JP4753606B2 - Hydrogen production equipment - Google Patents

Hydrogen production equipment Download PDF

Info

Publication number
JP4753606B2
JP4753606B2 JP2005105089A JP2005105089A JP4753606B2 JP 4753606 B2 JP4753606 B2 JP 4753606B2 JP 2005105089 A JP2005105089 A JP 2005105089A JP 2005105089 A JP2005105089 A JP 2005105089A JP 4753606 B2 JP4753606 B2 JP 4753606B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
purification tower
hydrogen purification
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005105089A
Other languages
Japanese (ja)
Other versions
JP2006282459A (en
Inventor
雄二 外山
豊和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005105089A priority Critical patent/JP4753606B2/en
Publication of JP2006282459A publication Critical patent/JP2006282459A/en
Application granted granted Critical
Publication of JP4753606B2 publication Critical patent/JP4753606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、吸着剤を収容する水素精製塔とオフガスを貯蔵するオフガスタンクを備え、前記水素精製塔において加圧下で前記吸着剤に水素リッチガス中の不純物を吸着させて高純度水素を精製する吸着工程と、減圧下で前記吸着剤に吸着された不純物を取り除く洗浄工程を実行し、その洗浄工程時に発生するオフガスを前記オフガスタンクに貯蔵するように構成されている水素製造装置に関する。   The present invention includes a hydrogen purification tower for storing an adsorbent and an offgas tank for storing offgas, and the high purity hydrogen is purified by adsorbing impurities in the hydrogen rich gas to the adsorbent under pressure in the hydrogen purification tower. The present invention relates to a hydrogen production apparatus configured to perform a process and a cleaning process for removing impurities adsorbed on the adsorbent under reduced pressure, and store off-gas generated in the cleaning process in the off-gas tank.

このような水素製造装置は、例えば、13Aなどの都市ガスを原料として改質、変成された水素リッチガスから高純度水素ガスを連続的に製造し、洗浄工程時に発生するオフガスをオフガスタンクに一時的に貯蔵しておいて、例えば、バーナの燃料として利用するためのもので、従来の水素製造装置では、オフガスタンクが水素精製塔とは無関係に別個に設けられていた(例えば、特許文献1参照)。   Such a hydrogen production apparatus, for example, continuously produces high-purity hydrogen gas from reformed and modified hydrogen rich gas using city gas such as 13A as a raw material, and temporarily generates off-gas generated during the cleaning process in an off-gas tank. In the conventional hydrogen production apparatus, an off-gas tank is provided separately from the hydrogen purification tower (see, for example, Patent Document 1). ).

特開2004−299994号公報(図1、図2、図4)Japanese Unexamined Patent Publication No. 2004-299994 (FIGS. 1, 2, and 4)

したがって、従来の水素製造装置では、通常、水素精製塔が外気に曝されており、特に外気温度の高い夏季などでは、水素精製塔自体の温度が高くなって吸着剤による不純物の吸着能が低下するという問題があった。
すなわち、吸着剤が水素リッチガス中の不純物を吸着する吸着工程は発熱を伴い、しかも、高温下においては、吸着剤の吸着能が低下するという特質があるため、外気温度の高い夏季などでは不純物が所望どおりに吸着されないおそれがある。
Therefore, in the conventional hydrogen production apparatus, the hydrogen purification tower is usually exposed to the outside air, and particularly in summer when the outside air temperature is high, the temperature of the hydrogen purification tower itself becomes high and the adsorption capacity of impurities by the adsorbent decreases. There was a problem to do.
In other words, the adsorption process in which the adsorbent adsorbs impurities in the hydrogen-rich gas is accompanied by heat generation, and the adsorption capacity of the adsorbent decreases at high temperatures. May not be adsorbed as desired.

本発明は、このような従来の問題点に着目したもので、その目的は、洗浄工程時に発生するオフガスの特性を有効に利用して水素精製塔を合理的に冷却し、たとえ外気温の高い夏季においても、吸着剤による不純物の吸着を所望どおりに行うことのできる水素製造装置を提供することにある。   The present invention pays attention to such conventional problems, and its purpose is to rationally cool the hydrogen purification tower by effectively utilizing the characteristics of off-gas generated during the washing process, even if the outside temperature is high. An object of the present invention is to provide a hydrogen production apparatus capable of adsorbing impurities with an adsorbent as desired even in summer.

本発明の第1の特徴構成は、吸着剤を収容する水素精製塔とオフガスを貯蔵するオフガスタンクを備え、前記水素精製塔において加圧下で前記吸着剤に水素リッチガス中の不純物を吸着させて高純度水素を精製する吸着工程と、減圧下で前記吸着剤に吸着された不純物を取り除く洗浄工程を実行し、その洗浄工程時に発生するオフガスを前記オフガスタンクに貯蔵するように構成されている水素製造装置であって、前記オフガスタンクのオフガス貯蔵空間が、前記水素精製塔の外周部の全周に接するように構成されているところにある。 A first characteristic configuration of the present invention includes a hydrogen purification tower for storing an adsorbent and an offgas tank for storing offgas. The hydrogen purification tower adsorbs impurities in the hydrogen-rich gas to the adsorbent under pressure in the hydrogen purification tower. Hydrogen production configured to perform an adsorption step for purifying pure hydrogen and a washing step for removing impurities adsorbed on the adsorbent under reduced pressure, and store off-gas generated during the washing step in the off-gas tank In the apparatus, an off-gas storage space of the off-gas tank is configured to be in contact with the entire outer periphery of the hydrogen purification tower.

本発明の第1の特徴構成によれば、洗浄工程時に発生するオフガスを貯蔵するオフガスタンクのオフガス貯蔵空間が、水素精製塔の外周部の全周に接するように構成されているので、オフガスによって水素精製塔の温度上昇を抑制することができる。
すなわち、洗浄工程は減圧下で行われるため、減圧によってオフガスの温度は低下し、発熱を伴う吸着工程時における温度よりも低くなる。その低い温度のオフガスを水素精製塔の外周部の全周に接するオフガス貯蔵空間に供給することによって、水素精製塔の外周部全周を冷却することが可能となる。
その結果、オフガスの特性を有効に利用して水素精製塔を合理的に冷却し、たとえ外気温の高い夏季においても、吸着剤による不純物の吸着を所望どおりに行うことができる。
According to the first characteristic configuration of the present invention, the offgas storage space of the offgas tank that stores the offgas generated during the cleaning process is configured to be in contact with the entire circumference of the outer periphery of the hydrogen purification tower. An increase in the temperature of the hydrogen purification tower can be suppressed.
That is, since the cleaning process is performed under reduced pressure, the temperature of the off-gas is lowered by the reduced pressure, and becomes lower than the temperature during the adsorption process with heat generation. By supplying the off-gas storage space in contact with the lower temperature of the off-gas to the entire outer peripheral portion of the hydrogen purifying column, it is possible to cool the outer peripheral portion the entire circumference of the hydrogen purifying column.
As a result, the hydrogen purification tower can be rationally cooled by effectively utilizing the off-gas characteristics, and the adsorption of impurities by the adsorbent can be performed as desired even in the summer when the outside air temperature is high.

本発明の第2の特徴構成は、前記水素精製塔の外周部壁体が、前記オフガスタンクの壁体の一部を兼用しているところにある。   A second characteristic configuration of the present invention is that the outer peripheral wall of the hydrogen purification tower also serves as a part of the wall of the offgas tank.

本発明の第2の特徴構成によれば、水素精製塔の外周部壁体が、オフガスタンクの壁体の一部を兼用しているので、壁体の兼用による構造の簡素化を図り得るのは勿論のこと、オフガスによる水素精製塔の外周部壁体の冷却がより一層効果的に行われて、吸着剤による不純物の吸着が一層確実となる。   According to the second characteristic configuration of the present invention, since the outer peripheral wall of the hydrogen purification tower also serves as a part of the wall of the off-gas tank, the structure can be simplified by the shared use of the wall. Needless to say, the cooling of the outer peripheral wall of the hydrogen purification tower by off-gas is more effectively performed, and the adsorption of impurities by the adsorbent is further ensured.

本発明の第の特徴構成は、前記水素精製塔とオフガスタンクがそれぞれ複数あって、各オフガスタンクのオフガス貯蔵空間が、各水素精製塔の外周部の全周に接するように構成されているところにある。 The third characteristic configuration of the present invention is configured such that there are a plurality of hydrogen purification towers and off-gas tanks, and the off-gas storage space of each off-gas tank is in contact with the entire circumference of the outer periphery of each hydrogen purification tower. By the way.

本発明の第の特徴構成によれば、水素精製塔とオフガスタンクがそれぞれ複数あるので、その複数の水素精製塔により高純度水素を連続的に製造することも可能となり、しかも、各オフガスタンクのオフガス貯蔵空間が、各水素精製塔の外周部の全周に接するように構成されているので、複数の水素製造塔における吸着工程も所望どおりに行うことができる。 According to the third characteristic configuration of the present invention, since there are a plurality of hydrogen purification towers and off-gas tanks, high-purity hydrogen can be continuously produced by the plurality of hydrogen purification towers. Since the off-gas storage space is in contact with the entire circumference of the outer periphery of each hydrogen purification tower, the adsorption steps in the plurality of hydrogen production towers can be performed as desired.

本発明による水素製造装置の実施の形態を図面に基づいて説明する。
この水素製造装置は、水素リッチガスから高純度水素を製造するもので、図1に示すように、第1から第3までの3つの水素精製塔1a,1b,1cを備え、各水素精製塔1a,1b,1cの外周部には、第1から第3のオフガスタンク2a,2b,2cがそれぞれジャケット化されて配置されている。
すなわち、各水素精製塔1a,1b,1cの外周部壁体が、各オフガスタンク2a,2b,2cの壁体の一部を兼用する状態で、各オフガスタンク2a,2b,2cのオフガス貯蔵空間3a,3b,3cが、各水素精製塔1a,1b,1cの外周部の全周にわたって接するように構成されている。
Embodiments of a hydrogen production apparatus according to the present invention will be described with reference to the drawings.
This hydrogen production apparatus produces high-purity hydrogen from a hydrogen-rich gas. As shown in FIG. 1, the hydrogen production apparatus includes three hydrogen purification towers 1a, 1b, 1c from first to third, and each hydrogen purification tower 1a. , 1b, 1c, first to third off-gas tanks 2a, 2b, 2c are arranged as jackets, respectively.
That is, the off-gas storage space of each off-gas tank 2a, 2b, 2c in a state where the outer peripheral wall of each hydrogen purification tower 1a, 1b, 1c also serves as a part of the wall of each off-gas tank 2a, 2b, 2c. 3a, 3b, 3c is configured to be in contact with the entire circumference of the outer periphery of each of the hydrogen purification towers 1a, 1b, 1c.

各水素精製塔1a,1b,1cは、水素リッチガス供給路4に対してそれぞれ供給用分岐路4a,4b,4cを介して互いに並列に接続され、各供給用分岐路4a,4b,4cには、それぞれ供給用電磁弁5a,5b,5cが設けられ、水素リッチガス供給路4には、水素リッチガスが供給される。その水素リッチガスは、例えば、13Aなどの都市ガスを原料とし、昇圧した都市ガスから硫黄分をppbレベルにまで除去し、水蒸気改質用の触媒によって水素リッチガスに改質するとともに、変成用の触媒によって水素リッチガス中の一酸化炭素を二酸化炭素に変成し、さらに、余分な水分を除去した後の水素リッチガスである。
そして、各水素精製塔1a,1b,1cには、加圧下においてその水素リッチガスから水、二酸化炭素、一酸化炭素、メタン、窒素などの不純物を吸着除去して高純度水素を精製する適切な吸着剤が収容されている。
The hydrogen purification towers 1a, 1b, and 1c are connected in parallel to the hydrogen rich gas supply path 4 via supply branch paths 4a, 4b, and 4c, respectively, and the supply branch paths 4a, 4b, and 4c are connected to each other. The supply solenoid valves 5 a, 5 b, and 5 c are provided, respectively, and the hydrogen rich gas is supplied to the hydrogen rich gas supply path 4. The hydrogen-rich gas is made from, for example, city gas such as 13A, the sulfur content is removed from the pressurized city gas to the ppb level, reformed to hydrogen-rich gas by the steam reforming catalyst, and the catalyst for transformation The hydrogen-rich gas after carbon monoxide in the hydrogen-rich gas is converted to carbon dioxide and excess water is removed.
Each of the hydrogen purification towers 1a, 1b, and 1c is appropriately adsorbed to purify high-purity hydrogen by adsorbing and removing impurities such as water, carbon dioxide, carbon monoxide, methane, and nitrogen from the hydrogen-rich gas under pressure. The agent is contained.

各水素精製塔1a,1b,1cは、高純度水素排出路6に対してそれぞれ排出用分岐路6a,6b,6cを介して互いに並列に接続され、各排出用分岐路6a,6b,6cにそれぞれ排出用電磁弁7a,7b,7cが設けられ、高純度水素排出路6には水素貯蔵タンク8が接続されている。
さらに、各水素精製塔1a,1b,1cは、均圧用分岐路9a,9b,9cを介して均圧路9に互いに並列に接続され、各均圧用分岐路9a,9b,9cにはそれぞれ均圧用電磁弁10a,10b,10cが設けられ、均圧路9の端部は、第3水素精製塔1cにおける排出用分岐路6cとの接続箇所より下流側において高純度水素排出路6に接続され、その接続箇所より上流側の均圧路9にも均圧用電磁弁10dが設けられている。
The hydrogen purification towers 1a, 1b, and 1c are connected in parallel to the high-purity hydrogen discharge path 6 via discharge branch paths 6a, 6b, and 6c, respectively, and are connected to the discharge branch paths 6a, 6b, and 6c. Discharge solenoid valves 7a, 7b, and 7c are provided, respectively, and a hydrogen storage tank 8 is connected to the high-purity hydrogen discharge path 6.
Further, each of the hydrogen purification towers 1a, 1b, 1c is connected in parallel to the pressure equalizing path 9 via the pressure equalizing branches 9a, 9b, 9c, and the pressure equalizing branches 9a, 9b, 9c are respectively connected to the pressure equalizing branches 9a, 9b, 9c. The pressure solenoid valves 10a, 10b, and 10c are provided, and the end of the pressure equalizing passage 9 is connected to the high-purity hydrogen discharge passage 6 on the downstream side of the connection portion with the discharge branch passage 6c in the third hydrogen purification tower 1c. A pressure equalizing solenoid valve 10d is also provided in the pressure equalizing path 9 upstream of the connection location.

各水素精製塔1a,1b,1cの供給用分岐路4a,4b,4cには、それぞれオフガス排出路11a,11b,11cが接続され、第1水素精製塔1aのオフガス排出路11aが第2オフガスタンク2bに、第2水素精製塔1bのオフガス排出路11bが第3オフガスタンク2cに、第3水素精製塔1cのオフガス排出路11cが第1オフガスタンク2aにそれぞれ接続されるとともに、各オフガス排出路11a,11b,11cにそれぞれオフガス電磁弁12a,12b,12cが設けられている。そして、各オフガスタンク2a,2b,2cには、図外のバーナにオフガスを供給するオフガス供給路13a,13b,13cが接続されて、オフガス供給路13a,13b,13cにオフガス供給用電磁弁14が設けられている。
このような構成からなる水素製造装置は、その作動の全てが自動制御されるように構成され、そのため、制御手段15が、供給用電磁弁5a〜5c、排出用電磁弁7a〜7c、均圧用電磁弁10a〜10d、オフガス電磁弁12a〜12c、および、オフガス供給用電磁弁14などを開閉制御するように構成されている。
Off-gas discharge paths 11a, 11b, and 11c are connected to the supply branch paths 4a, 4b, and 4c of the hydrogen purification towers 1a, 1b, and 1c, respectively, and the off-gas discharge path 11a of the first hydrogen purification tower 1a is second off. The off-gas discharge path 11b of the second hydrogen purification tower 1b is connected to the third off-gas tank 2c, the off-gas discharge path 11c of the third hydrogen purification tower 1c is connected to the first off-gas tank 2a, and each off-gas discharge is connected to the gas tank 2b. Off-gas solenoid valves 12a, 12b, and 12c are provided in the paths 11a, 11b, and 11c, respectively. Each offgas tank 2a, 2b, 2c is connected to offgas supply paths 13a, 13b, 13c for supplying offgas to a burner (not shown), and the offgas supply solenoid valve 14 is connected to the offgas supply paths 13a, 13b, 13c. Is provided.
The hydrogen production apparatus having such a configuration is configured such that all of its operations are automatically controlled. Therefore, the control means 15 includes supply solenoid valves 5a to 5c, discharge solenoid valves 7a to 7c, and pressure equalization. The solenoid valves 10a to 10d, the off-gas solenoid valves 12a to 12c, the off-gas supply solenoid valve 14 and the like are controlled to open and close.

つぎに、この水素製造装置の作動と運転方法につき、図2の運転工程図と図3の運転説明図を参照しながら説明する。
水素リッチガス供給路4からの水素リッチガスは、第1〜第3の水素精製塔1a,1b,1cのいずれかに供給されて高純度水素に精製される。
例えば、第1水素精製塔1aにおいて精製される場合であれば、供給用電磁弁5aの開弁によって第1水素精製塔1aに水素リッチガスが供給され、加圧下においてその水素リッチガス中に含まれる水、二酸化炭素、一酸化炭素、メタン、窒素などの不純物を吸着剤に吸着させて高純度水素を精製する吸着工程を実行し、精製された高純度水素は、排出用電磁弁7aの開弁に伴って排出用分岐路6aと高純度水素排出路6を通って水素貯蔵タンク8へ送られて貯蔵される。
Next, the operation and operation method of this hydrogen production apparatus will be described with reference to the operation process diagram of FIG. 2 and the operation explanatory diagram of FIG.
The hydrogen rich gas from the hydrogen rich gas supply path 4 is supplied to any one of the first to third hydrogen purification towers 1a, 1b, and 1c to be purified to high purity hydrogen.
For example, in the case of purification in the first hydrogen purification column 1a, hydrogen rich gas is supplied to the first hydrogen purification column 1a by opening the supply electromagnetic valve 5a, and water contained in the hydrogen rich gas under pressure , An adsorption process for purifying high-purity hydrogen by adsorbing impurities such as carbon dioxide, carbon monoxide, methane, and nitrogen to the adsorbent, and the purified high-purity hydrogen is used to open the discharge solenoid valve 7a. Along with this, the gas is sent to the hydrogen storage tank 8 through the discharge branch 6a and the high-purity hydrogen discharge path 6 for storage.

この第1水素精製塔1aにおける吸着工程実行の際、第2水素精製塔1bにおいては、均圧電磁弁10b,10cの開弁に伴って均圧工程が実行され、その後、均圧電磁弁10b,10cが閉弁されるとともに、排出用電磁弁7bが開弁されて、図3の(イ)に示すように、第1水素精製塔1aからの高純度水素が供給されて昇圧工程が実行される。
第3水素精製塔1cにおいては、上述した均圧工程が終了した後、オフガス電磁弁12cの開弁に伴って減圧工程が実行され、減圧下において吸着剤に吸着された不純物が脱離されて取り除かれ、その不純物を含むオフガスがオフガス排出路11cを通って第1オフガスタンク2aに貯蔵される。その後、図3の(イ)に示すように、第1水素精製塔1aからの高純度水素が供給されて洗浄工程が実行され、減圧下において吸着剤に吸着された不純物を脱離させて高純度水素で洗浄し、その洗浄工程の実行により発生したオフガスも第1オフガスタンク2aに貯蔵される。
When the adsorption process is performed in the first hydrogen purification tower 1a, the pressure equalization process is performed in the second hydrogen purification tower 1b with the opening of the pressure equalizing solenoid valves 10b and 10c, and then the pressure equalizing solenoid valve 10b. , 10c are closed and the discharge solenoid valve 7b is opened, and as shown in FIG. 3 (a), the high-purity hydrogen from the first hydrogen purification tower 1a is supplied and the pressure increasing step is executed. Is done.
In the third hydrogen purification column 1c, after the pressure equalization step described above is completed, the pressure reduction step is executed as the off-gas solenoid valve 12c is opened, and the impurities adsorbed on the adsorbent are desorbed under the reduced pressure. The off gas containing the impurities is removed and stored in the first off gas tank 2a through the off gas discharge path 11c. Thereafter, as shown in FIG. 3 (a), high-purity hydrogen from the first hydrogen purification tower 1a is supplied to perform a washing step, and impurities adsorbed by the adsorbent are desorbed under reduced pressure to increase the high-purity hydrogen. The off-gas generated by performing the cleaning step after cleaning with pure hydrogen is also stored in the first off-gas tank 2a.

その後、第1水素精製塔1aにおいては、均圧工程、減圧工程、洗浄工程が実行され、減圧工程と洗浄工程時に発生したオフガスが、図3の(ロ)に示すように、第2オフガスタンク2bに貯蔵される。そのとき、第2水素精製塔1bは吸着工程にあり、第3水素精製塔1cは均圧工程から昇圧工程にある。
その後、第1水素精製塔1aにおいては、均圧工程、昇圧工程が実行され、第2水素精製塔1bにおいては、均圧工程、減圧工程、洗浄工程が実行され、減圧工程と洗浄工程時に発生したオフガスが、図3の(ハ)に示すように、第3オフガスタンク2cに貯蔵され、そのとき、第3水素精製塔1cにおいては、吸着工程が実行される。
そして、各水素精製塔1a,1b,1cにおいて、このような各工程が繰り返し実行されて、水素リッチガスから高純度水素が連続的に製造され、必要に応じて、オフガス供給用電磁弁14が開弁されて、各オフガスタンク2a,2b,2cに貯蔵されたオフガスが図外のバーナへ供給されて燃焼されるのである。
Thereafter, in the first hydrogen purification tower 1a, the pressure equalization step, the pressure reduction step, and the cleaning step are executed, and the off-gas generated during the pressure reduction step and the cleaning step is, as shown in FIG. Stored in 2b. At that time, the second hydrogen purification tower 1b is in the adsorption process, and the third hydrogen purification tower 1c is in the pressure-increasing process from the pressure equalization process.
Thereafter, a pressure equalization process and a pressure increase process are executed in the first hydrogen purification tower 1a, and a pressure equalization process, a pressure reduction process, and a washing process are executed in the second hydrogen purification tower 1b, and are generated during the pressure reduction process and the washing process. As shown in FIG. 3C, the off gas is stored in the third off gas tank 2c, and at that time, the adsorption process is executed in the third hydrogen purification tower 1c.
Then, in each of the hydrogen purification towers 1a, 1b, and 1c, each of these steps is repeatedly executed to continuously produce high-purity hydrogen from the hydrogen-rich gas. If necessary, the off-gas supply solenoid valve 14 is opened. The off-gas stored in the off-gas tanks 2a, 2b, and 2c is supplied to the burner (not shown) and burned.

〔別実施形態〕
(1)先の実施形態では、各水素精製塔1a,1b,1cの外周部壁体が、各オフガスタンク2a,2b,2cの壁体の一部を兼用するように構成した例を示したが、各オフガスタンク2a,2b,2c内のオフガスと各水素精製塔1a,1b,1cとの間で所望する熱伝導が可能であれば、各水素精製塔1a,1b,1cの外周部壁体が、各オフガスタンク2a,2b,2cの壁体の一部を兼用するように構成する必要はない。
[Another embodiment]
(1) In the previous embodiment, an example in which the outer peripheral wall of each of the hydrogen purification towers 1a, 1b, and 1c is configured to share part of the wall of each of the offgas tanks 2a, 2b, and 2c was shown. However, if desired heat conduction is possible between the off-gas in each off-gas tank 2a, 2b, 2c and each hydrogen purification tower 1a, 1b, 1c, the outer peripheral wall of each hydrogen purification tower 1a, 1b, 1c It is not necessary for the body to be configured to also serve as part of the wall of each offgas tank 2a, 2b, 2c.

(2)先の実施形態では、合計3つの水素精製塔1a,1b,1cを備えた水素製造装置を例示して説明したが、水素精製塔の個数は任意であり、例えば、水素精製塔をひとつだけ備えた水素製造装置において適用可能である。 (2) In the previous embodiment, the hydrogen production apparatus including a total of three hydrogen purification towers 1a, 1b, and 1c has been described as an example. However, the number of hydrogen purification towers is arbitrary. The present invention can be applied to only one hydrogen production apparatus.

水素製造装置の全体を示す概略構成図Schematic configuration diagram showing the entire hydrogen production system 水素製造装置の運転状態を示す工程図Process diagram showing the operating state of the hydrogen production system 水素製造装置の運転状態を示す説明図Explanatory drawing showing the operating state of the hydrogen production system

符号の説明Explanation of symbols

1a〜1c 水素精製塔
2a〜2c オフガスタンク
3a〜3c オフガス貯蔵空間
1a to 1c Hydrogen purification tower 2a to 2c Off-gas tank 3a to 3c Off-gas storage space

Claims (3)

吸着剤を収容する水素精製塔とオフガスを貯蔵するオフガスタンクを備え、前記水素精製塔において加圧下で前記吸着剤に水素リッチガス中の不純物を吸着させて高純度水素を精製する吸着工程と、減圧下で前記吸着剤に吸着された不純物を取り除く洗浄工程を実行し、その洗浄工程時に発生するオフガスを前記オフガスタンクに貯蔵するように構成されている水素製造装置であって、
前記オフガスタンクのオフガス貯蔵空間が、前記水素精製塔の外周部の全周に接するように構成されている水素製造装置。
An adsorption process for purifying high-purity hydrogen by adsorbing impurities in the hydrogen-rich gas to the adsorbent under pressure in the hydrogen purification tower, comprising a hydrogen purification tower for storing the adsorbent and an off-gas tank for storing off-gas. A hydrogen production apparatus configured to execute a cleaning process for removing impurities adsorbed on the adsorbent below, and store off-gas generated during the cleaning process in the off-gas tank,
The hydrogen production apparatus comprised so that the off gas storage space of the said off gas tank may contact | connect the perimeter of the outer peripheral part of the said hydrogen purification tower.
前記水素精製塔の外周部壁体が、前記オフガスタンクの壁体の一部を兼用している請求項1に記載の水素製造装置。   The hydrogen production apparatus according to claim 1, wherein an outer peripheral wall of the hydrogen purification tower also serves as a part of a wall of the offgas tank. 前記水素精製塔とオフガスタンクがそれぞれ複数あって、各オフガスタンクのオフガス貯蔵空間が、各水素精製塔の外周部の全周に接するように構成されている請求項1または2に記載の水素製造装置。 3. The hydrogen production according to claim 1, wherein there are a plurality of hydrogen purification towers and a plurality of off-gas tanks, and an off-gas storage space of each off-gas tank is configured to be in contact with the entire outer periphery of each hydrogen purification tower. apparatus.
JP2005105089A 2005-03-31 2005-03-31 Hydrogen production equipment Expired - Fee Related JP4753606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105089A JP4753606B2 (en) 2005-03-31 2005-03-31 Hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105089A JP4753606B2 (en) 2005-03-31 2005-03-31 Hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2006282459A JP2006282459A (en) 2006-10-19
JP4753606B2 true JP4753606B2 (en) 2011-08-24

Family

ID=37404757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105089A Expired - Fee Related JP4753606B2 (en) 2005-03-31 2005-03-31 Hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP4753606B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187569B2 (en) * 2003-03-31 2008-11-26 大阪瓦斯株式会社 Hydrogen production equipment
JP2004344703A (en) * 2003-05-20 2004-12-09 Mitsubishi Heavy Ind Ltd Method and apparatus for treating carbon dioxide

Also Published As

Publication number Publication date
JP2006282459A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
EP1513207B1 (en) Fuel cell power generation system and method for operating the same
JP2003081605A (en) Hydrogen producing method accompanying recovery of liquefied co2
JP5679433B2 (en) Argon gas purification method and purification apparatus
JP2006342014A (en) Method for producing high purity hydrogen
JP2016084272A (en) Method for producing hydrogen gas and apparatus for producing hydrogen gas
JP4753606B2 (en) Hydrogen production equipment
JP4815250B2 (en) Operation method of hydrogen purifier
JP2007269526A (en) Hydrogen refining unit and operation method thereof
JP2020079168A (en) Hydrogen production apparatus
JP5745434B2 (en) Argon gas purification method and purification apparatus
JP2004075439A (en) Hydrogen generating apparatus
JP2002355522A (en) Method of controlling pressure of offgas from offgas tank in four tower-type psa equipment for purifying hydrogen
WO2019187811A1 (en) Purified gas manufacturing device, and purified gas manufacturing method
JP5237870B2 (en) High purity hydrogen production method
JP4850431B2 (en) Hydrogen production equipment
JP2002355519A (en) Method of stably operating four tower-type pressure- swing adsorption equipment for hydrogen purification
JP4819349B2 (en) Production of hydrogen gas for fuel cells
KR20080008657A (en) Continuous production type hydrogen extraction apparatus for carbon nanotube manufacturing apparatus
JP2923454B2 (en) Hydrogen purification method and apparatus used therefor
JP4850432B2 (en) Operation method of hydrogen production apparatus and hydrogen production apparatus
JP3043282B2 (en) Gas purification method and apparatus used therefor
JP2002355521A (en) Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP7129321B2 (en) Hydrogen production device, hydrogen production device operation method, and hydrogen production device operation program
JP3742304B2 (en) Rare gas recovery method and apparatus
JP2004299995A (en) Hydrogen production plant, and hydrogen production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees