JP5225024B2 - Suction board and vacuum suction device - Google Patents

Suction board and vacuum suction device Download PDF

Info

Publication number
JP5225024B2
JP5225024B2 JP2008279017A JP2008279017A JP5225024B2 JP 5225024 B2 JP5225024 B2 JP 5225024B2 JP 2008279017 A JP2008279017 A JP 2008279017A JP 2008279017 A JP2008279017 A JP 2008279017A JP 5225024 B2 JP5225024 B2 JP 5225024B2
Authority
JP
Japan
Prior art keywords
porous member
suction
porous
film
suction disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008279017A
Other languages
Japanese (ja)
Other versions
JP2010109106A (en
Inventor
猛 宗石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008279017A priority Critical patent/JP5225024B2/en
Publication of JP2010109106A publication Critical patent/JP2010109106A/en
Application granted granted Critical
Publication of JP5225024B2 publication Critical patent/JP5225024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対象試料を吸着して保持する吸着盤、および吸着盤を備えた真空吸着装置に関する。   The present invention relates to an adsorption plate that adsorbs and holds a target sample, and a vacuum adsorption device including the adsorption plate.

従来より、メモリやICなどの半導体装置や液晶基板の製造工程において、半導体ウエハや液晶用ガラス基板等を、吸着盤に吸着して保持する真空吸着装置が使用されている。   2. Description of the Related Art Conventionally, in a manufacturing process of a semiconductor device such as a memory or an IC or a liquid crystal substrate, a vacuum suction device that sucks and holds a semiconductor wafer, a glass substrate for liquid crystal, or the like on a suction disk is used.

真空吸着装置として、吸着盤の吸着部材が多孔質体からなるポーラスタイプのものが提案されている。ポーラスタイプの吸着盤では、ポーラス体(多孔質体)の気孔を吸引孔とし、半導体ウエハや液晶用ガラス基板等の対象試料とポーラス体の表面との間の気体が吸引され、雰囲気による圧力によって対象試料がポーラス体の表面に押し付けられて、吸着盤に対象試料が吸着保持される。   As a vacuum suction device, a porous type has been proposed in which the suction member of the suction disk is made of a porous material. In a porous type suction disk, the pores of the porous body (porous body) are used as suction holes, and the gas between the target sample, such as a semiconductor wafer or a glass substrate for liquid crystal, and the surface of the porous body is sucked by the pressure of the atmosphere. The target sample is pressed against the surface of the porous body, and the target sample is sucked and held on the suction disk.

近年、半導体ウエハや液晶用ガラス基板の大型化、および加工精度の高度化等の要求にともない、ポーラスタイプの吸着盤の需要は高まってきている。例えば特許文献1には、このようなポーラスタイプの吸着盤の一例が開示されている。   In recent years, with the demands for larger semiconductor wafers and glass substrates for liquid crystals and higher processing accuracy, the demand for porous suction cups has increased. For example, Patent Document 1 discloses an example of such a porous type suction disk.

図2(a)〜(c)は、従来のポーラスタイプの吸着板の一例について説明する図であり、(a)は概略斜視図、(b)は概略断面図、(c)は(b)の一部を拡大して示している。例えば下記特許文献1記載のポーラスタイプの吸着板は、図2(a)〜(c)に示すように、中央に吸着部材101として円板状の多孔質セラミックスを備え、その周囲に支持部材102としてリング状の緻密質セラミックスを接合している。そして、吸着部材101をなす多孔質セラミックスの気孔を吸引孔とし、真空ポンプ(不図示)によって吸引することで被加工物104を載置面101a上に吸着固定している。吸着板101を構成するセラミックスは、セラミック粒子の集合体に所定の焼結助剤とバインダーとをそれぞれ添加して混練乾燥したのち、焼成して作製されたものを用いている。
特開平8−19927号公報
2 (a) to 2 (c) are diagrams for explaining an example of a conventional porous type adsorption plate, (a) is a schematic perspective view, (b) is a schematic sectional view, and (c) is (b). A part of is enlarged. For example, as shown in FIGS. 2 (a) to 2 (c), a porous type adsorption plate described in Patent Document 1 below includes a disk-shaped porous ceramic as an adsorption member 101 in the center, and a support member 102 around it. Ring-shaped dense ceramics are joined as Then, the porous ceramic pores forming the adsorption member 101 are used as suction holes, and the workpiece 104 is adsorbed and fixed on the mounting surface 101a by suction with a vacuum pump (not shown). As the ceramics constituting the adsorption plate 101, ceramics that are prepared by adding a predetermined sintering aid and a binder to an aggregate of ceramic particles, kneading and drying them, and firing them are used.
JP-A-8-19927

従来のポーラスタイプの吸着盤では、載置面101aと被加工物140との間に隙間が生じることを防止し、被加工物140の吸着力を比較的高くするために、載置面110a
は平坦な面に仕上げられている。例えば、載置面110bは、ダイヤモンド砥粒などが分散されたスラリーを用いた機械研磨等によって研磨され、平坦な面とされている。多孔質セラミックスの表面が研磨された従来の吸着盤では、図(c)に示されるように、各セラミック粒子110の周縁面に、エッジ部110aが形成される場合がある。従来のポーラスタイプの吸着盤では、このエッジ部110aが、例えばシリコンウエハ等からなる被加工物140の表面に接触することで、被加工物140の表面に傷が発生する場合もあっ
た。
In the conventional porous type suction disk, in order to prevent a gap from being formed between the mounting surface 101a and the workpiece 140 and to make the suction force of the workpiece 140 relatively high, the mounting surface 110a.
Is finished on a flat surface. For example, the mounting surface 110b is polished by mechanical polishing or the like using a slurry in which diamond abrasive grains or the like are dispersed, thereby forming a flat surface. In the conventional suction cups to the surface of the porous ceramic is polished, as shown in FIG. 2 (c), the peripheral surface of each ceramic particle 110, there is a case where the edge portion 110a is formed. In the conventional porous type suction disk, the edge portion 110a may come into contact with the surface of the workpiece 140 made of, for example, a silicon wafer, so that the surface of the workpiece 140 may be damaged.

上記課題を解決するために、本発明は、排気孔が設けられた緻密質体からなる支持部と、前記支持部に支持された、アランダム粒子である複数のセラミック粒子と、前記セラミック粒子同士を結合するガラス成分とを含んで構成された多孔質部材と、前記多孔質部材の表面に被着されたアモルファスSiを主成分とする保護膜とを備え、前記保護膜の硬度は、前記多孔質部材の硬度よりも低いことを特徴とする吸着盤を提供する。
In order to solve the above-described problems, the present invention provides a support portion made of a dense body provided with exhaust holes , a plurality of ceramic particles that are alland particles supported by the support portion, and the ceramic particles a porous member that is configured to include a glass component that binds, and a protective film composed mainly of deposited is amorphous Si to the surface of the porous member, the hardness of the protective layer, the porous Provided is a suction disk characterized by being lower in hardness than a material member .

なお、前記保護膜は、CVD法によって形成されていることが好ましい。
Incidentally, before Symbol protective film is preferably formed by a CVD method.

また、前記多孔質部材の平均孔径に対し、前記保護膜の被覆厚が、より小さいことが好ましい。
Further, with respect to the average air pore diameter of the porous member, the coating thickness of the protective layer is preferably smaller.

また、前記保護膜の表面抵抗が、10〜1012(Ω/□)であることが好ましい。 The surface resistance of the protective film is preferably 10 6 to 10 12 (Ω / □).

本発明は、また、上記吸着盤と、前記支持部の前記排気孔から、前記多孔質部材を介して排気する真空ポンプとを備えることを特徴とする真空吸着装置を、併せて提供する。 This invention also provides a the suction cup, from the exhaust hole of the supporting portion, a vacuum suction device, characterized in that it comprises a vacuum pump for evacuating through said porous member, together provide.

本願発明の吸着盤によれば、比較的高い吸着力で対象試料を吸着しつつ、吸着する対象試料の損傷を抑制することができる。   According to the suction disk of the present invention, it is possible to suppress damage to the target sample to be adsorbed while adsorbing the target sample with a relatively high suction force.

以下、本発明の一実施形態について、詳細に説明する。図1(a)は本発明の吸着盤の一実施形態について説明する概略斜視図であり、支持部材14と多孔質部材12の一部を切断して削除した状態を示している。図1(b)は(a)に示す吸着盤10のX−X線断面図である。また、図1(c)は図1(b)の一部を拡大して示す図である。   Hereinafter, an embodiment of the present invention will be described in detail. FIG. 1A is a schematic perspective view for explaining an embodiment of the suction disk of the present invention, and shows a state where a part of the support member 14 and the porous member 12 is cut and deleted. FIG.1 (b) is XX sectional drawing of the suction disk 10 shown to (a). Moreover, FIG.1 (c) is a figure which expands and shows a part of FIG.1 (b).

図1(a)に示すように、本実施形態に係る吸着盤10は、板状の多孔質部材12と、多孔質部材12を支持する、緻密質体からなる支持部材14と、多孔質部材12の表面に被着されたアモルファスSi膜20と、を有して構成されている。支持部材14は、多孔質部材12の一方の主面と当接する当接面14a、および、多孔質部材12の側面を囲繞する壁部16を備えている。支持部材14の当接面14aには溝部18が設けられている。また、支持部材14には、当接面14aの側から外側(図1における下側)に向けて延びた排気孔22が設けられている。排気孔22は溝部18の内面まで延びており、この内面に開口を形成している。   As shown in FIG. 1A, the suction disk 10 according to this embodiment includes a plate-like porous member 12, a support member 14 made of a dense body that supports the porous member 12, and a porous member. 12 and an amorphous Si film 20 deposited on the surface of 12. The support member 14 includes a contact surface 14 a that contacts one main surface of the porous member 12, and a wall portion 16 that surrounds the side surface of the porous member 12. A groove 18 is provided on the contact surface 14 a of the support member 14. Further, the support member 14 is provided with an exhaust hole 22 extending from the contact surface 14a side toward the outside (the lower side in FIG. 1). The exhaust hole 22 extends to the inner surface of the groove portion 18, and an opening is formed on the inner surface.

支持部材14は、略円形状の当接面14aと、この当接面14aの周縁から突出した壁部16と、を備えている。いいかえれば、支持部材14は、略円板状の構造物の中央部分に、多孔質部材12に対応する凹部が設けられた形状とされている。多孔質部材12は、この凹部に嵌め入れられた状態で配置されている。多孔質部材12の一方主面は、当接面14aと接合し、また、多孔質部材12の側面は壁部16と接合している。壁部16の上面は、多孔質部材12の上面12aと略面一とされている。支持部材14の中心位置(当接面14aの中心位置)には、当接面14aの側から図1における下側に向けて延びた排気孔22が設けられている。なお、支持部材14の当接面14aの形状は、略円形状であることに限定されない。当接面14aの形状は、被吸着物の形状に応じた任意の形状であってよく、例えば液晶製造装置に用いる吸着盤などでは、略四角形状とされていてもよい。   The support member 14 includes a substantially circular contact surface 14a and a wall portion 16 protruding from the periphery of the contact surface 14a. In other words, the support member 14 has a shape in which a concave portion corresponding to the porous member 12 is provided in the central portion of the substantially disk-shaped structure. The porous member 12 is arranged in a state of being fitted in the recess. One main surface of the porous member 12 is bonded to the contact surface 14 a, and the side surface of the porous member 12 is bonded to the wall portion 16. The upper surface of the wall portion 16 is substantially flush with the upper surface 12 a of the porous member 12. At the center position of the support member 14 (center position of the contact surface 14a), an exhaust hole 22 extending from the contact surface 14a side toward the lower side in FIG. 1 is provided. In addition, the shape of the contact surface 14a of the support member 14 is not limited to being substantially circular. The shape of the abutting surface 14a may be an arbitrary shape according to the shape of the object to be adsorbed, and for example, in the suction disk used in the liquid crystal manufacturing apparatus, it may be a substantially square shape.

溝部18は、当接面14の外周形状に沿って連続した形状で設けられている。本実施形態の吸着盤10では、当接面14の外周形状(外周円)と中心を同じくする円形溝18a、18bが形成されている。また溝部18は、各円形溝18aと18bを連ねて中心まで延びた、当接面14aの直径方向に沿った部分溝19が設けられている。排気孔22は溝部18の内面まで延びており、当接面14aの中心部分において、この溝部18の内面に開口端を形成している。なお、溝部18には、例えばアランダム粗粒からなる第2セラミック粒子と、第2セラミック粒子同士を結合するガラス成分と、を主成分として構成された、多孔質セラミックからなる補助部材が充填されていてもよい。例えば、補助部材として、例えば気孔率36〜60%、平均気孔径0.3〜1mmの多孔質セラミックが溝部18内部に充填されており、溝部18の内壁と接合されていてもよい。   The groove portion 18 is provided in a continuous shape along the outer peripheral shape of the contact surface 14. In the suction disk 10 of this embodiment, circular grooves 18a and 18b having the same center as the outer peripheral shape (outer peripheral circle) of the contact surface 14 are formed. Further, the groove portion 18 is provided with a partial groove 19 extending along the diameter direction of the contact surface 14a and extending to the center by connecting the circular grooves 18a and 18b. The exhaust hole 22 extends to the inner surface of the groove 18, and an open end is formed on the inner surface of the groove 18 at the center of the contact surface 14 a. The groove portion 18 is filled with an auxiliary member made of a porous ceramic composed mainly of, for example, second ceramic particles made of alundum coarse particles and a glass component for bonding the second ceramic particles. It may be. For example, as an auxiliary member, for example, a porous ceramic having a porosity of 36 to 60% and an average pore diameter of 0.3 to 1 mm is filled in the groove portion 18 and may be joined to the inner wall of the groove portion 18.

多孔質部材12は略円板状の部材であり、例えばアランダム粗粒からなる第1セラミック粒子11と、第1セラミック粒子同士を結合するガラス成分13と、を主成分として構成されている。ここで、アランダムとは、アルミナを主成分とする結晶質の構造体を指す。例えば、アランダムの一例として、アルミナを溶融した後、徐々に冷却して結晶化したものが挙げられる。アルミナを溶融した後に、徐々に冷却して結晶化されたアランダムは、硬度が比較的高く、耐摩耗性が比較的高い。なお、保護膜の硬度が、吸着層の硬度よりも低いとは、吸着層表面に保護膜を被着させた状態における表面(保護膜表面)の硬度が、例えば保護膜を被着させる前の状態(または被着した保護膜を除去した状態)における吸着層自体の表面の硬度よりも低いことをいう。表面の硬度は、例えばISO(International Organization for Standardization)14577−1にて規定されている測定方法を用いて求めることができる、いわゆるマルテンス硬さで表されるものであればよい。例えば、アルミナの硬度は10GPa程度であるのに対して、アモルファスSiの硬度は5GPa程度である。硬度の測定装置としては、株式会社島津製作所製のHSU211等を用いることができる。   The porous member 12 is a substantially disk-shaped member, and is composed mainly of, for example, first ceramic particles 11 made of alundum coarse particles and a glass component 13 for bonding the first ceramic particles. Here, alundum refers to a crystalline structure mainly composed of alumina. For example, as an example of alundum, one obtained by melting alumina and then gradually cooling to crystallize can be mentioned. Alundum crystallized by melting gradually after melting alumina has relatively high hardness and relatively high wear resistance. The hardness of the protective film is lower than the hardness of the adsorption layer. The hardness of the surface (protective film surface) in a state where the protective film is applied to the surface of the adsorption layer is, for example, before the protective film is applied. It means that it is lower than the hardness of the surface of the adsorption layer itself in a state (or a state where the deposited protective film is removed). The surface hardness may be expressed by so-called Martens hardness, which can be obtained by using a measurement method defined in ISO (International Organization for Standardization) 14577-1, for example. For example, the hardness of alumina is about 10 GPa, whereas the hardness of amorphous Si is about 5 GPa. As a hardness measuring device, HSU211 manufactured by Shimadzu Corporation can be used.

また、かかるアランダム粒子を主成分として構成された多孔質部材12は、例えば白色光源の下では、緑色に近い色に視認される。このため、多孔質部材12の表面に付着したパーティクル等が、比較的視認され易い。また、アランダム粒子には、ウェハの研削屑が付着されにくいといった特性もあり、この点でも吸着盤を構成する材質として好適である。アランダム粒子は加熱することで粒成長し、加熱条件を調整することで加熱後の粒径を制御することができる。アランダム粒子は、球形とは異なり多くの角部を有し、粒子は多様な形状を有している。   Further, the porous member 12 composed mainly of such alundum particles is visually recognized as a color close to green under a white light source, for example. For this reason, particles attached to the surface of the porous member 12 are relatively easily visible. In addition, the alundum particles have a characteristic that the grinding scraps of the wafer are difficult to adhere, and this point is also suitable as a material constituting the suction disk. The alundum particles grow by heating, and the particle size after heating can be controlled by adjusting the heating conditions. Unlike the spherical shape, the alundum particles have many corners, and the particles have various shapes.

本実施形態の吸着盤10は、例えば各種半導体製造装置や液晶製造装置等に備えられた、単結晶Siウエハ等の被加工材料を保持するための真空吸着装置に装着されて用いられる。かかる真空吸着装置において、吸着盤10の排気孔22には、図示しない排気ポンプが接続される。真空吸着装置において排気ポンプが動作すると、排気孔22を介して、この排気孔22に連なる溝部18内部も排気され、ひいては多孔質部材12の気孔内の気体も吸引排気される。   The suction disk 10 of the present embodiment is used by being mounted on a vacuum suction device for holding a material to be processed such as a single crystal Si wafer provided in various semiconductor manufacturing apparatuses, liquid crystal manufacturing apparatuses, and the like. In such a vacuum suction device, an exhaust pump (not shown) is connected to the exhaust hole 22 of the suction disk 10. When the exhaust pump operates in the vacuum suction device, the inside of the groove portion 18 connected to the exhaust hole 22 is also exhausted through the exhaust hole 22, and the gas in the pores of the porous member 12 is also suctioned and exhausted.

図1では、吸着盤10の多孔質部材12の上面12aに、被吸着物である例えば単結晶SiウエハWを載置した状態で、排気ポンプを動作させた状態を示している。本実施形態では、多孔質部材12の気孔を吸引孔として、多孔質部材12の上面12aに載置された単結晶SiウエハW等が、多孔質部材12の上面12aに吸着保持されている。なお、本発明の吸着盤によって吸着する対象試料は、他結晶Siウエハや、化合物半導体基板、液晶製造用のガラス基板などであってもよく、特に限定はされない。   FIG. 1 shows a state in which the exhaust pump is operated in a state where, for example, a single crystal Si wafer W as an object to be adsorbed is placed on the upper surface 12a of the porous member 12 of the suction disk 10. In the present embodiment, the single crystal Si wafer W or the like placed on the upper surface 12 a of the porous member 12 is adsorbed and held on the upper surface 12 a of the porous member 12 using the pores of the porous member 12 as suction holes. The target sample to be adsorbed by the adsorption disk of the present invention may be another crystal Si wafer, a compound semiconductor substrate, a glass substrate for liquid crystal production, or the like, and is not particularly limited.

多孔質部材12は、表面が機械研磨されており、表面に現れている第1セラミック粒子11は、多孔質部材12の表面形状に沿って研磨された平面部11bをそれぞれ備え、研磨によって形成されたエッジ部11aを有している。   The surface of the porous member 12 is mechanically polished, and the first ceramic particles 11 appearing on the surface are each provided with a planar portion 11b polished along the surface shape of the porous member 12, and are formed by polishing. Edge portion 11a.

本実施形態の多孔質部材12は、例えば気孔率15〜40%、平均気孔径50〜100μmとされている。本明細書における気孔率の値は、気孔率を測定するための測定対象部材を適当な大きさに切り出し、公知の水銀圧入法により求めることができる。また、本明細書における気孔率の値は、例えば測定対象部材の任意の断面の、電子顕微鏡または光学顕微鏡による観察像から求められてもよい。具体的には、測定対象部材の任意の断面を倍率20〜100倍で観察し、この観察像の5〜30mmの測定面積の範囲について、観察像から確認できる空洞領域の面積を求め、この空洞領域の面積を測定対象範囲の面積で割った百分率(%)の値である。同様に平均気孔径は、測定対象部材の任意の断面を、倍率20〜100倍で観察し、この観察像の5〜30mmの測定面積の範囲に存在する各粒子の、最長径の値の平均値のことをいう。各値は、観察像を肉眼で確認して求めてもよく、また撮影した観察像を画像処理して求めてもよい。 The porous member 12 of the present embodiment has, for example, a porosity of 15 to 40% and an average pore diameter of 50 to 100 μm. The porosity value in the present specification can be obtained by a known mercury intrusion method by cutting out a measurement target member for measuring the porosity into an appropriate size. Moreover, the value of the porosity in this specification may be calculated | required from the observation image by the electron microscope or the optical microscope of the arbitrary cross sections of a measuring object member, for example. Specifically, an arbitrary cross section of the measurement target member is observed at a magnification of 20 to 100 times, and an area of a cavity region that can be confirmed from the observation image is obtained for a measurement area range of 5 to 30 mm 2 of this observation image. It is a percentage (%) value obtained by dividing the area of the hollow region by the area of the measurement target range. Similarly, the average pore diameter is determined by observing an arbitrary cross section of the measurement target member at a magnification of 20 to 100 times, and the value of the longest diameter of each particle existing in the measurement area range of 5 to 30 mm 2 of this observation image. It means the average value. Each value may be obtained by confirming the observation image with the naked eye, or may be obtained by image processing of the taken observation image.

本実施形態の吸着盤10では、多孔質部材12の表面に、アモルファスSi膜20が被着されている。アモルファスSi膜20は、多孔質部材12の表面に、例えば公知のCVD法によって形成することができる。アモルファスSi膜20の被着厚の大きさは、多孔質部材12の平均気孔径に比べて小さくされており、例えば被着厚が約30μmとされている。なおアモルファスSi膜20の被着厚とは、多孔質部材12の上面12aに略垂直な方向の厚さであり、多孔質部材12の表面に存在する各セラミック粒子に形成されたアモルファスSi膜の厚さ(図2(c)に示すdn)の平均値のことをいう。より具体的には、例えば、測定対象部材(本実施形態では多孔質部材12)の任意の断面を倍率20〜100倍で観察した観察像において、上面12aに沿った、50〜500μm四方の測定領域の範囲において確認できる、各第1セラミック粒子11毎のアモルファスSi膜の膜厚(上面12aに略垂直な厚さ)の平均値である。   In the suction disk 10 of this embodiment, an amorphous Si film 20 is deposited on the surface of the porous member 12. The amorphous Si film 20 can be formed on the surface of the porous member 12 by, for example, a known CVD method. The deposition thickness of the amorphous Si film 20 is made smaller than the average pore diameter of the porous member 12, for example, the deposition thickness is about 30 μm. The deposition thickness of the amorphous Si film 20 is a thickness in a direction substantially perpendicular to the upper surface 12a of the porous member 12, and is an amorphous Si film formed on each ceramic particle existing on the surface of the porous member 12. It means the average value of thickness (dn shown in FIG. 2C). More specifically, for example, in an observation image obtained by observing an arbitrary cross section of the measurement target member (the porous member 12 in the present embodiment) at a magnification of 20 to 100 times, measurement of 50 to 500 μm square along the upper surface 12a. This is the average value of the film thickness (thickness substantially perpendicular to the upper surface 12a) of the amorphous Si film for each first ceramic particle 11 that can be confirmed in the range of the region.

アモルファスSi膜20は、例えばアルミナの結晶からなるアランダム粒子に比べて硬度が比較的低く、更には、例えば単結晶Si等に比べても硬度が低い。吸着盤10では、多孔質部材12の表面部分にある第1セラミック粒子11の表面に、アモルファスSi膜が被着しているので、例えば単結晶SiウエハW等の被吸着部材の表面に、傷等が比較的発生し難くされている。   The amorphous Si film 20 has a relatively low hardness compared to alundum particles made of, for example, alumina crystals, and further has a lower hardness than, for example, single crystal Si. In the suction disk 10, since the amorphous Si film is deposited on the surface of the first ceramic particles 11 in the surface portion of the porous member 12, for example, the surface of the suctioned member such as the single crystal Si wafer W is damaged. Etc. are relatively difficult to occur.

また、本実施形態において、アモルファスSi膜20の被着厚の大きさは、多孔質部材12の平均気孔径に比べて小さくされている。このため、多孔質部材12の上面12aにおいて気孔が完全に閉塞されることが抑制され、上面12aには比較的多くの気孔が、比較的大きな開口径を維持して開孔した状態とされている。吸着盤10では、多孔質部材12の上面12aに単結晶SiウエハWが載置された状態で、多孔質部材12の気孔が吸引孔として良好に作用し、単結晶SiウエハW等の対象試料は、多孔質部材12に比較的高い吸引力で吸着される。   In the present embodiment, the thickness of the amorphous Si film 20 is set smaller than the average pore diameter of the porous member 12. For this reason, the pores are prevented from being completely closed on the upper surface 12a of the porous member 12, and a relatively large number of pores are maintained on the upper surface 12a while maintaining a relatively large opening diameter. Yes. In the suction disk 10, with the single crystal Si wafer W placed on the upper surface 12 a of the porous member 12, the pores of the porous member 12 work well as suction holes, and the target sample such as the single crystal Si wafer W Is adsorbed to the porous member 12 with a relatively high suction force.

本実施形態の吸着盤10では、アモルファスSi膜20は、公知のCVD法(化学気相成長法)で形成されている。CVD法では、後述するように、原料ガスと反応ガスとを、成膜対象体(本実施形態では、多孔質部材12)に供給して、この成膜対象体の表面に所望の膜を成膜する。CVD法による成膜では、真空蒸着法などの物理吸着のみによる成膜に比べて、凹凸の表面の被覆性が高い。吸着盤10では、多孔質部材12の表面12aに表れたセラミック粒子11について、研磨によって現れた平面部11aのみでなく、研磨によって形成されたエッジ部11bも、アモルファスSi膜20によって比較的良好に被覆されている。このため、多孔質部材12の表面に、単結晶SiウエハWを吸着させた場合も、この被多孔質部材(ウエハW)の表面には、傷等の損傷が比較的発生し難い。   In the suction disk 10 of the present embodiment, the amorphous Si film 20 is formed by a known CVD method (chemical vapor deposition method). In the CVD method, as will be described later, a source gas and a reaction gas are supplied to a film formation target body (in this embodiment, a porous member 12), and a desired film is formed on the surface of the film formation target body. Film. In the film formation by the CVD method, the coverage of the uneven surface is high compared to the film formation by only physical adsorption such as the vacuum evaporation method. In the suction disk 10, the ceramic particles 11 appearing on the surface 12 a of the porous member 12 not only have a flat surface portion 11 a that appears by polishing, but also an edge portion 11 b that is formed by polishing is relatively favorable by the amorphous Si film 20. It is covered. For this reason, even when the single crystal Si wafer W is adsorbed on the surface of the porous member 12, damage such as scratches is relatively unlikely to occur on the surface of the porous member (wafer W).

また、本実施形態では、アモルファスSi膜20は電気抵抗率が10〜1012(Ω・cm)と比較的低くされており、表面抵抗も10〜1012(Ω/□)と比較的低くされている。この値は、ANSI(American National Standards Institute:米国規格協会)/EIA541に規定されている静電気拡散性の範囲と概ね一致しており、帯電の減衰時間に関して良好な結果をもたらす。表面抵抗値が10〜1012(Ω/□)の半導電性膜の場合には減衰時間が10秒以下であるので好ましいのに対し、表面抵抗値が1012よりも大きい半導電性膜の場合には減衰時間が100秒程度かかってしまい好ましくないなお、帯電の減衰時間は、膜の裏面に電極を形成して、その電極に所定の電圧を印加して、印加終了後の電位が元の電位に戻る時間を計測することにより評価している。
本実施形態のアモルファスSi膜20は導電性が比較的高く、比較的帯電し難く、静電気の発生の程度も比較的小さい。本実施形態のアモルファスSi膜20では、パーティクル等の付着が比較的少ない。このため、吸着盤10で単結晶SiウエハWを吸着した場合でも、この単結晶Siウエハに付着するパーティクルは比較的少なく、また、これにともなって生じる単結晶Siウエハ等の損傷も比較的少なくされている。また、単結晶ウエハWがアモルファスSi膜20に近づいた状態における、静電気放電(Electrostatic Discharge)が比較的生じ難く、単結晶SiウエハWの、静電気放電による損傷・破壊も比較的少なくされている。上記電気抵抗率や表面抵抗の大きさは、例えば、JIS K6271にて規定される二重リング電極法によって測定すればよい。なお、アモルファスSi膜の電気抵抗率および表面抵抗の値は、上記範囲に限定されない。
In this embodiment, the amorphous Si film 20 has a relatively low electrical resistivity of 10 8 to 10 12 (Ω · cm) and a surface resistance of 10 6 to 10 12 (Ω / □). Has been lowered. This value is generally consistent with the static diffusivity range defined in ANSI (American National Standards Institute) / EIA 541 and gives good results with respect to charge decay time. In the case of a semiconductive film having a surface resistance value of 10 6 to 10 12 (Ω / □), the decay time is preferably 10 seconds or less, whereas the semiconductive film having a surface resistance value larger than 10 12 is preferable. In this case, the decay time takes about 100 seconds, which is not preferable. The decay time of charging is such that an electrode is formed on the back surface of the film, a predetermined voltage is applied to the electrode, and the potential after the application is finished. Evaluation is made by measuring the time to return to the original potential.
The amorphous Si film 20 of the present embodiment has a relatively high conductivity, is relatively difficult to be charged, and the degree of generation of static electricity is relatively small. In the amorphous Si film 20 of the present embodiment, adhesion of particles or the like is relatively small. For this reason, even when the single crystal Si wafer W is adsorbed by the suction disk 10, the particles adhering to the single crystal Si wafer are relatively small, and the damage to the single crystal Si wafer and the like caused by this is relatively small. Has been. Further, electrostatic discharge (Electrostatic Discharge) is relatively unlikely to occur when the single crystal wafer W is close to the amorphous Si film 20, and damage and destruction of the single crystal Si wafer W due to electrostatic discharge are relatively reduced. What is necessary is just to measure the magnitude | size of the said electrical resistivity and surface resistance by the double ring electrode method prescribed | regulated by JISK6271, for example. The values of the electrical resistivity and surface resistance of the amorphous Si film are not limited to the above ranges.

支持部材14は、例えば酸化アルミニウムを主成分とする緻密質セラミックからなる。   The support member 14 is made of, for example, a dense ceramic whose main component is aluminum oxide.

次に、吸着盤10の製造方法の一例について説明しておく。   Next, an example of the manufacturing method of the suction disk 10 will be described.

まず、緻密質セラミックからなる支持部材14を作製しておく。支持部材14は、例えば以下のように作製することができる。まず、酸化アルミニウム粉末96〜99.9質量%と、酸化珪素、炭酸カルシウム、酸化マグネシウムの各粉末を含む焼結助剤粉末0.1〜4質量%とからなる原料粉末を混合し、ポリエチレングリコールなどの有機結合材をこの原料粉末100質量部に対して3〜8質量部添加、混合し、水を添加してスラリーとする。このスラリーを噴霧乾燥機により噴霧乾燥し、得られた顆粒をゴム型に充填し、静水圧により加圧して成形体を作製する。得られた成形体を加工して、支持部材の形に近い形状に切削し、いわゆるニアネット成形体を作製する。このニアネット成形体を、焼成炉で1500〜1700℃で焼成し、焼結体を作製する。焼結体を加工して支持部材14を作製する。   First, the support member 14 made of a dense ceramic is prepared. The support member 14 can be manufactured as follows, for example. First, raw material powder composed of 96 to 99.9% by mass of aluminum oxide powder and 0.1 to 4% by mass of sintering aid powder containing each powder of silicon oxide, calcium carbonate, and magnesium oxide was mixed, and polyethylene glycol was mixed. 3 to 8 parts by mass of an organic binder such as is added to 100 parts by mass of the raw material powder and mixed, and water is added to form a slurry. This slurry is spray-dried with a spray dryer, and the resulting granule is filled into a rubber mold and pressed with hydrostatic pressure to produce a molded body. The obtained molded body is processed and cut into a shape close to the shape of the support member to produce a so-called near net molded body. This near-net molded body is fired at 1500 to 1700 ° C. in a firing furnace to produce a sintered body. The sintered body is processed to produce the support member 14.

次に、支持部材14の内面全体に、ガラスペーストを、スクリーン印刷、刷毛などを用いて厚み0.2mm程度に塗布する。この際、排気口22の内面については、ガラスペーストを塗布しないでおく。ガラスペーストは、例えば、融点が650〜1000℃の硼珪酸ガラスからなる粉末と、少量の有機結合材と、少量の有機溶剤とを混合、混練することで作製されたものを用いればよい。なお、排気孔22の部分には、ガラスペーストの塗布工程の後、例えばエポキシ樹脂等の熱硬化性樹脂を充填し、熱硬化させておく。   Next, a glass paste is applied to the entire inner surface of the support member 14 to a thickness of about 0.2 mm using screen printing, a brush, or the like. At this time, the glass paste is not applied to the inner surface of the exhaust port 22. For example, a glass paste prepared by mixing and kneading a powder made of borosilicate glass having a melting point of 650 to 1000 ° C., a small amount of an organic binder, and a small amount of an organic solvent may be used. The exhaust hole 22 is filled with a thermosetting resin such as an epoxy resin after the step of applying the glass paste, and is thermally cured.

次に、支持部材14の内側全体に多孔質部材12の原料を充填する。この際、支持部材12の原料は、支持部材14の壁部16の上面と略面一になるまで充填しておく。支持部材12の原料としては、例えば以下のように作製したものを用いればよい。まず、アランダムを例えば1400℃程度に加熱して粒成長させた後、振動篩いを用いて粒径0.4〜1.5mm程度の範囲内のアランダムのみを選択的に回収する。回収したアランダム100質量部に対して、上述のガラスペーストを3〜8質量部添加・混合し、多孔質部材12の原料を作製する。なお、ガラスペーストの代わりに、アランダム100質量部に対して、球状のガラスであって、径が0.5〜1mmの範囲内のものを選別した原料を混合したものを、多孔質部材12の原料としてもよい。   Next, the entire inside of the support member 14 is filled with the raw material of the porous member 12. At this time, the raw material of the support member 12 is filled until it is substantially flush with the upper surface of the wall portion 16 of the support member 14. As a raw material of the support member 12, what was produced as follows may be used, for example. First, after the alundum is heated to, for example, about 1400 ° C. to grow the grains, only the alundum having a particle diameter of about 0.4 to 1.5 mm is selectively collected using a vibrating sieve. 3 to 8 parts by mass of the above glass paste is added to and mixed with 100 parts by mass of the collected alundum to produce a raw material for the porous member 12. In addition, instead of the glass paste, the porous member 12 is obtained by mixing a raw material obtained by selecting spherical glass with a diameter in the range of 0.5 to 1 mm with respect to 100 parts by mass of alundum. It may be a raw material for

このように多孔質部材12の原料が充填された構造物全体をゴム型に入れて密封し、静水圧プレスにより加圧することで、吸着盤10の未加熱物を得る。この未加熱物を、ガラスペーストの融点以上の温度(650〜1000℃)で加熱した後に冷却し、支持部材14、多孔質部材12、補助部材24が、溶融ガラスにより一体的に接合される。この加熱の際、排気孔22の部分に充填していた熱硬化性樹脂は、溶融・蒸発する。   Thus, the whole structure filled with the raw material of the porous member 12 is put in a rubber mold, sealed, and pressurized by an isostatic press, thereby obtaining an unheated material of the suction disk 10. The unheated material is heated at a temperature equal to or higher than the melting point of the glass paste (650 to 1000 ° C.) and then cooled, and the support member 14, the porous member 12, and the auxiliary member 24 are integrally joined by molten glass. During this heating, the thermosetting resin filled in the exhaust hole 22 is melted and evaporated.

このように、支持部材14、多孔質部材12、補助部材24、支持部材14、が溶融ガラスにより一体的に接合された構造物の上面を、例えば平面研削盤により平滑に研磨する。研磨に用いる装置や手法については、特に限定されない。   In this manner, the upper surface of the structure in which the support member 14, the porous member 12, the auxiliary member 24, and the support member 14 are integrally joined with molten glass is smoothly polished by, for example, a surface grinder. The apparatus and method used for polishing are not particularly limited.

次に、平滑に研磨した多孔質部材12の表面に、公知のCVD成膜装置を用い、アモルファスSi膜20を成膜する。アモルファスSi膜は、通常のCVD法や、cat−CVD法など、従来公知の成膜方法を用いて成膜すればよい。CVD法を用いることで、成膜した膜の電気抵抗率の大きさを、比較的高精度に制御することができる。CVD法による成膜では、例えば成膜用の真空容器に、表面が研磨された構造体を配置し、この真空容器内に、シリコン含有ガス(例えば、SiH,Si、Si等)及び、キャリアガスとして、例えば水素や窒素、アルゴン等の不活性ガスを導入し、真空度を例えば1.3〜13Paに制御する。この状態で、真空容器内のガス導入孔が設けられた導電性の電極板に電力を供給してグロー放電を発生させて、真空容器内に配置した構造体の、少なくとも多孔質部材の表面に、アモルファスSi膜20を成膜する。アモルファスSi膜3の表面抵抗を106〜1011Ω/□の範囲内に設定するには、水素の量を所定の範囲で管理すればよい。また、CVD法による成膜では、ステップカバレッジが比較的良好であり、多孔質部材12表面が機械研磨されることで表れた、多孔質部材12表面部分の第1セラミック粒子11のエッジ部11bも、比較的充分な厚さで被覆されている。なお、アモルファスSi膜の形成方法は、CVD法を用いることに限定されない。 Next, an amorphous Si film 20 is formed on the surface of the porous member 12 polished smoothly using a known CVD film forming apparatus. The amorphous Si film may be formed using a conventionally known film formation method such as a normal CVD method or a cat-CVD method. By using the CVD method, the magnitude of the electrical resistivity of the deposited film can be controlled with relatively high accuracy. In film formation by the CVD method, for example, a structure whose surface is polished is placed in a vacuum container for film formation, and a silicon-containing gas (for example, SiH, Si 2 H 6 , Si 3 H 8 ) is placed in the vacuum container. Etc.) and an inert gas such as hydrogen, nitrogen or argon is introduced as a carrier gas, and the degree of vacuum is controlled to 1.3 to 13 Pa, for example. In this state, power is supplied to the conductive electrode plate provided with the gas introduction hole in the vacuum vessel to generate glow discharge, and at least the surface of the porous member of the structure disposed in the vacuum vessel Then, an amorphous Si film 20 is formed. In order to set the surface resistance of the amorphous Si film 3 within the range of 10 6 to 10 11 Ω / □, the amount of hydrogen may be controlled within a predetermined range. Further, in the film formation by the CVD method, the step coverage is relatively good, and the edge portion 11b of the first ceramic particle 11 on the surface portion of the porous member 12 that appears by mechanical polishing of the surface of the porous member 12 is also provided. It is coated with a relatively sufficient thickness. Note that the method of forming the amorphous Si film is not limited to using the CVD method.

吸着盤10は、例えばこのように作製すればよい。   The suction disk 10 may be produced in this way, for example.

以上、本発明の一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものでない。例えば、支持部材表面に、表面に沿って連続した溝部が設けられていることに限定されず、部分的な開口を有する凹部が設けられていてもよい。   As mentioned above, although one Embodiment of this invention was described in detail, this invention is not limited to the said embodiment. For example, it is not limited to the groove | channel part which followed the surface on the support member surface, and the recessed part which has a partial opening may be provided.

本発明は上記実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。   The present invention is not limited to the above-described embodiment, and various improvements and modifications may be made without departing from the scope of the present invention.

本発明の吸着盤の一実施形態について説明する図であり、(a)は概略斜視図、(b)は概略断面図、(c)は(b)の一部を拡大して示す図である。It is a figure explaining one Embodiment of the suction disk of this invention, (a) is a schematic perspective view, (b) is a schematic sectional drawing, (c) is a figure which expands and shows a part of (b). . 従来の吸着盤の一例について説明する図であり、(a)は概略斜視図、(b)は概略断面図、(c)は(b)の一部を拡大して示す図である。It is a figure explaining an example of the conventional suction disk, (a) is a schematic perspective view, (b) is a schematic sectional drawing, (c) is a figure which expands and shows a part of (b).

符号の説明Explanation of symbols

10 吸着盤
11 セラミック粒子
11a エッジ部
11b 平面部
12 吸着部材
12a 上面
14 支持部材
14a 当接面
16 壁部
18 溝部
18a、18b 円形溝
19 部分溝
20 アモルファスSi膜
22 排気孔
DESCRIPTION OF SYMBOLS 10 Adsorption board 11 Ceramic particle 11a Edge part 11b Plane part 12 Adsorption member 12a Upper surface 14 Support member 14a Contact surface 16 Wall part 18 Groove part 18a, 18b Circular groove 19 Partial groove 20 Amorphous Si film 22 Exhaust hole

Claims (5)

排気孔が設けられた緻密質体からなる支持部と、
前記支持部に支持された、アランダム粒子である複数のセラミック粒子と、前記セラミック粒子同士を結合するガラス成分とを含んで構成された多孔質部材と、
前記多孔質部材の表面に被着されたアモルファスSiを主成分とする保護膜とを備え、
前記保護膜の硬度は、前記多孔質部材の硬度よりも低いことを特徴とする吸着盤。
A support portion made of a dense body provided with exhaust holes;
A porous member configured to include a plurality of ceramic particles that are alundum particles supported by the support portion, and a glass component that bonds the ceramic particles to each other ;
A protective film mainly comprising amorphous Si deposited on the surface of the porous member ;
The suction disk according to claim 1, wherein the hardness of the protective film is lower than the hardness of the porous member .
前記保護膜は、CVD法によって形成されていることを特徴とする請求項1に記載の吸着盤。 The suction disk according to claim 1, wherein the protective film is formed by a CVD method. 前記多孔質部材の平均孔径に対し、
前記保護膜の被覆厚が、より小さいことを特徴とする請求項1または2に記載の吸着盤。
To the average air pore diameter of said porous member,
Coating thickness of said protective film, sucker as claimed in claim 1 or 2, wherein the smaller.
前記保護膜の表面抵抗が、10〜1012(Ω/□)であることを特徴とする請求項1〜のいずれかに記載の吸着盤。 The surface resistance of the protective film, 10 6 ~10 12 (Ω / □) suction cups according to any one of claims 1 to 3, characterized in that a. 請求項1〜のいずれかに記載の吸着盤と、
前記支持部の前記排気孔から、前記多孔質部材を介して排気する真空ポンプとを備えることを特徴とする真空吸着装置。
The suction disk according to any one of claims 1 to 4 ,
Wherein from the exhaust hole of the support unit, the vacuum suction device, characterized in that it comprises a vacuum pump for evacuating through said porous member.
JP2008279017A 2008-10-30 2008-10-30 Suction board and vacuum suction device Expired - Fee Related JP5225024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279017A JP5225024B2 (en) 2008-10-30 2008-10-30 Suction board and vacuum suction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279017A JP5225024B2 (en) 2008-10-30 2008-10-30 Suction board and vacuum suction device

Publications (2)

Publication Number Publication Date
JP2010109106A JP2010109106A (en) 2010-05-13
JP5225024B2 true JP5225024B2 (en) 2013-07-03

Family

ID=42298267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279017A Expired - Fee Related JP5225024B2 (en) 2008-10-30 2008-10-30 Suction board and vacuum suction device

Country Status (1)

Country Link
JP (1) JP5225024B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10497887B1 (en) 2017-10-26 2019-12-03 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10505155B1 (en) 2017-10-26 2019-12-10 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10516001B2 (en) 2017-10-26 2019-12-24 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10581027B2 (en) 2017-10-26 2020-03-03 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10607513B2 (en) 2017-11-17 2020-03-31 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10957881B2 (en) 2017-10-26 2021-03-23 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10978651B2 (en) 2017-10-26 2021-04-13 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US11114650B2 (en) 2017-10-26 2021-09-07 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device including lift-off light irradiation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536214A (en) * 2014-07-16 2017-03-22 瓦林格创新股份有限公司 Method to produce a thermoplastic wear resistant foil
JP6946076B2 (en) * 2017-06-29 2021-10-06 日本特殊陶業株式会社 Vacuum suction member
JP7143021B2 (en) * 2018-07-09 2022-09-28 株式会社ディスコ POROUS CHUCK TABLE, POROUS CHUCK TABLE MANUFACTURING METHOD, AND PROCESSING APPARATUS
JPWO2022092023A1 (en) * 2020-10-28 2022-05-05
KR102418538B1 (en) * 2021-11-10 2022-07-08 한국기계연구원 Substrate Holding Device
CN117415034B (en) * 2023-12-19 2024-03-12 无锡星微科技有限公司杭州分公司 High-precision wafer sorting machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288190A (en) * 1995-04-19 1996-11-01 Hitachi Ltd Article handling member, its manufacturing method, housing container, and article handling device
JPH09174364A (en) * 1995-12-20 1997-07-08 Shibayama Kikai Kk Universal chuck table for semiconductor wafer
JP2001064087A (en) * 1999-08-25 2001-03-13 Kiyohisa Yamaguchi Porous ceramic sintered base plate for cleaning or liquid floating of electronic parts and member, and its production
JP2004276131A (en) * 2003-03-12 2004-10-07 Ckd Corp Vacuum chuck
JP2004338082A (en) * 2003-04-25 2004-12-02 Kurenooton Kk Vacuum chuck and its manufacturing method
JP2005008368A (en) * 2003-06-19 2005-01-13 Mikura Bussan Kk Electronic part handling unit and manufacturing method thereof
JP4400877B2 (en) * 2004-09-06 2010-01-20 東京エレクトロン株式会社 Substrate processing equipment
JP2007149962A (en) * 2005-11-28 2007-06-14 Seiko Npc Corp Pickup for carrying wafer
JP4895635B2 (en) * 2006-02-20 2012-03-14 セイコーインスツル株式会社 Transport device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10497887B1 (en) 2017-10-26 2019-12-03 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10505155B1 (en) 2017-10-26 2019-12-10 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10516001B2 (en) 2017-10-26 2019-12-24 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10581027B2 (en) 2017-10-26 2020-03-03 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10957881B2 (en) 2017-10-26 2021-03-23 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US10978651B2 (en) 2017-10-26 2021-04-13 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US11011735B2 (en) 2017-10-26 2021-05-18 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device
US11114650B2 (en) 2017-10-26 2021-09-07 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device including lift-off light irradiation
US10607513B2 (en) 2017-11-17 2020-03-31 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device

Also Published As

Publication number Publication date
JP2010109106A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5225024B2 (en) Suction board and vacuum suction device
JP4744855B2 (en) Electrostatic chuck
JP4417197B2 (en) Susceptor device
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
KR101142000B1 (en) Electrostatic chuck
CN100492609C (en) Electrostatic chuck
US20050215073A1 (en) Wafer supporting member
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
KR101452231B1 (en) Electrostatic chuck
JP2000058631A5 (en)
TW202009990A (en) Ring-shaped element for etching apparatus, etching apparatus, and method for etching substrate with the same
US9030798B2 (en) Electrostatic chuck
US8971010B2 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
US20200027770A1 (en) Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
US7672111B2 (en) Electrostatic chuck and method for manufacturing same
JP4387563B2 (en) Susceptor and method of manufacturing susceptor
JP5261057B2 (en) Suction board and vacuum suction device
JP3880977B2 (en) Vacuum chuck
US11837489B2 (en) Electrostatic chuck device and production method for electrostatic chuck device
JP4031419B2 (en) Electrostatic chuck and manufacturing method thereof
US11345639B2 (en) Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
JP4275682B2 (en) Electrostatic chuck
JPH10229115A (en) Vacuum chuck for wafer
JP2021174851A (en) Ceramic substrate, method for manufacturing the same, electrostatic chuck, substrate holding apparatus, and package for semiconductor device
CN105190838B (en) The operation substrate and semiconductor composite base plate of semiconductor composite base plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5225024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees