KR100347997B1 - Method of recycling sewage sludge as useful sources - Google Patents

Method of recycling sewage sludge as useful sources Download PDF

Info

Publication number
KR100347997B1
KR100347997B1 KR1019980039361A KR19980039361A KR100347997B1 KR 100347997 B1 KR100347997 B1 KR 100347997B1 KR 1019980039361 A KR1019980039361 A KR 1019980039361A KR 19980039361 A KR19980039361 A KR 19980039361A KR 100347997 B1 KR100347997 B1 KR 100347997B1
Authority
KR
South Korea
Prior art keywords
sewage sludge
weight
temperature
clay
firing
Prior art date
Application number
KR1019980039361A
Other languages
Korean (ko)
Other versions
KR19990081756A (en
Inventor
나춘기
이무성
Original Assignee
라춘기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 라춘기 filed Critical 라춘기
Publication of KR19990081756A publication Critical patent/KR19990081756A/en
Application granted granted Critical
Publication of KR100347997B1 publication Critical patent/KR100347997B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A method for recycling sewage sludge as useful sources is provided. CONSTITUTION: The method includes the steps of blending 30 to 90 wt.% of dry sewage sludge, 10 to 70 wt.% of one binder selected from clay, clayish waste, bentonite; forming the mixture into a certain shape; and baking it at high temperatures, wherein the method is characterized in that the baking is performed at 800 to 1180°C for 10 to 30 min; temperature difference between a material input and baking zone is less than 200 deg.C; the time needed to transfer a mixture to be baked from the material input to the baking zone is in the range of 5 to 20 min; and 50 wt.% of less of a mixture including one or more materials selected from coal ash, incineration ash, blast furnace slag and waste mold sand, including 40 wt.% or more of SiO2 and 10 wt.% or more of Al2O3 is added to 100 wt.% of a total amount of sewage sludge and binder.

Description

내부발열 소결법에 의한 하수슬러지의 자원화 방법.Recycling of sewage sludge by internal heat generation sintering method.

본 발명은 하수종말 처리장에서 발생하는 슬러지를 적정 무기물에 내부발열체로서 혼합하고 이 혼합체를 직접 소결처리하는 방식으로 하수슬러지를 안정화/고형화시킴과 동시에 그 산물 자체가 재활용될 수 있게 하는 하수슬러지의 처분 및 자원화 방법에 관한 것이다.The present invention stabilizes / solidifies sewage sludge by mixing sludge generated in sewage terminal treatment plant with appropriate inorganic material as internal heating element and directly sintering the mixture, and at the same time disposing of sewage sludge so that the product itself can be recycled. And a resourceization method.

일반적으로 하수슬러지는 하수를 처리하는 과정에서 하수에 포함되어 있는 입자상, 콜로이드상, 용존상의 오염물질을 제거할 때 발생되는 고형상의 2차 환경오염 물질로서 현재 전국 290여개 하수종말처리장에서 연간 120여만톤이 발생하고 있고, 수자원의 보호를 위해 하수관 정비 및 하수처리시설의 추가 설치가 지속적으로 이루어지고 있어 그 발생량이 날로 증가되고 있는 추세로 이에 대한 효율적이고 경제적인 처분기술 및 자원화 기술의 개발은 수자원 보호는 물론 하수슬러지로 인한 2차 환경오염방지를 위해 무엇보다 시급한 현안과제가 되고 있다.In general, sewage sludge is a solid secondary environmental pollutant that is generated when the particulate, colloidal, and dissolved pollutants contained in the sewage are removed during sewage treatment. Currently, sewage sludge is 120 per year in 290 sewage treatment plants nationwide. Tens of thousands of tons are being generated, and sewage pipe maintenance and additional installation of sewage treatment facilities are being made continuously to protect the water resources, and the amount of generation is increasing day by day. In order to protect water resources and prevent secondary environmental pollution caused by sewage sludge, it is an urgent issue.

종래의 하수슬러지에 대한 재활용 기술은 하수슬러지를 직접 유기비료로서 사용하는 방법이 현재 거의 유일하지만 하수슬러지가 대부분 상당량의 유해성 물질을 함유하고 있기 때문에 그 사용량은 매우 한정적이며, 현재 국내에서 연간 발생되는 하수슬러지의 90% 이상이 단순매립 방식에 의해 처분되고있는 실정이다. 그러나 단순매립 방식은 매립지 확보의 어려움과 함께 2차 환경오염을 유발시킬 가능성이 높아 하수슬러지의 처분방법으로는 적절치 못하다는 지적에 따라 2001년 이후 전면 금지될 예정이다.Recycling technology for conventional sewage sludge is currently the only method using sewage sludge directly as an organic fertilizer, but since the sewage sludge contains a considerable amount of harmful substances, its use is very limited, More than 90% of sewage sludge is being disposed of by simple landfill. However, the simple reclamation method is expected to be banned after 2001 because it is difficult to secure landfills and is likely to cause secondary environmental pollution.

현재 매립처분의 대체기술로서는 유동층 소각처분 방식이 널리 검토되고 있으나 이 방법 역시 하수슬러지의 감량화, 안정화 등의 장점을 가진 반면 고가의 시설비 및 처리비가 소요되며 소각재를 재처분하여야 하는 등의 단점이 있다. 따라서 소각처분 방식 역시 하수슬러지의 안정화, 감량화를 위한 중간처리 방식으로서는 효율적이지만 소각로의 막대한 건설비용 및 처리비용의 증가 등의 경제적인 문제점을 안고 있을 뿐만 아니라, 2차 처리 대상물질인 소각재가 부산물로 발생한다는점에서 경제적이면서도 완전처분이라는 폐기물 처리의 궁극적인 목적을 완전히 충족시키지 못한다.Currently, fluidized-bed incineration is widely considered as an alternative technology for landfill disposal, but this method also has the advantages of reducing and stabilizing sewage sludge, but requires expensive facility and treatment costs and requires the disposal of incineration ash. . Therefore, the incineration method is effective as an intermediate treatment method for stabilization and reduction of sewage sludge, but it also has economic problems such as the huge construction cost and the increase of treatment cost of the incinerator. It does not fully meet the ultimate goal of waste disposal, both economic and complete disposal.

본 발명의 목적은 종래기술의 한계성 및 문제점을 해소하기 위하여 1단계의 간단한 공정과 과다하지 않은 시설 및 처리비용으로 하수슬러지를 물리·화학적으로 안정하게 처분함과 동시에 그 산물을 직접 부가가치성의 재료로서 재활용하는 것이다The purpose of the present invention is to dispose sewage sludge physically and chemically stably with a simple process in one step and not excessive facilities and treatment costs in order to solve the limitations and problems of the prior art and at the same time, the product is directly added value-added material To recycle

도 1은 본 발명의 내부발열 소결법에 의한 하수슬러지의 자원화 공정을 설명하기 위한 공정도.1 is a process chart for explaining the process of recycling sewage sludge by the internal heat generating sintering method of the present invention.

본 발명은 하수슬러지와 점결제(점토, 벤토나이트 등) 건조중량비(이하, 동일함)로 각각 30∼90:10∼70의 비율로 혼합하는 것을 기본 혼합조성으로 하여, 이 혼합물을 직경 1㎝ 내외의 구형으로 성형하고 건조시킨후 800∼1180℃에서 10∼30분간 소성시키되, 제품투입구와 소성구간의 온도차이가 200℃ 이내이면서, 투입구에서 소성구간까지 도달하는 시간을 5분 이상 20분 이내로 하여 소성하는 것을 특징으로 하는 내부발열 소결법에 의한 하수슬러지의 자원화 방법을 제공한다.The present invention mixes sewage sludge and caking agent (clay, bentonite, etc.) in a dry weight ratio (hereinafter, the same) in the ratio of 30 to 90: 10 to 70, respectively, and the mixture is about 1 cm in diameter. After molding and drying in a spherical shape, it is baked at 800 ~ 1180 ℃ for 10 ~ 30 minutes, and the temperature difference between the product inlet and the firing section is within 200 ℃ and the time to reach the firing section from the inlet is within 5 minutes to 20 minutes. It provides a method for recycling sewage sludge by the internal heat generation sintering method characterized in that the firing.

압축강도 등과 같은 물성을 보강할 필요가 있을 경우에는 물성보강제를 상기 기본 조성 100중량부에 대하여 50중량부 이내 첨가할 수 있다.When it is necessary to reinforce physical properties such as compressive strength, the physical property reinforcing agent may be added within 50 parts by weight based on 100 parts by weight of the basic composition.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 단순폐기를 목적으로 하거나 소각처분 후 소각재의 재처분이라는 2단계 과정을 거쳐야 비로소 완전처분이 가능한 기존 처분방법과는 달리 소성공정이라는 1단계 과정으로 하수슬러지를 환경적으로 무해화시킴과 동시에 고형화시켜 그 처분산물을 재처리 과정없이 직접 소재자원으로 재활용할 수 있게 함으로서 하수슬러지의 완전처분을 가능하게 하고, 동시에 그 처분과정에서 석탄회나 점토질 폐기물의 동반처분 및 재활용을 가능하게 한다.The present invention, unlike the existing disposal method that can be completely disposed only after the two-stage process of incineration ash for the purpose of simple disposal or after incineration, makes the sewage sludge environmentally harmless in one step of the firing process. At the same time, it is possible to solidify and recycle the waste product directly to the material resource without reprocessing process, thus enabling the complete disposal of sewage sludge, and at the same time, the co-disposal and recycling of coal ash or clay waste during the disposal process.

또한, 하수 슬러지 그 자체가 50% 이상 유기물로 이루어진 가연성 물질로 평균 2500 ㎉/㎏·DS 정도의 발열량을 낼 수 있기 때문에 소성시 열전달의 차이로 유발되는 내외부간의 온도차이를 상쇄시키는 효과를 가져올 뿐만 아니라 오히려 내부의 온도를 상승시켜 동일 온도조건에서 내부를 먼저 용융, 소결시킴과 동시에 다량의 가스를 발생시켜 용융에 따른 수축현상을 방지하고 발포를 조장하는 내부발열제-발포제 역할을 함으로써, 첫째는 완전 소결을 위한 소성온도를 낮추어주고 소성시간을 단축시키는 효과를 가져와 연료비를 절감시킬 수 있고, 둘째는 단순 고형화가 아닌 완전 소결로 인해 하수슬러지에 포함되어 있는 중금속 등의 유해물질을 상전이된 광물격자내에 완전 고정화가 가능하게 되어 하수슬러지의 환경무해화를 이룩할 수 있다.In addition, sewage sludge itself is a combustible material composed of more than 50% of organic material, and can produce an average calorific value of about 2500 ㎉ / ㎏ · DS, which brings about the effect of offsetting the temperature difference between inside and outside caused by the difference in heat transfer during firing. Rather, by raising the internal temperature to melt and sinter the interior first under the same temperature conditions and at the same time generate a large amount of gas to prevent shrinkage due to melting and to act as an internal heating agent-foaming agent to encourage foaming, It lowers the firing temperature for sintering and shortens the firing time, thereby reducing fuel costs. Second, the toxic sintered heavy metals in the sewage sludge are not completely solidified. Fully immobilized can be achieved, which can lead to environmental harmlessness of sewage sludge.

본 발명에서 사용 가능한 점결제의 예로는 점토, 고령토, 백토, 점토질 폐기물, 벤토나이트 등을 들 수 있으며, 일정 수준 이상의 점결력을 가짐으로써 성형성을 부여할 수 있는 재질의 무기물질이면 어느 것이든 사용 가능하다.Examples of the caking agent usable in the present invention include clay, kaolin, clay, clay waste, bentonite, and the like, and any material may be used as long as it has an inorganic material having a predetermined level or higher caking force. It is possible.

본 발명에서 사용 가능한 물성 보강제의 예로는 석탄회, 제지회, 고로슬래그, 폐주물사 등을 들 수 있으며, SiO2를 40중량% 이상, Al2O3를 10중량% 이상 함유한 무기물질이면 어떤 것이든지 사용가능하다. 이 중 경량성과 사용 편의성 등을 고려하면 석탄회(비산재)의 사용이 가장 바람직하다.Examples of physical reinforcing agents usable in the present invention include coal ash, paper ash, blast furnace slag, waste foundry sand, and the like, and any inorganic material containing 40 wt% or more of SiO 2 and 10 wt% or more of Al 2 O 3 may be used. It can be used. Among them, the use of coal ash (fly ash) is most preferable in consideration of light weight and ease of use.

도 1은 본 발명의 내부발열 소결법에 의한 하수슬러지의 고형화 및 자원화를 위한 공정도로서, 제조공정에서의 기본재료는 하수슬러지와 점결제로 하고, 여기에 선택적으로 압축강도 증진을 위한 물성 보강제가 첨가된다. 각각의 혼합비율은 건조중량 기준으로 하수슬러지가 30∼90%, 점결제가 10∼70%이며, 물성보강제는 하수슬러지와 점결제의 합 100중량부에 대하여 50중량부까지 첨가될 수 있다.1 is a process chart for solidifying and recycling the sewage sludge by the internal heat generation sintering method of the present invention, the base material in the manufacturing process is sewage sludge and a binder, and a physical property reinforcing agent for selectively increasing the compressive strength is added thereto. do. Each mixing ratio is 30 to 90% of sewage sludge and 10 to 70% of binder in terms of dry weight, and the physical property enhancer may be added up to 50 parts by weight based on 100 parts by weight of the total amount of sewage sludge and the binder.

이 혼합조성비 범위내에서 각 재료를 적정하게 취하여 토련기 또는 믹서기로혼합한 다음, 직경 1㎝ 내외의 구형으로 성형한 후 이를 건조시킨다. 건조된 혼합물은 투입구 온도 800∼1100℃, 승온속도 10∼30℃/min, 소성온도 1100∼1180℃의 온도조건을 갖는 소성로에 투입하여 10∼30분(총 소요시간)간 소성시키는 방식으로 다공질 소결체를 제조한다. 최종 생산품의 비중은 혼합재료의 종류와 혼합조성 및 소성온도 조건에 따라 좌우되며, 이들의 조합조건에 따라 0.5에서 1.6까지다양하다.Within this mixing composition ratio, each material is appropriately taken and mixed with a refiner or blender, and then molded into a sphere having a diameter of about 1 cm and dried. The dried mixture is put into a kiln having a temperature condition of an inlet temperature of 800 to 1100 ° C., a heating rate of 10 to 30 ° C./min, and a firing temperature of 1100 to 1180 ° C., and then fired for 10 to 30 minutes (total time required). A sintered compact is manufactured. The specific gravity of the final product depends on the type of mixed material, the mixing composition and the firing temperature conditions, and varies from 0.5 to 1.6 depending on their combination.

얻어진 제품에 경량성을 부여하기 위해서는 제품투입구와 소성구간 사이의 온도차이가 400℃ 이내, 바람직하게는 200℃이내로 하는 것이 좋다. 일반적인 대량 생산용 회전소성로의 경우 제품투입구의 온도는 소성온도 보다 약 500∼600℃정도 낮아, 이러한 통상적인 회전소성로를 이용하여 본 발명의 방법을 적용할 경우 제품의 소결이 불완전하게 이루어져 흡수율이 증가하고 강도가 약해지거나 또는 수축 소결되어 비중이 1.7 이상으로 증가되는 등 본 발명의 목적을 효율적으로 달성하기 어렵지만, 제품투입구 온도를 소성온도 보다 400℃ 이상 낮아지지 않게 상향 조정하는 경우에는 내부발포가 효과적으로 유도되어 제품의 비중이 낮아지게 된다.In order to impart lightness to the obtained product, it is preferable that the temperature difference between the product inlet and the firing section is within 400 ° C, preferably within 200 ° C. In the case of a general rotary firing furnace for mass production, the temperature of the product inlet is about 500 to 600 ° C. lower than the firing temperature. When the method of the present invention is applied using such a conventional rotary firing furnace, the sintering of the product is incomplete and the absorption rate is increased. It is difficult to achieve the purpose of the present invention efficiently, such as the strength is weakened or shrinkage sintered to increase the specific gravity to 1.7 or more.However, when the product inlet temperature is adjusted upward so as not to be lower than 400 ° C. above the firing temperature, the internal foaming is effective. Induced, the specific gravity of the product is lowered.

본 발명의 실시예는 다음과 같다.Embodiments of the present invention are as follows.

<실시예 1><Example 1>

춘천시의 하수슬러지(발열량 2500∼3100 ㎉/㎏·DS, 강열감량 40∼47중량%) 90중량%(건조물 기준, 이하 동일)에 점결제로무안지역에서 산출되는 점토를 10중량%를 혼합하고, 이 혼합물을 직경 1㎝ 내외의 구형으로 성형하고, 수분함량 10중량%이하로 충분히 건조시킨 다음, 투입구 온도 800℃의 소성로에 투입하여 20℃/min의 승온율로 1,140℃까지 상승시키고1,140℃에서 10분간 소성시켰다. 얻어진 소성체의 물성은 표 1과 같다(이하 동일).90% by weight of sewage sludge (heating amount 2500-3100 ㎉ / ㎏, DS, ignition loss 40-47% by weight) in Chuncheon (10% by weight of clay produced in Muan area as a binder) In addition, the mixture was molded into a sphere having a diameter of about 1 cm, dried sufficiently to have a water content of 10% by weight or less, and then charged into a firing furnace having an inlet temperature of 800 ° C. and raised to 1,140 ° C. at a temperature rising rate of 20 ° C./min, and 1,140 ° C. It was calcined for 10 minutes at. Physical properties of the resulting fired body are shown in Table 1 below (the same applies).

<실시예 2><Example 2>

실시예 1의 건조성형체를 투입구 온도 1,000℃의 소성로에 투입하여 20℃/min의 승온율로 1,140℃까지 상승시키고 1,140℃에서 10분간 소성시켰다.The dried molded product of Example 1 was put into a firing furnace having an inlet temperature of 1,000 ° C., raised to 1,140 ° C. at a temperature rising rate of 20 ° C./min, and calcined at 1,140 ° C. for 10 minutes.

<실시예 3><Example 3>

실시예 1의 혼합체 100중량부에 대하여 3중량부의 벤토나이트를 점결 보강제로 첨가한 것을 실시예 1과 동일한 방법으로 성형, 건조, 소성시켰다.3 parts by weight of bentonite was added as a caking reinforcing agent to 100 parts by weight of the mixture of Example 1 in the same manner as in Example 1, followed by molding, drying and firing.

<비교예 1>Comparative Example 1

실시예 1의 건조성형체를 투입구 온도 700℃의 소성로에 투입하여 20℃/min의 승온율로 1,140℃까지 상승시키고 1,140℃에서 10분간 소성시켰다.The dried molded product of Example 1 was put into a firing furnace having an inlet temperature of 700 ° C., raised to 1,140 ° C. at a temperature rising rate of 20 ° C./min, and calcined at 1,140 ° C. for 10 minutes.

1)구형의 소결체를 직접 이용하여 측정한 비정형 일축압축강도를 나타냄1) It shows atypical uniaxial compressive strength measured using spherical sintered body directly.

*일축압축강도=σ/0.19, σ=파괴하중/(체적)* Uniaxial compressive strength = σ / 0.19, σ = destructive load / (volume )

표 1에서 알 수 있듯이, 투입구 온도가 800℃ 이상인 경우에 내부발포가 효과적으로 일어났으나, 700℃ 이하인 경우 소성온도는 동일하지만 총 소성시간이 길어졌기 때문에 결과적으로 가해진 에너지(총열량)의 양이 많았음에도 불구하고 소결이 불완전하거나 수축소결되는 등 본 발명이 추구하는 바를 효과적으로 실행하기 어려웠다. 이는 내부발열량이 집중적으로 작용되지 못하였기 때문이다.As can be seen from Table 1, internal foaming effectively occurred when the inlet temperature was higher than 800 ° C, but when the temperature was lower than 700 ° C, the firing temperature was the same, but the total firing time was longer. In spite of many, it is difficult to effectively carry out the pursuit of the present invention, such as sintering incomplete or shrinkage sintering. This is because the internal calorific value did not work intensively.

<실시예 4><Example 4>

안양시의 하수슬러지(발열량 2800∼3300㎉/㎏·DS, 강열감량 34∼37wt.%) 50중량%(건조물 기준, 이하 동일)에 점결제로 군산지역에서 산출되는 점토(이하 동일)를 10중량%, 강도보강용 물성 보강제로 호남화력발전소에서 배출되는 석탄회(비산재, 이하 동일)를 40중량%를 실시예 1과 같은 방법으로 혼합, 성형, 건조시킨 다음, 그 건조 성형체를 투입구 온도 1,000℃의 소성로에 투입하여 20℃/min의 승온율로 1,140℃까지 상승시키고 1,140℃에서 10분간 소성시켰다. 얻어진 소결체의 물성은 표 2와 같다(이하 동일).10 weight of clay (hereinafter equal) calculated in Gunsan area as a binder for 50% by weight of sewage sludge (heating amount 2800-3300㎉ / ㎏ · DS, ignition loss 34 ~ 37wt.%) In Anyang-si %, 40% by weight of coal ash (non-fly ash, same as below) discharged from Honam thermal power plant as a strength reinforcing material reinforcing agent was mixed, molded and dried in the same manner as in Example 1, and the dried molded body was subjected to an inlet temperature of 1,000 It was put into a calcination furnace and raised to 1,140 degreeC by the temperature increase rate of 20 degreeC / min, and baked at 1,140 degreeC for 10 minutes. The physical properties of the obtained sintered compact are shown in Table 2 (hereinafter same).

<실시예 5>Example 5

실시예 4의 건조성형체를 투입구 온도 1080℃의 소성로에 투입하여 15℃/min의 승온율로 1,180℃까지 상승시키고 1,180℃에서 10분간 소성시켰다.The dried molded product of Example 4 was put into a firing furnace having an inlet temperature of 1080 ° C., raised to 1,180 ° C. at a temperature rising rate of 15 ° C./min, and calcined at 1,180 ° C. for 10 minutes.

<비교예 2>Comparative Example 2

실시예 4의 건조성형체를 투입구 온도가 600℃인 소성로에 투입하고 20℃/min의 승온율로 1,140℃까지 상승시키고 1,140℃에서 10분간 소성시켰다.The dried molded product of Example 4 was introduced into a firing furnace having an inlet temperature of 600 ° C., raised to 1,140 ° C. at a temperature rising rate of 20 ° C./min, and calcined at 1,140 ° C. for 10 minutes.

<비교예 3>Comparative Example 3

실시예 4의 건조성형체를 투입구 온도가 600℃인 소성로에 투입하고15℃/min의 승온율로 1,180℃까지 상승시키고 1,180℃에서 10분간 소성시켰다.The dry molded product of Example 4 was put into a firing furnace having an inlet temperature of 600 ° C., raised to 1,180 ° C. at a temperature rising rate of 15 ° C./min, and calcined at 1,180 ° C. for 10 minutes.

1)구형의 소결체를 직접 이용하여 측정한 비정형 일축압축강도를 나타냄1) It shows atypical uniaxial compressive strength measured using spherical sintered body directly.

실시예 4는 최적 발포온도조건인 실시예 2와 동일한 조건에서 소성시켰음에도 불구하고 혼합체의 내부가 완전 용융 발포되지 않고 단지 혼재된 하수슬러지 성분이 융체화되어 그 주변 입자들을 융결시킴으로서 고강도의 소결체가 얻어졌다. 이는 하수슬러지에 비해 상대적으로 융점이 높은 보조제의 함유량 증가로 인해 혼합체의 전체 융점 증가 및 하수슬러지 혼입비율이 상대적으로 감소함에 따라 내부발열량에 의한 혼합체 내부 온도상승률의 저하 등에 그 원인이 있다. 따라서 이를 극복하고 완전한 내부용융발포체를 얻기 위해서는 실시예 5와 같이 소성온도조건을 전체적으로 상향 조정함으로서 혼합체의 내부가 완전 용융 발포된 형태로 비록 압축강도는 실시예 4에 비해 낮아지지만 비중 1 이하인 초경량 소결체를 유도할 수 있었다.Although Example 4 was calcined under the same conditions as in Example 2, which is the optimum foaming temperature condition, the inside of the mixture was not completely melt-foamed, and only the mixed sewage sludge component was melted to fuse the surrounding particles, thereby forming a high-strength sintered body. Obtained. This is due to the decrease in the internal temperature rise rate of the mixture due to the internal calorific value increase as the total melting point of the mixture and the sewage sludge mixing ratio is relatively reduced due to the increased content of the auxiliary agent having a higher melting point than the sewage sludge. Therefore, in order to overcome this and obtain a complete internal melt foam, the internal temperature of the mixture is fully melted by adjusting the firing temperature conditions as in Example 5, but the ultra-light sintered compact having a specific gravity of 1 or less although the compressive strength is lower than that of Example 4 Could be induced.

또한 표 2의 결과는 실시예 5의 압축강도가 동일한 내부구조 및 비중을 보이는 실시예 1∼3의 결과산물에 비해 2배 이상증가되어있음을 보여 강도보강용 보조제로서 석탄회의 역할이 매우 효과적임을 입증하고 있다. 한편 비교예 2와 3은 단지투입구 온도만 낮추었을 뿐으로 실시예 4, 5와 승온율 및 최종 소성온도가 같았고 훨씬 긴 시간동안 소성시켰음에도 불구하고 소결이 불완전하여 높은 흡수율을 보이거나 수축 소결되어 비중이 높아지는 등 본 발명의 목적을 달성하기 어려웠다.In addition, the results of Table 2 shows that the compressive strength of Example 5 is more than doubled as compared with the resultant products of Examples 1 to 3 showing the same internal structure and specific gravity, indicating that the role of coal ash as a strength reinforcing aid is very effective. Prove that. On the other hand, Comparative Examples 2 and 3 only lowered the inlet temperature, and the same heating rate and final firing temperature as those of Examples 4 and 5, and despite firing for a longer time, the sintering is incomplete, showing a high absorption rate or shrinkage sintered specific gravity It was difficult to achieve the object of the present invention, such as this increase.

<실시예 6><Example 6>

안양시의 하수슬러지 50중량%에 점결제로 점토를 20중량%, 강도보강용 물성 보강제로 석탄회를 30중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.50% by weight of sewage sludge in Anyang City was mixed with 20% by weight of clay as a caking agent and 30% by weight of ash with a reinforcing agent for strength reinforcement in the same manner as in Example 4.

<실시예 7><Example 7>

안양시의 하수슬러지 50중량%에 점결제로 점토를 30중량%, 강도보강용 물성 보강제로 석탄회를 20중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.50% by weight of sewage sludge in Anyang-si was mixed with 30% by weight of clay as a caking agent and 20% by weight of coal ash with a property reinforcing agent for strength reinforcement in the same manner as in Example 4.

<실시예 8><Example 8>

안양시의 하수슬러지 40중량%에 점결제로 점토를 30중량%, 강도보강용 물성 보강제로 석탄회를 30중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.40 wt% of sewage sludge in Anyang-si was mixed with 30 wt% clay as a caking agent and 30 wt% coal ash with a physical reinforcing agent for strength reinforcement in the same manner as in Example 4.

<실시예 9>Example 9

안양시의 하수슬러지 40중량%에 점결제로 점토를 20중량%, 강도보강용 물성 보강제로 석탄회를 40중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.40 wt% of sewage sludge in Anyang-si was mixed with 20 wt% clay as a caking agent and 40 wt% coal ash with a physical reinforcing agent for strength reinforcement in the same manner as in Example 4.

<실시예 10><Example 10>

안양시의 하수슬러지 30중량%에 점결제로 점토를 40중량%, 강도보강용 물성 보강제로 석탄회를 30중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.30% by weight of sewage sludge in Anyang-si was mixed with 40% by weight of clay as a binder and 30% by weight of ash with a reinforcing agent for strength reinforcement in the same manner as in Example 4.

<실시예 11><Example 11>

안양시의 하수슬러지 30중량%에 점결제로 점토를 30중량%, 강도보강용 물성 보강제로 석탄회를 40중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.30% by weight of sewage sludge in Anyang-si was mixed with 30% by weight of clay as a caking agent and 40% by weight of coal ash with a property reinforcing agent for strength reinforcement in the same manner as in Example 4.

<실시예 12><Example 12>

안양시의 하수슬러지 30중량%에 점결제로 점토를 20중량%, 강도보강용 물성 보강제로 석탄회를 50중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.30% by weight of sewage sludge in Anyang City was mixed with 20% by weight of clay as a caking agent and 50% by weight of coal ash with a property reinforcing agent for strength reinforcement in the same manner as in Example 4.

<비교예 4><Comparative Example 4>

안양시의 하수슬러지 10중량%에 점결제로 점토를 20중량%, 강도보강용 물성 보강제로 석탄회를 70중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.10 wt% of sewage sludge in Anyang-si was mixed with 20 wt% of clay as a caking agent and 70 wt% of coal ash with a physical reinforcing agent for strength reinforcement in the same manner as in Example 4.

<비교예 5>Comparative Example 5

안양시의 하수슬러지 20중량%에 점결제로 점토를 20중량%, 강도보강용 물성 보강제로 석탄회를 60중량% 혼합한 것을 실시예 4와 동일한 방법으로 소성시켰다.20% by weight of sewage sludge in Anyang City was mixed with 20% by weight of clay as a caking agent and 60% by weight of coal ash with a property reinforcing agent for strength reinforcement in the same manner as in Example 4.

실시예 6에서 실시예 12까지 그리고 비교예 5와 비교예 6에서 얻어진 결과산물의 물성을 측정해본 결과, 표 3에 나타낸바와 같았다.The physical properties of the resultant products obtained in Examples 6 to 12 and in Comparative Example 5 and Comparative Example 6 were as shown in Table 3.

1)구형의 소결체를 직접 이용하여 측정한 비정형 일축압축강도를 나타냄1) It shows atypical uniaxial compressive strength measured using spherical sintered body directly.

표 3에서 알 수 있듯이 하수슬러지의 혼입량이 30중량% 미만일 경우 비중 및 흡수율이 증가되어 경량골재로서 그 품질이 저하되어 본 발명의 목적을 효율적으로달성하기 어려웠다. 특히 비교예 5와 6의 경우 타 실시예와는 달리 실시예 5의 소성조건에서 조차 내부용융발포가 이루어지지 않았으며 단지 비중 1.65의 견고한 소결체를 얻을 수 있을 뿐으로, 전체 혼합체의 용융점에 가까운 1240℃ 이상이 되어야만 비로소 내부용융발포가 가능하였다. 그러나 이 경우 대부분 산품의 표층부가 파열되거나 또는 표면이 심각하게 용융되는 관계로 소결체가 로벽에 융착되거나 소결체끼리 상호 융결되는 현상이 빈발하는 등 생산공정면에서나 제품면에서 실효적이지 못하였다.As can be seen from Table 3, when the amount of sewage sludge mixed is less than 30% by weight, specific gravity and water absorption are increased, and the quality of the lightweight aggregate is lowered, making it difficult to efficiently achieve the object of the present invention. In particular, in the case of Comparative Examples 5 and 6, unlike the other examples, no internal melt foaming was performed even under the firing conditions of Example 5, and only a solid sintered body having a specific gravity of 1.65 was obtained, which was 1240 ° C close to the melting point of the entire mixture. Only when the internal melt foaming was possible. However, in this case, due to the rupture of the surface layer of the product or the serious melting of the surface, the sintered bodies were fused to the furnace walls or the sintered bodies were frequently fused to each other.

본 발명은 하수슬러지를 고온에서 연소시킨다는 점에서는 소각로나 용융로 방식과 그 기본원리가 동일하지만 하수슬러지에 점결제 또는 점결제 및 물성 보강제를 혼합하고 성형한 후 그 성형체를 고온(융점 이하)에 투입하여 하수슬러지를 연소시킴과 동시에 그 발열량을 성형체 내부에 집중시킴으로서 내부를 용융, 소결시켜, 그 처리산물이 소각재나 불규칙한 형태의 괴상 슬래그가 아닌 재활용 목적에 따라 의도적으로 정형화된 소결체로 산출할 수 있으며, 동시에 동일 혼합조성이라 할지라도 투입온도 조건만을 변화시킴으로서, 또한 동일소성온도 조건이라 할지라도 강도보강용 보조제(물성 보강제)의 혼합비율을 변화시킴으로서, 최종산물의 비중 및 압축강도를 자유롭게 조절할 수 있는 효과를 가진다.The present invention is the same as the incinerator or melting furnace method in terms of burning sewage sludge at a high temperature, but after mixing and molding a binder or caking additive and a physical reinforcing agent in the sewage sludge and put the molded body at a high temperature (below melting point) By burning sewage sludge and concentrating the calorific value inside the molded body, the inside is melted and sintered, and the processed product can be calculated as intentionally shaped sintered body according to the purpose of recycling instead of burning ash or irregular shaped slag. At the same time, it is possible to freely control the specific gravity and the compressive strength of the final product by changing only the input temperature condition even in the same mixing composition and by changing the mixing ratio of the strength reinforcing agent (physical reinforcing agent) even under the same firing temperature condition. Has an effect.

또한, 이상의 실시예와 비교예를 통하여 알 수 있는 바와 같이, 본 발명의 다공질 소결체는 구조용 및 비구조용 경량 건축자재(경량골재, 경량벽돌, 방음 및 단열의 경량판넬, 기층재, 로반재 등)로서 폭넓게 이용될 수 있어 폐기물인 하수슬러지와 석탄회의 처분 및 재활용을 다변화, 다량화, 부가가치화하는데 유용할 뿐만 아니라 하수슬러지를 내부발열제로 이용하여 타 무기폐기물(각종 회분 및 점토질 폐기물 등)을 동반처분할 수 있슴은 물론, 하수슬러지와 같이 유기질을 다량 함유하고 있는 타 폐기물의 안정화/고형화를 위한 처분방법 및 부가가치 창출을 위한 자원화 기술로서도 응용되어질 수 있다.In addition, as can be seen through the above examples and comparative examples, the porous sintered body of the present invention is for structural and non-structural lightweight building materials (lightweight aggregate, lightweight brick, soundproofing and insulation lightweight panels, base materials, roban materials, etc.) As it is widely used, it is not only useful for diversifying, multiplying and adding value of waste sewage sludge and coal ash, but also using other sewage sludge as internal heat generating agent and accompanying other inorganic wastes (various ash and clay waste, etc.). Not only can it be disposed of, but it can also be applied as a disposal method for stabilizing / solidifying other wastes containing a large amount of organic matter, such as sewage sludge, and as a resourceization technology for creating value added.

Claims (2)

하수슬러지(건조중량기준) 30∼90중량%에 점결제로 점토, 점토질 폐기물, 벤토나이트 중 선택된 1종 이상을 10∼70중량% 혼합하고 성형한 후, 고온에서 소결시켜 하수슬러지를 자원화하는 방법에 있어서,Sewage sludge (dry weight basis) 30 to 90% by weight of one or more selected from clay, clay waste, and bentonite as a caking agent 10 to 70% by weight is mixed and molded, and then sintered at high temperature to recycle sewage sludge In 상기 성형물을 800∼1180℃의 소성온도에서 총 10∼30분간 소성하되,The molded product was fired at a firing temperature of 800 to 1180 ° C. for a total of 10 to 30 minutes, 제품투입구와 소성구간의 온도차이가 200℃ 이내이면서, 투입구에서 소성구간까지 도달하는 시간을 5분 이상 20분 이내로 하여 소성하는 것을 특징으로 하는 내부발열 소결법에 의한 하수슬러지의 자원화 방법.A method for recycling sewage sludge by the internal heating sintering method, wherein the temperature difference between the product inlet and the firing section is within 200 ° C., and the baking time is reached within 5 minutes to 20 minutes. 제 1항에 있어서, 물성 보강제로서 SiO2를 40중량% 이상, Al2O310중량% 이상 함유한 석탄회, 소각회, 고로슬래그, 폐주물사 중 선택된 1종 이상을 하수슬러지와 점결제의 합 100중량%에 대하여 50중량% 이내로 첨가하는 것을 특징으로 하는 내부발열 소결법에 의한 하수슬러지의 자원화 방법.The method of claim 1, wherein at least one selected from coal ash, incineration ash, blast furnace slag, and waste foundry sand containing at least 40% by weight of SiO 2 and at least 10% by weight of Al 2 O 3 as a physical property reinforcing agent is a sum of sewage sludge and a binder. A method for recycling sewage sludge by the internal heat generating sintering method, which is added within 50% by weight relative to the weight%.
KR1019980039361A 1998-04-17 1998-09-23 Method of recycling sewage sludge as useful sources KR100347997B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1998-013803 1998-04-17
KR1019980013803 1998-04-17
KR19980013803 1998-04-17

Publications (2)

Publication Number Publication Date
KR19990081756A KR19990081756A (en) 1999-11-15
KR100347997B1 true KR100347997B1 (en) 2002-12-28

Family

ID=37488803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980039361A KR100347997B1 (en) 1998-04-17 1998-09-23 Method of recycling sewage sludge as useful sources

Country Status (1)

Country Link
KR (1) KR100347997B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562169B1 (en) * 2003-08-25 2006-03-20 전북대학교산학협력단 Manufacturing method of lightweight aggregate using ash from municipal and industrial solid waste incinerators
KR100874887B1 (en) * 2007-12-27 2008-12-19 한국건설기술연구원 Producing method carbonized lightweight aggregate using organic sludge
KR101106780B1 (en) 2010-03-12 2012-01-18 지유 주식회사 Ceramic carrier and preparation method thereof
KR101377640B1 (en) * 2012-09-27 2014-03-25 현대제철 주식회사 Heat insulating material manufactured by using blast furnace slag and the method of manufacturing the same
KR20160027826A (en) 2014-09-02 2016-03-10 주식회사 서문 Artificial lightweight aggregate using waste and manufacturing method thereof and manufacturing system thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318343B1 (en) * 1999-11-19 2001-12-24 이중기 Succulent sludge resource conversion system
KR20000063242A (en) * 2000-06-01 2000-11-06 조래웅 a fabrication method of block
KR100340121B1 (en) * 2000-11-06 2002-06-10 김태현 Cray brick, cray meterial brick footpath-roadway and manufacturing method of the same
KR20010016212A (en) * 2000-11-22 2001-03-05 김태현 Mineral brick footpath-roadway and manufacturing method of the same
KR100450898B1 (en) * 2001-05-03 2004-10-01 송기도 production of incinerated construction materials using wastewater sludge
KR100769954B1 (en) * 2005-09-14 2007-10-25 문경주 Manufacturing method lightweight aggregate using organic and inorganic waste complexly
KR100731956B1 (en) * 2005-12-28 2007-06-25 전북대학교산학협력단 Manufacturing method of insulating building material
KR101307182B1 (en) * 2012-03-27 2013-09-11 명지대학교 산학협력단 Manufacturing method of chamotte using waterworks sludge and chamotte manufactured thereby

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543295A (en) * 1991-03-22 1993-02-23 Senji Kaneko Production of floor plate for road wherein sludge is used as raw material
KR930012621A (en) * 1991-12-14 1993-07-20 송해헌 Method for manufacturing turbulent stone using water purification plant sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543295A (en) * 1991-03-22 1993-02-23 Senji Kaneko Production of floor plate for road wherein sludge is used as raw material
KR930012621A (en) * 1991-12-14 1993-07-20 송해헌 Method for manufacturing turbulent stone using water purification plant sludge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562169B1 (en) * 2003-08-25 2006-03-20 전북대학교산학협력단 Manufacturing method of lightweight aggregate using ash from municipal and industrial solid waste incinerators
KR100874887B1 (en) * 2007-12-27 2008-12-19 한국건설기술연구원 Producing method carbonized lightweight aggregate using organic sludge
KR101106780B1 (en) 2010-03-12 2012-01-18 지유 주식회사 Ceramic carrier and preparation method thereof
KR101377640B1 (en) * 2012-09-27 2014-03-25 현대제철 주식회사 Heat insulating material manufactured by using blast furnace slag and the method of manufacturing the same
KR20160027826A (en) 2014-09-02 2016-03-10 주식회사 서문 Artificial lightweight aggregate using waste and manufacturing method thereof and manufacturing system thereof

Also Published As

Publication number Publication date
KR19990081756A (en) 1999-11-15

Similar Documents

Publication Publication Date Title
Leiva et al. Characteristics of fired bricks with co-combustion fly ashes
KR100347997B1 (en) Method of recycling sewage sludge as useful sources
Chen et al. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate
Liaw et al. A novel method to reuse paper sludge and co-generation ashes from paper mill
Lu et al. The different properties of lightweight aggregates with the fly ashes of fluidized-bed and mechanical incinerators
JP3188200B2 (en) Manufacturing method of artificial lightweight aggregate
GB2480686A (en) Construction products made from sulfur polymer cement
EP0168532B1 (en) A method for processing dredging mud, such as harbour mud and similar products
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
KR100591060B1 (en) composition of lightweight aggregate and menufacturing method of lightweight aggregate thereby
US6913643B2 (en) Lightweight foamed glass aggregate
KR100420246B1 (en) Light-weight porous aggregate for acoustic wave damping modules and method for manufacturing the same
KR100404614B1 (en) Process for production of construction material by use of waste-burnt ashes
JP4759667B2 (en) Paper sludge incinerated ash granulated hydrothermal solidified body-aluminum composite material
KR100587624B1 (en) Treatment, disposal and recycling method of dewatered organic sludge by production processes of ceramics
KR19980068412A (en) Method for manufacturing lightweight foamed ceramic building materials using waste
KR100327729B1 (en) a method of preparation for ultra light-weight, porous, inorganic material and a material thereof
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
EP3140055B1 (en) A method of disposal and utilisation of dusts from an incineration installation and sludge from flotation enrichment of non-ferrous metal ores containing hazardous substances in the process of light aggregate production for the construction industry
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
KR100241564B1 (en) Artificial light weight aggregate and method for making the same using sludge ash and/or sludge
JP3723161B2 (en) Aggregate manufacturing method
JP2000034179A (en) Production of water-holding granular sintered compact
IT9022229A1 (en) HIGH MECHANICAL RESISTANCE GRANULATES FROM INORGANIC INDUSTRIAL WASTE.
EP0466877B1 (en) Process for environmentally safe disposal of noxious solid, liquidand/or gaseous substances at temperatures of 400 to 1800 degrees celsius

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
FPAY Annual fee payment

Payment date: 20130429

Year of fee payment: 11

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20150113

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170706

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee