JP4746200B2 - トルクセンサにおいて使用するための磁気弾性部材を形成する方法 - Google Patents

トルクセンサにおいて使用するための磁気弾性部材を形成する方法 Download PDF

Info

Publication number
JP4746200B2
JP4746200B2 JP2001120133A JP2001120133A JP4746200B2 JP 4746200 B2 JP4746200 B2 JP 4746200B2 JP 2001120133 A JP2001120133 A JP 2001120133A JP 2001120133 A JP2001120133 A JP 2001120133A JP 4746200 B2 JP4746200 B2 JP 4746200B2
Authority
JP
Japan
Prior art keywords
shaft
magnetoelastic
outer diameter
torque
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001120133A
Other languages
English (en)
Other versions
JP2001311668A (ja
Inventor
ディー キルマーティン ブライアン
ガンダリラス カール
ダブリュ ボッソーリ ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann VDO AG
Original Assignee
Mannesmann VDO AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann VDO AG filed Critical Mannesmann VDO AG
Publication of JP2001311668A publication Critical patent/JP2001311668A/ja
Application granted granted Critical
Publication of JP4746200B2 publication Critical patent/JP4746200B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • G01L3/103Details about the magnetic material used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Steering Mechanism (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、概してトルクセンサ、特に、回転可能なシャフトにおけるトルク値の変化に対応する磁界変化を検出するための、磁気弾性部材及び非接触磁力計を利用した非従順性トルクセンサに関する。
【0002】
【従来の技術】
電子パワーステアリングシステムにおけるハンドル努力の測定を決定する、電子制御式変速のためのトランスミッション出力トルクを決定したりする、電動工具出力トルクを決定する等の多くの応用例において、回転するシャフトのトルクを検出することが望ましい。トルクセンサは、様々な形式で製造されており、概して従順性と非従順性との2つのカテゴリに分類することができる。従順性トルクセンサでは、センサは、トルク発生シャフトの弾性的なビーム区分に直接に取り付けられており、これにより、シャフトの機械的なねじれを測定する。しばしば、従順性センサでは、シャフトは、完全な測定範囲に亘って約8゜までねじれる。
【0003】
従順性トルクセンサの1つの例においては、シャフトの弾性的なビーム区分の認識可能なねじれを測定するためにひずみゲージが使用される。トルクが弾性的なビーム区分に加えられると、ひずみゲージが撓められ、これが、ひずみゲージにおける抵抗変化を生ぜしめる。ひずみゲージにおけるこの抵抗の変化がトルクの変化を表す。しかしながら、ひずみゲージが取り付けられたビーム区分の回転する性質により、信号を伝達するためにひずみゲージにワイヤを接続することが非実際的である。したがって、ひずみゲージを使用するトルクセンサは、無線周波送信器等のワイヤレス送信装置を必要とし、この送信装置は、ひずみゲージにおけるトルク変化を受信機にまで送信し、この受信機はこれらの信号をトルク値として解釈する。択一的に、スリップリング、ブラシ及び整流子を利用する信号伝送機構を、従順性トルク検出システムにおいて使用することができる。他の従順性トルクセンサは、シャフトに取り付けられた回転エンコーダ又はポテンショメータを含んでよく、これにより、シャフトの機械的ねじりを測定し、次いでこの機械的ねじりがトルク値に変換される。
【0004】
しかしながら、このような従順性トルク検出システムは多数の問題を有する。例えば、ひずみゲージが弾性的なビームに直接取り付けられているので、ビーム及びひずみゲージが弾性範囲を超えて撓むことを防止するために、トルクリミッタが、回転するシャフトに含まれていなければならない。あいにく、このような予防措置は、本質的に、シャフトを介するエネルギの伝送を妨害し、ハンドルシャフトの場合には、「柔らかい感覚」を使用者に与える。さらに、このようなトルクセンサは、回転するシャフトとの直接接触により信頼性が制限され、極めて高価である。ひずみゲージを使用するトルクセンサは、頻繁な較正をも必要とする。
