は、まず、各色に対応して設けられた複数の計測部123それぞれにおいて、振動ミラー651の位相から駆動信号の位相を引いて振動ミラー561の位相差を算出することで、イエロー(Y)の振動ミラーの位相差Φy、マゼンタ(M)の振動ミラーの位相差Φm、シアン(C)の振動ミラーの位相差Φc、ブラック(K)の振動ミラーの位相差Φkを求める(ステップS221)。そして、これら4つの位相差Φy,Φm,Φc,Φkのうち最小の位相差Φmin、つまり駆動信号に該して最も位相が遅れている振動ミラーの位相差Φminを求める(ステップS222)。
そして、ステップS223において、このようにして求められたΦminが−90°よりも小さいか否かを判定する。そして、ステップS223の判定が「YES」の場合はΦminを目標位相差Φtとする(ステップS224)一方、「NO」の場合は−100°を目標位相差Φtとする(ステップS225)。そして、このように求められた目標位相差Φtに対して第1実施形態と同様にステップS13〜S17を実行して、全ての振動ミラー651の位相差を−90°よりも小さい目標位相差Φtと略同一とすることで、全ての振動ミラー651の複数の振動ミラー651相互間の位相のバラツキを、ほぼ無くすように制御する。よって、上述したような主走査方向Xに略直交する副走査方向への色ずれの発生を抑制でき、良好なカラー画像形成が可能となる。
さらに、第2実施形態では、目標位相差Φtを、4つの振動ミラー651の位相差のうち最小位相差で且つ−90°より小さい角度としている。したがって、電気抵抗素子653に通電してねじりバネ654を加熱することによる位相変化の速度と、ねじりバネ654を放熱冷却することによる位相変化の速度との差を抑制して、高精度の位相制御が可能となり好適である。
上述したように、電気抵抗素子653等の発熱源により振動ミラーの位相を調整する場合、位相を遅らせる方向の位相調整は加熱により迅速に行うことができるが、位相を進める方向の位相調整はねじりバネ654(弾性部材)からの放熱により行うしかなく迅速に行うことができない。つまり、このような温度調整では、加熱速度と比較して冷却速度が遅い。したがって、急峻な加熱による位相が遅れる方向への位相変化は急峻に起こる一方、緩やかな冷却による位相が進む方向への位相変化は緩やかに起こり、位相変化の速度がその変化の方向により異なる場合があった。そして、その結果、位相制御が高精度に行えないという問題が生じる場合があった。
一方、図6を用いて上述したように、振動ミラー651の周波数−位相特性は、温度上昇にともなって低周波方向に単調にシフトする。よって、駆動信号に対する振動ミラー651の位相差がねじりバネ654(弾性部材)の温度変化にともなって変化する様子は、次に説明する図12のようになる。図12は、駆動周波数を一定の周波数で固定しつつねじりバネ651(弾性部材)の温度を変化させた場合における、駆動信号に対する振動ミラー651の位相差の変化を模式的に示した図である。図12から判るように、温度の低い領域では曲線の傾きは小さく(傾き小)、温度が上昇するに連れて曲線の傾きが大きくなる。そして、駆動信号に対する位相遅れが90°となる点で曲線の傾きは最大値(傾き大)をとった後、今度は温度上昇とともに傾きが小さくなる(傾き小)。つまり、位相が0°〜−90°の範囲では、温度上昇とともに曲線の傾きは減少していくのに対して、位相が−90°〜−180°の範囲では、温度上昇とともに曲線の傾きは減少していく。言い換えれば、位相が−90°より大きい領域では、温度の上昇に対しては位相変化は鈍感であるとともに、温度の下降に対しては位相変化は敏感である。したがって、目標位相差Φtを−90°よりも小さい角度とした場合、比較的速く行われる加熱に対しては位相は緩やかに変化するとともに、比較的遅く行われる冷却に対しては位相は急峻に変化する。つまり、加熱速度と冷却速度との差が、温度変化の方向によって異なる位相変化の速度によって相殺されることとなる。よって、第2実施形態によれば、加熱速度と冷却速度との差に起因して位相変化の方向により位相変化の速度が異なるという問題を抑制することができ、高精度の位相制御が実現可能となり好適である。
<第3実施形態>
図13,14は、本発明にかかる画像形成装置の第3実施形態の特徴部分を示すフローチャートである。なお、該特徴部分以外については第1実施形態と同様であるため、相当符号を付して説明を省略する。
第3実施形態では、図13に示すキャリブレーションを、例えばパワーセーブモード等の印字動作が行われない間に、適宜実行する。かかるパワーキャリブレーションは、まず、第1実施形態と同様の起動処理(ステップS11)を実行する。次に、第1実施形態と同様に、複数の振動ミラー651の位相差のうち最小位相差を目標位相差Φtとする(ステップS12)。このように目標位相差Φtが決定された後、複数の振動ミラー651のうち、最小位相差を有する振動ミラー以外の複数の振動ミラー651それぞれに対応する複数の電気抵抗素子653に起動時加熱電流Isを流す(ステップS33)。この起動時加熱電流Isは、電気抵抗素子653に印加可能な最大電流と略同値の電流である。そして、かかる起動時加熱電流Isを電気抵抗素子653に印加しつつ振動ミラー651の位相差を光検知センサ60及び計測部123によりモニターするとともに、各振動ミラー651の駆動信号に対する位相差Φy,Φm,Φc,Φkが目標位相差Φtとなるまでの時間Ty,Tm,Tc,Tkを求める(ステップS34)。
そして、パワーセーブモード等からの復帰時、つまり画像形成動作を実行する際に図14に示すフローチャートを実行して、複数の振動ミラー651相互間の位相バラツキを抑制する。具体的には、まず第1実施形態と同様の振動ミラーの起動処理(ステップS11)を実行する。そして、起動処理終了後、起動時加熱電流Isを各振動ミラー651に対して、それぞれに対応する時間Ty,Tm,Tc,Tkだけ印加する(ステップS35)。その後、第1実施形態と同様のステップS13〜S17を実行することで、各振動ミラー651の位相差Φy,Φm,Φc,Φkを目標位相差Φtと略同一とし、各振動ミラー相互間の位相バラツキを抑制する。よって、上述したような主走査方向Xに略直交する副走査方向への色ずれの発生を抑制でき、良好なカラー画像形成が可能となる。
さらに、第3実施形態では、図13で説明したように、キャリブレーションを実行して、電気抵抗素子653に印加可能な最大電流と略同値の電流である起動時加熱電流Isを各色の振動ミラー651に対応する電気抵抗素子653に印加した場合に、各色の振動ミラー651の位相差が目標位相差Φtとなるまでの時間Ty,Tm,Tc,Tkを求めている。そして、図14を用いて説明したように、起動処理(ステップS11)の実行後、起動時加熱電流Isを、各色の振動ミラー651に対応する電気抵抗素子653それぞれに、キャリブレーションで求めた時間Ty,Tm,Tc,Tkだけ印加している。したがって、起動処理(ステップS11)の実行後、迅速に振動ミラー651の位相差を目標位相差Φtとすることが可能となる。したがって、電源投入やパワーセーブモード復帰から画像形成動作を実行可能となるまでに必要な時間の短縮が可能となり好適である。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、第1実施形態では、目標位相差Φtを、4個の振動ミラー651の位相差のうちの最小位相差としたが、目標位相差Φtの値はこれに限られず、4個の振動ミラー651の位相差のうちの最小位相差以下であれば良い。
また、第2実施形態において、ステップS223で「NO」と判定された場合、ステップS225で目標位相差Φtを−100°に設定したが、ステップS225で設定される目標位相差Φtの値はこれに限られるものではなく、例えば−95°等、−90°以下の角度であれば良い。
また、第3実施形態では、目標位相差Φtを、4個の振動ミラー651の位相差のうちの最小位相差としたが、目標位相差Φtの値はこれに限られず、4個の振動ミラー651の位相差のうちの最小位相差以下であれば良い。
さらに、上記実施形態では、振動ミラーとしてマイクロマシニング技術を用いて形成された偏向器65を採用しているが、共振振動する振動ミラーを用いて光ビームを偏向して潜像担持体上に光ビームを走査させる画像形成装置全般に本発明を適用することができる。
本発明にかかる画像形成装置の基本構成を示す図。 図1の画像形成装置の電気的構成を示すブロック図。 図1の画像形成装置の露光ユニットの構成を示す主走査断面図。 図3の偏向器の構成を示す図。 図1の画像形成装置の露光ユニットおよび露光制御ユニットを示す図。 周波数−位相特性の温度変化を示す図。 第1実施形態における、図1の画像形成装置の動作を示すフローチャート。 図7における起動処理サブルーチンを示すフローチャート。 図7における目標位相差Φt決定サブルーチンを示すフローチャート。 図7における、印加電流を求めるサブルーチンを示すフローチャート。 図1の画像形成装置の第2実施形態の特徴部分を示すフローチャート。 駆動信号に対する振動ミラーの位相差の温度変化を模式的に示した図。 図1の画像形成装置の第3実施形態の特徴部分を示すフローチャート。 図1の画像形成装置の第3実施形態の特徴部分を示すフローチャート。
符号の説明
2,2Y,2M,2C,2K…感光体(潜像担持体)、6…露光ユニット(露光手段)、 10…エンジンコントローラ(振幅判定手段)、 12…露光制御ユニット、 121…ミラー駆動部(駆動手段)、 122…位相制御部(位相調整手段)、 123…計測部(位相差検出手段)、 60…光検知センサ(位相差検出手段、振幅判定手段)、 651…振動ミラー面、 652…作動部(駆動手段)、 653…電気抵抗素子(位相調整部,発熱源)、 654…ねじりバネ(弾性部材)、 71…中間転写ベルト(転写媒体) X…主走査方向、 Φy,Φm,Φc,Φk…位(駆動信号に対する振動ミラーの)位相差、 Φmin…最小位相差、 Φt…目標位相差、Iy,Im,Ic,Ik…印加電流、 Is…起動時印加電流

Claims (5)

  1. トナー像が表面に形成されるとともに当該表面が第1の方向に駆動する、複数の潜像担持体と、
    前記複数の潜像担持体に形成された前記トナー像が重ねられて画像が形成される転写媒体と、
    前記複数の潜像担持体における各々の潜像担持体に対応して設けられ、且つ光を射出する光源部、弾性変形する弾性部材の振動に伴って振動可能に構成された振動ミラー及び前記振動ミラーの位相を調整する位相調整部を有し、前記光源部から射出される前記光を前記振動ミラーにより偏向させて前記光を前記第1の方向の略垂直方向となる第2の方向に走査することによって前記潜像担持体に潜像を形成する、複数の露光手段と、
    前記複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ前記振動ミラーを駆動信号に基づく振動周波数で駆動する、複数の駆動手段と、
    前記複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ前記駆動信号に対する前記振動ミラーの位相差を求める、複数の位相差検出手段と、
    前記複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ前記位相差検出手段の結果に基づいて前記位相差が所定の位相差となるように前記位相調整部を制御する複数の位相制御手段と
    を有し
    前記弾性部材バネ定数は、温度上昇に伴って低下し、
    前記位相調整部は、前記振動ミラーの前記弾性部材を加熱する発熱源を備え、
    前記位相差検出手段は、前記振動ミラーの位相から前記駆動信号の位相を引いた角度を前記位相差として求めるとともに、
    前記位相制御手段は、所定タイミングにて前記複数の位相差検出手段によって検出された各々の前記位相差のうち最小の位相差を前記所定の位相差として、前記発熱源を制御することを特徴とする画像形成装置。
  2. トナー像が表面に形成されるとともに当該表面が第1の方向に駆動する、複数の潜像担持体と、
    前記複数の潜像担持体に形成された前記トナー像が重ねられて画像が形成される転写媒体と、
    前記複数の潜像担持体における各々の潜像担持体に対応して設けられ、且つ光を射出する光源部、弾性変形する弾性部材の振動に伴って振動可能に構成された振動ミラー及び前記振動ミラーの位相を調整する位相調整部を有し、前記光源部から射出される前記光を前記振動ミラーにより偏向させて前記光を前記第1の方向の略垂直方向となる第2の方向に走査することによって前記潜像担持体に潜像を形成する、複数の露光手段と、
    前記複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ前記振動ミラーを駆動信号に基づく振動周波数で駆動する、複数の駆動手段と、
    前記複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ前記駆動信号に対する前記振動ミラーの位相差を求める、複数の位相差検出手段と、
    前記複数の潜像担持体における各々の潜像担持体に対応して設けられ且つ前記位相差検出手段の結果に基づいて前記位相差が所定の位相差となるように前記位相調整部を制御する複数の位相制御手段と
    を有し
    前記弾性部材バネ定数は、温度上昇に伴って低下し、
    前記位相調整部は、前記振動ミラーの前記弾性部材を加熱する発熱源を備え、
    前記位相差検出手段は、前記振動ミラーの位相から前記駆動信号の位相を引いた角度を前記位相差として求めるとともに、
    前記位相制御手段は、所定タイミングにて前記複数の位相差検出手段によって検出された各々の前記位相差のうち最小の位相差以下の角度を前記所定の位相差として、前記発熱源を制御することを特徴とする画像形成装置。
  3. 前記所定の位相差は、−90°よりも小さい角度である請求項に記載の画像形成装置。
  4. 全ての前記振動ミラーの振幅が所定値以上であるか否かを判定する振幅判定手段を更に有し、
    前記所定タイミングは、装置起動後に前記振幅判定手段が、全ての前記振動ミラーの振幅が所定値以上となったと判定した時点である請求項1乃至3のいずれかに記載の画像形成装置。
  5. 前記複数の露光装置は、前記振動ミラーにより偏向された前記光を検知して光検知信号を出力するセンサを備え、
    前記振幅判定手段は、前記複数の露光装置における各々の前記センサ全てから光検知信号が出力されたことをもって、全ての前記振動ミラーの振幅が所定値以上になったと判定する請求項に記載の画像形成装置。
JP2005304420A 2005-10-19 2005-10-19 画像形成装置 Expired - Fee Related JP4765537B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304420A JP4765537B2 (ja) 2005-10-19 2005-10-19 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304420A JP4765537B2 (ja) 2005-10-19 2005-10-19 画像形成装置

Publications (3)

Publication Number Publication Date
JP2007114376A JP2007114376A (ja) 2007-05-10
JP2007114376A5 JP2007114376A5 (ja) 2008-11-13
JP4765537B2 true JP4765537B2 (ja) 2011-09-07

Family

ID=38096650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304420A Expired - Fee Related JP4765537B2 (ja) 2005-10-19 2005-10-19 画像形成装置

Country Status (1)

Country Link
JP (1) JP4765537B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509149B2 (ja) * 2007-08-03 2010-07-21 キヤノン株式会社 画像処理装置及び画像形成装置
JP5134349B2 (ja) * 2007-12-04 2013-01-30 キヤノン株式会社 光学システム、画像形成装置及びその制御方法
JP5096292B2 (ja) * 2008-10-31 2012-12-12 京セラドキュメントソリューションズ株式会社 画像形成装置および感光体の回転同期方法
JP5293621B2 (ja) * 2010-01-25 2013-09-18 株式会社デンソー 光走査装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170110A (ja) * 1988-12-23 1990-06-29 Canon Inc 光ビーム走査装置
JP2981600B2 (ja) * 1996-01-17 1999-11-22 オムロン株式会社 光スキャナおよびそれを用いた光センサ装置
JP4332038B2 (ja) * 2004-01-19 2009-09-16 株式会社リコー 偏向ミラー、光走査装置および画像形成装置

Also Published As

Publication number Publication date
JP2007114376A (ja) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4830470B2 (ja) 光走査装置、画像形成装置
JP4701907B2 (ja) 光走査装置および該装置の制御方法
JP4765537B2 (ja) 画像形成装置
JP5095569B2 (ja) 光走査装置及び画像形成装置
US7557822B2 (en) Apparatus for and method of forming image using oscillation mirror
JP2007185786A (ja) 光走査装置及び該装置の制御方法
JP4701903B2 (ja) 光走査装置および該装置の制御方法
US7480087B2 (en) Apparatus for and method of forming images with oscillation mirror
JP4720368B2 (ja) 光走査装置および該装置の制御方法
JP4496789B2 (ja) 光走査装置および画像形成装置
JP2005195869A (ja) 光走査装置および画像形成装置
JP2005305771A (ja) 画像形成装置および画像形成方法
JP4457738B2 (ja) 画像形成装置
JP2007136816A (ja) 画像形成装置および画像形成方法
JP4830319B2 (ja) 画像形成方法
JP4572540B2 (ja) 光走査装置および画像形成装置
JP2007187731A (ja) 光走査装置の制御方法
JP4682815B2 (ja) 画像形成装置および画像形成方法
JP4830320B2 (ja) 画像形成装置および画像形成方法
JP2007098702A (ja) 画像形成方法
JP2011123511A (ja) 光走査装置、画像形成装置および画像形成方法
JP4831228B2 (ja) 画像形成装置および画像形成方法
JP2007185856A (ja) 光走査装置及び該装置の制御方法
JP2007098737A (ja) 画像形成方法
JP2007098872A (ja) 画像形成方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees