JP4741375B2 - Components for vacuum suction of semiconductor wafers - Google Patents

Components for vacuum suction of semiconductor wafers Download PDF

Info

Publication number
JP4741375B2
JP4741375B2 JP2006020953A JP2006020953A JP4741375B2 JP 4741375 B2 JP4741375 B2 JP 4741375B2 JP 2006020953 A JP2006020953 A JP 2006020953A JP 2006020953 A JP2006020953 A JP 2006020953A JP 4741375 B2 JP4741375 B2 JP 4741375B2
Authority
JP
Japan
Prior art keywords
vacuum suction
polishing
semiconductor wafer
silicon
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006020953A
Other languages
Japanese (ja)
Other versions
JP2007201363A (en
Inventor
和洋 石川
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006020953A priority Critical patent/JP4741375B2/en
Publication of JP2007201363A publication Critical patent/JP2007201363A/en
Application granted granted Critical
Publication of JP4741375B2 publication Critical patent/JP4741375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体ウェハなどの被処理物を真空吸着して固定するための真空吸着用部材に関するものである。   The present invention relates to a vacuum suction member for fixing a workpiece such as a semiconductor wafer by vacuum suction.

半導体ウェハは、その厚みを薄くし、かつその厚みを高い寸法精度とする目的のために、半導体ウェハのデバイス形成面を真空吸着装置の真空吸着用部材に真空吸着して固定し、デバイス形成面の裏面が研磨されている。   For the purpose of reducing the thickness of the semiconductor wafer and increasing the thickness of the semiconductor wafer, the device formation surface of the semiconductor wafer is vacuum-adsorbed and fixed to the vacuum suction member of the vacuum suction device. The back side is polished.

図4(a)、(b)は従来の真空吸着用部材を用いて半導体ウェハを真空吸着により固定するための真空吸着装置の断面図である。多孔質体からなる真空吸着用部材52は、緻密質セラミックスからなる支持用部材62に接合されている。半導体ウェハ(不図示)はその片面にデバイスが形成され、この面が樹脂層で保護されている。半導体ウェハは、デバイス形成面側を真空吸着用部材52の吸着面66に接触させた状態で、真空吸引孔64から気体を排気することによって、真空吸着用部材52の吸着面66に真空吸着される。ここで、気体を排気すると半導体ウェハが真空吸着用部材52の吸着面66に吸着されるのは、真空吸着用部材52の下面と支持用部材62の上面の間には、真空吸引口と繋がる隙間が設けられ、かつ真空吸着用部材52は吸着面66(上面)から下面に連通する連通孔を多数有しているので、支持用部材62と真空吸着用部材52の間の隙間から気体を排気すると、この連通孔からも気体が排気されて、連通孔内が負圧になり、この負圧が半導体ウェハを真空吸着させるからである。   4 (a) and 4 (b) are cross-sectional views of a vacuum suction apparatus for fixing a semiconductor wafer by vacuum suction using a conventional vacuum suction member. The vacuum suction member 52 made of a porous body is joined to a support member 62 made of dense ceramic. A semiconductor wafer (not shown) has a device formed on one surface, and this surface is protected by a resin layer. The semiconductor wafer is vacuum-sucked to the suction surface 66 of the vacuum suction member 52 by exhausting gas from the vacuum suction hole 64 with the device formation surface side in contact with the suction surface 66 of the vacuum suction member 52. The Here, when the gas is exhausted, the semiconductor wafer is adsorbed on the adsorbing surface 66 of the vacuum adsorbing member 52 because the vacuum suction port is connected between the lower surface of the vacuum adsorbing member 52 and the upper surface of the supporting member 62. Since a gap is provided and the vacuum suction member 52 has a large number of communication holes that communicate from the suction surface 66 (upper surface) to the lower surface, gas is supplied from the gap between the support member 62 and the vacuum suction member 52. This is because if the air is exhausted, the gas is also exhausted from the communication hole, and the pressure in the communication hole becomes negative, and this negative pressure causes the semiconductor wafer to be vacuum-adsorbed.

同じ直径の半導体ウェハのみの研磨は、図4(a)のように、円板型の真空吸着用部材52を1個だけ支持用部材62に固定して真空吸着装置70を用いて行われている。   As shown in FIG. 4A, the polishing of only the semiconductor wafer having the same diameter is performed by using the vacuum suction device 70 by fixing only one disk-type vacuum suction member 52 to the support member 62. Yes.

一方、半導体ウェハには、その直径が6インチ、8インチなど様々な種類のものがあり、小さな直径の半導体ウェハを研磨した後、同じ真空吸着装置70を用いてさらに大きな直径の半導体ウェハを加工することが頻繁に行われている。このため、直径の異なる半導体ウェハを同じ真空吸着装置を用いて加工する場合には、例えば特許文献1に記載されているように、図4(b)の構造の真空吸着装置70が用いられている。図4(b)の真空吸着装置70においては、円板状の真空吸着用部材52aと、真空吸着用部材52aよりも大きな環状の真空吸着用部材52bとが、緻密質セラミックスからなる支持部材62によって隔離されている。このため、直径が真空吸着用部材52aの外径の半導体ウェハを加工する場合には、真空吸引孔64aからのみ気体を排気して半導体ウェハを真空吸着している。直径が真空吸着用部材52bの外径の半導体ウェハを加工する場合には、真空吸引孔64aおよび64bから気体を排気することによって半導体ウェハを真空吸着している。   On the other hand, there are various types of semiconductor wafers such as 6 inches and 8 inches in diameter. After polishing a semiconductor wafer having a small diameter, the semiconductor wafer having a larger diameter is processed using the same vacuum suction device 70. It has been done frequently. For this reason, when processing semiconductor wafers having different diameters using the same vacuum suction device, for example, as described in Patent Document 1, a vacuum suction device 70 having the structure of FIG. 4B is used. Yes. In the vacuum suction device 70 of FIG. 4B, a disk-shaped vacuum suction member 52a and a ring-shaped vacuum suction member 52b larger than the vacuum suction member 52a are made of a support member 62 made of dense ceramics. Isolated by For this reason, when processing a semiconductor wafer whose diameter is the outer diameter of the vacuum suction member 52a, the semiconductor wafer is vacuum-sucked by exhausting gas only from the vacuum suction hole 64a. When processing a semiconductor wafer having an outer diameter of the vacuum suction member 52b, the semiconductor wafer is vacuum-sucked by exhausting gas from the vacuum suction holes 64a and 64b.

これらのように真空吸着された半導体ウェハは、真空吸着装置70を用いて一般的に次のように加工されている。   The semiconductor wafer vacuum-sucked as described above is generally processed as follows using the vacuum suction device 70.

まず、半導体ウェハを真空吸着装置70に固定する前に、真空吸着装置70の真空吸着用部材52の吸着面66を自己研磨する。この自己研磨によって、吸着面の平坦度が向上し、半導体ウェハの研磨精度を向上させることができる。   First, before fixing the semiconductor wafer to the vacuum suction device 70, the suction surface 66 of the vacuum suction member 52 of the vacuum suction device 70 is self-polished. By this self-polishing, the flatness of the suction surface is improved, and the polishing accuracy of the semiconductor wafer can be improved.

次に、半導体ウェハを真空吸着した状態でダイヤモンド砥石(不図示)等を用いて半導体ウェハのデバイス形成面の裏面を湿式で研磨する。この研磨は、半導体ウェハを高精度に研磨するための後述の精密研磨を行う前の予備研磨である。精密研磨の方式としては乾式研磨方式、湿式研磨方式などがあるが、これらの方式のうち乾式研磨方式が経済的であるため汎用されている。乾式研磨方式による精密研磨は、乾式研磨用砥石により行われている。   Next, the back surface of the device forming surface of the semiconductor wafer is wet-polished using a diamond grindstone (not shown) or the like while the semiconductor wafer is vacuum-adsorbed. This polishing is pre-polishing before performing precision polishing, which will be described later, for polishing a semiconductor wafer with high accuracy. Precision polishing methods include a dry polishing method and a wet polishing method, and among these methods, the dry polishing method is economical and is widely used. Precision polishing by the dry polishing method is performed with a dry polishing grindstone.

従来の真空吸着用部材52としては次のようなものが知られている。   The following are known as the conventional vacuum suction member 52.

特許文献2には、円板状の多孔質セラミックスの上面に、平均細孔径が2.5〜15μm、厚み幅が0.1〜1.0μmである多孔質樹脂層(不図示)を被着した真空吸着用部材52が記載されている。特許文献2によれば、多孔質セラミックスは3次元的に入り込んだ構造をしているため、多孔質樹脂層がない場合には、研磨片などを含む研磨廃液が多孔質セラミックスの貫通微小孔や微小空孔(気孔)に堆積すると、研磨片などを殆ど除去できない、と記載されている。そこで、半導体ウェハの研磨加工によって生じる研磨片などを多孔質セラミックスに堆積させない目的のために真空吸着用部材52は、多孔質セラミックスの吸着面に多孔質樹脂層を被着形成したものとすると記載されている。   In Patent Document 2, a porous resin layer (not shown) having an average pore diameter of 2.5 to 15 μm and a thickness width of 0.1 to 1.0 μm is deposited on the upper surface of a disk-shaped porous ceramic. The vacuum suction member 52 is described. According to Patent Document 2, since the porous ceramics has a three-dimensional structure, if there is no porous resin layer, the polishing waste liquid containing polishing pieces or the like passes through the porous ceramic through-holes. It is described that when it accumulates in micropores (pores), polishing pieces and the like can hardly be removed. Therefore, it is described that the vacuum adsorbing member 52 is formed by depositing a porous resin layer on the adsorption surface of the porous ceramic for the purpose of not depositing polishing pieces or the like generated by the polishing process of the semiconductor wafer on the porous ceramic. Has been.

特許文献1,3には、アルミナや炭化珪素などの材質の多孔質セラミックスからなる真空吸着用部材52が記載されている。   Patent Documents 1 and 3 describe a vacuum adsorbing member 52 made of porous ceramics made of a material such as alumina or silicon carbide.

特許文献1〜3に記載された多孔質セラミックスは、図5に多孔質セラミックスの断面を模式的に表した断面図を示したように、セラミックスの結晶粒子54と、開気孔56から構成されて、開気孔56は、上述した連通孔を形成している。   The porous ceramics described in Patent Documents 1 to 3 are composed of ceramic crystal particles 54 and open pores 56 as shown in the cross-sectional view schematically showing the cross section of the porous ceramic in FIG. The open holes 56 form the communication holes described above.