【0005】
これらの問題を解決するために、非従順性トルクセンサが発展されており、この場合、センサはシャフトトルクの変化を非接触式に監視し、これにより、トルクリミッタの必要性を排除している。通常、このようなトルクセンサは、回転するシャフトに緊密に取り付けられた磁気弾性部材を利用し、この場合、トルクセンサは逆磁気ひずみの原理に基づき作動する。
【0006】
磁気ひずみは、この分野ではよく知られており、磁界の変化による材料の寸法的変化を規定する物質の構造的特性をいう。本質的に、磁気ひずみは、材料を構成した原子が、これらの原子の磁気モーメントを外部磁界と整合させるために変向するときに生ぜしめられる。この現象は、飽和磁気ひずみ定数によって特定の材料に対して定量化されており、前記飽和磁気ひずみ定数は、単位長さ毎の材料の最大変化を規定した値である。
【0007】
これに対し、逆磁気ひずみは、加えられた機械的力に応答して生じる材料の磁気特性の変化を規定する。逆磁気ひずみを利用したトルクセンサは、回転するシャフトから磁気弾性部材へトルクの提供によって伝達される応力及びひずみが、磁気弾性部材の磁界に測定可能な変化を生じるという前提に基づき作動する。したがって、磁気弾性部材から生じた磁界の強さは、加えられたトルクの大きさの直接関数である。このような磁気弾性部材を利用したトルクセンサは、磁気弾性部材から発生する磁界の強さを、アナログ電圧信号に変換する磁力計を有しており、これにより、トルク対電圧のトランスジューサ機能を行う。
【0008】
非従順性トルクセンサでは、磁気弾性材料のリングを、圧力ばめ又は収縮ばめ等の締りばめを使用するか、係合するスプライン又は歯等の相互係合機構を使用するか、接着剤等の化学物質を使用するか、溶射等の熱結合を使用するか、又はこの分野で知られた他のあらゆる取付け方法を使用して、回転するシャフトに取り付けることが知られている。実際には、上記のいかなる取付け方法の場合にも、シャフトへの磁気弾性部材の取付けは最も重要であることが証明された。磁気弾性部材とトルク伝達部材との間の境界における欠陥は、磁気エレメントへの応力及びひずみの異常な結合を生ぜしめ、これは、トルク測定に悪影響を与える。境界の欠陥は、ボイド、汚染物質、横方向せん断等の欠陥を含むことができる。
【0009】
磁気弾性部材に円周方向の応力(フープ応力)を与えることにより、このエレメントに所要の磁気的属性を付与することも知られている。現在の技術は、フープ応力を得るために引張応力を使用する。磁気弾性部材における引張応力は、材料を引き延ばすように作用し、これは、間隙率を増大させるおそれがある。増大した間隙率は、腐食割れとして知られる現象を進行させ、この応力腐食割れは、構造物における微細な割れ目の伝播である。腐食割れの結果、材料は最終的に引張応力成分を失い、磁気特性の低下を生じる上、センサの完全な故障さえ生じるおそれがある。
【0010】
さらに、トルクセンサに対する実際の要求は、範囲内電圧の精度及び線形性と、“降伏トルク”又は“オーバトルク”がシャフトに加えられた後の、“ゼロシフト”として知られるヒステリシスの量とに対する設計許容限界を含む。このような“オーバトルク”条件は、例えばカーブ押出し状況におけるステアリングシステムに存在するおそれがあり、著しいトルク反転中にトランスミッション応用例において発生するおそれがある。ヒステリシスは、オーバトルク条件が緩和された後に、シャフト/磁気弾性部材境界面における結果的な破壊又は滑りが磁気弾性部材における機械的なバイアスを生ぜしめるので、生じる。その結果、対応した磁気バイアスが生ぜしめられ、これにより、以後のトルク測定に不都合な影響を与える。
【0011】
将来のトルク測定に影響しかつゼロシフトを生じる磁気バイアスの形成には、多数の潜在的な原因がある。例えば、下に位置するシャフトが大きなトルクの付加により降伏したならば、シャフトは静止状態へ戻らず、その結果測定はゼロに戻らない。択一的に、大きなトルクが磁気弾性部材を降伏させるがシャフトを降伏させないならば、トルクが排除されたときに磁気弾性部材は反対方向に応力を掛けられる。したがって、センサは、ゼロを越えた位置へ戻り、このような状況におけるゼロシフトは負となる。要するに、トルクセンサにおけるゼロシフトは、要因の組み合わせの結果生じるおそれがある。
【0012】
さらに、シャフト/磁気弾性部材境界面の破壊が局所的であるならば、磁気的不調和を生じ、この磁気的不調和は、シャフトの角位置に対するトルク測定の分散として現れる。磁気弾性部材が溶射されている場合、シャフトと磁気弾性部材との間の破壊は通常問題ではないが、以下でさらに詳しく説明するように、シャフトと磁気弾性部材との異なる熱膨張係数により、ヒステリシスは、溶射された磁気弾性部材においても依然として生じる。
【0013】
例えば、自動車のステアリングコラムトルクセンサの場合、+/−6ft-lbの完全範囲トルク測定と、100ft-lb降伏トルクの付与後に完全スケールの+/−1.5%のヒステリシス要求が存在すると有利である。しかしながら、現在使用される溶射磁気エレメントは、僅か15ft-lbの降伏トルクが加えられるだけでも、許容範囲を十分に超えたヒステリシスを生じる。
【0014】
【発明が解決しようとする課題】
したがって、降伏トルクが提供された後に低いヒステリシスを生じるトルクセンサが必要とされている。さらに、このような低いヒステリシスのトルクセンサを製造する方法が必要とされている。
【0015】
その他の要求が、図面を参照して以下の詳細な説明を読むことにより明らかと成るであろう。
【0016】
【課題を解決するための手段】
前記課題を解決するために、本発明では、トルクセンサにおいて使用するための磁気弾性部材を形成する方法において、細長く円形の基体の外径を増大し、基体上に磁気弾性材料を提供し、磁気弾性材料を基体に提供した後に基体の外径を減じるようにした。
【0017】
【発明の実施の形態】
本発明は様々な形式で実施することができるが、現時点で有利な実施例が図面に示されかつ以下で説明されているが、本願の開示は、本発明の例として考えられるべきものであり、本発明を、説明された特定の実施例に限定するものではない。
【0018】
図1〜図3を参照すると、本発明の有利な実施例によるトルクセンサは、概して、磁気弾性部材104と磁力計106とを有している。磁気弾性部材104は、長手方向軸線109を中心に回転可能な非磁性シャフト108に定置に取り付けられている。非磁性シャフト108は、ステンレス鋼から形成されていると有利であるが、Nitronic 50 ステンレス鋼から形成されていると最も有利である。さらに、磁気弾性部材104は、溶射プロセスを介してシャフト108に取り付けられた、99.9%純粋ニッケル含有量粉末金属から形成されていると有利である。しかしながら、シャフト108は、アルミニウム等のあらゆる他の非磁性材料から形成されいてよい。さらに、磁気弾性部材104は、磁気ひずみの負の係数を有するあらゆる他の材料から形成されていてよい。しかしながら、磁気弾性部材104のための飽和磁気ひずみ係数の極性は、以下に説明するように、材料内に正しい磁気異方性を形成するために圧縮応力が必要か引張応力が必要かを決定する。したがって、引張応力におけるリングのために使用される材料は、圧縮応力におけるリングのために適していない。
【0019】
前述のように、磁気弾性部材104とシャフト108との間には緊密な結合が形成されることが重要である。前述の取付け方法の他に、高い結合力及び自動車市場の大きな要求に対する順応性により、溶射プロセスが有利である。磁気弾性部材104を配置するために利用される溶射プロセスは、磁気弾性部材104を、下に位置するシャフト108に融合させ、基体/コーティング境界面においてグラデーションを形成する。境界の正確な特性は、使用される溶射ガンのタイプ及び設定に依存する。結合は、粒子が衝突時に基体に突入するという点で典型的に機械的である。材料をシャフトに取り付けるための溶接、めっき及び蒸着法は、それぞれ、独特な境界特性を生ぜしめる。これらの方法はいずれも、磁気弾性部材104と、下に位置するシャフト108との間の緊密な結合を提供し、この結合は、フルスケール測定範囲をはるかに外れた極端なトルクレベルに耐えることができる。実際には、溶射によるコーティングは、10000psi以上のオーダの典型的な結合強さを有することが知られている。
【0020】
この分野で知られているように、磁気弾性部材104において逆磁気ひずみ効果を有効に惹起するために、磁気弾性部材104は、静止状態において応力異方性によって予負荷されていなければならない。圧力ばめされた磁気弾性部材の場合、これは、圧力ばめプロセスによって達成される。すなわち、磁気弾性部材がシャフトに被せられたときに、磁気弾性部材内に圧縮力及び引張力が形成される。しかしながら、圧力ばめされた磁気弾性部材とは対照的に、磁気弾性部材104が配置された後におけるシャフト108の外径の低減は、磁気弾性部材104を半径方向内方に引っ張り、磁気弾性部材がより小さな容積を占めるようになる。このプロセスは、センサが適正に作動するために必要な磁気異方性を提供し、磁気弾性部材の高密度化(densification)をも生じ、磁気弾性部材を本質的に安定にする。
【0021】
ニッケル製の磁気弾性部材の軸方向の圧縮応力成分が、ヒステリシスに寄与することが分かった。特に、溶射プロセスは、磁気弾性部材に“軸方向の磁石”を生ぜしめ、この軸方向の磁石は、十分なトルクが加えられた“軸方向の磁石”をチャージさせるまで、不活性である。したがって、主要な応力ベクトル(接線方向での)が、トルク荷重を増大しながら軸方向を指しながら、最終的に、永久的な軸方向の磁気チャージを生じるトルクレベルに到達し、磁気弾性部材にヒステリシス(又は“ゼロシフト”)を生じる。センサ出力への正味効果は、センサが、トルクが加えられていなくても、ある量のトルクが依然として加えられていることを示すことである。従来の溶射されたトルクセンサは、著しいヒステリシスが生じるまでに、15ft-lbしか耐えることができなかった。
【0022】
この問題を解決するために、本発明は、粉末ニッケルがシャフト108に溶射された後に、シャフト108の外径を低減することを考えている。これは、磁気弾性部材104を内方へ引っ張り、材料の高密度化を生じ、周方向の圧縮応力を増大させる。このプロセスは、溶射された磁気弾性部材104とシャフト108との異なる熱膨張率によって形成される軸方向の圧縮応力を著しく低減する又は排除するという効果を有し、ひいては、降伏トルクが加わることによるヒステリシスを十分に防止する。なぜならば、磁気弾性部材にはもはやいかなる著しい不活性の“軸方向磁石”も存在しないからである。
【0023】
磁気弾性部材104を半径方向内方へ縮小させるためにシャフト108の外径を減じる複数の方法が案出されている。第1実施例では、磁気弾性材料を配置する前に、中空のシャフト108の外径が、膨張する挿入体をシャフト108内に挿入してシャフト108の内径に力を加えることによって弾性的に膨張させられる。この膨張する挿入体は、磁気弾性部材104がシャフト108上に配置される前に、図1に示したように、シャフト108の直径を増大させるために膨張させられる。次いで、磁気弾性部材104の配置後に、膨張する挿入体は、収縮させられ、シャフト108から抜き取られ、図2に示したように、シャフトの直径は初期の値に戻る。したがって、図1におけるOD#1は、図2におけるOD#2よりも大きい。したがって、膨張する挿入体が抜き取られた後、シャフト108の外径は減じられ、磁気弾性部材104は、半径方向内方へ縮小させられ、より小さな容積を占めるようになる。このプロセスは、センサが適正に作動するために必要な磁気異方性を提供し、磁気弾性部材104の高密度化をも生じ、本質的に安定化する。
【0024】
第2実施例では、磁気弾性材料を配置する前に、中空のシャフト108の外径が、シャフト108内のキャビティを加圧して内径に力を加えることにより弾性的に膨張させられる。この加圧は、磁気弾性部材104がシャフト108上に配置される前に、図1に示したように、シャフト108の直径を増大させる。次いで、磁気弾性部材104の配置後に、シャフト108内のキャビティから圧力が解放され、シャフト108の直径は、図2に示したように、初期の値に戻る。したがって、図1におけるOD#1は、図2におけるOD#2よりも大きい。したがって、圧力が除去された後、シャフト108の外径は減じられ、磁気弾性部材104は半径方向内方へ縮小させられ、より小さな容積を占めるようになる。このプロセスは、センサが適正に作動するために必要な磁気異方性を提供し、磁気弾性部材104の高密度化をも生じ、本質的に安定にする。
【0025】
第3実施例では、磁気弾性材料を配置する前に、シャフト108の外径は、シャフト108の管理された熱的膨張を生ぜしめることによって弾性的に膨張させられる。この熱的膨張は、磁気弾性部材104がシャフト108上に配置される前に、図1に示したように、シャフト108の直径を増大させる。軸方向の熱的成長は、磁気弾性部材104におけるあらゆる残留軸方向圧縮応力を回避するために、熱膨張中は抑制される。磁気弾性部材104を配置した後、シャフト108は冷却され、熱膨張が排除され、シャフト108の直径は、図2に示したように初期の値に戻る。したがって、図1におけるOD#1は、図2におけるOD#2よりも大きい。したがって、熱膨張が排除された後、シャフト108の外径は減じられ、磁気弾性部材104は半径方向内方へ縮小させられ、より小さな容積を占めるようになる。このプロセスは、センサが適正に作動するために必要な磁気異方性を提供し、磁気弾性部材104の高密度化をも生じ、本質的に安定にする。
【0026】
第4実施例では、シャフト108の外径は、磁気弾性材料104を配置する前に増大させられない。したがって、図1は、磁気弾性部材104がシャフト108上に配置された直後の、膨張していない状態におけるシャフト108を示している。次いで、磁気弾性部材104を配置した後、シャフト108は、降伏するまで軸方向に引っ張られ、図2に示したように、シャフト108の外径を永久に減じる。したがって、図1におけるOD#1は、図2におけるOD#2よりも大きい。シャフト108が、降伏するまで軸方向に引っ張られた後、シャフト108の外径は永久に減じられ、磁気弾性部材104は、半径方向内方へ縮小させられ、より小さな容積を占めるようになる。このプロセスは、センサが適正に作動するために必要な磁気異方性を提供し、磁気弾性部材104の高密度化をも生じ、本質的に安定にする。
【0027】
有利には、センサ読取りのために使用される主な圧縮応力は、前記プロセスの適用後、接線方向に残る。したがって、上記のあらゆるプロセスによって磁気弾性部材104が製造され、この磁気弾性部材は、降伏トルクが加えられたときに、有利な範囲のヒステリシスのレベルを有し、その結果、一貫した正確なトルク測定を行う。ここでは溶射が説明されているが、本発明は、磁気弾性部材104をシャフト108に取り付けるための様々な方法を適用することができ、この方法は、溶接、めっき、物理的蒸着及び化学的蒸着を含みかつこれらに限定されない。
【0028】
有利には、磁気弾性リング104がシャフト108に取り付けられた後、磁化フィクスチャ(図示せず)においてチャージされ、この磁化フィクスチャは反対向きの磁界を形成する。したがって、リングの半分は、時計回りに周方向でチャージされるのに対し、リングの他方の半分は、反時計回りに周方向でチャージされる。このチャージング技術は、通常磁力計106の検出能力を妨害する漂遊磁界からの非影響を提供するために使用される。しかしながら、本発明は、方向を持たずに磁化されたリング、又は磁気弾性リングの、あらゆる数の近接の反対方向に磁化された区分を適用することができる。
【0029】
ここで前記プロセスの例を、ステンレス鋼シャフト上に270/Dサイズニッケル粉末から成る磁気弾性部材を溶射することを例にして詳説する。以下の特定の例は、本発明の別の側面及び独特な利点を示すために提供されており、その他の特徴及び具体化が当業者に明らかとなるべきである。厚さ0.02in、長さ1inの帯材ニッケル粉末が、HVOF溶射ガンを使用して直径1inのNitronic50シャフト上に溶射される。ニッケルを提供する前に、軸方向の熱成長が抑制されながら、シャフトは650℃にまで予加熱される。ニッケル粉末がシャフトに溶射された後、シャフトは冷却される。この実施例は、例示のためにのみ説明されており、本発明の範囲の限定として考えられるべきではない。
【0030】
磁気弾性リング104がシャフト108に取り付けられ、前記方法によって磁気的にチャージされた後、図3に示したように環状の磁力計が、接触しないように磁気弾性リング104の周囲に組み付けられる。図3には、磁力計106のケーシングの半分が省略されて示されている。磁力計106は、磁気弾性部材104によって発せられた磁気信号を、システムレベル装置によって読み取ることができる電気信号に変換するという目的を持つ。前述のように、磁気弾性部材の逆磁気ひずみ効果により、磁気弾性部材の周方向の中心線において見られる半径方向に方向付けられた磁束の極性及び大きさが、直接にトルクに関連している。有利には、トルクセンサが駆動シャフト、ステアリングコラム又は同様のものにおけるトルクを検出するために使用される場合には、磁力計106は、自動車シャーシフレーム等の、シャフト108の近傍の静的なエレメント(図示せず)に堅固に取り付けられている。
【0031】
本発明において使用される磁力計106は、軟鋼等の強磁性材料から形成されていると有利であり、当業者によく知られた飽和鉄心型磁力計としても知られるフラックスゲート磁力計を利用すると有利である。この有利な磁力計設計は、引用によりここに組み込まれる米国特許第5889215号明細書に大体は説明されている。
【0032】
本質的に、フラックスゲート磁力計は、外部磁界が存在しない場合、高透磁率材料片をAC誘起パルスによって周期的に磁気飽和にしたり磁気飽和でなくすることにより基準信号を確立することができる、という前提に基づき作動する。磁気弾性部材104等の外部ソースによって生ぜしめられる基準信号のあらゆる時間シフトを測定し、外部ソースの絶対磁界強さに変換することができる。
【0033】
多くのフラックスゲート設計は別個の駆動及びピックアップコイルを使用していたが、本発明の目的には、この分野で知られるように、磁力計106(図3)が両機能のために1つのコイルのみを有していると有利である。さらに、磁力計106が、少なくとも2つの駆動/ピックアップコイル110(以下ではフラックスゲート110と呼ぶ)を有していると有利である。
【0034】
磁力計のパフォーマンスを改良するために、磁束ガイド112が、磁力計106に設けられており、フラックスゲート110に取り付けられている。磁束ガイド112は、フラックスゲート110による検出の前に、磁気弾性部材104から発する磁気信号を増幅及び集束し、S/N比を改良する。さらに、磁束ガイド112は、磁気弾性部材104からの磁気信号における不規則性をほぼ排除することにより、付加的な信号処理を提供する。これは、大きな角度距離に亘って磁束を収集する磁束ガイド112により達成される。
【0035】
コモンモードノイズとしても知られる、環境中に存在する漂遊信号に対する磁力計の抵抗をさらに改良するために、磁力計における電子回路及び磁気回路の設計において、及び磁力計の構造自体において、コモンモード阻止機構が用いられる。例えば、どこでも可能ならば、この分野で知られるようなディファレンシャル回路が、コモンモードノイズを打ち消すために電子設計において使用される。この効果は、有利には180゜分離された、対称的に形成された磁束ガイド112と、対称的に配置されたフラックスゲート110とを使用することにより、磁力計設計において倍増される。
【0036】
最後に、電気的及び磁気的なコモンモード阻止性能を増大させるために、EMIと磁気遮へい構造が、この分野で知られるように、磁力計設計に組み込まれている。したがって、前記コモンモード阻止機構と遮へいとを利用することにより、環境中に見つけられる漂遊する磁気的及び電磁気的信号が、フラックスゲート110及び磁気弾性部材104を妨害することを著しく妨げる。
【0037】
当業者が容易に理解するように、本発明の非従順性トルクセンサは様々な応用例において使用することができる。この応用例は、電子パワーステアリングシステムにおけるハンドル努力測定、電子制御式変速のためのトランスミッション出力トルクの決定、エンジン不点火を検出するためのカム及びクランクシャフトのトルク測定、アンチロックブレーキシステムにおける車輪トルクの測定、活発な乗車の補償のための車両サスペンションの測定、及び電気的なブレーキングのためのブレーキペダルのトルクの測定を含んでおり、しかもこれらに限定されない。
【図面の簡単な説明】
【図1】磁気弾性部材が取り付けられたトルク発生シャフトを示す斜視図である。
【図2】磁気弾性部材が取り付けられたトルク発生シャフトを示す斜視図である。
【図3】磁気弾性部材を包囲した磁力計を部分的に示す斜視図である。
【符号の説明】
104 磁気弾性部材、 106 磁力計、 108 非磁性シャフト、 110 駆動/ピックアップコイル、 112 磁束ガイド

Claims (9)

  1. トルクセンサにおいて使用するための磁気弾性部材を形成する方法において、
    細長く円形の基体の外径を増大し、
    基体上に磁気弾性材料を提供し、
    磁気弾性材料を基体に提供した後に基体の外径を減じ、
    前記基体がシャフトであり、前記シャフトの外径が、該シャフト内に膨張可能な挿入体を挿入して、前記外径が一時的に増大するまで前記挿入体を膨張させることにより増大させられることを特徴とする、トルクセンサにおいて使用するための磁気弾性部材を形成する方法。
  2. トルクセンサにおいて使用するための磁気弾性部材を形成する方法において、
    細長く円形の基体の外径を増大し、
    基体上に磁気弾性材料を提供し、
    磁気弾性材料を基体に提供した後に基体の外径を減じ、
    前記基体がシャフトであり、前記シャフトの外径が、該外径が一時的に増大されるまでシャフトの内部キャビティを加圧することによって増大させられることを特徴とする、トルクセンサにおいて使用するための磁気弾性部材を形成する方法。
  3. トルクセンサにおいて使用するための磁気弾性部材を形成する方法において、
    細長く円形の基体の外径を増大し、
    基体上に磁気弾性材料を提供し、
    磁気弾性材料を基体に提供した後に基体の外径を減じ、
    前記基体がシャフトであり、前記シャフトの外径が、該外径が一時的に増大されるまで、シャフトの管理された熱的膨張を使用して増大されることを特徴とする、トルクセンサにおいて使用するための磁気弾性部材を形成する方法。
  4. 前記シャフトの外径が、前記膨張可能な挿入体を収縮させかつ膨張可能な挿入体をシャフトから除去することにより減じられる、請求項記載の方法。
  5. 前記シャフトの外径が、前記内部キャビティから圧力を除去することにより減じられる、請求項記載の方法。
  6. 前記シャフトの外径が、前記シャフトの熱的膨張を除去するためにシャフトを冷却することによって減じられる、請求項記載の方法。
  7. トルクセンサにおいて使用するための磁気弾性部材を形成する方法において、
    磁気弾性的材料を基体に提供し、
    前記磁気弾性材料が基体に提供された後に基体の外径を減じることを特徴とする、トルクセンサにおいて使用するための磁気弾性部材を形成する方法。
  8. 前記基体がシャフトである、請求項記載の方法。
  9. 前記シャフトの外径が、シャフトが降伏するまで軸方向にシャフトを引っ張ることによって減じられる、請求項記載の方法。
JP2001120133A 2000-04-20 2001-04-18 トルクセンサにおいて使用するための磁気弾性部材を形成する方法 Expired - Fee Related JP4746200B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/553647 2000-04-20
US09/553,647 US7127797B1 (en) 2000-04-20 2000-04-20 Imparting compressive hoop stress into a bonded magnetoelastic element by means of diameter reduction of the underlying shaft

Publications (2)

Publication Number Publication Date
JP2001311668A JP2001311668A (ja) 2001-11-09
JP4746200B2 true JP4746200B2 (ja) 2011-08-10

Family

ID=24210197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001120133A Expired - Fee Related JP4746200B2 (ja) 2000-04-20 2001-04-18 トルクセンサにおいて使用するための磁気弾性部材を形成する方法

Country Status (4)

Country Link
US (1) US7127797B1 (ja)
EP (1) EP1148325B1 (ja)
JP (1) JP4746200B2 (ja)
DE (1) DE50100428D1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200409B4 (de) * 2001-05-03 2011-08-11 Continental Teves AG & Co. OHG, 60488 Wandlerkörper und Sensor zur Umwandlung einer Scherkraft oder eines Drehmomentes in ein elektrisches Signal
EP1816456A1 (en) * 2005-08-02 2007-08-08 Castrol Limited Method and apparatus for measuring the torque on the camshaft of an internal combustion engine
AT504137B1 (de) * 2006-06-30 2008-03-15 Schneider Electric Power Drive Einrichtung zur messung
JP4910535B2 (ja) * 2006-07-24 2012-04-04 日産自動車株式会社 磁歪リング式トルクセンサ
JP5081483B2 (ja) * 2007-04-03 2012-11-28 本田技研工業株式会社 磁歪式トルクセンサの製造方法
JP2008298534A (ja) * 2007-05-30 2008-12-11 Honda Motor Co Ltd 磁歪式トルクセンサ及び磁歪式トルクセンサを搭載した電動パワーステアリング装置
US8672086B2 (en) * 2007-08-02 2014-03-18 Marine Canada Acquisition Inc. Torque sensor type power steering system with solid steering shaft and vehicle therewith
DE102008014644A1 (de) * 2008-03-17 2009-10-01 Siemens Aktiengesellschaft Antriebswelle für eine Propellergondel mit Sensorik
DE102010047270A1 (de) * 2010-10-01 2012-04-05 Hochschule Für Angewandte Wissenschaften Fachhochschule Würzburg-Schweinfurt Fluxgatesensor
DE102012004119B4 (de) * 2012-03-01 2022-02-03 Ncte Ag Beschichtung von kraftübertragenden Bauteilen mit magnetostriktiven Werkstoffen
US9046430B2 (en) * 2013-03-15 2015-06-02 Methode Electronics, Inc. Method of reducing rotation noise in a magnetoelastic torque sensing device
US10168236B2 (en) * 2013-12-03 2019-01-01 Safran Aircraft Engines Torque-measurement device for a turbomachine shaft
US20170234755A1 (en) * 2016-02-17 2017-08-17 Ford Global Technologies, Llc Variability Compensation For Paired Shafts and Sensors

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961729A (ja) * 1983-06-06 1984-04-09 Toshiba Corp トルクセンサ
JPH081399B2 (ja) * 1986-01-10 1996-01-10 本田技研工業株式会社 力学量検出素子およびその製造方法
US4760745A (en) 1986-12-05 1988-08-02 Mag Dev Inc. Magnetoelastic torque transducer
US4896544A (en) 1986-12-05 1990-01-30 Mag Dev Inc. Magnetoelastic torque transducer
JPH01285831A (ja) * 1988-05-12 1989-11-16 Mitsubishi Electric Corp 歪検出装置の製造方法
US4899598A (en) * 1988-08-04 1990-02-13 Caterpillar Inc. Apparatus for measuring torque applied to a shaft
SE9102122D0 (sv) 1991-07-08 1991-07-08 Skf Nova Ab Sensor respektive foerfarande foer maetning av vridmoment och/eller krafter
US5591925A (en) 1991-07-29 1997-01-07 Garshelis; Ivan J. Circularly magnetized non-contact power sensor and method for measuring torque and power using same
US5351555A (en) 1991-07-29 1994-10-04 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5520059A (en) 1991-07-29 1996-05-28 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
US5889215A (en) * 1996-12-04 1999-03-30 Philips Electronics North America Corporation Magnetoelastic torque sensor with shielding flux guide
DE69816978T2 (de) * 1997-03-28 2004-07-22 Siemens Ag Verfahren zur herstellung eines integrierten magnetoelastischen wandlers
US5907105A (en) * 1997-07-21 1999-05-25 General Motors Corporation Magnetostrictive torque sensor utilizing RFe2 -based composite materials
US6145387A (en) 1997-10-21 2000-11-14 Magna-Lastic Devices, Inc Collarless circularly magnetized torque transducer and method for measuring torque using same
JP2000082854A (ja) * 1998-06-30 2000-03-21 Aisin Seiki Co Ltd 磁歪素子およびその製造方法
US6222363B1 (en) * 1999-01-08 2001-04-24 Methode Electronics, Inc. Switch-mode flux-gate magnetometer
US6301976B1 (en) * 1999-03-18 2001-10-16 Trw Inc. Torque sensing apparatus having a magnetoelastic member secured to a shaft
US6516508B1 (en) * 1999-11-10 2003-02-11 Siemens Vdo Automotive Corporation Magnetoelastic non-compliant torque sensor and method of producing same

Also Published As

Publication number Publication date
EP1148325A3 (de) 2002-04-03
JP2001311668A (ja) 2001-11-09
US7127797B1 (en) 2006-10-31
EP1148325A2 (de) 2001-10-24
DE50100428D1 (de) 2003-09-04
EP1148325B1 (de) 2003-07-30

Similar Documents

Publication Publication Date Title
US6516508B1 (en) Magnetoelastic non-compliant torque sensor and method of producing same
JP4746200B2 (ja) トルクセンサにおいて使用するための磁気弾性部材を形成する方法
EP0895074B1 (en) Magnetostrictive torque sensor utilizing rare earth-iron-based composite materials
US7584672B2 (en) Magnetostrictive torque sensor
US5889215A (en) Magnetoelastic torque sensor with shielding flux guide
US7131339B2 (en) Measurement of torsional dynamics of rotating shafts using magnetostrictive sensors
EP0502722B1 (en) Torque sensor
EP0525551B1 (en) Circularly magnetized non-contact torque sensor,method, and transducer ring
JP5684442B2 (ja) 磁気センサ装置
JPH10513267A (ja) 円周方向磁化非接触式トルク・動力検出装置及びそれを用いたトルク及び動力測定方法
EP1070237A1 (en) Magnetising arrangements for torque/force sensor
EP1169627A1 (en) Magnetised torque transducer elements
US6439066B1 (en) Torque sensor
US10151651B2 (en) Hollow machine element and assembly for measuring a force or a torque
US6779409B1 (en) Measurement of torsional dynamics of rotating shafts using magnetostrictive sensors
KR102234582B1 (ko) 자기 변형 센서를 동작시키기 위한 방법
Garshelis et al. Development of a non-contact torque transducer for electric power steering systems
JP4197360B2 (ja) 力および変位の検出方法
US6356077B1 (en) Method of and device for determining a time-dependent gradient of a shock wave in a ferromagnetic element subjected to a percussion load
JPS60173434A (ja) トルク検出装置
JP4919013B2 (ja) 磁歪リング及び磁歪リング式トルクセンサ
JPS59208431A (ja) トルク検出装置
JPH05118938A (ja) トルクトランスデユーサ
JP2006090883A (ja) トルク伝達軸体及びその製造方法並びにトルク伝達軸体を用いたトルクセンサ
WO1998034455A2 (en) Measurement of torsional dynamics of rotating shafts using magnetostrictive sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110315

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees