JP4759667B2 - Paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material - Google Patents

Paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material Download PDF

Info

Publication number
JP4759667B2
JP4759667B2 JP2005263600A JP2005263600A JP4759667B2 JP 4759667 B2 JP4759667 B2 JP 4759667B2 JP 2005263600 A JP2005263600 A JP 2005263600A JP 2005263600 A JP2005263600 A JP 2005263600A JP 4759667 B2 JP4759667 B2 JP 4759667B2
Authority
JP
Japan
Prior art keywords
aluminum
composite material
hydrothermal
paper sludge
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005263600A
Other languages
Japanese (ja)
Other versions
JP2007077420A (en
Inventor
義孝 岩渕
勲 小林
達巳 保坂
宏敏 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Nippon Paper Industries Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Nippon Paper Industries Co Ltd
Priority to JP2005263600A priority Critical patent/JP4759667B2/en
Publication of JP2007077420A publication Critical patent/JP2007077420A/en
Application granted granted Critical
Publication of JP4759667B2 publication Critical patent/JP4759667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は、パルプ製造工程、紙製造工程、古紙処理工程等から発生するペーパースラッジ(以下PSと略す)を焼却処理した際に発生する焼却灰から、重金属類の溶出を抑制した、高強度、かつ、長期的に安定な粒状の水熱固化体を原料として作製された造粒品を分散粒子として、またこれもリサイクルであるアルミニウム缶も利用できるアルミニウム素材を溶融金属として用い、PS焼却灰造粒水熱固化体とアルミニウム素材とのなじみ(ぬれ)を向上させることで、高圧を負荷せずに複合材を製造する方法に関する。   The present invention is a high-strength material that suppresses elution of heavy metals from incineration ash generated when paper sludge (hereinafter abbreviated as PS) generated from pulp manufacturing process, paper manufacturing process, waste paper processing process, etc. is incinerated. In addition, a granulated product made from a long-term stable granular hydrothermal solidified material is used as dispersed particles, and an aluminum material that can also be recycled aluminum cans is used as molten metal. The present invention relates to a method for producing a composite material without applying a high pressure by improving the familiarity (wetting) between the granular hydrothermal solidified body and the aluminum material.

ペーパースラッジとは、一般的には、古紙を再生するときに生ずる産業廃棄物をいうが、ここでは、パルプ製造工程、紙製造工程、古紙処理工程等から発生するものを含む。
Paper sludge generally refers to industrial waste generated when recycling used paper, but here includes waste generated from a pulp manufacturing process, a paper manufacturing process, a used paper processing process, and the like.

金属系マトリクスと粒子状の強化素材からなる複合材の代表的な製造方法として、次のような従来の技術がある。例えば、チクソキャスト法は、固液共存撹拌凝固させた合金を、再度固液共存域に加熱し、この揺変性という性質を利用して成形を行う加工技術である。これは、固液共存温度領域における半凝固プロセスである。   As a typical manufacturing method of a composite material composed of a metal matrix and a particulate reinforcing material, there are the following conventional techniques. For example, the thixocasting method is a processing technique in which an alloy solidified by solid-liquid coexisting and solidified is heated again in the solid-liquid coexistence region, and molding is performed using this thixotropic property. This is a semi-solid process in the solid-liquid coexistence temperature region.

また、コンポキャスト法は、合金材料の固液共存状態において、撹拌子による機械的な回転撹拌を加えると同時に、非金属の微粒子や繊維を投与して、均質性の高い金属基複合材を作る方法である。これも、固液共存温度領域における半凝固プロセスである。   In addition, the composting method adds a mechanical rotating stirrer with a stirrer in the solid-liquid coexistence state of the alloy material, and at the same time, administers non-metallic fine particles and fibers to make a metal matrix composite with high homogeneity. Is the method. This is also a semi-solidification process in the solid-liquid coexistence temperature region.

また、溶液浸透法である加圧鋳造法は、金属−粒子系複合材の製造方法として、古くから実験室レベルでの実験が数多く行われているが、粒子間隔に溶液を浸透させるため、高い圧力で加圧する高圧凝固鋳造法がとられている。加圧鋳造法として、特許文献1に、金型中に充填されたセラミックス等の微細中空体に、アルミニウム等の溶融金属を油圧プレスで高圧圧入して、軽量化複合材を得る方法が記載されている。   In addition, the pressure casting method, which is a solution infiltration method, has been conducted many experiments at the laboratory level for a long time as a method for producing a metal-particle composite material. A high-pressure solidification casting method in which pressure is applied is employed. As a pressure casting method, Patent Document 1 describes a method of obtaining a lightweight composite material by press-fitting a molten metal such as aluminum into a fine hollow body such as ceramic filled in a mold with a hydraulic press. ing.

また、特許文献2に、チタニア(酸化チタン)粒子を機械的に撹拌しスプレードライにより造粒したものに、溶融金属であるアルミニウムを高圧含浸させ、延性と破壊じん性に優れた複合材を得る方法が記載されている。   Also, in Patent Document 2, titania (titanium oxide) particles are mechanically stirred and granulated by spray drying, and aluminum, which is a molten metal, is impregnated with high pressure to obtain a composite material excellent in ductility and fracture toughness. A method is described.

一方、PS焼却灰は嵩高であることにより輸送賃がかかることと、灰の形状が不均一であることにより、フライアッシュのようにセメント原料としての用途が少ない。また、PS焼却灰には、重金属類の有害物質が含まれており、直接埋立処分ができず、埋立を行う場合は、管理型処分場といわれる遮水シート等で外部への浸透水流出を防止した処分場で埋立処分をしなければならないように義務づけられている。さらに、埋立処分とする場合、有害物質の溶出を抑制する中間処理が必要である。   On the other hand, PS incineration ash is bulky and has a transportation cost, and the ash shape is non-uniform, so that it has few uses as a cement raw material like fly ash. In addition, PS incineration ash contains hazardous materials such as heavy metals, and direct landfill disposal is not possible. It is obliged to carry out landfill disposal at the prevented disposal site. Furthermore, in the case of landfill disposal, an intermediate treatment that suppresses the elution of harmful substances is necessary.

中間処理として薬剤(キレート)処理や溶融固化処理があるが、高価なキレート剤が処理すべき灰に対して数%程度必要であり、溶融固化処理では設備費及び多くのエネルギーが必要となり、これらの中間処理方法は焼却灰処理費用を増大させる要因となる。また、埋立処分場を確保すること自体が、近年ますます困難になってきている。

特公昭52−17494号公報 特開平8−176703号公報
There are chemical (chelate) treatment and melt solidification treatment as intermediate treatment, but expensive chelating agents require several percent of the ash to be treated, and melt solidification treatment requires equipment costs and a lot of energy. This intermediate treatment method increases the cost of incineration ash treatment. In addition, securing a landfill site itself has become increasingly difficult in recent years.

Japanese Patent Publication No.52-17494 JP-A-8-176703

上記のように、(1)分散粒子がPS焼却灰のリサイクルによる造粒水熱固化体である溶融金属との複合材であること、(2)分散粒子と溶融金属を固相状態から混合して同時加熱すること、(3)半凝固プロセスではなく完全溶融状態における混合撹拌プロセスであること、(4)特別な装置を必要とする高圧鋳造ではなく重錘程度の低圧鋳造法であること、による技術は無い状況であった。   As described above, (1) the dispersed particles are a composite material of molten metal that is a granulated hydrothermal solidified product by recycling PS incineration ash, and (2) the dispersed particles and molten metal are mixed from the solid phase. (3) It is a mixing and stirring process in a completely melted state, not a semi-solid process, (4) It is a low pressure casting method that is about a weight rather than a high pressure casting that requires special equipment, There was no technology by.

このような状況に鑑み、PS焼却灰を有効利用することで処理費の抑制を図る方法として、PS焼却灰に少量の固化材(セメント、生石灰等)を添加し、水を加え混合機で攪拌造粒したものを高温高圧のオートクレーブ養生で反応(水熱固化反応)により製造された非焼成の造粒固化体を分散粒子として、また溶融金属にこれもまたリサイクルであるアルミニウム缶も利用できるアルミニウム素材を用い、PS焼却灰造粒水熱固化体とアルミニウム素材とのなじみ(ぬれ)を向上させることで、高圧を負荷せずに軽量で断熱性の高い複合材を提供すること、およびその製造方法を提供することを課題とした。
In view of this situation, as a method for reducing the processing costs by effectively using PS incineration ash, a small amount of solidification material (cement, quicklime, etc.) is added to PS incineration ash, and water is added and stirred with a mixer. Aluminum that can be used as non-fired granulated solidified product produced by reaction (hydrothermal solidification reaction) of granulated product in autoclave curing at high temperature and pressure as dispersed particles, and aluminum can also be used for molten metal, which is also recycled Providing a lightweight and highly heat-insulating composite material without applying high pressure by improving the familiarity (wetting) of PS incinerated ash granulated hydrothermal solidified body and aluminum material, and its production The problem was to provide a method.

上記の課題を達成するために、本発明のペーパースラッジ灰造粒水熱固化体−アルミニウム複合材の製造方法は、ペーパースラッジを焼却する際に発生する焼却灰に、水及び/又は温水、生石灰並びにセメントを加え、常温から98℃までの温度で混合して粒状に造粒した成形体を養生した後、高温・高圧下で反応(水熱固化反応)させて製造された固化体を分散粒子として、リサイクルされるアルミニウム缶も利用できるアルミニウム素材、即ち、アルミニウム、アルミニウム合金、廃棄アルミニウム品及びこれらの二種以上の混合物からなる群から選択される材料を溶融金属として、ルツボに交互に投入しルツボをヒーターによって加熱することで、PS焼却灰造粒水熱固化体を乾燥しアルミニウム地金を溶解し、次に撹拌子で全体を撹拌し、上部(図1参照)をプランジャーで加圧して成型し、徐冷により凝固させ複合材を製造するように構成されている。   In order to achieve the above-mentioned problems, the method for producing a paper sludge ash granulated hydrothermal solidified body-aluminum composite of the present invention includes water and / or hot water, quick lime, incinerated ash generated when paper sludge is incinerated. In addition, cement is added and cured at room temperature to 98 ° C to form a granulated granulated product, and then the solidified product produced by reaction (hydrothermal solidification reaction) at high temperature and high pressure is dispersed particles. As a molten metal, a material selected from the group consisting of aluminum, aluminum alloys, waste aluminum products, and a mixture of two or more of these can be used alternately in a crucible. By heating the crucible with a heater, the PS incinerated ash granulated hydrothermal solidified body is dried to dissolve the aluminum ingot, and then the whole is stirred with a stirrer. And it was molded by pressurizing the upper (see Fig. 1) with a plunger is configured to solidifying to produce a composite material by slow cooling.

上記方法により、PS焼却灰の造粒後の水熱固化体、並びにアルミニウム、アルミニウム合金及びこれらの混合物からなる群から選択される材料から成る、本発明の複合材が提供される。前記水熱固化体は、複合材の全容積の50%〜75%を占める。水熱固化体が複合材の全容積の50%とは、容積比では、PS焼却灰造粒水熱固化体:アルミニウム(アルミニウム合金の場合、アルミニウム合金の容積)=50:50であり、さらに、後述するように、PS焼却灰造粒水熱固化体の密度(0.855g/cm)とアルミニウムの密度(2.7g/cm)から、重量比では、PS焼却灰造粒水熱固化体:アルミニウム=25:75となる。前記水熱固化体が、複合材の全容積の50%未満では、得られる複合材が顕著となる軽量でかつ断熱性の高い効果を有することはできない。また、逆に75%を超えると、アルミニウムの溶融金属が水熱固化体間に均質に浸透されなくなり、強度が不足となり所定の強度が得られないという問題がある。 By the above method, the composite material of the present invention is provided, which is composed of a hydrothermal solidified material after granulation of PS incinerated ash, and a material selected from the group consisting of aluminum, aluminum alloys, and mixtures thereof. The hydrothermal solidified material accounts for 50% to 75% of the total volume of the composite material. The hydrothermal solidified body is 50% of the total volume of the composite, and by volume ratio, PS incinerated ash granulated hydrothermal solidified body: aluminum (in the case of an aluminum alloy, the volume of the aluminum alloy) = 50: 50, , as described below, from the PS ash granulation hydrothermal solidified density of (0.855g / cm 3) and aluminum density of (2.7g / cm 3), the weight ratio, PS ash granulation hydrothermal Solidified body: aluminum = 25: 75. If the hydrothermal solidified body is less than 50% of the total volume of the composite material, the resulting composite material cannot have a light and highly heat-insulating effect. On the other hand, when it exceeds 75%, there is a problem that the molten metal of aluminum is not uniformly permeated between the hydrothermal solidified bodies, and the strength becomes insufficient and a predetermined strength cannot be obtained.

本発明によれば、PS焼却灰を原料としてこれに少量の固化材(セメント、生石灰等)と水を加え粒状としたものを高温・高圧下で反応(水熱固化反応)させ軽量で多孔質な固化品として生成されるPS焼却灰造粒水熱固化体を分散粒子として、溶融金属であるアルミニウムと混合することで、熱伝導率がアルミニウム単体の約1/16となる、断熱性の優れた複合材を得ることができる。   According to the present invention, PS incinerated ash is used as a raw material, and a small amount of solidified material (cement, quicklime, etc.) and water are granulated by reacting at high temperature and high pressure (hydrothermal solidification reaction) and lightweight and porous. PS incinerated ash granulated hydrothermal solidified product produced as a solidified product is dispersed particles and mixed with aluminum, which is a molten metal, so that the thermal conductivity is about 1/16 that of aluminum alone, and has excellent heat insulation Composite material can be obtained.

このようにして製造されたPS焼却灰造粒水熱固化体−アルミニウム複合材は、制震、吸音、断熱性に優れており、十分な強度と耐久性を有することから、道路防音壁、軌道振動制御、空調機騒音制御、建築材料など、多方面への用途に使用できる。   The PS incinerated ash granulated hydrothermal solidified body-aluminum composite thus produced is excellent in vibration control, sound absorption and heat insulation, and has sufficient strength and durability. It can be used for various applications such as vibration control, air conditioner noise control, and building materials.

また、従来、有効活用が難しかったPS焼却灰を活用することで、処理費用の削減及び環境負荷低減またはエコロジーの観点からも、非常に好ましいものと言える。
In addition, it can be said that using PS incineration ash, which has been difficult to use effectively, is very preferable from the viewpoint of reduction of processing costs, reduction of environmental burden, or ecology.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。
先ず、PS焼却灰造粒水熱固化体の製造に関して述べる。
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
First, production of PS incinerated ash granulated hydrothermal solidified product will be described.

PS焼却灰は、パルプ製造工程、紙製造工程、古紙処理工程等から発生するペーパースラッジをボイラーで焼却処理した焼却灰のことである。ボイラーには流動層ボイラやストーカ焼却炉等種々あるが、この場合、形式は限定されるものではない。また、助燃用とする程度であれば重油や石炭をペーパースラッジと共に、ボイラーで混焼しても構わない。
さらに、PS焼却灰の本来の性状である細孔性や多孔性を損なわない程度であれば、RDF(ごみ固形燃料)、RPF(産業系廃プラスチック・古紙類固形燃料)、その他一般可燃物もペーパースラッジと共に、ボイラーでの混焼は構わない。助燃用に石炭を使用した場合の、PS焼却灰は微量ながらも重金属類(六価クロム、砒素、セレン、フッ素、ホウ素等)を含んでいるのが、一般的である。
PS incineration ash is incineration ash obtained by incinerating paper sludge generated from a pulp manufacturing process, paper manufacturing process, waste paper processing process, and the like with a boiler. There are various types of boilers such as a fluidized bed boiler and a stoker incinerator, but in this case, the type is not limited. Further, heavy oil or coal may be co-fired in a boiler together with paper sludge as long as it is used for auxiliary combustion.
Furthermore, RDF (garbage solid fuel), RPF (industrial waste plastics / waste paper solid fuel), and other general combustibles, as long as the original properties of PS incinerated ash are not impaired. Along with paper sludge, mixed firing in a boiler is acceptable. When coal is used for auxiliary combustion, it is common that PS incineration ash contains heavy metals (hexavalent chromium, arsenic, selenium, fluorine, boron, etc.) even though a small amount.

PS焼却灰に加える水及び/又は温水は、焼却灰100重量部に対して、60〜100重量部、望ましくは75〜95重量部である。水及び/又は温水の添加量は、造粒条件や造粒後の強度に影響する。焼却灰に対して、水及び/又は温水の添加量が多くなると、造粒時間は短くなる。これは、水及び/又は温水が速く焼却灰に浸透することで、造粒も速く進むと考えられる。但し、造粒後の強度は低くなる傾向にある。一方、焼却灰に対して、水及び/又は温水の添加量が少なくなると、造粒時間は長くなるが、造粒後の強度は高くなる傾向である。このことから、造粒後の強度も高く、製造効率も高い望ましい範囲を追究したところ、上記記載の、PS焼却灰に加える水及び/又は温水は、焼却灰100重量部に対して、60〜100重量部、望ましくは75〜95重量部であることが得られた。   The water and / or warm water added to the PS incineration ash is 60 to 100 parts by weight, desirably 75 to 95 parts by weight with respect to 100 parts by weight of the incineration ash. The addition amount of water and / or warm water affects the granulation conditions and the strength after granulation. If the amount of water and / or warm water added to the incinerated ash is increased, the granulation time is shortened. This is thought to be because granulation progresses rapidly as water and / or hot water quickly penetrates the incineration ash. However, the strength after granulation tends to be low. On the other hand, when the amount of water and / or warm water added to the incinerated ash is reduced, the granulation time becomes longer, but the strength after granulation tends to increase. From this, after pursuing a desirable range where the strength after granulation is high and the production efficiency is also high, the water and / or hot water added to the PS incinerated ash is 60 to 100 parts by weight with respect to 100 parts by weight of the incinerated ash. The result was 100 parts by weight, desirably 75 to 95 parts by weight.

PS焼却灰に加える生石灰量は、PS焼却灰に含有される生石灰分量にもよるが、焼却灰100重量部に対して、0〜20重量部の範囲が望ましい。また、ボイラーの脱硫用として、燃焼時に添加される炭酸カルシウムを増やすことで、PS焼却灰に含有される生石灰量が増すため、混合時に加える生石灰量を少なくすることができる。焼却灰とよく混合できるように、生石灰は粒状もしくは粉状が望ましい。添加される生石灰(CaO)は、PS焼却灰が元々含有している石灰分(CaO)と共に、後述するシリカ(SiO)と、水熱固化反応において強度向上及び重金属類の有害物質の溶出抑制に、重要な役割を果たす。PS焼却灰に加えるセメントは、必要な強度にもよるが、焼却灰100重量部に対して、0〜20重量部が望ましい。添加されるセメントは、水及び/又は温水とから成る強度自体を発生させる役割があることと、さらにはセメントに含有されるシリカ分(SiO)が、PS焼却灰が元々含有しているシリカ分(SiO)と共に、先述した石灰分(CaO)と、水熱固化反応において強度向上及び重金属類の有害物質の溶出抑制に、重要な役割を果たす。 Although the amount of quicklime added to PS incineration ash is based also on the amount of quicklime contained in PS incineration ash, the range of 0-20 weight part is desirable with respect to 100 weight part of incineration ash. Moreover, since the amount of quick lime contained in PS incineration ash increases by increasing the calcium carbonate added at the time of combustion for desulfurization of a boiler, the amount of quick lime added at the time of mixing can be decreased. The quicklime is preferably granular or powdery so that it can be well mixed with the incineration ash. The added quicklime (CaO), together with the lime (CaO) originally contained in the PS incineration ash, silica (SiO 2 ), which will be described later, improves the strength in the hydrothermal solidification reaction and suppresses the elution of heavy metals harmful substances It plays an important role. The cement added to the PS incineration ash is preferably 0 to 20 parts by weight with respect to 100 parts by weight of the incineration ash, although it depends on the required strength. The added cement has a role of generating strength itself composed of water and / or hot water, and further, the silica content (SiO 2 ) contained in the cement is the silica originally contained in the PS incineration ash. Together with the component (SiO 2 ), the lime component (CaO) and the hydrothermal solidification reaction play an important role in improving the strength and suppressing the elution of harmful substances such as heavy metals.

必要により添加される硬化促進剤、分散剤は、PS焼却灰、水及び/又は温水、生石灰、セメントとの混合物において、水和作用を促進して早期に強度を発現させる役割があり、後述する前養生及び水蒸気養生の処理時間を短くする効果がある。硬化促進剤、分散剤には、塩化カルシウム、塩化第二鉄、塩化アルミニウム、塩化マグネシウム、炭酸ソーダ、炭酸カリ、珪弗化亜鉛、珪弗化マグネシウム、珪弗化ソーダ等がある。   The curing accelerator and dispersant added as necessary have a role of promoting hydration and developing strength early in a mixture with PS incinerated ash, water and / or hot water, quicklime, and cement, which will be described later. It has the effect of shortening the pre-curing and steam curing treatment times. Examples of the hardening accelerator and dispersant include calcium chloride, ferric chloride, aluminum chloride, magnesium chloride, sodium carbonate, potassium carbonate, zinc silicofluoride, magnesium silicofluoride, and sodium silicofluoride.

ペーパースラッジを焼却灰、水及び/又は温水、生石灰、セメント、必要により硬化促進剤、分散剤を加え、混合工程及び造粒工程を行う。混合・造粒工程の温度は、常温〜98℃、例えば、15〜98℃、望ましくは60〜95℃を保持することが強度向上のためには必要である。混合・造粒時間は先述したように、水及び/又は温水の添加量に影響され、また、混合装置(撹拌子の回転数や大きさ等)にも影響されるが、5〜10分間が望ましい。なお、PS焼却灰、水、生石灰、セメントは造粒機に別々に供給してもよく、予め混合した状態で供給してもよい。   The paper sludge is added with incineration ash, water and / or warm water, quicklime, cement, a curing accelerator and a dispersant as necessary, and a mixing step and a granulation step are performed. The temperature of the mixing / granulating step is from normal temperature to 98 ° C., for example, 15 to 98 ° C., desirably 60 to 95 ° C., in order to improve the strength. As described above, the mixing / granulation time is affected by the amount of water and / or warm water added, and is also affected by the mixing device (such as the rotational speed and size of the stirrer). desirable. In addition, PS incineration ash, water, quicklime, and cement may be supplied separately to the granulator, or may be supplied in a premixed state.

造粒機には、押出造粒機、転動造粒機、ロール成形機、打錠式造粒機、フレーカ式造粒機等がある。押出造粒機は、一定の穴径を備えたダイスから材料を強制的に圧縮押出するものである。転動造粒機は、回転体に供給された材料が回転運動により相互に付着成長しながら、比較的ソフトで形状の整った球状物を大量に作るのに適している。ロール成形機は、相対する一対の回転ロールに凹状のポケットが刻んであり、上部より材料を供給し形状一定の造粒物を作る装置である。打錠式造粒機は、円板上に放射線上に並んだ金型に材料が充填され、押棒により圧縮され、次いで造粒物が排出される、これを連続で行うものである。フレーカ式造粒機は、溶融物やスラリー状の材料を回転ドラムやスチームベルトに付着させ、冷却又は加熱することによりフレーク状に造粒するものである。
本発明の造粒機は、細孔性及び多孔性を保持する必要から、粒子自体がソフトに成形でき、さらに、施工上締め固めしやすいように一定の粒径ではなく、ある範囲をもった粒度分布が得られ、また、用途上、大量生産に適したものでなければならない。これから、上記の造粒機の中では、転動造粒機がもっとも好適である。
Examples of the granulator include an extrusion granulator, a rolling granulator, a roll molding machine, a tableting granulator, and a flaker granulator. An extrusion granulator forcibly extrudes a material from a die having a constant hole diameter. The rolling granulator is suitable for producing a large amount of relatively soft and well-formed spheres while the materials supplied to the rotating body adhere and grow to each other by rotational movement. A roll forming machine is a device in which a concave pocket is carved in a pair of opposed rotating rolls, and a material is supplied from above to form a granulated product having a constant shape. The tableting granulator continuously performs this process, in which a material is filled in a metal mold arranged in a radial pattern on a disk, compressed by a push bar, and then the granulated product is discharged. The flake type granulator is a granulator that forms a flake by adhering a melt or slurry-like material to a rotating drum or a steam belt, and cooling or heating.
Since the granulator of the present invention needs to maintain the porosity and porosity, the particles themselves can be softly formed, and further, they have a certain range rather than a fixed particle size so that they can be easily compacted in construction. A particle size distribution must be obtained and the application must be suitable for mass production. From the above, among the above granulators, the rolling granulator is most suitable.

造粒工程後、造粒品を前養生する必要がある。前養生を行うことにより、造粒品の硬度が増し、それによってその後の水熱固化体の硬度も増すことになるため、この前養生は重要である。養生方法には、大きく分けて自然養生と強制養生がある。自然養生とは、特に手を加えることなく、時間をかけることによる養生方法である。強制養生とは、高温状態に保持して、短時間で効率的な養生方法である。本発明においては、どちらの養生方法でも構わない。   After the granulation process, the granulated product needs to be pre-cured. This pre-curing is important because the pre-curing increases the hardness of the granulated product, thereby increasing the hardness of the subsequent hydrothermal solidified body. There are two types of curing methods: natural curing and forced curing. Natural curing is a curing method that takes time without any particular changes. Forced curing is an efficient curing method in a short time while maintaining a high temperature state. In the present invention, either curing method may be used.

前養生後、水蒸気養生(185℃で10気圧の蒸気によるオートクレーブ養生)による水熱固化反応を行うことにより、PS焼却灰が元々含有している石灰分(CaO)とシリカ(SiO)及び添加する生石灰(CaO)とセメントに含有されるシリカ(SiO)とから、水熱固化反応によってケイ酸カルシウム(トバモライト、5CaO・6SiO・5HO)の結晶が生成して、高強度、かつ、長期的に安定な粒状の水熱固化体が得られる。元々PS焼却灰が含有している石灰分とシリカだけでは、水熱固化反応で充分な強度を得ることはできないため、後添加の生石灰とセメントが必要である。 After pre-curing, hydrothermal solidification reaction is performed by steam curing (autoclave curing with steam at 185 ° C. and 10 atm), so that lime (CaO) and silica (SiO 2 ) originally contained in PS incineration ash and addition Crystal of calcium silicate (tobermorite, 5CaO · 6SiO 2 · 5H 2 O) is generated from the quicklime (CaO) and silica (SiO 2 ) contained in the cement by a hydrothermal solidification reaction. A long-term stable granular hydrothermal solidified body is obtained. Since only the lime and silica originally contained in PS incinerated ash cannot obtain sufficient strength by the hydrothermal solidification reaction, post-added quick lime and cement are necessary.

以上が、PS焼却灰造粒水熱固化体の製造に関する記載である。
次ぎに、上記で述べたSP焼却灰造粒水熱固化体を分散粒子として、アルミニウム素材を溶融金属として、複合材を製造する方法について述べる。
The above is description regarding manufacture of PS incineration ash granulation hydrothermal solidification body.
Next, a method for producing a composite material using the above-described SP incinerated ash granulated hydrothermal solidified body as dispersed particles and an aluminum material as a molten metal will be described.

複合材の製造プロセスは、(a)金型内に、PS焼却灰造粒水熱固化体とアルミニウム材を混合し装入する、(b)金型内に混合し装入した2つの材料を850℃に加熱することで、PS焼却灰造粒水熱固化体を乾燥・予熱するとともにアルミニウム材を溶融する、(c)アルミニウム材が溶融した後、撹拌しPS焼却灰造粒水熱固化体とアルミニウム材を均一に混合する、(d)金型の上部から重錘を載せることで、上部へ浮かんだPS焼却灰造粒水熱固化体を内部へ押込み均一混合化を図る、(e)中心部に引け巣ができないように、炉冷により複合材を常温まで徐冷する。この複合材の製造プロセスを図1に示す。   The composite material manufacturing process includes (a) mixing and charging PS incinerated ash granulated hydrothermal solidified body and aluminum material in the mold, and (b) mixing and charging the two materials mixed in the mold. By heating to 850 ° C., the PS incinerated ash granulated hydrothermal solidified body is dried and preheated and the aluminum material is melted. (C) After the aluminum material is melted, the PS incinerated ash granulated hydrothermal solidified body is stirred. (D) The PS incinerated ash granulated hydrothermal solidified body floating on the top is pushed into the interior to achieve uniform mixing. (E) The composite is gradually cooled to room temperature by furnace cooling so that there is no shrinkage in the center. The manufacturing process of this composite material is shown in FIG.

PS焼却灰造粒水熱固化体の粒径は、2.5〜10mm程度が好ましい。粒子が2.5mmより小さいと、溶解金属に対し粒子表面がぬれることが難しく、粒子の性状を発揮することができないため、複合材としても当然のことながら、所定の性能を得ることはできない。逆に粒子が10mmより大きいと、溶融金属に対する粒子表面のぬれは良好となるが、金属と粒子とが均一ではなくなり、これも複合材として所定の性能を得ることはできない。   The particle size of the PS incinerated ash granulated hydrothermal solidified body is preferably about 2.5 to 10 mm. If the particle is smaller than 2.5 mm, it is difficult for the surface of the particle to get wet with the molten metal, and the properties of the particle cannot be exhibited. On the other hand, if the particles are larger than 10 mm, the wetness of the particle surface with respect to the molten metal is good, but the metal and the particles are not uniform, and this also fails to obtain a predetermined performance as a composite material.

鋳型形状は、撹拌しながら加熱するので、円柱形が好適である。
PS焼却灰造粒水熱固化体とアルミニウムの混合割合は、重量比でPS焼却灰造粒水熱固化体:アルミニウム=50:50〜25:75、即ち、1:1〜1:3が好ましい。この重量比50:50〜25:75を、PS焼却灰造粒水熱固化体の密度(0.855g/cm)とアルミニウムの密度(2.7g/cm)から、容積比にすると、75:25〜50:50、即ち、1:(1/3)〜1:1となる。
Since the mold shape is heated while stirring, a cylindrical shape is preferable.
The mixing ratio of PS incinerated ash granulated hydrothermal solidified body and aluminum is preferably PS incinerated ash granulated hydrothermal solidified body: aluminum = 50: 50 to 25:75, that is, 1: 1 to 1: 3. . The weight ratio of 50: 50 to 25: 75, from the density of PS ash granulation hydrothermal solidified (0.855g / cm 3) and aluminum density of (2.7g / cm 3), when the volume ratio, 75:25 to 50:50, that is, 1: (1/3) to 1: 1.

溶解は、PS焼却灰造粒水熱固化体を乾燥させ、アルミニウム素材を溶解する両方の働きを有する。溶解時間は、アルミニウムが充分に溶融する時間とする。
混合撹拌方法は、溶解物中のアルミニウムとPS焼却灰造粒水熱固化体間のせん断率とせん断力を高い状態にするものである。せん断状態は、粒子表面を溶解金属が擦り磨くという物理的機構によって粒子表面から吸着しているガスやガス気泡を除去するのに役立ち、ガスや酸化物のような汚染物をきれいにする。このせん断は、また粒子表面上に溶解金属を拡散する傾向があり、せん断力が与えられると、粒子表面上を溶融金属が拡散するのを妨害する他の力に打ち勝つのに役立っている。また、せん断作用は粒子に対し、溶解金属がせん断する以外は粒子を変形したり破砕したりしない。
The dissolution has both functions of drying the PS incinerated ash granulated hydrothermal solidified body and dissolving the aluminum material. The melting time is a time for sufficiently melting aluminum.
In the mixing and stirring method, the shear rate and shearing force between aluminum in the melt and PS incinerated ash granulated hydrothermal solidified body are made high. The shear state helps to remove gases and gas bubbles adsorbed from the particle surface by the physical mechanism that the molten metal rubs the particle surface and cleans contaminants such as gases and oxides. This shear also tends to diffuse the molten metal on the particle surface, and when shear forces are applied, helps to overcome other forces that prevent the molten metal from diffusing on the particle surface. Further, the shearing action does not deform or crush the particles other than the molten metal shears the particles.

溶解金属であるアルミニウムがPS焼却灰造粒水熱固化体をぬらし、アルミニウム内にPS焼却灰造粒水熱固化体が分散するよう十分な時間をかけて撹拌子によって、アルミニウムを混合する。撹拌子の形状は、PS灰造粒水熱固化体とアルミニウムが充分に均一混合されるのであれば、特に問わない。   Aluminum which is a molten metal wets the PS incinerated ash granulated hydrothermal solidified body, and the aluminum is mixed by a stirrer over a sufficient time so that the PS incinerated ash granulated hydrothermal solidified body is dispersed in the aluminum. The shape of the stirring bar is not particularly limited as long as the PS ash granulated hydrothermal solidified body and aluminum are sufficiently uniformly mixed.

実験結果から、混合撹拌時間は5〜10分間であるが、混合撹拌時間は、PS焼却灰造粒水熱固化体とアルミニウムが均一混合されるのであれば、この範囲に限るものではない。   From the experimental results, the mixing stirring time is 5 to 10 minutes, but the mixing stirring time is not limited to this range as long as the PS incinerated ash granulated hydrothermal solidified body and aluminum are uniformly mixed.

加熱温度は、PS焼却灰造粒水熱固化体とアルミニウムとの間で不必要な化学反応が起こらないよう、制御する必要がある。最適な加熱温度は、800〜850℃である。加熱温度が850℃より高いと、著しい酸化反応が発生する状態となり、金属の強度等の健全性が損なわれる。逆に、加熱温度が800℃より低いと、温度が低いところが発生し部分的に凝固を起してしまい、複合材としての均一性が損なわれる。   It is necessary to control the heating temperature so that unnecessary chemical reaction does not occur between the PS incinerated ash granulated hydrothermal solidified body and aluminum. The optimum heating temperature is 800-850 ° C. When heating temperature is higher than 850 degreeC, it will be in the state which a remarkable oxidation reaction generate | occur | produces, and soundness, such as a metal intensity | strength, will be impaired. On the other hand, when the heating temperature is lower than 800 ° C., a place where the temperature is low occurs and partially solidifies, and the uniformity as a composite material is impaired.

プランジャーによる加圧は、実験結果からは圧力範囲として、0.26〜0.52kg/cmである。
複合材の冷却方法は、中心部の引け巣を無くすため、及び造粒体の分布もほぼ均一で緻密な複合材を得るために、ヒーターによる加熱を止め室温まで徐々に炉及び複合材を全体的に冷却する徐冷方法が最適である。
The pressure applied by the plunger is 0.26 to 0.52 kg / cm 2 as a pressure range from the experimental result.
The cooling method of the composite material eliminates the shrinkage cavity in the center, and in order to obtain a dense composite material with almost uniform granulation distribution, the heating by the heater is stopped and the entire furnace and composite material are gradually brought to room temperature. The slow cooling method is effective.

以上の方法によって得られたペーパースラッジ焼却灰造粒水熱固化体−アルミニウム複合材は、制震性、吸音性、断熱性を有する。
The paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material obtained by the above method has vibration control properties, sound absorption properties, and heat insulation properties.

以下に本発明の実施例を示すが、これは例示的なものであって、本発明がこれに限定されるべきではない。
表1に示す組成のPS焼却灰100重量部に対し、水91重量部、生石灰10重量部、セメント10重量部を造粒機で混合し造粒した粒状の造粒品を、前養生として2週間の自然養生を行い、さらに水熱固化処理として180℃で5時間の水蒸気養生を行って水熱固化体を得た。
Although the Example of this invention is shown below, this is illustrative and this invention should not be limited to this.
A granulated granulated product obtained by mixing and granulating 91 parts by weight of water, 10 parts by weight of quick lime and 10 parts by weight of cement with 100 parts by weight of PS incinerated ash having the composition shown in Table 1 as pre-curing 2 Natural curing for a week was performed, and further, steam curing was performed at 180 ° C. for 5 hours as a hydrothermal solidification treatment to obtain a hydrothermal solidified body.

Figure 0004759667
Figure 0004759667

アルミニウムは、リサイクルアルミニウムとほぼ同一成分に溶製した擬似リサイクルアルミニウムを用いた。この擬似アルミニウムの化学成分を表2に示す。   As the aluminum, pseudo-recycled aluminum melted in almost the same components as recycled aluminum was used. Table 2 shows chemical components of the pseudo aluminum.

Figure 0004759667
Figure 0004759667

この擬似アルミニウムの融点の測定には、示差熱分析を行った。相変態温度は、擬似リサイクルアルミニウム溶湯に熱電対を挿入し、徐冷過程の冷却曲線を測定して決定した。擬似リサイクルアルミニウムの相変態温度は、表3の通りである。なお、これらの相変態温度は、複合材の製造にあたって、PS焼却灰造粒水熱固化体との混合温度の決定に重要である。   A differential thermal analysis was performed to measure the melting point of the pseudo aluminum. The phase transformation temperature was determined by inserting a thermocouple into the pseudo-recycled aluminum melt and measuring the cooling curve during the slow cooling process. Table 3 shows the phase transformation temperatures of the pseudo-recycled aluminum. These phase transformation temperatures are important in determining the mixing temperature with the PS incinerated ash granulated hydrothermal solidified body in the production of the composite material.

Figure 0004759667
Figure 0004759667

PS焼却灰造粒水熱固化体を粒度調整し、2.5mm以下のもの、2.5〜5mmのもの、5mm以上のものに分級して、擬似リサイクルアルミニウムとの複合化を行った。PS焼却灰造粒水熱固化体を100〜200℃で長時間加熱し、加熱前後の重量測定から含水率を求めた結果、41%であった。また、PS焼却灰造粒水熱固化体の加熱乾燥後の密度を測定した結果、0.855g/cmであり、アルミニウムの密度(2.7g/cm)の約3倍軽量である。 The particle size of the PS incinerated ash granulated hydrothermal solidified product was adjusted and classified into 2.5 mm or less, 2.5 to 5 mm, or 5 mm or more, and combined with pseudo recycled aluminum. The PS incinerated ash granulated hydrothermal solidified body was heated at 100 to 200 ° C. for a long time, and the moisture content was determined from the weight measurement before and after heating. As a result, it was 41%. As a result of measurement of a density after thermal drying PS ash granulation hydrothermal solidification body is 0.855 g / cm 3, is about three times lighter density of aluminum (2.7g / cm 3).

複合材の製造プロセスは、図1に示す通りである。
複合材の諸特性は、最適な製造プロセスによって製造した複合材は、短尺複合材2つ(複合材A、B)と、長尺複合材2つ(複合材C、D)であり、その諸元を表4に示す。いずれの製造条件も、PS焼却灰造粒水熱固化体とアルミニウムの混合割合は、重量比で50:50であり、加熱温度は800℃である。この重量比50:50を、PS焼却灰造粒水熱固化体の密度(0.855g/cm)とアルミニウムの密度(2.7g/cm)から、容積比にすると、75:25となる。
The manufacturing process of the composite material is as shown in FIG.
The composite materials produced by the optimum manufacturing process are composed of two short composite materials (composites A and B) and two long composite materials (composites C and D). The origin is shown in Table 4. In any production conditions, the mixing ratio of the PS incinerated ash granulated hydrothermal solidified body and aluminum is 50:50 by weight, and the heating temperature is 800 ° C. The weight ratio of 50:50, the density of PS ash granulation hydrothermal solidified (0.855g / cm 3) and aluminum density of (2.7g / cm 3), when the volume ratio, 75: 25 and Become.

Figure 0004759667
Figure 0004759667

複合材の密度について、短尺複合材A、短尺複合材B、長尺複合材Cの頭部、中部、底部、長尺複合材Dの頭部、中部、底部の密度を図2に示す。
複合材の圧縮強さについて、複合材とアルミニウム単体材料等を用いて比較を行った。なお、本実験では試料を30%圧縮変形させた時の荷重で比較した。図3に各種材料の圧縮強さを示す。これより、造粒物の混合割合が高いものほど、圧縮強さが低くなることがわかる。
Regarding the density of the composite material, the density of the short composite material A, the short composite material B, the head portion, the middle portion, and the bottom portion of the long composite material C, and the head portion, the middle portion, and the bottom portion of the long composite material D are shown in FIG.
The compression strength of the composite material was compared using a composite material and a single aluminum material. In this experiment, the load was compared when the sample was compressed and deformed by 30%. FIG. 3 shows the compressive strength of various materials. From this, it can be seen that the higher the mixing ratio of the granulated product, the lower the compressive strength.

複合材の熱伝導率を、上下銅板の温度差Δθを測定して、次式より算出した。
λ=Δθ/(L×A×V)
Δθ:計測値の差[℃] L:計測する材料の厚さ
ここで、Lは計測する材料の厚さで、電流Aと電圧Vはそれぞれ55mA、10Vである。
測定結果を図4に他の材料との比較で示す。アルミニウムの熱伝導率が236W/mKと高いが、複合材(ハイブリッドB、M、T)はPS焼却灰造粒水熱固化体を含んでいるため、アルミニウムの約1/16であり断熱性が優れている。
The thermal conductivity of the composite material was calculated from the following equation by measuring the temperature difference Δθ between the upper and lower copper plates.
λ = Δθ / (L × A × V)
Δθ: difference in measured value [° C.] L: thickness of material to be measured Here, L is the thickness of the material to be measured, and current A and voltage V are 55 mA and 10 V, respectively.
The measurement results are shown in FIG. 4 in comparison with other materials. Although the thermal conductivity of aluminum is as high as 236 W / mK, the composite material (hybrid B, M, T) contains PS incinerated ash granulated hydrothermal solidified material, so it is about 1/16 of aluminum and has a heat insulation property. Are better.

PS焼却灰造粒水熱固化体とリサイクルアルミニウムとの複合材について、得られた結果は以下の通りである。
(1)リサイクルアルミニウムとPS焼却灰造粒物の混合は、アルミニウムが溶融状態で行ったときに最も良い結果が得られた。
(2)密度が低いPS焼却灰造粒水熱固化体は、混合したときに溶融アルミニウムの頭部に浮きあがってくるので、断熱性の高いもので蓋をして負荷をかける必要がある。
(3)混合した素材は液相状態で冷却するとき、徐冷しなければ素材内部に引け巣ができる可能性が高い。
(4)複合材の圧縮強さは、PS焼却灰造粒水熱固化体の分布比率が高くなるほど低くなる。
(5)複合材の熱伝導率はアルミニウムの約1/16であり、断熱性に優れていることがわかった。
The results obtained for the composite material of PS incinerated ash granulated hydrothermal solidified material and recycled aluminum are as follows.
(1) The best results were obtained when mixing recycled aluminum and PS incinerated ash granulates when the aluminum was in a molten state.
(2) Since the PS incinerated ash granulated hydrothermal solidified body having a low density floats on the molten aluminum head when mixed, it is necessary to cover it with a highly heat insulating material and apply a load.
(3) When the mixed material is cooled in a liquid phase, there is a high possibility that a shrinkage nest will be formed inside the material unless it is gradually cooled.
(4) The compressive strength of the composite material decreases as the distribution ratio of the PS incinerated ash granulated hydrothermal solidified body increases.
(5) The thermal conductivity of the composite material was about 1/16 that of aluminum, and it was found that the composite material was excellent in heat insulation.

本発明の複合材の製造プロセスを示す概略図である。It is the schematic which shows the manufacturing process of the composite material of this invention. 短尺複合材A、短尺複合材B、長尺複合材Cの頭部、中部、底部、長尺複合材Dの頭部、中部、底部の密度を示すグラフである。It is a graph which shows the density of the head of the short composite material A, the short composite material B, and the long composite material C, the middle part, the bottom part, the head part, the middle part, and the bottom part of the long composite material D. 複合材の圧縮強さについて、複合材とアルミニウム単体材料等を用いて比較を行ったグラフである。It is the graph which compared the compressive strength of the composite material using the composite material and the aluminum simple substance material. 本発明の複合材の熱伝導率について、アルミニウム単体材料等を用いて比較を行ったグラフである。It is the graph which compared the thermal conductivity of the composite material of this invention using the aluminum simple substance material.

Claims (5)

ペーパースラッジ焼却灰の造粒後の水熱固化体が複合材の全容積の50%〜75%を占める複合材において、前記水熱固化体、並びにアルミニウム、アルミニウム合金及びこれらの混合物からなる群から選択される材料から成る前記複合材。   In the composite material in which the hydrothermal solidified material after granulation of the paper sludge incineration ash occupies 50% to 75% of the total volume of the composite material, from the group consisting of the hydrothermal solidified material, aluminum, aluminum alloy and a mixture thereof Said composite material comprising a selected material. 前記ペーパースラッジ焼却灰の造粒後の水熱固化体は、ペーパースラッジを焼却処理した際に発生する焼却灰に、水及び/又は温水、生石灰並びにセメントを加え、常温から98℃までの温度で混合して粒状に造粒した成形体を養生した後、水熱固化反応を利用して固化体を製造することにより製造される請求項1記載の複合材。   The hydrothermal solidified material after the granulation of the paper sludge incineration ash is made by adding water and / or hot water, quicklime and cement to the incineration ash generated when the paper sludge is incinerated, and at a temperature from room temperature to 98 ° C. The composite material according to claim 1, wherein the composite material is produced by curing a shaped body that has been mixed and granulated, and then producing a solidified body using a hydrothermal solidification reaction. ペーパースラッジ焼却灰の造粒物の水熱反応による固化体をアルミニウム、アルミニウム合金、廃棄アルミニウム品及びこれらの二種以上の混合物からなる群から選択される材料とともに金型内で加熱して、アルミニウム素材を溶融させ、溶融または半凝固状態で撹拌混合し、次いで加圧させた後徐冷凝固することを特徴とする、ペーパースラッジ焼却灰の造粒後の水熱固化体が複合材の全容積の50%〜75%を占める複合材において、前記水熱固化体並びにアルミニウム、アルミニウム合金及びこれらの混合物からなる群から選択される材料から成る前記複合材を製造する方法。   The paper sludge incinerated ash granulation hydrolyzed solidified body is heated in a mold together with a material selected from the group consisting of aluminum, aluminum alloys, waste aluminum products, and a mixture of two or more of these, The hydrothermal solidified material after granulation of paper sludge incineration ash is characterized by melting the raw material, stirring and mixing in a molten or semi-solidified state, then pressurizing and then solidifying by cooling slowly. A method of manufacturing the composite material comprising a material selected from the group consisting of the hydrothermal solidified body and aluminum, an aluminum alloy, and a mixture thereof. 前記水熱固化体は、ペーパースラッジを焼却処理した際に発生する焼却灰に、水及び/又は温水、生石灰並びにセメントを加え、常温から98℃までの温度で混合して粒状に造粒した成形体を養生した後、水熱固化反応を利用して固化体を製造することにより製造される請求項3記載の方法。   The hydrothermal solidified product is formed by adding water and / or hot water, quicklime and cement to incineration ash generated when paper sludge is incinerated, and mixing at a temperature from room temperature to 98 ° C. to form granules. The method according to claim 3, wherein the method is produced by producing a solidified body using a hydrothermal solidification reaction after curing the body. 前記加圧は、プランジャーを介して行う請求項3記載の方法。   The method according to claim 3, wherein the pressurization is performed via a plunger.
JP2005263600A 2005-09-12 2005-09-12 Paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material Expired - Fee Related JP4759667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263600A JP4759667B2 (en) 2005-09-12 2005-09-12 Paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263600A JP4759667B2 (en) 2005-09-12 2005-09-12 Paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material

Publications (2)

Publication Number Publication Date
JP2007077420A JP2007077420A (en) 2007-03-29
JP4759667B2 true JP4759667B2 (en) 2011-08-31

Family

ID=37938027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263600A Expired - Fee Related JP4759667B2 (en) 2005-09-12 2005-09-12 Paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material

Country Status (1)

Country Link
JP (1) JP4759667B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095754A (en) * 2007-10-17 2009-05-07 Miyoshi Oil & Fat Co Ltd Treatment method of boiler ash
JP4568769B2 (en) * 2008-03-31 2010-10-27 中特建機株式会社 Asbestos treatment method and apparatus
CN102703739B (en) * 2012-07-03 2014-01-29 遂宁市新华西铝业有限公司 Production process of recycled aluminum
CN116673303B (en) * 2023-04-13 2023-12-12 中城院(北京)环境科技股份有限公司 High-heat-value component treatment process for decoration garbage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888054A (en) * 1987-02-24 1989-12-19 Pond Sr Robert B Metal composites with fly ash incorporated therein and a process for producing the same
JPH073358A (en) * 1993-01-11 1995-01-06 Sanso:Kk Fiber-reinforced metallic composite material and production thereof
JP3619279B2 (en) * 1995-03-23 2005-02-09 株式会社ケイハン Metal-containing powder molding composition and method for producing the same
JP3415065B2 (en) * 1999-04-27 2003-06-09 川崎重工業株式会社 Method for producing desalted solidified waste incineration ash
JP4589652B2 (en) * 2004-04-27 2010-12-01 日本製紙株式会社 Method for producing hydrothermal solidified product of paper sludge incineration ash

Also Published As

Publication number Publication date
JP2007077420A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
Rashad Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete
JP4759667B2 (en) Paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
JP2007015893A (en) Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash
KR100347997B1 (en) Method of recycling sewage sludge as useful sources
JP5443010B2 (en) Method for producing hydrothermal solidified body of paper sludge incineration ash
JP2007505023A (en) Method for manufacturing hydraulic binder and construction member, method for using the same, and apparatus for manufacturing the same
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
WO2007055351A1 (en) Binder containing modified sulfur and process for producing material containing modified sulfur
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
US6913643B2 (en) Lightweight foamed glass aggregate
JP2008030980A (en) Method for manufacturing cement alternative
JP4589652B2 (en) Method for producing hydrothermal solidified product of paper sludge incineration ash
JP2007223841A (en) Method for producing artificial aggregate using waste slag as main raw material
JP2003012355A (en) Method for producing artificial lightweight aggregate
JPH08301641A (en) Production of artificial lightweight aggregate
JP2000192155A (en) Treatment of sludge containing water and oil components
JP2000308867A (en) Production of solidified body from fly ash of rubbish incinerator
JPH1029841A (en) Production of artificial aggregate
JP2000176410A (en) Method for solidifying and stabilizing molten fly ash and device therefor
JP2003024914A (en) Method for solidifying incineration ash and fly ash with addition of coal cinders of pressurized fluid bed, and method for utilizing solid material
JP3723161B2 (en) Aggregate manufacturing method
JP2000034179A (en) Production of water-holding granular sintered compact
JPH06106153A (en) Cement solidification of incineration ash and cement solidified product of incineration ash
JP2005040659A (en) Method for producing sand-like solid from incineration residue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees