JP4763122B2 - Light emitting diode and manufacturing method thereof - Google Patents

Light emitting diode and manufacturing method thereof Download PDF

Info

Publication number
JP4763122B2
JP4763122B2 JP2000285027A JP2000285027A JP4763122B2 JP 4763122 B2 JP4763122 B2 JP 4763122B2 JP 2000285027 A JP2000285027 A JP 2000285027A JP 2000285027 A JP2000285027 A JP 2000285027A JP 4763122 B2 JP4763122 B2 JP 4763122B2
Authority
JP
Japan
Prior art keywords
resin
led chip
phosphor
dispersed
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000285027A
Other languages
Japanese (ja)
Other versions
JP2002094128A (en
Inventor
康正 森田
利明 永野
洋輔 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2000285027A priority Critical patent/JP4763122B2/en
Publication of JP2002094128A publication Critical patent/JP2002094128A/en
Application granted granted Critical
Publication of JP4763122B2 publication Critical patent/JP4763122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LEDディスプレイ、バックライト用光源等に用いられる発光ダイオードに関するものであり、詳細にはLEDチップを該LEDチップの発光波長を変換する蛍光体を分散させた樹脂でモールドし、前記LEDチップの発光と前記蛍光体から発生する光との混色によって発光する発光ダイオード及びその製造方法に関するものである。
【0002】
【従来の技術】
一般にこの種発光ダイオードは、例えば図5乃至図6に示すように構成されており、図5は縦形リードフレーム構造と呼ばれ、図6は表面実装構造と呼ばれる発光ダイオードである。なお、これら従来例では、青色系のLEDチップと蛍光体とを用いた白色発光ダイオードを例にとって説明する。
【0003】
図5に示す縦形リードフレーム構造と呼ばれる発光ダイオード90は、一対の外部電極で成るリードフレーム91のカップ部分91aにLEDチップ92を接着剤によってダイボンドし、続いてLEDチップ92に形成された電極とリードフレーム91の外部電極のそれぞれに金線等のワイヤ93で電気的に接続した後、蛍光体を分散させた樹脂94をリードフレーム91のカップ部分91aに注入して樹脂94を硬化させて蛍光体を固定している。その後、全体をモールド樹脂95によってモールドして発光ダイオード90が構成されている。
【0004】
また、図6に示す表面実装構造と呼ばれる発光ダイオード100は、板状の絶縁性基板101上に一対の外部電極から成るリードフレーム102を折り曲げて面実装し、該リードフレーム102上にLEDチップ103を固着し、続いてLEDチップ103に形成された電極とリードフレーム102の外部電極のそれぞれとを金線等のワイヤ104で電気的に接続する。また、基板101上には内面が反射面に形成されたランプハウス105が設けられ、このランプハウス105で形成された凹部に蛍光体を分散させた樹脂106を注入し、注入後、該樹脂106を硬化して蛍光体が固定され、発光ダイオード100が構成されている。
【0005】
従来の発光ダイオード90、100は以上のように構成されており、LEDチップ92、103としては、例えばGaN、GaAlN、InGaN、InGaAlN等の窒化物系化合物半導体やZnSe(セレン化亜鉛)等で発光層を形成し、380nm〜500nmの青色系で発光する素子を用い、蛍光体分散樹脂94、106はエポキシ樹脂に蛍光体を均一に分散させたもので、蛍光体としてはガーネット構造を有するイットリウム・アルミン酸塩系の蛍光体を用いている。これによって、LEDチップ92、103から放出された青色系の光の一部を前記蛍光体が吸収して、LEDチップ92、103の青色系の光の波長より長い波長の光(黄橙色系)に変換し、この蛍光体によって波長変換された黄橙色系の光と前記LEDチップからの青色系の光とが混合されて白色系の光となり、この混色した白色系の光が外部に放出されるものである。
【0006】
【発明が解決しようとする課題】
しかしながら、こうした従来の発光ダイオード90、100は、LEDチップ92、103の電極とリードフレーム91、102とが銀ペースト、金線等のワイヤ93、104とで電気的に接続されているが、例えば図5の縦形リードフレーム構造の発光ダイオード90の場合、蛍光体分散樹脂94とモールド樹脂95との膨張係数など物性上の違いから、界面での剥離やワイヤー93の切断といった問題があった。また、効率の良い白色発光を得るためには蛍光体の配置を最適なものとする必要があり、蛍光体分散樹脂94、106には高い注入精度が求められるが、こうした発光ダイオード90、100の構造上、ワイヤーボンディングを行った後に注入を行うため、注入時にワイヤー93、104に接触して断線を引き起こすといった問題があり、こうした問題の解決が課題とされるものとなっている。
【0007】
【課題を解決するための手段】
本発明は上記した従来の課題を解決するための具体的手段として、LEDチップと、該LEDチップの電極に各々接続された一対の外部電極と、前記LEDチップの発光面上にLEDチップの発光の一部を吸収してLEDチップの発光波長を変換する蛍光体を分散させたモールド樹脂とを備え、前記LEDチップの発光と前記蛍光体から発生する光との混色によって発光する発光ダイオードにおいて、前記LEDチップは、裏面側に正負一対の電極を有し、これら電極を前記一対の外部電極のそれぞれにバンプを介してフリップチップボンディングによって電気的に接続すると共に、前記LEDチップの周囲を前記蛍光体が分散された樹脂で覆い且つ前記LEDチップ裏面側の電極接続部によって形成されたバンプ高さ分の隙間に対しても前記蛍光体が分散された樹脂が充填されていることを特徴とする発光ダイオードを提供することで課題を解決するものである。
【0008】
【発明の実施の形態】
次に本発明を図に示す実施形態に基づいて詳細に説明する。なお、本実施形態では、青色系のLEDチップと蛍光体とを用い、白色に発光する発光ダイオードを例にとって説明する。
【0009】
図1は本発明に係る発光ダイオード1の第一実施形態を示しており、表面実装構造と呼ばれる構造のものである。この発光ダイオード1は、板状の絶縁性基板2上に一対の外部電極から成るリードフレーム3を折り曲げて面実装し、該リードフレーム3上にLEDチップ4が固着されている。LEDチップ4は、裏面側に正負一対の電極を有していて、これら電極部のそれぞれをリードフレーム3の一対の外部電極のそれぞれに、Auバンプ、はんだバンプ等のバンプ5を介して電気的に接続されていて、所謂フリップチップボンディングされている。
【0010】
さらに、基板2上には内面が反射面に形成されたランプハウス6が設けられ、このランプハウス6で形成された凹部に蛍光体を分散させたモールド樹脂7が注入され、注入後、モールド樹脂7を硬化して蛍光体が固定され、発光ダイオード1が構成されている。
【0011】
ここで、さらに本実施形態の発光ダイオード1は図2に示すように、前記LEDチップ4裏面側の電極部とリードフレーム3とのバンプ5による接続部によって形成されたバンプ5高さ分の隙間に対し、前記蛍光体を分散させたアンダーコート樹脂8によって封止され、その後、その上を前記蛍光体を分散させたモールド樹脂7によって封止された構造となっている。
【0012】
アンダーコート樹脂8は、エポキシ樹脂、シリコン樹脂などの熱硬化性樹脂に前記モールド樹脂7と同様に蛍光体が分散されて成り、さらに、必要に応じてシリカ、ガラスフィラなどの無機粒子を添加して膨張係数を調整している。これにより、後工程における半田熱や樹脂硬化の際に発生する熱によって、基板2、リードフレーム3、LEDチップ4それぞれの膨張係数が異なるため、その熱膨張によってこれら接続部に生じるストレスから発生する恐れのある接触不良を、これら接続部にアンダーコート樹脂8を充填することで、熱が加えられたときの膨張によるストレスを緩和することができる。
【0013】
次に、こうして構成された発光ダイオード1の製造方法について説明する。
【0014】
発光ダイオード1は、まず、リードフレーム3の一対の電極それぞれに銀ペースト等の導電性接着剤を塗布し、その上に裏面側の電極部にバンプ5を付着したLEDチップ4を位置決めして載置し、LEDチップ4を圧着した状態でバンプ5を硬化し、LEDチップ4の正負一対の電極を対応するリードフレーム3の外部電極に電気的に接続する。
【0015】
その後、アンダーコート樹脂8を基板2とLEDチップ4裏面との間の隙間に充填して硬化する。これにより、アンダーコート樹脂8がLEDチップ4の正負一対の電極間の電気的絶縁を確保すると共に、基板2、リードフレーム3、LEDチップ4の電極との接続部を、後工程で発生する半田熱やモールド樹脂硬化の熱膨張による各部材の膨張係数の違いから生じるストレスから保護し、接触不良を防止し信頼性を向上するものである。なお、アンダーコート樹脂8は、予め基板2上に塗布しておき、その上にバンプ5を付着したLEDチップ4を位置決めして載置し、その後圧着硬化しても良い。
【0016】
そして、その後、エポキシ樹脂等に蛍光体を適宜分散したモールド樹脂7を基板2上に形成されたランプハウス6による凹部に注入して、LEDチップ4の周囲を全て封止して、モールド樹脂7を硬化して蛍光体を固定し、発光ダイオード1が構成される。
【0017】
ここで、アンダーコート樹脂8には、モールド樹脂7と同様に蛍光体が分散されている。これは、フリップチップボンディング構造のLEDチップ4の場合、チップの上面が発光面となるが、LEDチップ4の裏面方向にも多くの光が出ているため、この裏面側の基板2との隙間を蛍光体が分散されたアンダーコート樹脂8で封止することによって、LEDチップ4の裏面方向に出た光も白色光に変換して、変換効率の向上を図るためである。これによって、上記蛍光体を分散したアンダーコート樹脂8がない場合と比較して、一つの発光ダイオード1に使用する蛍光体量を10〜20%低減することができる。
【0018】
図3は、本発明の発光ダイオードの第二実施形態を示す断面図であり、プリント基板2上に一対の外部電極を成す電極パターン3を形成し、そのそれぞれにLEDチップ4裏面の正負一対の電極をバンプ5を介して電気的に接続し、これら接続部によって形成されたバンプ5高さ分の隙間を前記アンダーコート樹脂8によって封止し、その上を蛍光体を分散した透明なエポキシ樹脂7によってトランスファーモールド法によって封止した構造のものである。
【0019】
なお、モールド樹脂7及びアンダーコート樹脂8に分散する蛍光体としてはガーネット構造を有するイットリウム・アルミン酸塩系の蛍光体を用いているが、特に不活剤としてセリウム(Ce)及びプラセオジウム(Pr)をドープした蛍光体を用いれば、図4に示す発光スペクトルのグラフのように610nm付近に新たなピークが出現し、赤色領域での演色性が良好な白色発光ダイオードが得られる。
【0020】
また、図示していないが、図5の第一従来例のような縦形リードフレーム構造の場合は、リードフレームを構成する一対の外部電極によってカップ部分が形成され、この上に前記第一実施形態、第二実施形態と同様にLEDチップをそれぞれ対応する電極どおしを電気的に接続するようフリップチップボンディングし、この接続部によって形成されたバンプ5高さ分の隙間に対しアンダーコート樹脂で封止した後、リードフレームのカップ部分に蛍光体を分散したエポキシ樹脂を注入、硬化し、最後に透明なエポキシ樹脂で全体を封止して構成される。
【0021】
なお、上記実施形態ではいずれも、モールド樹脂7とアンダーコート樹脂8とを呼び方を使い分けてきたが、材料的には同じエポキシ樹脂に蛍光体を分散させたものを用いても良く、また、同じエポキシ樹脂を用い蛍光体分散濃度を必要に応じ変えても良い。また、それぞれの樹脂を注入する工程も分けて説明してきたが、同じ材料であれば工程も分けなくて良い。即ち、LEDチップ4のフリップチップボンディング後に前記蛍光体を分散した樹脂を注入し、全体を一度にモールドしても良い。但しこの場合には、樹脂を注入する過程でLEDチップ4の裏面にも樹脂が回り込む必要があり、具体的には、そのための樹脂として、エポキシモノマー、酸無水物、硬化促進剤から成り混合粘度が800cps以下の混合物を用い、さらに使用環境の必要に応じて紫外線吸収剤や酸化防止剤を添加したものを用いる。なお、低粘度樹脂中では蛍光体が沈降してしまうことが考えられるが、これは適宜攪拌注入機を使用することによって解決することができる。
【0022】
また、上記実施形態ではいずれも、青色系のLEDチップと蛍光体とを用い、白色に発光する発光ダイオードを例にとって説明してきたが、本発明はこれについても限定されず、他の色に発光するLEDチップと蛍光体とによる組み合わせによって混色発光する発光ダイオードであっても良い。
【0023】
【発明の効果】
以上説明したように本発明によれば、LEDチップの裏面側に正負一対の電極を有し、これら電極を一対の外部電極のそれぞれにバンプを介してフリップチップボンディングによって電気的に接続すると共に、LEDチップの周囲を蛍光体が分散された樹脂で覆い且つLEDチップ裏面側の電極接続部によって形成されたバンプ高さ分の隙間に対しても蛍光体が分散された樹脂が充填されていることを特徴とする発光ダイオードとしたことで、従来例のようなワイヤを不要にし、ワイヤの断線による発光ダイオードの不点灯を防止する。また、LEDチップ裏面側のバンプ高さ分の隙間部分も樹脂で封止しているため、接続部を樹脂硬化の際に発生する熱による各部材の膨張係数の違いから生じるストレスから保護し、接触不良を防止して信頼性を向上する。さらに、この樹脂には全体をモールドする樹脂と同様に蛍光体が分散されているので、LEDチップの裏面側に出た光も混合色の光に変換して変換効率の向上を図り、使用する蛍光体量の削減も図れる。
【図面の簡単な説明】
【図1】本発明に係る発光ダイオードの第一実施形態を示す断面図である。
【図2】同じ実施形態の要部を示す断面図である。
【図3】本発明に係る発光ダイオードの第二実施形態を示す断面図である。
【図4】本発明に係る発光ダイオードの発光スペクトルを示すグラフである。
【図5】従来例における発光ダイオードの一例を示す断面図である。
【図6】従来例における発光ダイオードの別の例を示す断面図である。
【符号の説明】
1……発光ダイオード
2……基板
3……電極(リードフレーム)
4……LEDチップ
5……バンプ
6……ランプハウス
7……モールド樹脂
8……アンダーコート樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting diode used for an LED display, a light source for backlight, and the like. Specifically, the LED chip is molded with a resin in which a phosphor that converts the light emission wavelength of the LED chip is dispersed, and the LED The present invention relates to a light emitting diode that emits light by color mixture of light emitted from a chip and light generated from the phosphor and a method for manufacturing the same.
[0002]
[Prior art]
In general, this type of light emitting diode is configured as shown in FIGS. 5 to 6, for example. FIG. 5 is a vertical lead frame structure, and FIG. 6 is a light emitting diode called a surface mount structure. In these conventional examples, a white light emitting diode using a blue LED chip and a phosphor will be described as an example.
[0003]
A light emitting diode 90 called a vertical lead frame structure shown in FIG. 5 is obtained by die-bonding an LED chip 92 to a cup portion 91a of a lead frame 91 formed of a pair of external electrodes with an adhesive, and then an electrode formed on the LED chip 92. After being electrically connected to each of the external electrodes of the lead frame 91 by a wire 93 such as a gold wire, a resin 94 in which a phosphor is dispersed is injected into the cup portion 91a of the lead frame 91 to cure the resin 94 and to fluoresce. The body is fixed. Thereafter, the whole is molded with a mold resin 95 to form a light emitting diode 90.
[0004]
In addition, the light emitting diode 100 called a surface mounting structure shown in FIG. 6 has a lead frame 102 made of a pair of external electrodes bent and surface-mounted on a plate-like insulating substrate 101, and the LED chip 103 is mounted on the lead frame 102. Then, the electrode formed on the LED chip 103 and each of the external electrodes of the lead frame 102 are electrically connected by a wire 104 such as a gold wire. Further, a lamp house 105 having an inner surface formed as a reflection surface is provided on the substrate 101, and a resin 106 in which a phosphor is dispersed is injected into a recess formed by the lamp house 105. After the injection, the resin 106 The phosphor is fixed by curing and the light emitting diode 100 is configured.
[0005]
The conventional light emitting diodes 90 and 100 are configured as described above. As the LED chips 92 and 103, for example, light is emitted from a nitride compound semiconductor such as GaN, GaAlN, InGaN, or InGaAlN, ZnSe (zinc selenide), or the like. A phosphor is formed by uniformly dispersing phosphors in an epoxy resin, and a phosphor having a garnet structure is used as a phosphor. An aluminate phosphor is used. As a result, a part of blue light emitted from the LED chips 92 and 103 is absorbed by the phosphor, and light having a wavelength longer than the blue light wavelength of the LED chips 92 and 103 (yellow-orange system). The yellow-orange light converted into the wavelength by this phosphor and the blue light from the LED chip are mixed to form white light, and the mixed white light is emitted to the outside. Is.
[0006]
[Problems to be solved by the invention]
However, in the conventional light emitting diodes 90 and 100, the electrodes of the LED chips 92 and 103 and the lead frames 91 and 102 are electrically connected by wires 93 and 104 such as silver paste and gold wire. In the case of the light emitting diode 90 having the vertical lead frame structure of FIG. 5, there are problems such as peeling at the interface and cutting of the wire 93 due to differences in physical properties such as an expansion coefficient between the phosphor dispersion resin 94 and the mold resin 95. Further, in order to obtain efficient white light emission, it is necessary to optimize the arrangement of the phosphors, and the phosphor dispersion resins 94 and 106 require high injection accuracy. In terms of structure, since the injection is performed after the wire bonding is performed, there is a problem that the wires 93 and 104 are brought into contact with each other at the time of the injection, and disconnection is caused.
[0007]
[Means for Solving the Problems]
The present invention provides, as specific means for solving the above-described conventional problems, an LED chip, a pair of external electrodes respectively connected to the electrodes of the LED chip, and light emission of the LED chip on the light emitting surface of the LED chip. A light emitting diode that emits light by mixing colors of light emitted from the LED chip and light generated from the phosphor, and a mold resin in which a phosphor that disperses a part of the phosphor and that converts the emission wavelength of the LED chip is dispersed. The LED chip has a pair of positive and negative electrodes on the back side, and these electrodes are electrically connected to each of the pair of external electrodes via bumps by flip chip bonding, and the periphery of the LED chip is the fluorescent light. The front is also covered with a gap corresponding to the height of the bump formed by the electrode connection portion on the back surface side of the LED chip, which is covered with a resin in which the body is dispersed. In which the resin in which the phosphor is dispersed to solve the problem by providing a light-emitting diode, characterized in that it is filled.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail based on embodiments shown in the drawings. In the present embodiment, a blue LED chip and a phosphor are used and a light emitting diode that emits white light will be described as an example.
[0009]
FIG. 1 shows a first embodiment of a light emitting diode 1 according to the present invention, which has a structure called a surface mount structure. In the light emitting diode 1, a lead frame 3 including a pair of external electrodes is bent and surface-mounted on a plate-like insulating substrate 2, and the LED chip 4 is fixed on the lead frame 3. The LED chip 4 has a pair of positive and negative electrodes on the back surface side, and each of these electrode portions is electrically connected to each of a pair of external electrodes of the lead frame 3 via bumps 5 such as Au bumps and solder bumps. And so-called flip chip bonding.
[0010]
Further, a lamp house 6 having an inner surface formed as a reflection surface is provided on the substrate 2, and a mold resin 7 in which a phosphor is dispersed is injected into a recess formed by the lamp house 6, and after the injection, the mold resin is injected. 7 is cured to fix the phosphor, and the light emitting diode 1 is formed.
[0011]
Here, as shown in FIG. 2, the light-emitting diode 1 of the present embodiment further includes a gap corresponding to the height of the bump 5 formed by the connection portion of the electrode portion on the back surface side of the LED chip 4 and the lead frame 3 by the bump 5. On the other hand, it is sealed with an undercoat resin 8 in which the phosphor is dispersed, and then sealed with a mold resin 7 in which the phosphor is dispersed.
[0012]
The undercoat resin 8 is formed by dispersing a phosphor in a thermosetting resin such as an epoxy resin or a silicon resin in the same manner as the mold resin 7 and, if necessary, adding inorganic particles such as silica and glass filler. The expansion coefficient is adjusted. As a result, the expansion coefficients of the substrate 2, the lead frame 3, and the LED chip 4 differ depending on the solder heat and the heat generated during the resin curing in the subsequent process, so that the thermal expansion causes the stress generated in these connection portions. Filling these connection portions with the undercoat resin 8 for possible contact failures can alleviate stress due to expansion when heat is applied.
[0013]
Next, a manufacturing method of the light emitting diode 1 configured in this manner will be described.
[0014]
The light-emitting diode 1 is formed by first positioning a LED chip 4 on which a conductive adhesive such as silver paste is applied to each of the pair of electrodes of the lead frame 3 and the bumps 5 are attached to the electrode portion on the back surface. The bump 5 is cured in a state where the LED chip 4 is pressure-bonded, and the pair of positive and negative electrodes of the LED chip 4 is electrically connected to the corresponding external electrode of the lead frame 3.
[0015]
Thereafter, the undercoat resin 8 is filled in the gap between the substrate 2 and the back surface of the LED chip 4 and cured. As a result, the undercoat resin 8 ensures electrical insulation between the pair of positive and negative electrodes of the LED chip 4, and solder that generates connection portions between the substrate 2, the lead frame 3, and the electrodes of the LED chip 4 in a subsequent process. It protects against stress caused by the difference in expansion coefficient of each member due to heat and thermal expansion of mold resin curing, prevents contact failure and improves reliability. The undercoat resin 8 may be applied on the substrate 2 in advance, and the LED chip 4 with the bumps 5 attached thereon may be positioned and placed, and then crimped and cured.
[0016]
Thereafter, a mold resin 7 in which a phosphor is appropriately dispersed in an epoxy resin or the like is injected into a recess formed by the lamp house 6 formed on the substrate 2 to seal the entire periphery of the LED chip 4. Is cured to fix the phosphor, and the light emitting diode 1 is formed.
[0017]
Here, the phosphor is dispersed in the undercoat resin 8 as in the case of the mold resin 7. In the case of the LED chip 4 having a flip chip bonding structure, the upper surface of the chip is a light emitting surface, but since a large amount of light is emitted also in the rear surface direction of the LED chip 4, there is a gap between the substrate 2 on the rear surface side. Is sealed with the undercoat resin 8 in which the phosphor is dispersed, so that the light emitted in the rear surface direction of the LED chip 4 is also converted into white light, thereby improving the conversion efficiency. Thereby, compared with the case where there is no undercoat resin 8 in which the phosphor is dispersed, the amount of the phosphor used for one light emitting diode 1 can be reduced by 10 to 20%.
[0018]
FIG. 3 is a cross-sectional view showing a second embodiment of the light-emitting diode of the present invention, in which an electrode pattern 3 forming a pair of external electrodes is formed on the printed circuit board 2, and a pair of positive and negative electrodes on the back surface of the LED chip 4 is formed on each of them. A transparent epoxy resin in which electrodes are electrically connected via bumps 5, gaps for the height of the bumps 5 formed by these connecting portions are sealed with the undercoat resin 8, and phosphors are dispersed thereon. 7 is a structure sealed by a transfer molding method.
[0019]
The phosphor dispersed in the mold resin 7 and the undercoat resin 8 is an yttrium / aluminate phosphor having a garnet structure, but cerium (Ce) and praseodymium (Pr) are particularly used as inactive agents. When a phosphor doped with is used, a new peak appears in the vicinity of 610 nm as shown in the graph of the emission spectrum shown in FIG. 4, and a white light-emitting diode with good color rendering in the red region can be obtained.
[0020]
Although not shown, in the case of the vertical lead frame structure as in the first conventional example of FIG. 5, a cup portion is formed by a pair of external electrodes constituting the lead frame, and the first embodiment is formed thereon. As in the second embodiment, the LED chip is flip-chip bonded so as to electrically connect the corresponding electrodes, and the undercoat resin is used for the gap corresponding to the height of the bump 5 formed by this connecting portion. After sealing, an epoxy resin in which a phosphor is dispersed is injected into the cup portion of the lead frame and cured, and finally the whole is sealed with a transparent epoxy resin.
[0021]
In any of the above embodiments, the mold resin 7 and the undercoat resin 8 have been properly used, but in terms of material, a material in which a phosphor is dispersed in the same epoxy resin may be used. The phosphor dispersion concentration may be changed as necessary using the same epoxy resin. Moreover, although the process of injecting each resin has been described separately, the process may not be divided if the same material is used. That is, a resin in which the phosphor is dispersed may be injected after the flip chip bonding of the LED chip 4 and the whole may be molded at once. However, in this case, it is necessary for the resin to wrap around the back surface of the LED chip 4 in the process of injecting the resin. Specifically, the resin includes an epoxy monomer, an acid anhydride, and a curing accelerator. Is a mixture of 800 cps or less and further added with an ultraviolet absorber or an antioxidant as required in the use environment. In addition, although it is thought that fluorescent substance settles in low-viscosity resin, this can be solved by using a stirring injection machine suitably.
[0022]
In the above embodiments, the light emitting diode that emits white light using a blue LED chip and a phosphor has been described as an example. However, the present invention is not limited to this, and emits light in other colors. A light emitting diode that emits mixed color light may be used depending on the combination of the LED chip and the phosphor.
[0023]
【The invention's effect】
As described above, according to the present invention, the LED chip has a pair of positive and negative electrodes on the back side thereof, and these electrodes are electrically connected to each of the pair of external electrodes by flip chip bonding via bumps, The periphery of the LED chip is covered with a resin in which the phosphor is dispersed, and the resin in which the phosphor is dispersed is filled in the gap corresponding to the bump height formed by the electrode connection portion on the back side of the LED chip. By using the light emitting diode characterized by the above, a wire as in the conventional example is not necessary, and the light emitting diode is prevented from being unlit due to the disconnection of the wire. In addition, since the gap part for the bump height on the back side of the LED chip is also sealed with resin, the connection part is protected from stress caused by the difference in expansion coefficient of each member due to heat generated during resin curing, Improves reliability by preventing poor contact. Further, since the phosphor is dispersed in this resin in the same manner as the resin for molding the whole, the light emitted from the back side of the LED chip is also converted into mixed color light to improve the conversion efficiency and used. The amount of phosphor can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of a light emitting diode according to the present invention.
FIG. 2 is a cross-sectional view showing a main part of the same embodiment.
FIG. 3 is a cross-sectional view showing a second embodiment of a light emitting diode according to the present invention.
FIG. 4 is a graph showing an emission spectrum of a light emitting diode according to the present invention.
FIG. 5 is a cross-sectional view showing an example of a light emitting diode in a conventional example.
FIG. 6 is a cross-sectional view showing another example of a light emitting diode in a conventional example.
[Explanation of symbols]
1 ... Light-emitting diode 2 ... Substrate 3 ... Electrode (lead frame)
4 ... LED chip 5 ... Bump 6 ... Lamp house 7 ... Mold resin 8 ... Undercoat resin

Claims (2)

基板上に形成された一対の外部電極と、
裏面側に形成された正負一対の電極が前記外部電極にバンプを介して接続され、裏面方向へも光を出射するLEDチップと、
前記基板と前記LEDチップの裏面との間の隙間に充填された蛍光体が分散された樹脂からなるアンダーコート樹脂と、
前記LEDチップの周囲を覆う蛍光体が分散されたモールド樹脂と、を有する発光ダイオードの製造方法において、
前記外部電極に、前記LEDチップの前記正負一対の電極を、前記バンプを介してフリップチップボンディングにより接続して、前記基板上に前記LEDチップを載置する工程と、
前記LEDチップを載置する工程の後に、前記基板と前記LEDチップの裏面との間の隙間に蛍光体が分散された樹脂を充填してアンダーコート樹脂を形成する工程と、
前記アンダーコート樹脂形成工程の後に、前記LEDチップの周囲を蛍光体が分散された樹脂で覆うモールド工程と、を有し、
前記アンダーコート樹脂と前記モールド樹脂は、同じ樹脂から構成され、
前記アンダーコート樹脂における蛍光体分散濃度は、前記モールド樹脂における蛍光体分散濃度と異なることを特徴とする発光ダイオードの製造方法。
A pair of external electrodes formed on the substrate;
A pair of positive and negative electrodes formed on the back surface side is connected to the external electrode via a bump, and an LED chip that emits light also in the back surface direction,
An undercoat resin made of a resin in which a phosphor filled in a gap between the substrate and the back surface of the LED chip is dispersed;
In a manufacturing method of a light emitting diode having a mold resin in which a phosphor covering the periphery of the LED chip is dispersed,
Connecting the pair of positive and negative electrodes of the LED chip to the external electrodes by flip chip bonding via the bumps, and placing the LED chip on the substrate;
After the step of placing the LED chip, a step of forming an undercoat resin by filling a resin in which a phosphor is dispersed in a gap between the substrate and the back surface of the LED chip;
After the undercoat resin forming step, have a, a molding step for covering the periphery of the LED chip with a resin in which the phosphor is dispersed,
The undercoat resin and the mold resin are composed of the same resin,
The phosphor dispersion concentration in the undercoat resin is different from the phosphor dispersion concentration in the mold resin .
基板上に形成された一対の外部電極と、
裏面側に形成された正負一対の電極が前記外部電極にバンプを介して接続され、裏面方向へも光を出射するLEDチップと、
前記基板と前記LEDチップの裏面との間の隙間に充填された蛍光体が分散された樹脂からなるアンダーコート樹脂と、
前記LEDチップの周囲を覆う蛍光体が分散されたモールド樹脂と、を有する発光ダイオードの製造方法において、
前記基板上に前記アンダーコート樹脂を塗布する工程と、
前記アンダーコート樹脂を塗布する工程の後に、前記外部電極に、前記LEDチップの前記正負一対の電極を、前記バンプを介してフリップチップボンディングにより接続して、前記基板上に前記LEDチップを載置する工程と、
前記LEDチップを載置する工程の後に、前記LEDチップの周囲を蛍光体が分散された樹脂で覆うモールド工程と、を有し、
前記アンダーコート樹脂と前記モールド樹脂は、同じ樹脂から構成され、
前記アンダーコート樹脂における蛍光体分散濃度は、前記モールド樹脂における蛍光体分散濃度と異なることを特徴とする発光ダイオードの製造方法。
A pair of external electrodes formed on the substrate;
A pair of positive and negative electrodes formed on the back surface side is connected to the external electrode via a bump, and an LED chip that emits light also in the back surface direction,
An undercoat resin made of a resin in which a phosphor filled in a gap between the substrate and the back surface of the LED chip is dispersed;
In a manufacturing method of a light emitting diode having a mold resin in which a phosphor covering the periphery of the LED chip is dispersed,
Applying the undercoat resin on the substrate;
After the step of applying the undercoat resin, the pair of positive and negative electrodes of the LED chip is connected to the external electrode by flip chip bonding via the bumps, and the LED chip is placed on the substrate And a process of
After the step of placing the LED chip, have a, a molding step for covering the periphery of the LED chip with a resin in which the phosphor is dispersed,
The undercoat resin and the mold resin are composed of the same resin,
The phosphor dispersion concentration in the undercoat resin is different from the phosphor dispersion concentration in the mold resin .
JP2000285027A 2000-09-20 2000-09-20 Light emitting diode and manufacturing method thereof Expired - Fee Related JP4763122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285027A JP4763122B2 (en) 2000-09-20 2000-09-20 Light emitting diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285027A JP4763122B2 (en) 2000-09-20 2000-09-20 Light emitting diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002094128A JP2002094128A (en) 2002-03-29
JP4763122B2 true JP4763122B2 (en) 2011-08-31

Family

ID=18769160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285027A Expired - Fee Related JP4763122B2 (en) 2000-09-20 2000-09-20 Light emitting diode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4763122B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611617B2 (en) * 2002-04-26 2011-01-12 株式会社カネカ Light emitting diode
JP3993475B2 (en) * 2002-06-20 2007-10-17 ローム株式会社 LED chip mounting structure and image reading apparatus having the same
JP2004266134A (en) * 2003-03-03 2004-09-24 Kanegafuchi Chem Ind Co Ltd Resin paste for die bonding and light emitting diode using it
EP1603170B1 (en) 2003-03-10 2018-08-01 Toyoda Gosei Co., Ltd. Method for manufacturing a solid-state optical element device
JP4029843B2 (en) 2004-01-19 2008-01-09 豊田合成株式会社 Light emitting device
EP1484802B1 (en) * 2003-06-06 2018-06-13 Stanley Electric Co., Ltd. Optical semiconductor device
KR100622823B1 (en) 2004-05-07 2006-09-14 엘지전자 주식회사 Method of fabricating light emitting device
JP2006019598A (en) 2004-07-05 2006-01-19 Citizen Electronics Co Ltd Light emitting diode
KR100587017B1 (en) 2005-02-23 2006-06-08 삼성전기주식회사 Light emitting diode package and method for manufacturing the same
US9111950B2 (en) * 2006-09-28 2015-08-18 Philips Lumileds Lighting Company, Llc Process for preparing a semiconductor structure for mounting
JP4737218B2 (en) * 2008-04-04 2011-07-27 豊田合成株式会社 Method for manufacturing light emitting device
JP4544361B2 (en) * 2008-11-26 2010-09-15 日亜化学工業株式会社 Light emitting device
JP5368809B2 (en) * 2009-01-19 2013-12-18 ローム株式会社 LED module manufacturing method and LED module
JP2012019062A (en) * 2010-07-08 2012-01-26 Shin Etsu Chem Co Ltd Light emitting semiconductor device, mounting board, and method for manufacturing the light emitting semiconductor device and the mounting board
KR101797968B1 (en) 2011-07-29 2017-11-15 엘지이노텍 주식회사 Light Emitting Device Package
JP2013175751A (en) * 2013-04-05 2013-09-05 Shin Etsu Chem Co Ltd Light-emitting semiconductor device, mounting substrate, and method of manufacturing the same
JP6252023B2 (en) * 2013-08-05 2017-12-27 日亜化学工業株式会社 Light emitting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410673A (en) * 1990-04-27 1992-01-14 Toyoda Gosei Co Ltd Light-emitting diode
JPH118414A (en) * 1997-06-18 1999-01-12 Sony Corp Semiconductor device and semiconductor light-emitting device
JP3257455B2 (en) * 1997-07-17 2002-02-18 松下電器産業株式会社 Light emitting device
JPH11150295A (en) * 1997-11-17 1999-06-02 Sony Corp Semiconductor light-emitting element, production of the semiconductor light-emitting element, and indicator thereof
JPH11168235A (en) * 1997-12-05 1999-06-22 Toyoda Gosei Co Ltd Light emitting diode
JP2000150969A (en) * 1998-11-16 2000-05-30 Matsushita Electronics Industry Corp Semiconductor light emitting device
JP3775081B2 (en) * 1998-11-27 2006-05-17 松下電器産業株式会社 Semiconductor light emitting device
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2000223021A (en) * 1999-02-01 2000-08-11 Tomoegawa Paper Co Ltd Forming method for inorganic pigment layer and manufacture of back surface plate for pdp

Also Published As

Publication number Publication date
JP2002094128A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
JP4763122B2 (en) Light emitting diode and manufacturing method thereof
JP3492178B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR100710102B1 (en) Light emitting apparatus
US7291866B2 (en) Semiconductor light emitting device and semiconductor light emitting unit
JP3399440B2 (en) Composite light emitting element, light emitting device and method of manufacturing the same
US7846754B2 (en) High power light emitting diode package and method of producing the same
KR100355473B1 (en) Light emitting device and method for manufacturing the same
TWI725777B (en) Light emitting device and method of manufacturing the same
US7855389B2 (en) Semiconductor light-emitting device
JP4611937B2 (en) Surface mount type light emitting device and manufacturing method thereof
EP1900040B1 (en) Light emitting diode and method of fabricating the same
KR101825473B1 (en) Light emitting device package and method of fabricating the same
US20090039762A1 (en) White led device comprising dual-mold and manufacturing method for the same
EP1249874A2 (en) Light emitting device
EP2479810B1 (en) Light-emitting device package and method of manufacturing the same
KR20100058779A (en) Light emitting diode package and manufacturing method thereof
JP2001298216A (en) Surface-mounting semiconductor light-emitting device
EP2490259A2 (en) Light-Emitting Device Package and Method of Manufacturing the Same
KR20080055549A (en) Method for manufacturing led package
JP2001177158A (en) Semiconductor light emitting device and manufacturing method therefor
JP4003866B2 (en) Surface mount type light emitting diode and manufacturing method thereof
JP4288931B2 (en) Light emitting device and manufacturing method thereof
JP2001177157A (en) Semiconductor light emitting device
CN101507005B (en) Electroluminescent phosphor-converted light source and method for manufacturing the same
CN1722479A (en) Deep ultraviolet used to produce white light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees