KR100874887B1 - Producing method carbonized lightweight aggregate using organic sludge - Google Patents

Producing method carbonized lightweight aggregate using organic sludge Download PDF

Info

Publication number
KR100874887B1
KR100874887B1 KR20080035197A KR20080035197A KR100874887B1 KR 100874887 B1 KR100874887 B1 KR 100874887B1 KR 20080035197 A KR20080035197 A KR 20080035197A KR 20080035197 A KR20080035197 A KR 20080035197A KR 100874887 B1 KR100874887 B1 KR 100874887B1
Authority
KR
South Korea
Prior art keywords
organic sludge
carbonized
weight
aggregate
sludge
Prior art date
Application number
KR20080035197A
Other languages
Korean (ko)
Inventor
유영석
이재익
천경호
신우섭
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Application granted granted Critical
Publication of KR100874887B1 publication Critical patent/KR100874887B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0418Wet materials, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

A method of manufacturing carbonization light weight aggregate using organic sludge is provided to have an absorption and an adhesion by a carbonization surface by mixing the organic sludge and clay, molding to a predetermined shape and being fired at a high temperature under a reducing atmosphere. A method of manufacturing carbonization light weight aggregate using organic sludge comprises steps of: manufacturing a mixed material by mixing water with a mixture of clay of 90~10 weight% and the organic sludge of 10~90 weight%; molding and drying the mixed material; and being plasticized at a high temperature of 700~1100‹C in order to have a lightness, a water-absorption, an adsorption capability and a mechanical strength under a reducing atmosphere.

Description

유기성 슬러지를 이용한 탄화경량골재 제조방법{Producing method carbonized lightweight aggregate using organic sludge}Producing method carbonized lightweight aggregate using organic sludge}

본 발명은 유기성 슬러지를 이용하여 탄화의 표면특성을 갖는 경량골재의 제조방법에 관한 것으로, 보다 상세하게는 하수슬러지, 정수슬러지 및 준설토등을 포함하는 유기성 슬러지와 점토를 혼합하여 소정 형상으로 성형하고 환원분위기 하에서 고온 소성함으로써 탄화표면에 의하여 흡수력과 흡착력을 가지면서 우수한 소성강도를 갖는 유기성 슬러지를 이용한 탄화경량골재의 제조방법에 관한 것이다.The present invention relates to a method for producing lightweight aggregate having surface characteristics of carbonization using organic sludge, and more specifically, to form a predetermined shape by mixing organic sludge and clay including sewage sludge, purified sludge and dredged soil. The present invention relates to a method for producing carbonized lightweight aggregate using organic sludge having excellent plastic strength by absorbing and adsorbing power by a carbonized surface by high temperature baking in a reducing atmosphere.

하수슬러지, 정수슬러지 및 준설토등을 포함하는 유기성 슬러지 중에서, 도시지역의 하수슬러지는 중량기준으로 수분 75∼85%, 유기물 10∼25%, 무기물 5∼10%로 이루어져 있다. 이러한 하수슬러지는 수분의 건조와 더불어 유기물 안정화에 초점을 맞추어 고화에 의한 복토재화 기술, 탄화에 의한 고체연료화 기술, 미생물 분해에 의한 퇴비화 기술 등이 개발되어 왔다. Among organic sludges including sewage sludge, purified sludge and dredged soil, sewage sludge in urban area is composed of 75 ~ 85% water, 10 ~ 25% organic matter and 5 ~ 10% inorganic matter by weight. Such sewage sludge has been developed with a focus on the stabilization of organic matters along with the drying of moisture, covering soil regeneration by solidification, solid fuelization by carbonization, and composting by microbial decomposition.

상기한 유기성 슬러지를 이용한 기술중에서, 복토재화 기술은 수분을 증발시키고 유기물을 고화제로 포위하여 외부로 유출되지 않도록 하는 특징을 갖고 있지만, 제조된 제품의 특성은 외부에서 투입된 고화제 및 첨가제의 성분에 의하여 좌우된다. 따라서, 일반토양에 비하여 공학적으로 열악한 품질을 갖는 토양이기 때문에 저급의 복토재로 한정하여 재활용될 수밖에 없다. 또한, 현재까지 제안된 탄화기술들은 과거부터의 탄화기술 혹은 활성탄 제조기술의 변형으로서, 미립형태인 유기성 슬러지를 탄화시켜 미분말형태의 탄화체를 생성하고, 이를 그대로 혹은 과립형태로 제조하여 고체연료, 토양개량제, 수처리 여재로 재활용하는 기술들이었다. 그러나, 탄화기술을 적용하여 얻어진 탄화물은 미분말형태의 경우 바람 및 유체에 의하여 유동되어 적용상 용이치 않으며, 탄화물의 연료화는 발열량이 떨어질 뿐만 아니라, 이러한 저급의 고체연료를 안정적으로 사용할 수 있는 수요처가 부족한 실정이다. 또한, 상기 탄화물은 토양개량제나 수처리 여재활용도 물리적 강도나 성능문제로 재활용이 용이하지 않다. 이와 같이 복토재화 기술과 탄화기술은 제조된 저급품질의 재활용 제품을 기존의 수요처에 적용하는데 한계가 있으며, 안정적인 수요처를 확보하는데 문제가 있다.Among the technologies using the organic sludge described above, the cover material refining technology has a feature of evaporating moisture and enveloping organic matter with a solidifying agent to prevent leakage to the outside. Depends on. Therefore, since the soil has an engineering poor quality compared to general soil, it is inevitably recycled only to low grade cover material. In addition, carbonization techniques proposed to date are modifications of carbonization techniques or activated carbon production techniques from the past, and carbonized organic sludge in the form of fine powder to produce carbon powder in the form of fine powder, and produced as it is or in the form of granules, solid fuel, The techniques were recycled into soil improvers and water treatment media. However, the carbide obtained by applying the carbonization technology is not easy to apply because it is flowed by wind and fluid in the case of fine powder form, and the fuelization of carbide not only reduces the calorific value, but also has a demand for stable use of such low-grade solid fuel. It is not enough. In addition, the carbide is not easy to recycle due to physical strength or performance problems, such as soil improver or water treatment recycle. As described above, the cover material and carbonization technologies have limitations in applying the manufactured low-quality recycled products to existing demand sources, and there is a problem in securing stable demand sources.

한편, 유기성 슬러지를 산화분위기에서 소성하는 경량골재 제조기술은 고온에서 유기성분의 연소에 의한 다공성 확보와 무기물의 소성에 의한 구조지지체 형성을 도모하는 기술이다. 이 기술에서 경량골재의 전체적인 구조형성을 위해서는 원료성분 중 무기성분이 대부분이어야 하며, 유기성분은 큰 부피의 연소가스로 전 환되어 기공을 형성하게 되므로 비교적 소량만을 필요로 한다. 그러나 유기성 슬러지는 유기물량이 무기물량에 비하여 훨씬 많고, 부피도 크기 때문에 유기성 슬러지를 이용하여 산화분위기에서 소성에 의하여 경량골재를 제조하기 위해서는 외부에서 점토를 비롯한 많은 양의 무기물을 공급해야 한다. 이는 처리시설이기도 한 재활용시설의 규모를 크게 하기 때문에, 시설비와 유지관리비 부담도 커지고, 유기성 슬러지 처리단가를 대폭 증가시키는 요인으로 작용한다. 또한, 이렇게 제조된 경량골재는 경량성만을 갖고 있어 적용처가 건축물 등의 건설구조물로 한정되는데, 고도의 안정성과 내구성을 요구하는 건설구조물의 특성을 감안하면 신재료가 사용되는 고급 경량 골재를 대체하는 골재로서 적용하는데 어려운 문제점을 내포하고 있다. On the other hand, the lightweight aggregate manufacturing technology for firing organic sludge in an oxidizing atmosphere is a technique to secure the porous by the combustion of organic components at high temperature and to form a structural support by firing the inorganic material. In this technique, in order to form the overall structure of the light weight aggregate, the inorganic component of the raw material should be mostly, and the organic component is converted into a large volume of combustion gas to form pores, so only a relatively small amount is required. However, since organic sludge has much more organic matter than inorganic amount and has a large volume, in order to manufacture lightweight aggregate by firing in an oxidizing atmosphere using organic sludge, a large amount of inorganic material including clay must be supplied from the outside. This increases the size of the recycling facility, which is also a treatment facility, increasing the burden on facility and maintenance costs, and significantly increasing the cost of treating organic sludge. In addition, the lightweight aggregate manufactured as described above is limited to construction structures such as buildings because it has only light weight. Considering the characteristics of construction structures requiring high stability and durability, it is possible to replace high-grade lightweight aggregates using new materials. It is difficult to apply as aggregate.

이에 본원 출원인은 상기한 문제점들을 해결하기 위하여 유기성 슬러지 내의 낮은 무기물 비율에 더하여 별도의 무기물을 첨가하고, 소성온도를 올려 성형체의 기계적 강도를 증대토록 함과 동시에, 환원분위기에서 소성함으로써 탄화에 의한 경량성, 흡수성, 흡착성을 갖도록 하고 유기물의 기화에 의하여 공극이 발생하지 않고, 유기물의 탄화를 통하여 구조지지체 역할을 함으로써 무기물의 첨가량을 적게 할 수 있다는 현상을 발견하고, 본 발명을 완성하였다. In order to solve the above problems, the present applicant adds a separate inorganic material in addition to the low inorganic matter ratio in the organic sludge, increases the firing temperature to increase the mechanical strength of the molded body, and simultaneously fires in a reducing atmosphere, thereby reducing the weight of carbon by carbonization. The present invention has been found to have the property of absorbing, absorbing and adsorbing, and not forming voids by evaporation of organic matter, and to reduce the amount of inorganic matter added by acting as a structural support through carbonization of organic matter.

따라서, 상기한 바와 같은 제반 문제점을 해결하기 위한 본 발명의 첫번째 목적은 하수슬러지, 정수슬러지 및 준설토등을 포함하는 유기성 슬러지를 이용하여 경량성, 흡수성, 흡착성을 갖으면서 높은 성형체의 강도를 갖는 탄화골재를 제조하는 방법을 제공하는 것이다.Accordingly, the first object of the present invention for solving the above problems is to carbonize having high strength of the molded body while having light weight, absorbency and adsorption using organic sludge including sewage sludge, purified sludge and dredged soil. It is to provide a method for producing aggregate.

또한, 본 발명의 두번째 목적은 옥상녹화, 비점오염원 저감, 우수의 지하침투 등의 기초 소재로 활용될 수 있는 기능성 골재인 탄화골재의 제조방법을 제공하는 것이다.In addition, a second object of the present invention is to provide a method for producing carbonized aggregate, which is a functional aggregate that can be used as a base material such as rooftop greening, non-point source reduction, rainwater underground penetration.

본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한 본 발명의 목적 및 장점들은 특허 청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다. The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention which are not mentioned above can be understood by the following description, and will be more clearly understood by the embodiments of the present invention. It will also be readily apparent that the objects and advantages of the invention may be realized by the means and combinations thereof indicated in the claims.

상기한 바와 같은 목적을 달성하기 위한 본 발명은, 유기성 슬러지 10∼90중량%, 점토 90∼10중량%에 물을 혼합하여 혼합원료를 제조하는 제1 단계; 상기 혼합원료를 구(球)형으로 성형 및 건조하는 제2 단계; 및 상기 성형체를 환원분위기에서 경량성, 흡수성, 흡착성의 기능성과 기계적 강도를 갖도록 700∼1100℃의 고온에서 소성하는 제3 단계를 포함하는 유기성 슬러지를 이용한 탄화경량골재의 제조방법을 제공한다.The present invention for achieving the above object, the first step of preparing a mixed raw material by mixing water in organic sludge 10 to 90% by weight, 90 to 10% by weight of clay; Forming and drying the mixed raw material in a sphere shape; And a third step of firing the molded body at a high temperature of 700 to 1100 ° C. to have light weight, absorbency, and adsorption functionality and mechanical strength in a reducing atmosphere.

상기 제1 단계에서의 유기성 슬러지는 하수슬러지, 정수슬러지 및 준설토등을 포함한다.The organic sludge in the first step includes sewage sludge, purified sludge and dredged soil.

또한, 제 1 단계는 혼합원료 100중량부에 대하여, 석회석, 산화철, 고로슬래그 등에서 선택된 1종 이상의 첨가제 5∼10 중량부를 더 첨가함으로써 탄화경량골재의 발포성과 물리적특성을 향상시키는 것을 특징으로 한다.In addition, the first step is characterized by improving the foaming properties and physical properties of the carbonized lightweight aggregate by adding 5 to 10 parts by weight of at least one additive selected from limestone, iron oxide, blast furnace slag and the like based on 100 parts by weight of the mixed raw material.

상기 제2 단계는 습윤상태의 성형체를 100∼300℃에서 전 건조 후, 소성하는 과정을 포함하는 것을 특징으로 한다.The second step is characterized in that it comprises a step of pre-drying the molded body in the wet state at 100 ~ 300 ℃, and firing.

상술한 제조과정을 통하여 얻어진 탄화경량골재는 비중 0.89 ∼ 1.13, 압축강도가 적어도 10kg/cm2 ∼ 24kg/cm2, 흡수율 16 ∼ 35의 물성치를 갖는 것을 특징으로 한다.The lightweight carbide aggregate obtained through the above-described manufacturing process has a specific gravity of 0.89 to 1.13 and a compressive strength of at least 10 kg / cm 2 It is characterized by having a physical property of -24 kg / cm <2> and water absorption 16-35.

상기한 본 발명의 탄화경량골재 제조방법에 따르면, 경량성, 흡수성, 흡착성의 기능을 가지면서 우수한 기계적 강도 특성을 갖는 탄화경량골재를 제조할 수 있다. 따라서, 본 발명에 의해 제조된 탄화경량골재는 옥상녹화용 경량골재 혹은 경량토, 우수에 의한 비점오염물질 여과용 담체, 우수의 지하침투용 환경골재, 매립토 등으로 직접 사용할 수 있으며, 이들 골재를 이용한 다양한 제품들로 제작하여 활용할 수 있는 효과를 가진다. According to the method for producing a light weight carbide aggregate of the present invention, it is possible to produce a light weight, absorbent, adsorptive, yet lightweight carbide aggregate having excellent mechanical strength characteristics. Therefore, the carbonized light weight aggregate manufactured by the present invention can be used directly as a lightweight aggregate or roofing soil for lightweight roofing, a carrier for filtration of non-point pollutants by rainwater, environmental aggregates for underground penetration of rainwater, landfill soil, and the like. Has the effect that can be produced by utilizing a variety of products used.

또한, 본 발명은 유기성 슬러지가 대량 발생되고 처리가 곤란한 현 상황에서 우수한 제품 품질과 대량수요처를 갖게 함으로써 자원절약과 처리효과를 거둘 수 있는 다른 효과를 가진다. In addition, the present invention has a different effect that can achieve the resource saving and treatment effect by having an excellent product quality and a large demand in the present situation where a large amount of organic sludge is generated and difficult to treat.

또한, 본 발명은 환경적 요인에 의하여 새롭게 요구되는 기능성 골재의 수요를 충족시킬 수 있고, 재활용제품의 고부가가치화로 유기성 슬러지 처리의 경제성을 높이는 또 다른 효과를 가진다. In addition, the present invention can meet the demand of the functional aggregate newly required by environmental factors, and has another effect of increasing the economical efficiency of the organic sludge treatment by the high value added of recycled products.

상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 기술된 상세한 설명을 통하여 보다 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. The above objects, features, and advantages will become more apparent from the detailed description given with reference to the accompanying drawings, and as a result, those skilled in the art may easily implement the technical idea of the present invention. You can do it. In addition, in describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

이하, 첨부된 도1 내지 도3을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 3.

본 발명은 도1에 도시한 바와 같이 유기성 슬러지, 점토, 물을 계량하여 혼합함으로써 일정한 함수율의 혼합원료를 제조하는 제1 단계를 포함한다. As shown in FIG. 1, the present invention includes a first step of preparing a mixed raw material having a constant moisture content by measuring and mixing organic sludge, clay, and water.

본 발명의 실시예에서는 상기 유기성 슬러지가 하수슬러지로 이루어진 예에 대하여 설명하지만 이에 국한하는 것은 아니고, 정수슬러지 및 준설토등을 포함할 수 있다.In the embodiment of the present invention, the organic sludge is described as an example of sewage sludge, but is not limited thereto, and may include purified sludge and dredged soil.

상기 제1 단계에서는 유기성 슬러지 10 ∼ 90중량%, 점토 90 ∼ 10중량%에 물을 혼합하여 반죽상태의 혼합원료을 제조한다. 이때, 유기성 슬러지 및 점토의 혼합물과 물의 바람직한 배합비율은 혼합물 1: 물 0.5 ∼ 1 중량부이다.In the first step, water is mixed with 10 to 90% by weight of organic sludge and 90 to 10% by weight of clay to prepare a dough mixture. At this time, a preferred blending ratio of the mixture of organic sludge and clay and water is mixture 1: 0.5 to 1 part by weight of water.

상기 혼합물과 물의 혼합비는 상기 비율에 국한하는 것은 아니다. 즉, 유기성 슬러지, 점토 및 무기첨가재의 양과 특성을 고려하여 원료들을 원활하게 혼합한 후 물을 첨가하여 반죽을 통하여 적정한 함수율을 만든다. 또한 적정 함수율은 성형기의 특성 및 성형방법에 따라 정해진다.  The mixing ratio of the mixture and water is not limited to the above ratio. That is, in consideration of the amount and characteristics of organic sludge, clay and inorganic additives, the raw materials are mixed smoothly, and water is added to make a proper moisture content through the dough. In addition, the proper moisture content is determined according to the characteristics of the molding machine and the molding method.

유기성 슬러지는 수분 70∼85 중량%, 유기물 10∼25중량%, 무기물 5∼10 중량%로 이루어져 있다. 통상적으로 하수처리장에 유입되는 하수 중에 포함된 무기물의 양에 따라 유기물 : 무기물의 중량 비율이 9:1∼5:5로 유기물의 상대적 비중이 크고, 유기물의 밀도가 작고 무기물의 밀도가 크기 때문에 부피기준으로 보면 유기물이 대부분인 것으로 보인다. Organic sludge consists of 70 to 85% by weight of water, 10 to 25% by weight of organic matter, and 5 to 10% by weight of inorganic matter. Generally, the weight ratio of organic matter to inorganic matter is 9: 1 to 5: 5 according to the amount of inorganic matter contained in the sewage treatment plant, and the volume of organic matter is large, the density of organic matter is small and the density of inorganic matter is large. By standard, most organic matter appears.

그러나, 유기물도 환원분위기의 700∼1100℃ 고온에서 소성하면 단단한 소성체가 될 수 있다는 점과 무기물의 비율이 높아지면 기계적 강도가 더 커진다는 점을 연구결과 알게 되었다. 본 발명에서는 강도와 탄화에 의한 기능성 정도에 따라 유기물과 무기물의 혼합비율을 조절하고 있는데, 이때 황토를 포함하는 석회석, 산화철, 고로슬래그 등의 무기 첨가제를 가할 수 있다. 바람직한 무기첨가제의 비율은 페이스트의 함수율에 크게 변화를 미치지 않는 범위로써 유기성 슬러지와 점토의 혼합물을 100중량부로 하였을 때, 5 ∼ 10중량부가 투입될 수 있다. However, studies have shown that organic materials can also be hardened when fired at a high temperature of 700 to 1100 ° C in a reducing atmosphere, and mechanical strength increases as the ratio of inorganic materials increases. In the present invention, the mixing ratio of organic matter and inorganic matter is adjusted according to the strength and degree of functionalization by carbonization. In this case, inorganic additives such as limestone, iron oxide, and blast furnace slag containing ocher may be added. The proportion of the preferred inorganic additives does not significantly change the water content of the paste. When the mixture of organic sludge and clay is 100 parts by weight, 5 to 10 parts by weight may be added.

또한, 본 발명에서는 혼합원료를 구(球)형으로 성형하여 건조하는 제2 단계를 포함한다. 성형방법은 성형기나 성형방법에 따라 성형체의 강도가 달라지고 소성 후의 소성체의 강도에도 영향을 미치게 되므로 최종적인 탄화골재의 용도에 따 라 적절히 성형체의 강도를 갖도록 해야 한다. 이때, 습윤상태의 구형 성형체를 150∼300℃ 온도로 가열하여 소성단계로 넘어가기 전에 건조하면 소성강도를 더욱 높일 수 있다. In addition, the present invention includes a second step of molding and mixing the mixed raw material into a sphere (sphere). Since the molding method varies according to the molding machine or the molding method, and also affects the strength of the fired body after firing, the strength of the molded body should be appropriately determined according to the use of the final carbonized aggregate. At this time, the spherical molded body in the wet state is heated to a temperature of 150 ~ 300 ℃ and dried before going to the firing step can further increase the plastic strength.

본 발명에서는 골재로서의 사용가치를 위하여 혼합원료를 구형으로 한정하여 성형하는 과정을 제시하였지만, 이에 국한하는 것은 아니고 사용처별로 다양한 형상으로 성형할 수 있음은 주지의 사실이다. In the present invention, the process of forming a limited amount of the mixed raw material to the spherical shape for the value of use as aggregate, but is not limited to this, it is well known that it can be molded in various shapes for each application.

본 발명에서는 상기 구형 성형체를 환원분위기에서 경량성, 흡수성, 흡착성의 기능성과 기계적 강도를 갖도록 소성하는 제3 단계를 특징으로 한다. 유기물은 환원분위기의 소성에서 휘발성 유기물질이 휘발되어 다공성을 갖게 되며, 이를 탄화라고 한다. 통상적으로 탄화기술은 휘발성물질의 충분한 휘발과 기공발달 및 분포특성을 고려하고 에너지 절감차원에서 비교적 낮은 온도인 300∼700℃의 소성온도를 갖는다. 본 발명에서는 높은 온도영역인 700∼1100℃에서 유기물 탄화에 의한 다공화, 탄화성분에 의한 지지체 역할 및 무기물의 소성에 의한 강도증가를 실현하여 강도와 기능성을 갖는 탄화경량골재를 제조하였다. 이때, 탄화경량골재의 강도 및 기능성은 소성온도에 의하여 좌우되기 때문에 탄화골재의 용도에 따라 적정온도를 선택해야 한다. In the present invention, the spherical shaped body is characterized in that the third step of firing in the reducing atmosphere to have lightness, absorbency, adsorption functionality and mechanical strength. The organic material is volatile organic material is volatilized in the firing of the reducing atmosphere to have a porosity, which is called carbonization. In general, carbonization technology considers sufficient volatilization, pore development, and distribution characteristics of volatile materials and has a calcination temperature of 300 to 700 ° C., which is a relatively low temperature in view of energy saving. In the present invention, a carbonized lightweight aggregate having strength and functionality was prepared by realizing porosity by organic carbonization, supporting role by carbonization component, and increasing strength by calcination of inorganic material at a high temperature range of 700 to 1100 ° C. At this time, since the strength and functionality of the light weight carbide aggregate depends on the firing temperature, an appropriate temperature should be selected according to the use of the carbonized aggregate.

다음 하기의 실시예를 통하여 본 발명의 구성을 좀더 상세히 설명한다. 그러나 본 발명이 이에 한정되는 것은 않는다.Next, the configuration of the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited thereto.

본 발명의 실시예에서는 경기도 고양시 하수종말처리장에서 수거한 유기성 슬러지 탈수케익을 건조한 후, 적정한 입도로 분쇄하여 사용하였다. 사용한 원료의 화학분석치는 표1에 나타내었다.In the embodiment of the present invention, after drying the organic sludge dewatering cake collected at the sewage treatment plant in Goyang-si, Gyeonggi-do, was used by grinding to an appropriate particle size. The chemical analysis values of the raw materials used are shown in Table 1.

<표1> 사용 원료의 화학 분석치 <Table 1> Chemical Analysis of Raw Material

함유량(%)content(%) SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO K2OK 2 O Na2ONa 2 O MnOMnO P2O5 P 2 O 5 TiO2 TiO 2 ClCl totaltotal 유기성 슬러지Organic sludge 31.1931.19 17.1017.10 7.237.23 12.012.0 1.751.75 2.602.60 0.640.64 1.751.75 14.1414.14 0.810.81 0.250.25 99.3299.32 점토clay 70.9670.96 16.9516.95 7.57.5 0.490.49 0.410.41 0.480.48 0.390.39 0.960.96 0.650.65 0.390.39 0.310.31 99.4999.49

<실시예 1><Example 1>

유기성 슬러지와 점토의 혼합비율을 9:1 중량부로 혼합 반죽하여 성형하고, 상온에서 건조시킨 후 환원 분위기의 1050℃ 소성조건에서 탄화경량골재를 제조하였다. 이 때 제조된 탄화경량골재의 성능은 비중 0.89, 압축강도가 10kg/cm2, 흡수율 35%로 나타났다. The mixing ratio of the organic sludge and clay was mixed and molded to 9: 1 parts by weight, and dried at room temperature, and then, a lightweight carbide aggregate was prepared under a 1050 ° C firing condition in a reducing atmosphere. At this time, the performance of the produced lightweight carbide aggregates showed specific gravity 0.89, compressive strength 10kg / cm 2 , and absorption rate 35%.

<실시예 2><Example 2>

유기성 슬러지와 점토의 혼합비율을 7:3 중량부로 혼합 반죽하여 성형하고, 실시예 1과 동일한 조건으로 소성할 경우 탄화경량골재의 성능은 비중 1.01, 압축강도가 15kg/cm2, 흡수율 21%로 나타났다.When the mixing ratio of organic sludge and clay is mixed and molded at 7: 3 parts by weight, and the plastic mixture is calcined under the same conditions as in Example 1, the performance of the carbonized lightweight aggregate has a specific gravity of 1.01, compressive strength of 15 kg / cm 2 , and an absorption rate of 21%. appear.

<실시예 3><Example 3>

유기성 슬러지와 점토의 혼합비율을 5:5 중량부로 혼합 반죽하여 성형하고, 실시예 1과 동일한 조건으로 소성할 경우 탄화경량골재의 성능은 비중 1.03, 압축 강도 18kg/cm2, 흡수율 20%로 나타났다. When the mixing ratio of organic sludge and clay was mixed and molded at 5: 5 parts by weight, and fired under the same conditions as in Example 1, the performance of the lightweight carbide aggregate was 1.03, compressive strength 18kg / cm 2 , and water absorption 20%. .

<실시예 4><Example 4>

유기성 슬러지와 점토의 혼합비율을 3:7 중량부로 혼합 반죽하여 성형하고, 실시예 1과 동일한 조건으로 소성할 경우 탄화경량골재의 성능은 비중 1.11, 압축강도가 20kg/cm2, 흡수율 17%로 나타났다. When the mixing ratio of organic sludge and clay is mixed and molded to 3: 7 parts by weight, and the plastic mixture is calcined under the same conditions as in Example 1, the performance of the carbonized lightweight aggregate is 1.11, compressive strength is 20kg / cm 2 , absorption rate is 17%. appear.

<실시예 5>Example 5

유기성 슬러지와 점토의 혼합비율을 1:9 중량부로 혼합 반죽하여 성형하고, 실시예 1과 동일한 조건으로 소성할 경우 탄화경량골재의 성능은 비중 1.13, 압축강도가 24kg/cm2이상, 흡수율 16%로 나타났다. When the mixing ratio of organic sludge and clay is mixed and molded at 1: 9 parts by weight, and fired under the same conditions as in Example 1, the performance of the carbonized lightweight aggregate has a specific gravity of 1.13, compressive strength of 24 kg / cm 2 or more, and an absorption rate of 16%. Appeared.

상기한 실시예 1 ∼ 5에서 보인 바와 같이 유기성 슬러지와 점토의 비율을 달리하여 소성하여 유기성 슬러지를 이용한 탄화경량골제를 제조하였으며, 비중, 압축강도, 흡수율을 비교하였다.As shown in Examples 1 to 5 described above, the organic sludge was manufactured by firing by varying the ratio of organic sludge to clay, and the carbonized lightweight aggregate using organic sludge was prepared, and specific gravity, compressive strength, and water absorption were compared.

시험 결과, 본 발명에 따른 유기성 슬러지를 이용한 탄화경량골재는 유기성 슬러지 10 ∼ 90중량%와 점토 90 ∼ 10중량%를 물에 혼합하였을 경우 비중 0.89 ∼ 1.13, 압축강도가 10kg/cm2 ∼24kg/cm2, 흡수율 16 ∼ 35의 물성치를 나타냄으로써 우수한 기능성과 강도를 발현하는 것을 확인할 수 있었다. As a result of the test, the carbonized lightweight aggregate using the organic sludge according to the present invention has a specific gravity of 0.89 to 1.13 and a compressive strength of 10 kg / cm 2 to 24 kg / when 10 to 90 wt% of organic sludge and 90 to 10 wt% of clay are mixed with water. By showing the physical property value of cm <2> and the water absorption 16-35, it was confirmed that the outstanding functionality and strength were expressed.

도1은 본 발명에 의한 유기성 슬러지를 이용한 탄화경량골재의 제조공정을 나타낸 순서도.1 is a flow chart showing the manufacturing process of the carbonized lightweight aggregate using the organic sludge according to the present invention.

도2은 본 발명의 탄화경량골재의 파단면 사진.Figure 2 is a photograph of the fracture surface of the carbonized lightweight aggregate of the present invention.

도3은 본 발명의 탄화경량골재의 표면 사진.Figure 3 is a photograph of the surface of the carbide light aggregate of the present invention.

Claims (8)

유기성 슬러지 10∼90중량%와 점토 90∼10중량%의 혼합물에 물을 혼합하여 혼합원료를 제조하는 제1 단계;A first step of preparing a mixed raw material by mixing water with a mixture of 10 to 90% by weight of organic sludge and 90 to 10% by weight of clay; 상기 혼합원료를 성형 및 건조하는 제2 단계; 및Forming and drying the mixed raw material; And 상기 성형체를 환원분위기에서 경량성, 흡수성, 흡착성의 기능성과 기계적 강도를 갖도록 700∼1100℃의 고온에서 소성하는 제3 단계A third step of firing the molded body at a high temperature of 700 to 1100 ° C. in a reducing atmosphere to have lightness, absorbency, and adsorption functionality and mechanical strength 를 포함하는 유기성 슬러지를 이용한 탄화경량골재의 제조방법.Method for producing a carbonized lightweight aggregate using an organic sludge containing. 제 1 항에 있어서,The method of claim 1, 상기 제1 단계에서의 유기성 슬러지는 하수슬러지, 정수슬러지 및 준설토중 선택된 적어도 하나를 포함하는 것을 특징으로 하는 유기성 슬러지를 이용한 탄화경량골재의 제조방법.The organic sludge in the first step is a method for producing carbonized lightweight aggregate using organic sludge, characterized in that it comprises at least one selected from sewage sludge, purified sludge and dredged soil. 제 1 항에 있어서, The method of claim 1, 제 1 단계는 탄화경량골재의 발포성과 흡수성, 흡착성 및 기계적 강도를 향상시키기 위하여, 상기 혼합원료 100중량부에 대하여 석회석, 산화철, 고로슬래그 등에서 선택된 1종 이상의 첨가제 5∼10 중량부를 더 첨가하는 것을 특징으로 하는 유기성 슬러지를 이용한 탄화경량골재의 제조방법.The first step is to add 5 to 10 parts by weight of at least one additive selected from limestone, iron oxide, blast furnace slag and the like with respect to 100 parts by weight of the blended raw material in order to improve the foaming, absorbency, adsorption and mechanical strength of the lightweight carbide aggregate. Method for producing a carbonized lightweight aggregate using an organic sludge characterized in that. 제 1 항 내지 제 3 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 유기성 슬러지 및 점토의 혼합물과 물의 배합비율이 혼합물 1: 물 0.5 ∼ 1 중량부인 것을 특징으로 하는 유기성 슬러지를 이용한 탄화경량골재의 제조방법.A blending ratio of organic sludge and clay and water is a method for producing a carbonized aggregate using organic sludge, characterized in that the mixture ratio is 1: 1 to 0.5 parts by weight of water. 제 1 항 내지 제 3 항중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 제2 단계는 The second step is 습윤상태의 성형체를 100∼300℃에서 전 건조 후, 소성하는 과정을 포함하는 것을 특징으로 하는 유기성 슬러지를 이용한 탄화경량골재의 제조방법.A method for producing a carbonized lightweight aggregate using organic sludge, comprising the step of pre-drying the wetted molded body at 100 to 300 ° C. 제 1 항에 있어서,The method of claim 1, 상기 제2 단계의 성형과정은 혼합원료를 구(球)형으로 성형하는 것을 특징으로 하는 유기성 슬러지를 이용한 탄화경량골재의 제조방법.The second step of the molding process is a method for producing a carbonized lightweight aggregate using organic sludge, characterized in that for molding the mixed raw material into a sphere (sphere). 삭제delete 삭제delete
KR20080035197A 2007-12-27 2008-04-16 Producing method carbonized lightweight aggregate using organic sludge KR100874887B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070138350 2007-12-27
KR1020070138350 2007-12-27

Publications (1)

Publication Number Publication Date
KR100874887B1 true KR100874887B1 (en) 2008-12-19

Family

ID=40372875

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080035197A KR100874887B1 (en) 2007-12-27 2008-04-16 Producing method carbonized lightweight aggregate using organic sludge

Country Status (1)

Country Link
KR (1) KR100874887B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066193B1 (en) 2008-12-12 2011-09-20 한국건설기술연구원 Carbonized lightweight aggregate be made from organic sludge
KR101128772B1 (en) * 2011-08-24 2012-03-23 한국건설생활환경시험연구원 The composition of artificial soil using stone powder sludge, the manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016859A (en) 1998-07-01 2000-01-18 Tokyo Yogyo Co Ltd Production of artificial stone intended for utilizing sewage sludge and municipal garbage for pavement
KR100347997B1 (en) * 1998-04-17 2002-12-28 라춘기 Method of recycling sewage sludge as useful sources
JP2007223841A (en) 2006-02-23 2007-09-06 Takeo Komaki Method for producing artificial aggregate using waste slag as main raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347997B1 (en) * 1998-04-17 2002-12-28 라춘기 Method of recycling sewage sludge as useful sources
JP2000016859A (en) 1998-07-01 2000-01-18 Tokyo Yogyo Co Ltd Production of artificial stone intended for utilizing sewage sludge and municipal garbage for pavement
JP2007223841A (en) 2006-02-23 2007-09-06 Takeo Komaki Method for producing artificial aggregate using waste slag as main raw material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066193B1 (en) 2008-12-12 2011-09-20 한국건설기술연구원 Carbonized lightweight aggregate be made from organic sludge
KR101128772B1 (en) * 2011-08-24 2012-03-23 한국건설생활환경시험연구원 The composition of artificial soil using stone powder sludge, the manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN111116210B (en) Method for preparing light ceramsite by utilizing biological coal ecological sintering waste soil
CN102815965B (en) Porous ceramsite made of low-silicon iron tailings and preparation method of porous ceramsite
CN101585714B (en) Preparing method of ceram site fully using biosolid and sludge
CN106747619B (en) Sintered gangue expanded perlite water permeable brick and preparation method thereof
CN103086741A (en) Biological ceramisite filter material made of vulcanized lead zinc ore flotation tailings, and preparation method thereof
CN105036709B (en) A kind of utilization sewage sludge, flyash burn the preparation method of lightweight tourmaline haydite
CN109251012A (en) A method of light ceramic is prepared using sludge and copper ashes
CN107399936B (en) Preparation method of sludge biochar water permeable brick for water purification
CN103880472A (en) Sludge porous material and preparation method thereof
CN103172347A (en) Sintered porous light-weight insulating brick produced from ceramic waste mud and manufacturing method thereof
CN105016710B (en) The method that haydite is prepared using sludge at low temperature sintering
CN104529396B (en) A kind of method utilizing domestic sludge brickmaking
CN1883746A (en) Red mudstone porous granular-ceramics filter material and method for preparing same
CN109776067A (en) A method of sintering seepy material is prepared using clay
CN102701777B (en) Method for preparing high strength structural brick
KR101066193B1 (en) Carbonized lightweight aggregate be made from organic sludge
KR100874887B1 (en) Producing method carbonized lightweight aggregate using organic sludge
KR101777676B1 (en) Adsorption carrier using coal tar pitch and water glass, and method of manufacturing there of
KR101182607B1 (en) Dehydration material of sludge with high water containing rate and method of the same using
KR20110125913A (en) Bricks for interior containing stone sludge and methods for preparing thereof
KR102372282B1 (en) Method of Preparing Artificial Lightweight Aggregate by Recycling Anaerobic Digested Organic Sludge
Uddin et al. Preparation of activated carbon from asphalt and heavy oil fly ash and coal fly ash by pyrolysis
JP4119947B2 (en) Ceramic porous body and method for producing the same
CN106116670A (en) A kind of method utilizing mud and subway shoveling sintering self-insulating brick
CN106316448B (en) A kind of light porous refractory material of rice husk base and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141211

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161213

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 11