半導体素子を搭載した機器の誤動作を抑制するため、デバイスを形成した半導体ウェハから作製される半導体素子の厚みは、近年の半導体素子の超微細配線化に伴って、特に高精度にすることが求められている。このため、デバイスを形成した半導体ウェハの厚みは、従来よりもさらにばらつきがないことが求められている。このような要求に鑑み、半導体ウェハを研磨する際に、研磨屑が殆ど堆積しない、または全く堆積しない真空吸着用部材が求められてきている。
特開2000−21959号公報 特開平11−243135号公報 特開2005−212000号公報
In order to suppress malfunctions of devices equipped with semiconductor elements, the thickness of semiconductor elements fabricated from semiconductor wafers on which devices are formed must be particularly high with the recent trend toward ultra-fine wiring of semiconductor elements. It has been. For this reason, the thickness of the semiconductor wafer on which the device is formed is required to have no further variation than before. In view of such a demand, there has been a demand for a vacuum suction member in which polishing scraps are hardly deposited or not deposited at the time of polishing a semiconductor wafer.
JP 2000-21959 A JP-A-11-243135 Japanese Patent Laid-Open No. 2005-212000

特許文献1、3の真空吸着用部材52を用いて、直径が小さな半導体ウェハを研磨した後、この半導体ウェハよりも大きな直径の半導体ウェハを研磨すると、特許文献1に記載されているように、研磨屑が真空吸着用部材52の吸着面66に堆積するという不具合が生じていた。この堆積の問題の原因は次のようにして起こると考えられる。   After polishing a semiconductor wafer having a small diameter using the vacuum suction member 52 of Patent Documents 1 and 3, when polishing a semiconductor wafer having a diameter larger than this semiconductor wafer, as described in Patent Document 1, There has been a problem that polishing scraps accumulate on the suction surface 66 of the vacuum suction member 52. The cause of this deposition problem is thought to occur as follows.

図4(b)の真空吸着用部材70が例えば直径が6インチのシリコンウェハと直径が8インチのシリコンウェハを研磨する真空吸着用部材70であり、この真空吸着装置70を用いて、6インチのシリコンウェハを研磨する場合を例にして説明する。シリコンウェハを湿式で予備研磨すると、吸着面66bに研磨屑を含む研磨廃液が、吸着面66bに飛散して真空吸着用部材52bの表面および内部に付着する。研磨廃液に含まれるシリコン(Si)からなる微粒子は、空気または研磨廃液に含まれる水に含まれる酸素(O)と反応してSi−O結合を多数有する微粒子に変質する。多孔質セラミックス52の結晶粒子54は、Si−O結合を多数有する微粒子との化学的反応性が高い。このため、真空吸着用部材52bに付着した研磨溶液に含まれるSi−O結合を多数有する微粒子が、結晶粒子54と化学的に反応して開気孔56に堆積するという問題が発生し、開気孔56を目詰まりさせてしまう。   The vacuum suction member 70 shown in FIG. 4B is, for example, a vacuum suction member 70 for polishing a silicon wafer having a diameter of 6 inches and a silicon wafer having an diameter of 8 inches. An example of polishing a silicon wafer will be described. When the silicon wafer is wet-preliminarily wet-polished, polishing waste liquid containing polishing scraps on the suction surface 66b scatters on the suction surface 66b and adheres to the surface and inside of the vacuum suction member 52b. The fine particles made of silicon (Si) contained in the polishing waste liquid react with oxygen (O) contained in the air or water contained in the polishing waste liquid to be transformed into fine particles having many Si—O bonds. The crystal particles 54 of the porous ceramic 52 have high chemical reactivity with fine particles having many Si—O bonds. For this reason, there arises a problem that fine particles having a large number of Si—O bonds contained in the polishing solution adhering to the vacuum adsorbing member 52 b chemically react with the crystal particles 54 and accumulate in the open pores 56. 56 will be clogged.

このような堆積の問題は、半導体ウェハの材質がシリコンの場合のみならず、他の材質の半導体ウェハでも同様に起こる。研磨屑の堆積の問題が起こると、半導体ウェハを真空吸着する力が低下するため、研磨の際に半導体ウェハに砥石から応力がかかった状態で、半導体ウェハと真空吸着用部材の相対的な位置が変化しやすくなる。その結果、得られる半導体ウェハの厚みが大きくばらつくという不具合が発生する。   Such a deposition problem occurs not only when the semiconductor wafer is made of silicon, but also with other types of semiconductor wafers. If there is a problem with the accumulation of polishing debris, the vacuum suction force of the semiconductor wafer will decrease, so the relative position between the semiconductor wafer and the vacuum suction member while the semiconductor wafer is stressed by the grindstone during polishing. Is likely to change. As a result, there arises a problem that the thickness of the obtained semiconductor wafer varies greatly.

多孔質セラミックスに多孔質樹脂層を被着した特許文献2の真空吸着用部材52は、多数の半導体ウェハを繰り返し研磨すると、多孔質樹脂層から真空吸着用部材の表面および内部へ研磨屑が浸透、堆積して多孔質セラミックスの気孔26が目詰まし、さらに多孔質樹脂も目詰まりするので、真空吸着する力が弱くなるだけでなく、多孔質樹脂の表面に研磨屑が堆積するという問題もあった。   In the vacuum adsorbing member 52 of Patent Document 2 in which a porous resin layer is applied to porous ceramics, when a large number of semiconductor wafers are repeatedly polished, polishing waste penetrates from the porous resin layer to the surface and inside of the vacuum adsorbing member. Since the porous ceramic pores 26 are clogged and clogged, and the porous resin is clogged, not only the vacuum adsorption force is weakened, but also polishing dust accumulates on the surface of the porous resin. there were.

本発明は、上記問題点に鑑み、半導体ウェハを真空吸着して固定しながら研磨するために用いられる真空吸着用部材であって、真空吸着用部材への研磨屑の堆積を特に抑制することができる真空吸着用部材を提供することを目的とする。   In view of the above problems, the present invention is a vacuum suction member used for polishing a semiconductor wafer by vacuum suction and fixing it, and particularly suppresses the accumulation of polishing debris on the vacuum suction member. An object of the present invention is to provide a vacuum suction member.

上記に鑑みて本発明は、平均結晶粒径が150〜200μmの炭化珪素の結晶粒子同士が珪素を介して接合されて、20〜50体積%の気孔率を有する多孔質セラミックスが構成され、該多孔質セラミックスを構成する前記結晶粒子および前記珪素の周囲に、撥水性樹脂を被着形成してなることを特徴とする。
In view of the above, the present invention comprises a porous ceramic having a porosity of 20 to 50% by volume, wherein silicon carbide crystal particles having an average crystal grain size of 150 to 200 μm are bonded to each other via silicon. around the crystal grains and the silicon constituting the porous ceramic, characterized by comprising a water-repellent resin is deposited and formed.

平均結晶粒径が150〜200μmの炭化珪素の結晶粒子同士が珪素を介して接合されて、20〜50体積%の気孔率を有する多孔質セラミックスが構成され、該多孔質セラミックスを構成する前記結晶粒子および前記珪素の周囲に、撥水性樹脂を被着形成してなる真空吸着用部材とすることによって、撥水性樹脂が真空吸着用部材への水の付着を防止するので、半導体ウェハを湿式研磨した際に発生する研磨廃液が真空吸着用部材から直ぐに離脱し、研磨廃液に含まれる研磨屑が真空吸着用部材に堆積することが防止される。その結果、研磨屑の堆積によって起こる気孔の目詰まりがない為、直径の小さな半導体ウェハを研磨した後、同じ真空吸着装置で直径のさらに大きな半導体ウェハを研磨した場合でも、半導体ウェハを真空吸着する力が弱くなることを防止できる。
Are joined average crystal grain size through the crystal grains of silicon carbide of 150 to 200 .mu.m, it is constituted porous ceramics having a porosity of 20 to 50 vol%, the crystal constituting the porous ceramic Since the water-repellent resin prevents water from adhering to the vacuum suction member by forming the water-repellent resin around the particles and the silicon , the semiconductor wafer is wet-polished. The polishing waste liquid generated at this time is immediately detached from the vacuum suction member, and the polishing waste contained in the polishing waste liquid is prevented from being deposited on the vacuum suction member. As a result, there is no clogging of pores caused by the accumulation of polishing debris. Therefore, even when a semiconductor wafer with a larger diameter is polished with the same vacuum suction device after polishing a semiconductor wafer with a smaller diameter, the semiconductor wafer is vacuum-adsorbed. We can prevent weakness.

また、前記結晶粒子が炭化珪素であり、該結晶粒子が珪素により接合されていることによって、多孔質セラミックスの熱伝導率を高くすることができるので、半導体ウェハを研磨する際の摩擦熱を効率良く放熱して半導体ウェハのデバイス形成面の樹脂層が溶融するおそれをなくすことができるとともに、電気抵抗を特に小さくすることができるので、真空吸着用部材に微細な研磨屑やゴミが静電付着することを特に抑制することができる。
Further, the crystalline particles are carbide, efficiency Rukoto the crystal grains are joined by silicon, it is possible to increase the thermal conductivity of the porous ceramic, the frictional heat at the time of polishing a semiconductor wafer It can dissipate well and eliminate the possibility of melting the resin layer on the device forming surface of the semiconductor wafer. In addition, the electrical resistance can be made particularly small, so that fine polishing scraps and dust are electrostatically attached to the vacuum suction member. This can be particularly suppressed.

さらに、前記撥水性樹脂を除いた前記多孔質セラミックスの気孔率が20〜50体積%であることによって、真空吸着する力を十分に大きくして半導体ウェハを強く吸着して固定でき、かつ半導体ウェハの研磨の際に真空吸着用部材を構成するセラミックスの一部が欠損するおそれをなくすことができる。
Further, the repellent by the excluding aqueous resin porous ceramic porosity of 20-50 vol% der Turkey, can be fixed to strongly adsorb the semiconductor wafer by sufficiently large forces vacuum suction, and When polishing the semiconductor wafer, it is possible to eliminate a possibility that a part of the ceramics constituting the vacuum suction member is lost.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明の真空吸着用部材は、平均結晶粒径が150〜200μmの炭化珪素の結晶粒子同士が珪素を介して接合されて、20〜50体積%の気孔率を有する多孔質セラミックス
が構成され、該多孔質セラミックスを構成する前記結晶粒子および前記珪素の周囲に、撥水性樹脂を被着形成してなるものである。
The vacuum adsorbing member of the present invention is a porous ceramic having a porosity of 20 to 50% by volume, wherein silicon carbide crystal particles having an average crystal grain size of 150 to 200 μm are bonded together via silicon.
There is constructed, around the crystal grains and the silicon constituting the porous ceramics, in which a water-repellent resin made by adhering formed.

図1は真空吸着用部材の断面を拡大し、これを模式的に表した断面図である。の真空吸着用部材2は、相互に焼結して多孔質セラミックスを構成する各結晶粒子4に撥水性樹脂8を被着形成してなるものである。図1は、結晶粒子4からなる多孔質セラミックス2の断面(結晶粒子4が破断された面)の図であるため、結晶粒子4の周囲のみに撥水性樹脂8が図示されているが、実際には真空吸着用部材2は、開気孔6に隣接する各結晶粒子4の表面の略全体に撥水性樹脂が被着形成されているので、図1の奥行き方向で各結晶粒子4は互いに焼結し合っている。また、真空吸着用部材2の骨格は多孔質セラミックスからなり、この骨格に撥水性樹脂が被着形成されている。
FIG. 1 is a cross-sectional view schematically showing an enlarged cross section of a vacuum suction member. Vacuum suction member 2 This is made of water-repellent resin 8 by adhering formed in each crystal grain constituting the porous ceramic by sintering to each other 4. FIG. 1 is a cross-sectional view of the porous ceramics 2 made of crystal particles 4 (the surface in which the crystal particles 4 are broken), and the water-repellent resin 8 is shown only around the crystal particles 4. In the vacuum adsorbing member 2, since the water-repellent resin is deposited on substantially the entire surface of each crystal particle 4 adjacent to the open pores 6, the crystal particles 4 are sintered in the depth direction of FIG. 1. Are tied together. The skeleton of the vacuum adsorbing member 2 is made of porous ceramics, and a water repellent resin is deposited on the skeleton.

ここで本発明の真空吸着用部材2は、図2に示したように、セラミックスの結晶粒子4が、珪素からなる接合剤10で接合されたものに、撥水性樹脂8を被着形成してなることが重要である。これによって、自己研磨の際に多孔質セラミックスが欠けるおそれをなくすことができるからである
Here, vacuum suction member 2 of the present invention, as shown in FIG. 2, the crystal grains 4 of ceramic, to those joined by bonding agent 10 made of silicofluoride-containing, deposited and formed a water repellent resin 8 It is important to be This is because it is possible to eliminate the possibility of the porous ceramic chipping during self-polishing .

図3は本発明の真空吸着用部材2を用いた真空吸着装置20の断面図である。真空吸着装置20は、円板状の真空吸着用部材2aと、真空吸着用部材2aの外径よりも大きな環状の真空吸着用部材2bとが、緻密質セラミックスからなる支持部材12によって隔離され、真空吸着用部材2aを真空引きするための吸引孔14a、真空吸着用部材2bを真空引きするための吸引孔14bを備え、真空吸着用部材2aと支持部材12の間、真空吸着用部材2bと支持部材の間には、それぞれ吸引孔14a、14bと繋がっている隙間が設けられている。多孔質セラミックスからなる真空吸着用部材2a,2bは、緻密質セラミックスからなる支持用部材12に接合されている。   FIG. 3 is a cross-sectional view of a vacuum suction device 20 using the vacuum suction member 2 of the present invention. In the vacuum suction device 20, the disk-shaped vacuum suction member 2a and the annular vacuum suction member 2b larger than the outer diameter of the vacuum suction member 2a are separated by a support member 12 made of dense ceramics. A suction hole 14a for evacuating the vacuum suction member 2a and a suction hole 14b for evacuating the vacuum suction member 2b are provided. Between the vacuum suction member 2a and the support member 12, the vacuum suction member 2b and Between the support members, gaps connected to the suction holes 14a and 14b are provided. The vacuum adsorbing members 2a and 2b made of porous ceramics are joined to a supporting member 12 made of dense ceramics.

図3のような真空吸着装置20とすることによって、真空吸着用部材2aの外径に相当する直径の半導体ウェハを加工する場合には、真空吸引孔14aからのみ気体を排気して半導体ウェハを真空吸着し、真空吸着用部材2bの外径に相当する直径の大きな半導体ウェハを加工する場合には、真空吸引孔14aおよび14bから気体を排気することによって半導体ウェハを真空吸着することができる構造となっている。   When the semiconductor wafer having a diameter corresponding to the outer diameter of the vacuum suction member 2a is processed by using the vacuum suction device 20 as shown in FIG. 3, the gas is exhausted only from the vacuum suction hole 14a to remove the semiconductor wafer. When processing a semiconductor wafer having a large diameter corresponding to the outer diameter of the vacuum suction member 2b by vacuum suction, the semiconductor wafer can be vacuum suctioned by exhausting gas from the vacuum suction holes 14a and 14b. It has become.

半導体ウェハは、デバイス形成面側を真空吸着用部材2a,2bの吸着面16a,16bに接触させた状態で、真空吸引孔14a、14bから気体を排気することによって、真空吸着用部材2a,2bの吸着面16a,16bに真空吸着される。ここで、気体を排気すると半導体ウェハが真空吸着用部材2a,2bの吸着面16a,16bに吸着されるのは、真空吸着用部材2a,2bの下面と支持用部材12の上面の間には、それぞれ真空吸引口と繋がる隙間が設けられ、かつ真空吸着用部材2a,2bは吸着面16a,16b(上面)から下面に連通する連通孔を多数有しているので、支持用部材12と真空吸着用部材2a,2bの間の隙間から気体を排気すると、この連通孔からも気体が排気されて、連通孔内が負圧になり、この負圧が半導体ウェハを真空吸着させるからである。   The semiconductor wafer is evacuated from the vacuum suction holes 14a and 14b in a state where the device forming surface side is in contact with the suction surfaces 16a and 16b of the vacuum suction members 2a and 2b, thereby obtaining the vacuum suction members 2a and 2b. The suction surfaces 16a and 16b are vacuum-sucked. Here, when the gas is exhausted, the semiconductor wafer is adsorbed on the adsorption surfaces 16 a and 16 b of the vacuum adsorption members 2 a and 2 b between the lower surface of the vacuum adsorption members 2 a and 2 b and the upper surface of the support member 12. Each of the vacuum suction members 2a and 2b has a large number of communication holes communicating from the suction surfaces 16a and 16b (upper surface) to the lower surface, so that the vacuum suction members 2a and 2b are connected to the support member 12 and the vacuum. This is because when the gas is exhausted from the gap between the adsorbing members 2a and 2b, the gas is also exhausted from the communication hole, and the communication hole has a negative pressure, and this negative pressure causes the semiconductor wafer to be vacuum-adsorbed.

真空吸着用部材2は、結晶粒子4の表面に撥水性樹脂が被着形成されているので、水を含む研磨廃液などが付着しにくく、その結果、研磨廃液に含まれる研磨屑が真空吸着用部材2に堆積することがない。本発明の真空吸着用部材2を用いることにより、吸着面16bで研磨屑が堆積して開気孔6の目詰まりをなくすことができるため、直径の小さな半導体ウェハを研磨した後、同じ真空吸着装置20で直径の大きな半導体ウェハを研磨した場合でも、吸着面16b上にある半導体ウェハを真空吸着する力が低下しない。このため、吸着面16aおよび16b上にある大きな半導体ウェハを強く真空吸着したまま研磨することができるので、砥石から半導体ウェハに応力がかかっても、半導体ウェハの下面と吸着面16a,16bとの相対的な位置が変わらない状態を保ったまま研磨することができ、その結果、得られる半導体ウェハの厚みのばらつきを低減することができる。   Since the water-repellent resin is deposited on the surface of the crystal particles 4 in the vacuum adsorbing member 2, the polishing waste liquid containing water is difficult to adhere, and as a result, the polishing waste contained in the polishing waste liquid is used for vacuum adsorption. There is no deposit on the member 2. By using the vacuum suction member 2 of the present invention, it is possible to eliminate clogging of the open pores 6 due to accumulation of polishing scraps on the suction surface 16b. Therefore, after polishing a semiconductor wafer having a small diameter, the same vacuum suction device is used. Even when a semiconductor wafer having a large diameter is polished at 20, the force for vacuum-sucking the semiconductor wafer on the suction surface 16b does not decrease. For this reason, since the large semiconductor wafer on the suction surfaces 16a and 16b can be polished while being strongly vacuum-sucked, even if stress is applied to the semiconductor wafer from the grindstone, the lower surface of the semiconductor wafer and the suction surfaces 16a and 16b Polishing can be performed while maintaining the relative position unchanged, and as a result, variations in the thickness of the resulting semiconductor wafer can be reduced.

結晶粒子4は、主成分が、炭化珪素からなることが重要である。ここで、主成分とは、少なくとも結晶粒子4の50体積%以上を占める結晶相をいう。
Crystal grains 4, main component, it is important charcoal Ka珪hydrogenation Ranaru. Here, the main component refers to a crystal phase that occupies at least 50% by volume of the crystal particles 4.

結晶粒子4の主成分が炭化珪素の場合は、炭化珪素は熱伝導率が高いため、半導体ウェハを研磨する際に発生した摩擦熱を効率的に放熱できるので、半導体ウェハのデバイス形成面に形成された樹脂層が、半導体ウェハを研磨する際に発生する摩擦熱によって溶融するおそれがなくなり、その結果、得られる半導体ウェハを高品質のものとすることができる。また、炭化珪素は電気抵抗が低いので、導電性または半導電性の撥水性樹脂8を被着形成した場合には、精密研磨を乾式研磨方式により行う際に、電気的にアースを取れば、
研磨によって真空吸着用部材2に発生する静電気を逃がすことができ、真空吸着用部材2に微細な研磨屑やゴミが静電付着し、開気孔6を目詰まりさせるおそれがない。このため、小さな直径の半導体ウェハを加工した後、この半導体ウェハよりも大きな直径の半導体ウェハを加工しても、半導体ウェハを真空吸着する力が全く弱まることがないので、大きな直径の半導体ウェハ厚みのばらつきをさらに低減することができる。したがって、多孔質セラミックスを構成する結晶粒子4は、主成分が炭化珪素からなることが重要である
When the main component of the crystal particles 4 is silicon carbide, since silicon carbide has high thermal conductivity, the frictional heat generated when polishing the semiconductor wafer can be efficiently dissipated, so that it is formed on the device forming surface of the semiconductor wafer. resinous layer, a possibility of melting by frictional heat generated when polishing a semiconductor wafer is not, as a result, can be made of a semiconductor wafer obtained with high quality. In addition, since silicon carbide has a low electrical resistance, when the conductive or semiconductive water-repellent resin 8 is deposited and formed, if grounding is performed electrically when performing precision polishing by a dry polishing method,
Static electricity generated in the vacuum suction member 2 due to the polishing can be released, and there is no possibility that fine polishing scraps and dust adhere to the vacuum suction member 2 and clog the open pores 6. For this reason, after processing a semiconductor wafer with a small diameter, even if a semiconductor wafer with a larger diameter than this semiconductor wafer is processed, the force for vacuum-sucking the semiconductor wafer is not weakened at all. Can be further reduced. Therefore, it is important that the crystal particles 4 constituting the porous ceramic are mainly composed of silicon carbide.

また、多孔質セラミックスは、セラミックスの結晶粒子4が珪素からなる接合剤10で接合されたものからなることが重要である。この理由は、結晶粒子4が互いに接合剤10を介して強固に接合されるので真空吸着用部材2の機械的強度が向上するからである。
The porous ceramics, it is important that crystal grains 4 of ceramic consisting of those joined by bonding agent 10 made of silicofluoride-containing. This is because the crystal particles 4 are firmly bonded to each other via the bonding agent 10, so that the mechanical strength of the vacuum suction member 2 is improved.

このように、多孔質セラミックスは、結晶粒子4が炭化珪素からなり、接合剤10が珪素からなることが重要である。この理由は、多孔質セラミックスの熱伝導率を高くすることができるので、半導体ウェハを研磨する際の摩擦熱を効率良く放熱して半導体ウェハのデバイス形成面の樹脂層が溶融するおそれをなくすことができるとともに、電気抵抗を特に小さくすることができるので、真空吸着用部材2に微細な研磨屑やゴミが静電付着することを特に抑制することができるからである。
Thus, in the porous ceramics, it is important that the crystal particles 4 are made of silicon carbide and the bonding agent 10 is made of silicon. The reason for this is that the thermal conductivity of the porous ceramics can be increased, so that the frictional heat at the time of polishing the semiconductor wafer can be efficiently radiated to eliminate the possibility of melting the resin layer on the device forming surface of the semiconductor wafer. This is because the electrical resistance can be particularly reduced, and the electrostatic adhering of fine polishing debris and dust to the vacuum suction member 2 can be particularly suppressed.

また、撥水性樹脂8を除いた多孔質セラミックスの気孔率が20〜50体積%であることが重要である。これにより、真空吸着する力を十分に大きくして半導体ウェハを強く吸着して固定でき、かつ自己研磨の際に真空吸着用部材2を構成するセラミックスの一部が欠損するおそれをなくすことができる。
Moreover, it is important that the porosity of the porous ceramics excluding the water repellent resin 8 is 20 to 50% by volume. Thereby, the force for vacuum suction can be sufficiently increased to strongly suck and fix the semiconductor wafer, and the possibility that a part of ceramics constituting the vacuum suction member 2 is lost during self-polishing can be eliminated. .

気孔率が20体積%未満では、真空吸着力を十分に大きくすることができないおそれがある。50体積%を超えると、真空吸着用部材2の骨格を形成する多孔質セラミックスの機械的強度が低下するとともに、自己研磨の際に真空吸着用部材2を構成するセラミックスの一部が欠損するおそれがあるからである。多孔質セラミックスの気孔率はアルキメデス法により測定することができる。アルキメデス法により測定する場合、気孔率はJIS R 1634−1998に規定された方法に準拠して測定しても良い。   If the porosity is less than 20% by volume, the vacuum adsorption force may not be sufficiently increased. If it exceeds 50% by volume, the mechanical strength of the porous ceramics forming the skeleton of the vacuum suction member 2 is lowered, and part of the ceramics constituting the vacuum suction member 2 may be lost during self-polishing. Because there is. The porosity of the porous ceramics can be measured by the Archimedes method. When measuring by the Archimedes method, the porosity may be measured in accordance with a method defined in JIS R 1634-1998.

撥水性樹脂8としては、撥水性能の高いフッ素樹脂およびシリコン樹脂が好ましい。このうちフッ素樹脂からなる撥水性樹脂8は、強固に結晶粒子4や接合剤10に被着するのでさらに好ましい。また、導電性の撥水性樹脂8を用いることによって、半導体ウェハに研磨屑やゴミが静電付着することを効果的に防止することができる。   As the water repellent resin 8, a fluororesin and a silicon resin having high water repellency are preferable. Of these, the water-repellent resin 8 made of a fluororesin is more preferable because it adheres firmly to the crystal particles 4 and the bonding agent 10. Further, by using the conductive water-repellent resin 8, it is possible to effectively prevent polishing dust and dirt from adhering to the semiconductor wafer.

撥水性樹脂8は真空吸着用部材2全体に被着形成してなることが好ましいものの、撥水性樹脂8の撥水効果を出すためには、真空吸着用部材2の吸着面16(上面)から下面18a,18bの方向に少なくとも1mm以上被着形成されていれば良い。   Although the water repellent resin 8 is preferably formed on the entire vacuum suction member 2, in order to exert the water repellent effect of the water repellent resin 8, the suction surface 16 (upper surface) of the vacuum suction member 2 is used. It is only necessary that at least 1 mm or more is deposited in the direction of the lower surfaces 18a and 18b.

また、撥水性樹脂8の厚みは0.01〜5μmであることが好ましい。これにより、撥水性樹脂8の剥離を特に抑制することができるからである。撥水性樹脂8の厚みが0.01μm未満の場合は、研磨屑を含む研磨廃液が撥水性樹脂8を摩耗させて結晶粒子4が露出することによって撥水効果がなくなるおそれがあるため好ましくない。撥水性樹脂8の厚みが5μmを超えると、多孔質セラミックスと撥水性樹脂8の熱膨張率の違いによって撥水性樹脂8が剥離するおそれがあるため好ましくない。撥水性樹脂8の材質、後述する撥水性樹脂8の溶解のための溶媒の種類などを変更することにより、撥水性樹脂8の厚みを0.01〜5μmとすることができる。   The thickness of the water repellent resin 8 is preferably 0.01 to 5 μm. Thereby, peeling of the water repellent resin 8 can be particularly suppressed. When the thickness of the water-repellent resin 8 is less than 0.01 μm, it is not preferable because the polishing waste liquid containing polishing scraps wears the water-repellent resin 8 and exposes the crystal particles 4 to lose the water-repellent effect. If the thickness of the water repellent resin 8 exceeds 5 μm, the water repellent resin 8 may be peeled off due to the difference in thermal expansion coefficient between the porous ceramic and the water repellent resin 8, which is not preferable. By changing the material of the water-repellent resin 8, the kind of solvent for dissolving the water-repellent resin 8 described later, the thickness of the water-repellent resin 8 can be set to 0.01 to 5 μm.

本発明の真空吸着用部材2の各種測定方法について説明する。   Various measurement methods for the vacuum suction member 2 of the present invention will be described.

真空吸着用部材2に撥水性樹脂8が含まれていることは、例えばフーリエ変換赤外分光分析装置(FTIR)、ガスクロマトグラフ(GCmass)のうち少なくとも1種を用いて分析することができる。例えば、撥水性樹脂8がフッ素樹脂の場合は、FTIRでパワースペクトルを測定し、フッ素樹脂の標準パワースペクトルとピークを比較することによって同定することが可能である。GCmassでは熱分解した気体としてポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン(TFE)やヘキサフロロエチレン(HFE)等が検出され、フッ素樹脂であることが同定出来る。   The fact that the water-repellent resin 8 is contained in the vacuum adsorption member 2 can be analyzed using at least one of a Fourier transform infrared spectroscopic analyzer (FTIR) and a gas chromatograph (GCmass), for example. For example, when the water-repellent resin 8 is a fluororesin, it can be identified by measuring the power spectrum by FTIR and comparing the peak with the standard power spectrum of the fluororesin. In GCmass, polytetrafluoroethylene (PTFE), tetrafluoroethylene (TFE), hexafluoroethylene (HFE), etc. are detected as thermally decomposed gas, and it can be identified as a fluororesin.

また、真空吸着用部材2の骨格が多孔質セラミックスからなることは、次のようにして分析することができる。真空吸着用部材2を600〜900℃程度で3〜5時間加熱し、撥水性樹脂8を分解させて除去し、FTIR、GCmassのうち少なくとも1種の方法により、撥水性樹脂8が分解され残留していないことを確認する。撥水性製樹脂8が真空吸着用部材残留している場合には、再度加熱する。撥水性樹脂8を除去すると多孔質セラミックスだけが残る。多孔質セラミックスが結晶質の結晶相を含む場合には、残った多孔質セラミックスをX線回折法により分析することにより、多孔質セラミックスに含まれる結晶粒子4の結晶構造を同定することができる。これにより、多孔質セラミックスに含まれる結晶粒子4が炭化珪素を主成分とするものであることがわかる。
Moreover, it can be analyzed as follows that the frame | skeleton of the member 2 for vacuum adsorption consists of porous ceramics. The vacuum adsorbing member 2 is heated at about 600 to 900 ° C. for 3 to 5 hours to decompose and remove the water repellent resin 8, and the water repellent resin 8 is decomposed and remains by at least one of FTIR and GCmass. Make sure that they are not. If the water repellent resin 8 remains in the vacuum suction member, it is heated again. When the water repellent resin 8 is removed, only the porous ceramic remains. When the porous ceramic contains a crystalline crystal phase, the crystal structure of the crystal particles 4 contained in the porous ceramic can be identified by analyzing the remaining porous ceramic by the X-ray diffraction method. Thus, it can be seen that the crystal grains 4 contained in the porous ceramics as a main component carbonization silicon.

さらに、多孔質セラミックスが炭化珪素からなる結晶粒子4で構成され、炭化珪素からなる結晶粒子4が珪素により接合されていることについては、X線回折で珪素が含まれていることがわかる。この場合、多孔質セラミックスの破断面を微少部X線回折法により分析することで、結晶粒子4が炭化珪素からなり、この結晶粒子が珪素で接合されていることをさらに確認しても良い。
Furthermore, consists of crystalline particles 4 porous ceramic made of silicon carbide, for the crystal grains 4 of silicon carbide is bonded by silicon, it can be seen that contain silicon in X-ray diffraction. In this case, by analyzing the fracture surface of the porous ceramics by a micro X-ray diffraction method, it may be further confirmed that the crystal particles 4 are made of silicon carbide and the crystal particles are bonded with silicon.

多孔質セラミックスの気孔率は、前記のようにして加熱して真空吸着用部材2から撥水性樹脂8を除去したものの気孔率を測定することで求められる。気孔率の測定はJIS R 1634−1998に規定された方法に準拠して測定しても良い。   The porosity of the porous ceramics can be obtained by measuring the porosity of the porous ceramics after removing the water repellent resin 8 from the vacuum adsorption member 2 by heating as described above. The porosity may be measured in accordance with the method defined in JIS R 1634-1998.

また、撥水性樹脂8の厚みは、真空吸着用部材2の欠片を集束イオンビームにより加工してSEM写真を撮り観察することで求めることができる。ここで、集束イオンビームで加工すると撥水性樹脂8が部分的に除去されるので、撥水性樹脂8が被着されている部分と被着されていない部分の境界が現れ、これをSEMで観察することにより、撥水性樹脂8が被着されていた厚みを測定することができる。   The thickness of the water repellent resin 8 can be determined by processing a piece of the vacuum adsorbing member 2 with a focused ion beam and taking and observing an SEM photograph. Here, since the water-repellent resin 8 is partially removed by processing with a focused ion beam, a boundary between a portion where the water-repellent resin 8 is applied and a portion where the water-repellent resin 8 is not applied appears, and this is observed with an SEM. By doing so, the thickness to which the water-repellent resin 8 was adhered can be measured.

熱伝導率はレーザーフラッシュ法により測定する。例えばレーザーフラッシュ法により熱伝導率を測定する場合は、JIS R1611−1997に準拠した方法で測定しても良い。JIS R1611−1997に準拠した方法で測定した熱伝導率は、気孔率が10%を超える測定試料の場合、測定誤差が大きくなるものの、この方法で得られた熱伝導率を真空吸着用部材2の熱伝導率とすることができる。なお、熱伝導率を測定する場合は、真空吸着用部材2から、熱伝導率を測定可能な形状を切り出して測定することが好ましい。   The thermal conductivity is measured by a laser flash method. For example, when the thermal conductivity is measured by a laser flash method, it may be measured by a method based on JIS R1611-1997. The thermal conductivity measured by the method according to JIS R1611-1997 is a measurement sample having a porosity of more than 10%, but the measurement error increases. However, the thermal conductivity obtained by this method is the vacuum adsorption member 2. The thermal conductivity can be as follows. In addition, when measuring thermal conductivity, it is preferable to cut and measure the shape which can measure thermal conductivity from the member 2 for vacuum adsorption.

図1の真空吸着用部材2の製造方法について、撥水性樹脂8がフッ素樹脂である場合を例にして説明する。   A method of manufacturing the vacuum suction member 2 in FIG. 1 will be described by taking as an example the case where the water repellent resin 8 is a fluororesin.

まず、多孔質セラミックスを次のようにして製造する。   First, a porous ceramic is manufactured as follows.

多孔質セラミックスの第一の製造方法は次の通りである。セラミックス原料粉体を湿式粉砕して得られたスラリーに有機バインダーを添加、混合後、噴霧乾燥して造粒粉末を作製する。この造粒粉末を金型を用いて粉末加圧成形機により成形し、成形体を作製する。得られた成形体を焼成して作製する。ここで、焼成して得られるセラミックスは、成形体が完全に緻密化する温度よりも例えば低い温度、例えば100〜200℃低い温度で焼成することで、気孔率20〜50体積%の多孔質セラミックスを製造することができる。   The first method for producing porous ceramics is as follows. An organic binder is added to the slurry obtained by wet-grinding the ceramic raw material powder, mixed and then spray-dried to produce a granulated powder. The granulated powder is molded by a powder pressure molding machine using a mold to produce a molded body. The obtained molded body is made by firing. Here, the ceramic obtained by firing is a porous ceramic having a porosity of 20 to 50% by volume, for example, by firing at a temperature lower than the temperature at which the compact is completely densified, for example, 100 to 200 ° C. Can be manufactured.

多孔質セラミックスの第二の方法は次の通りである。前記第一の方法と同様にして作製した造粒粉末と、造孔剤(焼成の際に分解蒸発して気孔を形成させる素材)として、粒径が30〜300μm程度の球状の樹脂ビーズとを乾式混合し、造孔剤を含む成形用原料を作製する。この成形用原料を金型を用いて粉末加圧成型機により成形し、成形体を作製する。得られた成形体を焼成する。ここで、焼成後の気孔率が20〜50体積%となるように、前記造孔剤を添加すればよい。また、焼成温度は、焼結体の気孔以外の部分が完全に緻密化する温度とすることが好ましい。   The second method of porous ceramics is as follows. A granulated powder produced in the same manner as in the first method, and a spherical resin bead having a particle size of about 30 to 300 μm as a pore forming agent (a material that decomposes and evaporates during firing to form pores) Dry mixing is performed to produce a forming raw material containing a pore-forming agent. This forming raw material is molded by a powder pressure molding machine using a mold to produce a molded body. The obtained molded body is fired. Here, the pore forming agent may be added so that the porosity after firing is 20 to 50% by volume. Further, the firing temperature is preferably set to a temperature at which portions other than the pores of the sintered body are completely densified.

次いで、フッ素系溶媒に溶質として撥水性樹脂8を溶解させた溶液を作製し、前記多孔質セラミックスの第一、第二の製造方法で作製した多孔質セラミックスのいずれかを含浸する。含浸すると溶液が多孔質セラミックスの外表面だけでなく、毛細管現象等によって多孔質セラミックスの開気孔(連通孔も含む)を容易に濡らすことができる。含浸後、この溶液で濡れた多孔質セラミックスを乾燥し、必要に応じて60〜100℃程度で熱処理すると、多孔質セラミックスを構成する各結晶粒子4に撥水性樹脂8が被着形成された真空吸着用部材2が得られる。なお多孔質セラミックスに研削、研磨等の機械加工を施し、所望の形状にした後で撥水性樹脂8を被着形成しても良い。   Next, a solution in which the water-repellent resin 8 is dissolved as a solute in a fluorine-based solvent is prepared, and impregnated with either of the porous ceramics prepared by the first and second manufacturing methods of the porous ceramic. When impregnated, the solution can easily wet not only the outer surface of the porous ceramic but also the open pores (including the communication holes) of the porous ceramic by a capillary phenomenon or the like. After the impregnation, the porous ceramic wet with this solution is dried, and if necessary heat treated at about 60 to 100 ° C., a vacuum in which the water repellent resin 8 is deposited on each crystal particle 4 constituting the porous ceramic. The adsorbing member 2 is obtained. Note that the water-repellent resin 8 may be deposited after the porous ceramic is subjected to mechanical processing such as grinding and polishing to obtain a desired shape.

撥水性樹脂8がシリコン樹脂の場合も、溶媒としてこれらの樹脂を溶解させる溶媒にシリコン樹脂を溶解させて同様に製造できる。   When the water-repellent resin 8 is a silicon resin, it can be produced in the same manner by dissolving the silicon resin in a solvent for dissolving these resins as a solvent.

また、吸着面16はその面状態が加工後の半導体ウェハの精度に影響を与えることから極力平坦化する必要があり、少なくとも平坦度1μm以下、好ましくは平坦度0.3μm以下とすることが望まれるため、撥水性樹脂8を被着形成する前またはその後で、吸着面16側を研磨して平坦にしても良い。   Further, the suction surface 16 needs to be flattened as much as possible because the surface state affects the accuracy of the processed semiconductor wafer, and it is desirable that the flatness is at least 1 μm or less, preferably 0.3 μm or less. Therefore, the adsorption surface 16 side may be polished and flattened before or after the water-repellent resin 8 is deposited.

次に、本発明の真空吸着用部材2の製造方法として、図2の真空吸着用部材2について具体的に説明する。
Next, as a manufacturing method of a vacuum suction member 2 of the present invention, it specifically described vacuum suction member 2 of FIG.

α型炭化珪素粉末100重量部に対して、珪素粉末15〜25重量部を調合し、成形助剤として熱硬化性樹脂、例えばフェノール樹脂をα型炭化珪素粉末100重量部に対し、フェノール樹脂に含まれる炭素換算で1〜2重量部添加し、ボールミル等で均一に混合する。   15 to 25 parts by weight of silicon powder is prepared with respect to 100 parts by weight of the α-type silicon carbide powder, and a thermosetting resin, for example, a phenol resin is added as a forming aid to the phenol resin with respect to 100 parts by weight of the α-type silicon carbide powder. Add 1-2 parts by weight in terms of carbon contained and mix uniformly with a ball mill or the like.

α型炭化珪素粉末の平均粒径を105〜350μmとすることが好ましく、平均粒径が105μm以下では、径の小さな粉末が閉気孔を形成したり、気孔自体を小さくしたりすることで圧力損失が高くなり、一方、350μmを超えると、真空吸着用部材の密度が低下することで、強度が低下するおそれがある。α型炭化珪素粉末の平均粒径を105〜350μmとすることで、圧力損失が低く、強度低下を招くことのない真空吸着用部材部材とすることができる。また、珪素粉末は、後の熱処理で珪素層となって、炭化珪素の結晶粒子4を接合する。   The α-type silicon carbide powder preferably has an average particle size of 105 to 350 μm. When the average particle size is 105 μm or less, the powder having a small diameter forms closed pores or the pores themselves are reduced in pressure loss. On the other hand, if it exceeds 350 μm, the density of the vacuum suction member is lowered, which may reduce the strength. By setting the average particle size of the α-type silicon carbide powder to 105 to 350 μm, it is possible to obtain a vacuum suction member that has low pressure loss and does not cause a decrease in strength. Further, the silicon powder becomes a silicon layer in a later heat treatment, and bonds the silicon carbide crystal particles 4.

また、α型炭化珪素粉末100重量部に対し、珪素粉末の比率を15〜25重量部としたのは、珪素粉末の比率が15重量部未満では、炭化珪素の結晶粒子4に対する比率が低く、結晶粒子4を十分接合できないからである。一方、比率が25重量部を超えると、珪素が偏析しやすく、相対的に機械的特性の良好な炭化珪素の比率が下がり、十分な機械的特性を得られないからである。珪素粉末の比率を15〜25重量部とすることで、十分な機械的特性を備えた均質な組織を有する炭化珪素−珪素複合体からなる多孔質セラミックスとすることができる。   The ratio of silicon powder to 15 to 25 parts by weight with respect to 100 parts by weight of α-type silicon carbide powder is that when the ratio of silicon powder is less than 15 parts by weight, the ratio of silicon carbide to crystal particles 4 is low, This is because the crystal grains 4 cannot be sufficiently joined. On the other hand, when the ratio exceeds 25 parts by weight, silicon is easily segregated, the ratio of silicon carbide having relatively good mechanical characteristics decreases, and sufficient mechanical characteristics cannot be obtained. By setting the ratio of the silicon powder to 15 to 25 parts by weight, a porous ceramic made of a silicon carbide-silicon composite having a homogeneous structure with sufficient mechanical properties can be obtained.

上記炭化珪素粉末、珪素粉末の各平均粒径は液相沈降法、光投下法、レーザー散乱回折法等により測定することができる。   Each average particle diameter of the silicon carbide powder and the silicon powder can be measured by a liquid phase precipitation method, a light dropping method, a laser scattering diffraction method, or the like.

次に、混合した原料を転動造粒機等を用いて造粒し粒径が0.1〜1mm程度の顆粒を得る。この顆粒を公知の成形方法で所望の形状に成形して成形体とし、さらに成形助剤の脱脂処理を行った後、非酸化雰囲気中、1420〜1450℃で熱処理する。熱処理温度を1420〜1450℃とすることで珪素粉末は蒸発することなく溶融し、炭化珪素の結晶粒子4を珪素と接合することができ、適切な強度及び熱伝導率が得られ、製造コストも削減することができる。熱処理温度が1420℃未満では、珪素粉末が十分溶融しないため、炭化珪素の結晶粒子4を珪素8と接合することができず、1450℃を超えると、珪素が蒸発することで強度低下を招きやすいとともに、製造コストが高くなる。   Next, the mixed raw material is granulated using a rolling granulator or the like to obtain granules having a particle size of about 0.1 to 1 mm. The granules are molded into a desired shape by a known molding method to form a molded body, and after further degreasing treatment of the molding aid, heat treatment is performed at 1420 to 1450 ° C. in a non-oxidizing atmosphere. By setting the heat treatment temperature to 1420 to 1450 ° C., the silicon powder can be melted without evaporating, so that the silicon carbide crystal particles 4 can be bonded to silicon, suitable strength and thermal conductivity can be obtained, and the manufacturing cost can be reduced. Can be reduced. When the heat treatment temperature is less than 1420 ° C., the silicon powder is not sufficiently melted, so that the silicon carbide crystal particles 4 cannot be bonded to the silicon 8. At the same time, the manufacturing cost increases.

このような製造方法で得られた炭化珪素−珪素複合体からなる多孔質セラミックスは、吸着面16側となる面を必要に応じて研削、研磨等により機械加工し、所望の平坦度とすることができる。この場合、吸着面16側はその面状態が加工後の半導体ウェハの精度に影響を与えることから極力平坦化する必要があり、少なくとも平坦度1μm以下、好ましくは平坦度0.3μm以下とすることが望まれる。   Porous ceramics composed of a silicon carbide-silicon composite obtained by such a manufacturing method should have a desired flatness by machining the surface on the adsorption surface 16 side by grinding, polishing, etc. as necessary. Can do. In this case, it is necessary to flatten the suction surface 16 side as much as possible because the surface state affects the accuracy of the processed semiconductor wafer, and the flatness should be at least 1 μm or less, preferably 0.3 μm or less. Is desired.

得られた炭化珪素−珪素複合体からなる多孔質セラミックスを構成する各結晶粒子4に、上述した方法で撥水性樹脂8を被着形成することで、真空吸着用部材2を製造することができる。   The vacuum adsorbing member 2 can be manufactured by depositing the water-repellent resin 8 on the respective crystal particles 4 constituting the porous ceramics made of the obtained silicon carbide-silicon composite by the above-described method. .

(実施例1)
表1〜3の試料をそれぞれ複数個作製するため、まず、直径297mm、厚み7mmの形状の多孔質セラミックス(炭化珪素質多孔質体、アルミナ−ガラス複合体、炭化珪素−ガラス複合体、炭化珪素−珪素複合体)を次のように作製した。
Example 1
In order to produce a plurality of samples shown in Tables 1 to 3 , first, porous ceramics (silicon carbide porous body, alumina-glass composite, silicon carbide-glass composite, silicon carbide having a diameter of 297 mm and a thickness of 7 mm) -A silicon composite was prepared as follows.

炭化珪素質多孔質体からなる多孔質セラミックスは次のようにして作製した。α型炭化珪素粉末と炭化硼素粉末の合計を100質量部とし、これらの粉末に対しさらに成形助剤となるフェノール樹脂を表1に示す量を添加、均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて圧力90MPaで成形して成形体を得た。次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、温度を上げ同じく窒素雰囲気中で熱処理し、熱処理して炭化珪素質多孔質体からなる多孔質セラミックスを得た。α型炭化珪素粉末、珪素粉末の各平均粒径、α型炭化珪素粉末に対する珪素粉末及びフェノール樹脂の添加量、造粒時間及び熱処理の温度は、表1に示す通りである。   A porous ceramic made of a silicon carbide porous material was produced as follows. The total amount of the α-type silicon carbide powder and boron carbide powder was 100 parts by mass, and the amounts shown in Table 1 were further added to these powders, and a compounding raw material was prepared. This blended raw material was put into a tumbling granulator to form granules, and then molded at a pressure of 90 MPa by dry pressure molding to obtain a molded body. Next, this molded body was degreased at 500 ° C. in a nitrogen atmosphere, and then heated at the same temperature in a nitrogen atmosphere and heat treated to obtain a porous ceramic made of a silicon carbide porous body. Table 1 shows the average particle diameters of the α-type silicon carbide powder and silicon powder, the addition amounts of the silicon powder and the phenol resin to the α-type silicon carbide powder, the granulation time, and the heat treatment temperature.

アルミナ−ガラス複合体からなる多孔質セラミックスは次のようにして作製した。主原料として電融アルミナの粗粒粉末92.5質量%に対してガラス粉末7.5質量%を混合した混合粉末をボールミルで水を加えて湿式混合し、得られたスラリーに含まれる混合粉末100質量部に対して、有機バインダーとしてポリビニルアルコール(PVA)を3質量部添加、混合後、噴霧乾燥して造粒粉末を作製した。ここで用いたガラス粉末の組成は、酸化珪素(SiO)66.7質量%、酸化マグネシウム(MgO)4質量%、酸化カルシウム(CaO)2.7質量%、酸化チタン(TiO)26.6質量%とした。得られた造粒粉末を金型を用いた粉末加圧成形法により成形して成形体を作製し、成形体を表1に示す焼成温度で焼成し、ガラス粉末を溶融させて電融アルミナの粗粒がガラスを介して接合した、アルミナ−ガラス複合体からなる多孔質セラミックスを得た。ここで、主原料である電融アルミナの粗粒粉末のメジアン径(主原料粉末の粒径)は表2の通りである。 A porous ceramic made of an alumina-glass composite was produced as follows. A mixed powder in which 7.5% by mass of glass powder is mixed with 92.5% by mass of coarse particles of electrofused alumina as a main raw material is added with water by a ball mill and wet-mixed, and the mixed powder contained in the resulting slurry 3 parts by mass of polyvinyl alcohol (PVA) as an organic binder was added to 100 parts by mass, mixed and then spray-dried to produce a granulated powder. The composition of the glass powder used here was 66.7% by mass of silicon oxide (SiO 2 ), 4% by mass of magnesium oxide (MgO), 2.7% by mass of calcium oxide (CaO), and 26. titanium oxide (TiO 2 ). The amount was 6% by mass. The obtained granulated powder is molded by a powder pressure molding method using a mold to produce a molded body. The molded body is fired at the firing temperature shown in Table 1, and the glass powder is melted to form a fused alumina. A porous ceramic made of an alumina-glass composite, in which coarse particles were bonded via glass, was obtained. Here, the median diameter (particle diameter of the main raw material powder) of the coarse powder of fused alumina as the main raw material is as shown in Table 2.

炭化珪素−ガラス複合体からなる多孔質セラミックスは次のようにして作製した。α型炭化珪素(SiC)の粗粒粉末を主原料として90質量%と、前記ガラス粉末10質量%とを水を加えて混合ボールミルで湿式混合し、アルミナ−ガラス複合体からなる多孔質セラミックスと同様にして、造粒粉末を作製、成形し、表1に示す焼成温度で焼成した。ここで主原料であるα型炭化珪素の粗粒粉末のメジアン径(主原料粉末の粒径)は表2に示す通りである。   A porous ceramic made of a silicon carbide-glass composite was produced as follows. A porous ceramic comprising an alumina-glass composite, wherein 90% by mass of α-type silicon carbide (SiC) coarse powder and 10% by mass of the glass powder are mixed with water and wet-mixed with a mixing ball mill. Similarly, a granulated powder was produced, formed, and fired at the firing temperature shown in Table 1. Here, the median diameter (particle diameter of the main raw material powder) of the coarse powder of α-type silicon carbide as the main raw material is as shown in Table 2.

炭化珪素−珪素複合体からなる多孔質セラミックスは次のようにして作製した。α型炭化珪素粉末と珪素粉末の合計を100質量部とし、これらの粉末に対し、さらに成形助剤となるフェノール樹脂を表2に示す量を添加、均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて圧力90MPaで成形して成形体を得た。次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、温度を上げ同じく窒素雰囲気中で熱処理し、熱処理中に珪素を溶融させてα型炭化珪素粉末が珪素を介して接合された多孔質セラミックスを得た。α型炭化珪素粉末、珪素粉末の各平均粒径、α型炭化珪素粉末に対する珪素粉末及びフェノール樹脂の添加量、造粒時間及び熱処理の温度は、表2に示す通りである。   A porous ceramic made of a silicon carbide-silicon composite was produced as follows. The total amount of the α-type silicon carbide powder and the silicon powder was 100 parts by mass. To these powders, phenol resin serving as a molding aid was added in an amount shown in Table 2 and mixed uniformly to prepare a blended raw material. This blended raw material was put into a tumbling granulator to form granules, and then molded at a pressure of 90 MPa by dry pressure molding to obtain a molded body. Next, this molded body was degreased at 500 ° C. in a nitrogen atmosphere, and then the temperature was raised and heat treatment was performed in the same nitrogen atmosphere. During the heat treatment, silicon was melted and α-type silicon carbide powder was bonded via silicon. A porous ceramic was obtained. Table 2 shows the average particle diameters of the α-type silicon carbide powder and silicon powder, the addition amounts of the silicon powder and the phenol resin to the α-type silicon carbide powder, the granulation time, and the heat treatment temperature.

得られた炭化珪素−珪素複合体からなる多孔質セラミックスについては、走査型電子顕微鏡(SEM)を用い、倍率20〜5000倍の範囲から最適な倍率を選択して、炭化珪素の結晶粒子が珪素により接合されているかどうかを評価した。
With respect to the obtained porous ceramic composed of a silicon carbide-silicon composite, an optimum magnification is selected from a range of 20 to 5000 times using a scanning electron microscope (SEM), and silicon carbide crystal particles are obtained. It was evaluated whether it was joined by silicon.

以上のようにして作製した炭化珪素質多孔質体、アルミナ−ガラス複合体、炭化珪素―ガラス複合体、炭化珪素−珪素複合体のそれぞれの多孔質セラミックスに、フッ素樹脂またはシリコン樹脂を次のように被着して真空吸着用部材からなる試料を作製した。フッ素樹脂は、多孔質セラミックスを市販のフッ素樹脂溶液(フッ素樹脂をフッ素系溶媒に溶解させた溶液)に含浸してこの溶液から取出し、常温で乾燥後、さらに80℃で1時間加熱して被着した。シリコン樹脂は、多孔質セラミックスを市販のシリコン樹脂溶液に含浸してこの溶液から取り出し、常温乾燥して被着した。
A fluorocarbon resin or a silicon resin is applied to each of the porous ceramics of the silicon carbide based porous material, alumina-glass composite, silicon carbide-glass composite, and silicon carbide-silicon composite prepared as described above. and deposited to prepare a sample of the vacuum suction member to. The fluororesin is obtained by impregnating a porous ceramic solution with a commercially available fluororesin solution (a solution in which a fluororesin is dissolved in a fluorinated solvent), taking out from this solution, drying at room temperature, and further heating at 80 ° C for 1 hour. I wore it. The silicone resin was impregnated with porous ceramics in a commercially available silicone resin solution, taken out from this solution, dried at room temperature and deposited.

得られた試料に撥水性樹脂が含まれているかどうかを、株式会社島津製作所製IRPrestige−21 NIRシステムからなるフーリエ変換赤外分光分析装置(FT−IR)および株式会社島津製作所製QP5000ガスクロマトグラフ(GC−mass)を用いて分析した。
Whether the obtained specimen contains a water-repellent resin, a Fourier transform infrared spectrometer consisting of Shimadzu Corporation IRPrestige-21 NIR System (FT-IR) and manufactured by Shimadzu Corporation QP5000 Gas Chromatograph Analysis was performed using (GC-mass).

多孔質セラミックスの気孔率は、空気中750℃で3時間加熱して真空吸着用部材から撥水性樹脂を除去したものの気孔率を測定することで求めた。   The porosity of the porous ceramics was determined by measuring the porosity of the porous ceramics after removing the water-repellent resin from the vacuum adsorbing member by heating at 750 ° C. for 3 hours in air.

真空吸着用部材2を断面視して、結晶粒子を除く多孔質セラミックスの断面の何%に撥水性樹脂が被着形成されていることは、次のようにして分析した。真空吸着用部材2を破断した面を走査型電子顕微鏡(SEM)により倍率100〜5000倍の範囲から適宜選定した倍率で観察した。
When the vacuum adsorbing member 2 was viewed in cross section, it was analyzed as follows that the water-repellent resin was formed on what percentage of the cross section of the porous ceramic excluding the crystal particles. The surface which fractured | ruptured the member 2 for vacuum adsorption was observed with the scanning electron microscope (SEM) by the magnification | multiplying suitably selected from the range of 100-5000 times magnification .

また、撥水性樹脂の厚みは真空吸着用部材の欠片からなる試料を、株式会社日立ハイテクノロジーズ製FIBのFB2100を用い、集束イオンビームにより加工してSEM写真を観察することで求めた。ここで、撥水性樹脂が被着されていた部分の撥水性樹脂の厚みは、イオンビーム加工によって撥水性樹脂が除去されるので、イオンビームの加工前後の試料の観察により、測定した。   The thickness of the water-repellent resin was determined by processing a sample consisting of a piece of a vacuum adsorption member with a focused ion beam using an FB2100 manufactured by Hitachi High-Technologies Corporation and observing an SEM photograph. Here, the thickness of the water-repellent resin in the portion where the water-repellent resin was applied was measured by observing the sample before and after the ion beam processing because the water-repellent resin was removed by ion beam processing.

点曲げ強度は、測定用試料を得られた試料から切り出して作製し、この測定用試料をJIS R 1601−1995に準拠して測定した。また、熱伝導率は、試料から熱伝導率測定用試料を切り出し、JIS R1611−1997に準拠するレーザーフラッシュ法により25℃の環境下で測定した。また、圧力損失については、直径60mm、高さ10mmの円板体からなる多孔質セラミックスを上記と同様にして作製し、この円板体の一方の主面から空気を導入し、予め反対側の主面のみから空気が排出されるように円板体の側面を覆った試料を準備し、流量9L/分の空気導入前後に発生する圧力差を圧力ゲージにより圧力損失として検出した。
3-point bending strength, produced by cutting from a sample obtained a measurement sample, the measurement sample was measured in accordance with JIS R 1601-1995. Further , the thermal conductivity was measured in a 25 ° C. environment by a laser flash method in accordance with JIS R1611-1997 by cutting out a thermal conductivity measurement sample from the sample. For pressure loss, a porous ceramic made of a disk having a diameter of 60 mm and a height of 10 mm was prepared in the same manner as described above, and air was introduced from one main surface of the disk, A sample covering the side surface of the disk body was prepared so that air was discharged only from the main surface, and a pressure difference generated before and after air introduction at a flow rate of 9 L / min was detected as a pressure loss by a pressure gauge.

次に、真空吸着用部材からなる試料を組み込み、自己研磨を行った。その後、図3の真空吸着装置を用い、直径203mm、厚み300μmのシリコンウェハを真空吸着用部材に載置し、真空吸着しながら、旭ダイヤモンド工業株式会社製の直径300mmの砥石を用いて、砥石回転数2500回転/分で回転させながら水を用いた60分間の湿式研磨を行った。その後、半導体ウェハを取り外して真空吸着用部材を水で洗い流して洗浄、乾燥後、吸着面(真空吸着用部材の上面の外径側)にある開気孔に研磨屑が堆積しているかどうか調べるため、試料から吸着面を含む欠片を、吸着面に垂直な面を含むように破断し、SEMを用いて倍率200倍で観察した。SEMを用いて倍率200倍で観察し、吸着面にある開気孔に研磨屑が堆積している場合、試料に研磨屑が堆積しているとした。研磨屑が堆積していた試料については、倍率500〜2000倍で、吸着面と垂直な面(破断面)の視野150000〜300000μmをSEMで観察し、研磨屑が吸着面にある結晶粒子、珪素またはガラスよりも突出している部分の最大高さを求め、この高さを研磨屑が堆積した厚みとした。 Next, a sample made of a vacuum suction member was incorporated and self-polishing was performed. After that, using the vacuum suction apparatus of FIG. 3, a silicon wafer having a diameter of 203 mm and a thickness of 300 μm was placed on the vacuum suction member, and using a grinding stone having a diameter of 300 mm manufactured by Asahi Diamond Industrial Co., Ltd. Wet polishing for 60 minutes using water was performed while rotating at a rotational speed of 2500 rpm. After that, the semiconductor wafer is removed, the vacuum suction member is washed away with water, washed, dried, and then examined to see whether polishing debris is accumulated in the open pores on the suction surface (the outer diameter side of the upper surface of the vacuum suction member). The piece including the adsorption surface was broken from the sample so as to include a surface perpendicular to the adsorption surface, and observed using a SEM at a magnification of 200 times. When observation was made using a SEM at a magnification of 200, and polishing debris had accumulated in the open pores on the adsorption surface, it was assumed that polishing debris had accumulated on the sample. For the sample on which the abrasive debris had accumulated, the field of view of 150,000 to 300,000 μm 2 perpendicular to the adsorption surface (fracture surface) was observed with a SEM at a magnification of 500 to 2000 times, and the crystalline particles with the abrasive debris on the adsorption surface, The maximum height of the portion protruding from silicon or glass was determined, and this height was defined as the thickness at which polishing scraps were deposited.

結果は次の通りである。試料に含まれる撥水性樹脂は、フッ素樹脂またはシリコン樹脂であることが確認できた。また、試料の表面および内部にある結晶粒子、珪素、ガラスは撥水性樹脂で被着されていた。すなわち、試料に含まれる多孔質セラミックスには撥水性樹脂が被着していた。
The results are as follows . Repellent resin contained in the specimen was confirmed that a fluorine resin or a silicone resin. The crystal particles, silicon, and glass on the surface and inside of the sample were coated with a water-repellent resin. That is, the porous ceramics contained in the specimen water-repellent resin had deposited.

その他の結果は次の通りである。表1〜3に示すように、炭化珪素質多孔質体に含まれる結晶粒子に撥水性樹脂を被着形成した試料No.1,2は研磨屑の堆積厚みが0.4μm、アルミナ−ガラス複合体からなる多孔質セラミックスに撥水性樹脂を被着した試料No.5,6は研磨屑の堆積厚みが0.3μm、炭化珪素−ガラス複合体からなる多孔質セラミックスに撥水性樹脂を被着形成した試料No.7〜9は研磨屑の堆積厚みが0.2μmと小さかった。特に、炭化珪素−珪素複合体からなる多孔質セラミックスに撥水性樹脂を被着形成した試料No.12〜17は、研磨屑の堆積が全くなかった。また、気孔率が20〜50体積%の試料No.6〜8,1〜1は、圧力損失が0.4kPa以下となり、さらに表には示していないが自己研磨の際に試料からの結晶粒子または破片の離脱、欠けが見られなかった。気孔率が50体積%を超えた試料No.9,17は吸着面の表層が自己研磨の後でごくわずかに欠けていた。また、多孔質セラミックスとしてアルミナ−ガラス複合体を用いて作製した試料No.5,6の熱伝導率は3〜4W/(m・K)、炭化珪素−ガラス素複合体を用いて作製した試料No.7〜9の熱伝導率は6〜8W/(m・K)と低かったのに対し、炭化珪素−珪素複合体を用いて作製した試料No.12〜17は75〜135W/(m・K)と非常に高くなり、シリコンウェハを研磨する際に発生する熱を効率良く放熱できることが確認できた。
Other results are as follows. As shown in Tables 1 to 3, Sample No. 1 was formed by depositing a water-repellent resin on the crystal particles included in the silicon carbide porous material. Nos. 1 and 2 are samples No. 1 and No. 2 in which the polishing debris deposited thickness was 0.4 μm and porous ceramics made of an alumina-glass composite was coated with a water-repellent resin. Sample Nos. 5 and 6 are samples No. 5 and No. 6 in which the polishing debris was deposited to a thickness of 0.3 μm and a water-repellent resin was formed on porous ceramics made of a silicon carbide-glass composite. In Nos. 7 to 9, the deposition thickness of polishing scraps was as small as 0.2 μm. In particular, Sample No. 1 was formed by depositing a water-repellent resin on porous ceramics made of a silicon carbide-silicon composite. In Nos. 12 to 17, there was no accumulation of polishing scraps. In addition, Sample No. with a porosity of 20 to 50% by volume was used. 6 to 8 , 1 3 to 16 , the pressure loss is 0. Although it was 4 kPa or less, although not shown in the table, the crystal particles or fragments were not detached from the sample during chipping, and no chipping was observed. Sample No. with a porosity exceeding 50% by volume 9 and 17 were missing your Kuwazu crab after the surface layer of the adsorption surface of the self-polishing. Sample No. 2 produced using an alumina-glass composite as the porous ceramics. Sample Nos. 5 and 6 have a thermal conductivity of 3 to 4 W / (m · K) and were prepared using a silicon carbide-glass element composite. The thermal conductivities of 7 to 9 were as low as 6 to 8 W / (m · K), whereas sample Nos. 7 and 9 were prepared using a silicon carbide-silicon composite. 12 to 17 was as high as 75 to 135 W / (m · K), and it was confirmed that the heat generated when the silicon wafer was polished could be efficiently dissipated.

また、接合剤としてガラスまたは珪素を含む表2,3の試料の3点曲げ強度は、接合剤を含まない表1の試料よりも3点曲げ強度が大きく優れていた。そして、平均結晶粒径が150〜200μmの炭化珪素の結晶粒子同士が珪素を介して接合されて、20〜50体積%の気孔率を有する多孔質セラミックスが構成され、この多孔質セラミックスを構成する結晶粒子および珪素の周囲に、撥水性樹脂を被着形成してなる試料No.1〜1は、熱伝導率が79W/(m・K)以上であり、圧力損失が0.4kPa以下であり、3点曲げ強度が21MPa以上であり、熱伝導率および3点曲げ強度に優れとともに、圧力損失の低い半導体ウェハの真空吸着用部材とできることがわかった。

Figure 0004741375
Further, the three-point bending strength of the samples of Tables 2 and 3 containing glass or silicon as the bonding agent was significantly superior to the three-point bending strength of the samples of Table 1 not including the bonding agent. Then, silicon carbide crystal particles having an average crystal grain size of 150 to 200 μm are bonded to each other through silicon to form a porous ceramic having a porosity of 20 to 50% by volume , and this porous ceramic is formed. Sample No. formed by adhering and forming a water repellent resin around crystal grains and silicon . 1 3 to 16 have a thermal conductivity of 79 W / (m · K) or more, a pressure loss of 0.4 kPa or less, a three-point bending strength of 21 MPa or more, a thermal conductivity and a three-point bending. It has been found that a vacuum suction member for a semiconductor wafer having excellent strength and low pressure loss can be obtained.
Figure 0004741375

Figure 0004741375
Figure 0004741375

Figure 0004741375
Figure 0004741375

次に、実施例1と同様にして多孔質セラミックスを作製し、撥水性樹脂を被着しなかったものを比較例の試料として作製し、この比較例の試料を実施例1と同様に評価した。その結果を表1〜3に示すように、比較例の試料の表面には研磨屑が2〜5μmと非常に厚く堆積していた。
Next, a porous ceramic was prepared in the same manner as in Example 1, and a sample not coated with a water-repellent resin was prepared as a sample of a comparative example. The sample of this comparative example was evaluated in the same manner as in Example 1. . As shown in Tables 1 to 3 , the results showed that polishing scraps were very thickly deposited at 2 to 5 μm on the surface of the sample of the comparative example.

(実施例2)
実施例1で作製した表3の試料No.15で用いた炭化珪素−珪素複合体からなる多孔質セラミックスを同様に作製し、撥水性樹脂として、実施例1で用いたフッ素樹脂の代わりに、導電性高分子であるポリピロールを分散溶媒であるメチルエチルケトン(MEK)に分散させた溶液に多孔質セラミックスを含浸し、乾燥して本発明の試料(これを試料Cとする。)を作製し、試料Cを用いて、実施例1の条件でシリコンウェハを研磨した。その後、真空吸着装置に組み込まれた真空吸着用部材を洗浄、乾燥し、電気的にアースを取りながら、精密研磨用砥石を用いて、10分間精密研磨した。
(Example 2)
Sample No. in Table 3 prepared in Example 1 was used. A porous ceramic made of a silicon carbide-silicon composite used in No. 15 was prepared in the same manner, and polypyrrole, which is a conductive polymer, was used as a dispersion solvent instead of the fluororesin used in Example 1 as a water-repellent resin. A solution dispersed in methyl ethyl ketone (MEK) is impregnated with porous ceramics and dried to produce a sample of the present invention (hereinafter referred to as sample C). Using sample C, silicon under the conditions of Example 1 was obtained. The wafer was polished. Thereafter, the vacuum suction member incorporated in the vacuum suction device was cleaned and dried, and precision polished for 10 minutes using a precision polishing grindstone while being electrically grounded.

精密研磨後、シリコンウェハを取り外し、吸着面に研磨屑からなる粒子が付着していないか観察した。その結果、導電性高分子であるポリピロールを被着した試料Cには、研磨屑からなる粒子が付着していなかったが、試料No.15はごく微細な粒子が静電気によって付着していることが確認された。   After precision polishing, the silicon wafer was removed, and it was observed whether or not particles made of polishing debris had adhered to the adsorption surface. As a result, the sample C coated with polypyrrole, which is a conductive polymer, had no particles made of polishing scraps. No. 15 was confirmed that very fine particles were adhered by static electricity.

空吸着用部材の断面を拡大したものを模式的に表した断面図である。It is a cross-sectional view schematically showing an enlarged view of a cross-section of the vacuum suction member. 本発明の真空吸着用部材の断面を拡大したものを模式的に表した断面図である。It is sectional drawing which represented typically what expanded the cross section of the member for vacuum suction of this invention. 本発明の真空吸着用部材を用いた真空吸着装置の断面図である。It is sectional drawing of the vacuum suction apparatus using the member for vacuum suction of this invention. (a)及び(b)は従来の真空吸着用部材を用いた真空吸着装置の断面図である。(A) And (b) is sectional drawing of the vacuum suction apparatus using the conventional member for vacuum suction. 従来の真空吸着用部材の断面を拡大したものを模式的に表した断面図である。It is sectional drawing which represented typically what expanded the cross section of the conventional member for vacuum suction.

符号の説明Explanation of symbols

2,52a,52b,52:真空吸着用部材
4,54:結晶粒子
6,56:開気孔
8:撥水性樹脂
10:接合剤
12,62:支持部材
14a,14b,64a,64b,64:吸引孔
16a,16b,16,66a,66b,66:吸着面
20,70:真空吸着装置
2, 52a, 52b, 52: vacuum adsorption member 4, 54: crystal particles 6, 56: open pores 8: water repellent resin 10: bonding agent 12, 62: support members 14a, 14b, 64a, 64b, 64: suction Holes 16a, 16b, 16, 66a, 66b, 66: suction surface 20, 70: vacuum suction device

Claims (1)

平均結晶粒径が150〜200μmの炭化珪素の結晶粒子同士が珪素を介して接合されて、20〜50体積%の気孔率を有する多孔質セラミックスが構成され、該多孔質セラミックスを構成する前記結晶粒子および前記珪素の周囲に、撥水性樹脂を被着形成してなることを特徴とする半導体ウェハの真空吸着用部材。 Are joined average crystal grain size through the crystal grains of silicon carbide of 150 to 200 .mu.m, it is constituted porous ceramics having a porosity of 20 to 50 vol%, the crystal constituting the porous ceramic A member for vacuum suction of a semiconductor wafer, wherein a water-repellent resin is deposited around particles and silicon .
JP2006020953A 2006-01-30 2006-01-30 Components for vacuum suction of semiconductor wafers Active JP4741375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020953A JP4741375B2 (en) 2006-01-30 2006-01-30 Components for vacuum suction of semiconductor wafers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020953A JP4741375B2 (en) 2006-01-30 2006-01-30 Components for vacuum suction of semiconductor wafers

Publications (2)

Publication Number Publication Date
JP2007201363A JP2007201363A (en) 2007-08-09
JP4741375B2 true JP4741375B2 (en) 2011-08-03

Family

ID=38455609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020953A Active JP4741375B2 (en) 2006-01-30 2006-01-30 Components for vacuum suction of semiconductor wafers

Country Status (1)

Country Link
JP (1) JP4741375B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885165B2 (en) * 2008-03-13 2012-02-29 太平洋セメント株式会社 Vacuum adsorption device
JP5463025B2 (en) * 2008-12-02 2014-04-09 株式会社タンケンシールセーコウ Vacuum suction pad and vacuum suction device
JP2011041991A (en) * 2009-08-19 2011-03-03 Disco Abrasive Syst Ltd Wafer grinder
EP2301905A1 (en) * 2009-09-28 2011-03-30 ABC Taiwan Electronics Corp. Porous ceramic preparation method
JP6360756B2 (en) * 2014-09-05 2018-07-18 株式会社ディスコ Chuck table
JP6402047B2 (en) * 2015-02-17 2018-10-10 株式会社東京精密 Wafer delivery apparatus and method
JP6464818B2 (en) * 2015-02-27 2019-02-06 株式会社東京精密 Dicing machine and table for dicing machine
JP7336738B2 (en) * 2019-03-26 2023-09-01 パナソニックIpマネジメント株式会社 Water-repellent member, building member and water-related member using the same
JP7204893B2 (en) * 2019-03-29 2023-01-16 京セラ株式会社 Gas plug, electrostatic adsorption member, and plasma processing device
EP4039431A4 (en) * 2019-09-30 2022-11-23 Panasonic Intellectual Property Management Co., Ltd. Composite member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624446A (en) * 1985-06-29 1987-01-10 Ibiden Co Ltd Catalyst carrier
JP2736020B2 (en) * 1994-12-13 1998-04-02 シーケーディ株式会社 Vacuum chuck with self-cleaning function
JP2005279788A (en) * 2004-03-26 2005-10-13 Ibiden Co Ltd Vacuum chuck for grinding/polishing

Also Published As

Publication number Publication date
JP2007201363A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4741375B2 (en) Components for vacuum suction of semiconductor wafers
KR101386021B1 (en) Electrostatic chuck
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP5225024B2 (en) Suction board and vacuum suction device
JP5510411B2 (en) Electrostatic chuck and method for manufacturing electrostatic chuck
JP2005210077A (en) Electrostatic chuck and manufacturing method therefor, and alumina sintered member and manufacturing method therefor
TW200525686A (en) Carrier for receiving an object and method for the production of a carrier
JP5730917B2 (en) Method for producing high resistivity silicon carbide
JP2004306254A (en) Vacuum chuck
JP4545536B2 (en) Vacuum suction jig
JP2002036102A (en) Wafer holding jig
JP2005093919A (en) Electrostatic chuck and manufacturing method thereof
JP2005279789A (en) Vacuum chuck for grinding/polishing
JP4948920B2 (en) Vacuum chuck and vacuum suction device using the same
JP5046859B2 (en) Bonded body, adsorbing member, adsorbing apparatus and processing apparatus
JP5231064B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005072039A (en) Vacuum chuck
JP7204893B2 (en) Gas plug, electrostatic adsorption member, and plasma processing device
JP2005279788A (en) Vacuum chuck for grinding/polishing
JP2007258668A (en) Test piece holder
JP2005118979A (en) Grinding/polishing vacuum chuck and sucking plate
JP2005039212A (en) Dummy wafer and manufacturing method therefor
JP2008238357A (en) Vacuum chuck, vacuum suction device, suction method, and water retention management method of vacuum chuck
JP4731368B2 (en) Vacuum chuck and vacuum suction device using the same
WO2023127796A1 (en) Clamping jig and cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Ref document number: 4741375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3