JP6946076B2 - Vacuum suction member - Google Patents

Vacuum suction member Download PDF

Info

Publication number
JP6946076B2
JP6946076B2 JP2017128069A JP2017128069A JP6946076B2 JP 6946076 B2 JP6946076 B2 JP 6946076B2 JP 2017128069 A JP2017128069 A JP 2017128069A JP 2017128069 A JP2017128069 A JP 2017128069A JP 6946076 B2 JP6946076 B2 JP 6946076B2
Authority
JP
Japan
Prior art keywords
porous member
coating
vacuum suction
substrate
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017128069A
Other languages
Japanese (ja)
Other versions
JP2019012757A (en
Inventor
大樹 赤間
大樹 赤間
阿部 敏彦
敏彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017128069A priority Critical patent/JP6946076B2/en
Publication of JP2019012757A publication Critical patent/JP2019012757A/en
Application granted granted Critical
Publication of JP6946076B2 publication Critical patent/JP6946076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Manipulator (AREA)

Description

本発明は、半導体基板または液晶用ガラス基板など基板を吸着保持するために用いられる真空吸着部材に関する。 The present invention relates to a vacuum suction member used for sucking and holding a substrate such as a semiconductor substrate or a glass substrate for a liquid crystal display.

露光機などの半導体製造装置において、半導体ウエハなどの基板の均一な吸着のため、例えば多孔質部材からなる載置部が、樹脂またはガラスなどの接着剤により緻密質部材からなる支持部に接合されることで構成された真空吸着部材が提案されている(例えば、特許文献1参照)。当該真空吸着部材によれば、支持部に形成された吸気孔および載置部を通じて、当該載置部に載置された基板に対して真空吸着力を作用させる。多孔質部材は、セラミックス粒子(例えばアルミナ粒子)がガラスにより連結された網目状構造を有している。 In semiconductor manufacturing equipment such as an exposure machine, for uniform adsorption of a substrate such as a semiconductor wafer, for example, a mounting portion made of a porous member is joined to a support portion made of a dense member with an adhesive such as resin or glass. A vacuum suction member composed of the above has been proposed (see, for example, Patent Document 1). According to the vacuum suction member, a vacuum suction force is applied to the substrate mounted on the mounting portion through the intake hole and the mounting portion formed in the support portion. The porous member has a network structure in which ceramic particles (for example, alumina particles) are connected by glass.

特開2005−205507号公報Japanese Unexamined Patent Publication No. 2005-205507

しかし、基板を載置部に載置する際、基板と載置部とが擦れ合うことにより多孔質部材を構成する粒子が脱離し、当該脱離粒子によって基板の平坦性が低下する可能性がある。また、当該脱離粒子によって基板の表面に傷跡がつき、当該基板由来の製品の歩留まりを悪化させる可能性がある。 However, when the substrate is mounted on the mounting portion, the particles constituting the porous member may be desorbed due to the rubbing between the substrate and the mounting portion, and the desorbed particles may reduce the flatness of the substrate. .. In addition, the desorbed particles may cause scars on the surface of the substrate, which may deteriorate the yield of the product derived from the substrate.

そこで、本発明は、多孔質部材を構成する粒子の脱離の抑制を図りうる真空吸着部材を提供することにある。 Therefore, the present invention is to provide a vacuum suction member capable of suppressing desorption of particles constituting the porous member.

本発明の第1態様の真空吸着部材は、多孔質部材を備え、基板を吸着保持する真空吸着部材であって、前記多孔質部材の前記上面を覆う被膜を備え、前記被膜の気孔率は前記多孔質部材の気孔率よりも小さく、前記多孔質部材が有する開気孔の連通により構成される真空経路の少なくとも一部が被膜により塞がれることなく維持されることを特徴とする。 The vacuum suction member of the first aspect of the present invention is a vacuum suction member that includes a porous member and sucks and holds a substrate, and includes a coating film that covers the upper surface of the porous member, and the porosity of the coating film is the above. It is characterized in that it is smaller than the porosity of the porous member, and at least a part of the vacuum path formed by the communication of the open pores of the porous member is maintained without being blocked by the coating film.

本発明の第2態様の真空吸着部材は、上面および裏面を有し、前記上面から前記裏面に向かう方向に窪んでいる凹部と、前記裏面から前記凹部の底面にかけて設けられた貫通孔で構成される連通経路と、が形成されている緻密質部材と、前記緻密質部材の前記凹部に収容され、上面および裏面を有し、所定の気孔率を有する多孔質部材と、を備え、基板を吸着保持するための真空吸着部材であって、前記多孔質部材の前記上面には、当該多孔質部材よりも低い気孔率を有する被膜を備え、前記多孔質部材の開気孔または前記多孔質部材および前記被膜に存在する開気孔により構成される2次真空経路の前記被膜の表面と前記多孔質部材の前記裏面との間の連通が維持されていることを特徴とする。 The vacuum suction member of the second aspect of the present invention has an upper surface and a back surface, and is composed of a recess recessed in the direction from the upper surface to the back surface and a through hole provided from the back surface to the bottom surface of the recess. A dense member having a communication path, and a porous member accommodated in the recess of the dense member, having an upper surface and a back surface, and having a predetermined porosity, and adsorbing a substrate. A vacuum suction member for holding, the upper surface of the porous member is provided with a coating having a lower porosity than the porous member, and the open pores of the porous member or the porous member and the said. It is characterized in that communication between the front surface of the coating film and the back surface of the porous member of the secondary vacuum path formed by the open pores existing in the coating film is maintained.

本発明の真空吸着部材によれば、基板が真空吸着部材に載置された際、被膜の表面が基板の載置面となり、多孔質部材よりも気孔率が低い被膜によって多孔質部材が基板から保護されているので、当該多孔質部材を構成する粒子の脱落が確実に抑制される。また、多孔質部材の上面に被膜を備えても、多孔質部材が有する開気孔が連通することにより構成されている真空経路(1次真空経路)は塞がれず、前記被膜の表面と前記多孔質部材の前記裏面との間の真空経路(2次真空経路)の連通が維持されることから、その通気性が損なわれないため、真空吸着部材の上面に載置された基板が確実に真空吸着保持される。 According to the vacuum suction member of the present invention, when the substrate is placed on the vacuum suction member, the surface of the coating becomes the mounting surface of the substrate, and the porous member is removed from the substrate by the coating having a lower porosity than the porous member. Since it is protected, the falling off of the particles constituting the porous member is surely suppressed. Further, even if the upper surface of the porous member is provided with a coating film, the vacuum path (primary vacuum path) formed by communicating the open pores of the porous member is not blocked, and the surface of the coating film and the porous member are not blocked. Since the communication of the vacuum path (secondary vacuum path) with the back surface of the quality member is maintained, the air permeability is not impaired, so that the substrate placed on the upper surface of the vacuum suction member is surely vacuumed. It is adsorbed and held.

本発明の真空吸着部材において、前記多孔質部材の少なくとも一部は、セラミックス粒子により構成され、前記被膜は、セラミックス溶射膜であることが好ましい。 In the vacuum suction member of the present invention, it is preferable that at least a part of the porous member is composed of ceramic particles, and the coating film is a ceramic sprayed film.

当該構成の真空吸着部材によれば、少なくとも一部がセラミックス粒子により構成されている多孔質部材とセラミックス溶射膜である被膜との密着性を高め、被膜の堅固性の向上が図られる。 According to the vacuum suction member having this structure, the adhesion between the porous member whose at least a part is composed of ceramic particles and the coating film which is a ceramic sprayed film is improved, and the firmness of the coating film is improved.

本発明の真空吸着部材において、前記被膜の気孔率は1%以上かつ20%以下であることが好ましい。 In the vacuum suction member of the present invention, the porosity of the coating film is preferably 1% or more and 20% or less.

当該構成の真空吸着部材によれば、被膜の緻密質性が多孔質部材の保護の観点から適当な範囲に設計される。 According to the vacuum suction member having this configuration, the denseness of the coating film is designed within an appropriate range from the viewpoint of protecting the porous member.

本発明の真空吸着部材において、前記被膜は導電性を有する膜であることが好ましい。 In the vacuum suction member of the present invention, the coating film is preferably a conductive film.

当該構成の真空吸着部材によれば、基板と被膜との摩擦により静電気が発生しても、被膜が連続している範囲で電荷が移動することができ、電荷の滞留が防止される。このため、静電引力が基板と載置部とを離間させる妨げになる事態が回避され、かつ、基板または基板由来の製品の静電破壊が回避される。 According to the vacuum suction member having this configuration, even if static electricity is generated due to friction between the substrate and the coating film, the electric charge can move within the range where the coating film is continuous, and the accumulation of the electric charge is prevented. Therefore, the situation in which the electrostatic attraction hinders the separation between the substrate and the mounting portion is avoided, and the electrostatic destruction of the substrate or the product derived from the substrate is avoided.

本発明の一実施形態としての真空吸着部材の一部を断面で示す説明図。Explanatory drawing which shows a part of the vacuum suction member as one Embodiment of this invention in the cross section. 本発明の一実施形態としての真空吸着部材の多孔質部材の上面に形成された被膜に関する説明図。The explanatory view about the coating film formed on the upper surface of the porous member of the vacuum suction member as one Embodiment of this invention.

(第1実施形態)
(構成)
図1には、本発明の一実施形態としての真空吸着部材3の一部を断面で示し、真空吸着部材3は、緻密質部材1と、多孔質部材2と、被膜22と、を備えている。
(First Embodiment)
(composition)
FIG. 1 shows a part of a vacuum suction member 3 as an embodiment of the present invention in cross section, and the vacuum suction member 3 includes a dense member 1, a porous member 2, and a coating film 22. There is.

緻密質部材1は、略平板形状(例えば円盤形状)のアルミナ、窒化珪素、炭化珪素およびジルコニアから選ばれるセラミックス焼結体により構成されている。緻密質部材1は、上面4および裏面5を有し、上面4から底面5に向かう方向に向かって窪んでいる略円形状の凹部12と、底面5から前記凹部12の底面13にかけて設けられた貫通孔で構成される、凹部12の底面13の中央部に開口部を有する連通経路10と、が形成されている。なお、凹部12の底面13は、周縁部から中央部に向かって徐々に低くなるような凹球面状に形成されていてもよい。 The dense member 1 is composed of a ceramic sintered body selected from alumina, silicon nitride, silicon carbide and zirconia having a substantially flat plate shape (for example, a disk shape). The dense member 1 has a top surface 4 and a back surface 5, and is provided with a substantially circular recess 12 that is recessed from the top surface 4 toward the bottom surface 5 and a bottom surface 13 of the recess 12 from the bottom surface 5. A communication path 10 having an opening at the center of the bottom surface 13 of the recess 12 is formed, which is composed of a through hole. The bottom surface 13 of the recess 12 may be formed in a concave spherical shape so as to gradually decrease from the peripheral edge portion toward the central portion.

多孔質部材2は、表面6および裏面7と、表面6と裏面7との間にある側面8と、を備えた略円盤状の部材であって、アルミナ、アルミナおよびガラスの焼結体、または、炭化珪素およびガラスの焼結体により構成されている。多孔質部材2の気孔が前記表面6と前記裏面7との間で連通することで開気孔を構成し、2次真空経路を構成し、例えば、平均気孔径が10〜150μmになり、気孔率が20〜40%になるように設計されている。多孔質部材2の原料として平均粒子径30〜150μmのアルミナ粉末または炭化珪素粉末が採用されてもよい。多孔質部材2は、緻密質部材1の凹部12に収容され、裏面7が全体的に凹部12の底面13から離間している状態で、側面8が全周にわたり緻密質部材1に対して接合されている。 The porous member 2 is a substantially disk-shaped member including a front surface 6 and a back surface 7 and a side surface 8 between the front surface 6 and the back surface 7, and is a sintered body of alumina, alumina, and glass, or a sintered body of alumina, alumina, and glass. , Silicon carbide and glass sintered body. The pores of the porous member 2 communicate with each other between the front surface 6 and the back surface 7 to form open pores and form a secondary vacuum path. For example, the average pore diameter becomes 10 to 150 μm, and the porosity. Is designed to be 20-40%. Alumina powder or silicon carbide powder having an average particle diameter of 30 to 150 μm may be used as a raw material for the porous member 2. The porous member 2 is housed in the recess 12 of the dense member 1, and the side surface 8 is joined to the dense member 1 over the entire circumference while the back surface 7 is generally separated from the bottom surface 13 of the recess 12. Has been done.

なお、緻密質部材1および多孔質部材2の接合は、ガラスまたはガラスおよびセラミックスに由来する接合剤を緻密質部材1の凹部12および多孔質部材2の間に介在させた状態で緻密質部材1の凹部12に多孔質部材2を嵌め込み、加熱処理を施すことにより当該接合剤由来の接合層によって緻密質部材1および多孔質部材2が接合されてもよい。 The dense member 1 and the porous member 2 are joined in a state where glass or a bonding agent derived from glass and ceramics is interposed between the recess 12 of the dense member 1 and the porous member 2. The dense member 1 and the porous member 2 may be joined by the joining layer derived from the joining agent by fitting the porous member 2 into the recess 12 of the above and subjecting it to heat treatment.

緻密質部材1の凹部12の底面13および側面、ならびに、多孔質部材2の裏面7により画定されている空間は1次真空経路R1を構成する。なお、真空経路は、連通経路10、1次真空経路R1および2次真空経路R2により構成される。 The bottom surface 13 and the side surface of the recess 12 of the dense member 1 and the space defined by the back surface 7 of the porous member 2 form the primary vacuum path R1. The vacuum path is composed of a communication path 10, a primary vacuum path R1 and a secondary vacuum path R2.

凹部12の底面13に連通経路10に連通する溝(例えば、放射状の溝または放射状の溝および同心円状の溝の組み合わせ)が形成されていてもよい。さらに、緻密質部材1の裏面7の一部(溝に該当しない部分)が凹部12の底面13に接合されてもよい。なお、接合剤としては、ガラスまたはガラスおよびセラミックスに由来する接合剤を用いてもよい。 A groove communicating with the communication path 10 (for example, a radial groove or a combination of a radial groove and a concentric groove) may be formed on the bottom surface 13 of the recess 12. Further, a part of the back surface 7 of the dense member 1 (a portion that does not correspond to the groove) may be joined to the bottom surface 13 of the recess 12. As the bonding agent, glass or a bonding agent derived from glass and ceramics may be used.

本発明の一実施形態としての真空吸着部材3の製造は以下のように行われる。まず、アルミナ等で構成される焼結体からなる緻密質部材1が準備される、
多孔質部材2の原料粉末であるアルミナ粉末およびガラス粉末、または、炭化ケイ素粉末およびガラス粉末に、水またはアルコールを加えて混合して調整されたスラリーが、緻密質部材1の凹部12に充填される。連通経路10および凹部12のうち1次真空経路R1を構成する部分には樹脂等の消失部材により予め閉塞または充填されている。
The production of the vacuum suction member 3 as an embodiment of the present invention is performed as follows. First, a dense member 1 made of a sintered body made of alumina or the like is prepared.
The recess 12 of the dense member 1 is filled with a slurry prepared by adding water or alcohol to alumina powder and glass powder, which are raw material powders of the porous member 2, or silicon carbide powder and glass powder. NS. Of the communication path 10 and the recess 12, the portion constituting the primary vacuum path R1 is previously closed or filled with a vanishing member such as resin.

緻密質部材1の凹部12に充填された前記スラリーが十分に乾燥された後、ガラスの軟化点以上で焼成される。これにより、緻密質部材1の凹部12に収容され、下面が全体的に凹部12の底面13から離間している状態で、側面が全周にわたり緻密質部材1に対して接合されている多孔質部材2が形成される。さらに、多孔質部材2の下面および凹部12の底面13により上下が画定された略円柱状の空間が1次真空経路R1と同時に形成される。 After the slurry filled in the recess 12 of the dense member 1 is sufficiently dried, it is fired at the softening point or higher of the glass. As a result, the porous member 1 is accommodated in the concave portion 12, and the side surface is joined to the dense member 1 over the entire circumference while the lower surface is generally separated from the bottom surface 13 of the concave portion 12. Member 2 is formed. Further, a substantially cylindrical space whose upper and lower sides are defined by the lower surface of the porous member 2 and the bottom surface 13 of the recess 12 is formed at the same time as the primary vacuum path R1.

図2に示されているように、多孔質部材2には、その表面6から下面7まで連通する開気孔24により構成されている2次真空経路R2を有している。多孔質部材2の表面6には、少なくとも部分的に、好ましくは全面的に、多孔質部材2の上面または上面付近のセラミックス粒子21を覆う被膜22が形成されている。被膜22が、多孔質部材2の表面6または表面6付近のセラミックス粒子21を部分的に覆っている部分は、被膜22の一部が多孔質部材2の開気孔24を構成する壁面の一部も覆っており、被膜22の一部に開口23が形成される。被膜22は溶射膜により形成されていてもよく、その気孔率は、例えば1〜20%であり、1〜6%であることが好ましい。被膜22の気孔率が1%を下回ると多孔質部材2を構成する粒子と、被膜22の密着性が低下し、被膜22の気孔率が20%を超えると被膜22自体が多孔質部材2から脱離しやすくなる。被膜22の厚さは、例えば1〜300[μm]であり、1〜30[μm]であることが好ましい。被膜22が300μmよりも厚いと2次真空経路R2の通気性が損なわれてしまう。被膜22が1μmよりも薄いと多孔質部材2を構成する粒子の脱粒を抑制する効果が低下してしまう。 As shown in FIG. 2, the porous member 2 has a secondary vacuum path R2 composed of open pores 24 communicating from the surface 6 to the lower surface 7. A coating 22 is formed on the surface 6 of the porous member 2 to cover the upper surface of the porous member 2 or the ceramic particles 21 in the vicinity of the upper surface, at least partially, preferably completely. The portion where the coating film 22 partially covers the surface 6 of the porous member 2 or the ceramic particles 21 near the surface 6 is a part of the wall surface in which a part of the coating film 22 constitutes the opening holes 24 of the porous member 2. Also covers, an opening 23 is formed in a part of the coating film 22. The film 22 may be formed of a sprayed film, and its porosity is, for example, 1 to 20%, preferably 1 to 6%. When the porosity of the coating 22 is less than 1%, the adhesion between the particles constituting the porous member 2 and the coating 22 is lowered, and when the porosity of the coating 22 exceeds 20%, the coating 22 itself is separated from the porous member 2. It becomes easy to detach. The thickness of the coating film 22 is, for example, 1 to 300 [μm], preferably 1 to 30 [μm]. If the coating 22 is thicker than 300 μm, the air permeability of the secondary vacuum path R2 is impaired. If the coating film 22 is thinner than 1 μm, the effect of suppressing the shedding of the particles constituting the porous member 2 is reduced.

被膜22が、多孔質部材2の上面4または上面4付近のセラミックス粒子21を全面的に覆い、多孔質部材2の開気孔24の開口23を塞いだ状態で覆っている場合、被膜22自体が多孔質部材2とは異なる気孔率を有する多孔質体であることから、被膜22に存在する開気孔と多孔質部材2が有する開気孔24とを合わせて、2次真空経路R2となる。なお、セラミックス粒子21は、断面視で島状となる形態のセラミックス組織を示す。 When the coating 22 completely covers the ceramic particles 21 on the upper surface 4 or the vicinity of the upper surface 4 of the porous member 2 and covers the opening 23 of the opening hole 24 of the porous member 2 in a closed state, the coating 22 itself covers the porous member 2. Since it is a porous body having a porosity different from that of the porous member 2, the open pores existing in the coating film 22 and the open pores 24 of the porous member 2 are combined to form a secondary vacuum path R2. The ceramic particles 21 show an island-shaped ceramic structure in a cross-sectional view.

被膜22は、プラズマ溶射法により形成されてもよい。一対の電極の間にArガスなどの不活性ガスを流しながら放電を生じさせて当該不活性ガス由来のプラズマジェットを発生させ、プラズマジェットに原料粉末を供給して、基材である多孔質部材2に対して吹き付けることにより当該原料粉末由来の溶射膜が被膜22として形成される。 The coating film 22 may be formed by a plasma spraying method. An inert gas such as Ar gas is passed between the pair of electrodes to generate an electric discharge to generate a plasma jet derived from the inert gas, and a raw material powder is supplied to the plasma jet to supply a porous member as a base material. By spraying on 2, the spray film derived from the raw material powder is formed as the coating film 22.

被膜22はmHVOF溶射法により形成されてもよい。アセチレン、エチレン、プロパさせた炎に原料粉末またはそのスラリーを供給して、基材である多孔質部材2に対して吹き付けることにより当該原料粉末由来の溶射膜が被膜22として形成される。 The coating 22 may be formed by the mHVOF thermal spraying method. A thermal spray film derived from the raw material powder is formed as a coating film 22 by supplying the raw material powder or a slurry thereof to a flame made of acetylene, ethylene, or propar and spraying the raw material powder or a slurry thereof onto the porous member 2 which is the base material.

被膜22は、イオンプレーティング法により形成されてもよい。チャンバに基材である多孔質部材2を収容し、チャンバを高真空状態(例えば10-5〜10-3[Pa])にしてから不活性ガス(アルゴンなど)または反応性ガス(窒素、炭化水素など)を注入する。電子銃(熱電子発生陰極)からの電子ビームにより原料(金属)を加熱して蒸発させ、当該原料由来のプラズマイオンを発生させ、反応性ガスとの化合物を多孔質部材2に退席させることにより当該原料粉末由来の溶射膜が被膜22として形成される。 The coating film 22 may be formed by an ion plating method. The porous member 2 which is the base material is housed in the chamber, and the chamber is put into a high vacuum state (for example, 10 -5 to 10 -3 [Pa]), and then an inert gas (argon, etc.) or a reactive gas (nitrogen, hydrocarbon) is placed. Inject hydrogen, etc.). By heating and evaporating the raw material (metal) with an electron beam from an electron gun (thermoelectron generating cathode), plasma ions derived from the raw material are generated, and the compound with the reactive gas is left in the porous member 2. The spray film derived from the raw material powder is formed as the coating film 22.

そのほか、プラズマCVD法、スパッタリング法などにより被膜22が形成されてもよい。 In addition, the coating film 22 may be formed by a plasma CVD method, a sputtering method, or the like.

被膜22の上面に基板Wが載置された場合、この基板Wに対して、連通経路10と、緻密質部材1の凹部12の底面13および多孔質部材2の裏面7の間隙により上下が画定されている1次真空経路R1と、多孔質部材2の開気孔24および被膜22に存在する開気孔により構成される2次真空経路R2と、を通じて真空吸引力を作用させて、当該基板Wを吸着保持する。 When the substrate W is placed on the upper surface of the coating film 22, the upper and lower sides are defined with respect to the substrate W by the gap between the communication path 10, the bottom surface 13 of the recess 12 of the dense member 1 and the back surface 7 of the porous member 2. A vacuum suction force is applied through the primary vacuum path R1 that is formed and the secondary vacuum path R2 that is composed of the open pores 24 of the porous member 2 and the open pores that exist in the coating 22 to cause the substrate W to work. Adsorb and hold.

[実施例]
[実施例1]
外径360[mm]、厚さ30[mm]の略円盤状のアルミナ焼結体が緻密質部材1として作製された。緻密質部材1には、径300[mm]、深さ5[mm]の上面4から略円形状に窪んでいる凹部12が形成され、かつ、凹部12の底面13の中央部から緻密質部材1の底面5にわたって径10[mm]の略円形断面の貫通孔が連通経路10として形成された。
[Example]
[Example 1]
A substantially disk-shaped alumina sintered body having an outer diameter of 360 [mm] and a thickness of 30 [mm] was produced as the dense member 1. The compact member 1 is formed with a recess 12 that is recessed in a substantially circular shape from the upper surface 4 having a diameter of 300 [mm] and a depth of 5 [mm], and the compact member 1 is formed from the central portion of the bottom surface 13 of the recess 12. A through hole having a substantially circular cross section having a diameter of 10 [mm] was formed as a communication path 10 over the bottom surface 5 of 1.

第1のアルミナ原料粉末(平均粒径120[μm])、第2のアルミナ原料粉末(平均粒径60[μm])、ガラス粉末として平均粒径15[μm]のホウ珪酸ガラスおよび蒸留水を、2:1:1:1の質量比で混錬してスラリーが作製された。 A first alumina raw material powder (average particle size 120 [μm]), a second alumina raw material powder (average particle size 60 [μm]), borosilicate glass having an average particle size of 15 [μm] and distilled water as glass powder. A slurry was prepared by kneading at a mass ratio of 2: 1: 1: 1.

連通経路10および1次真空経路R1に樹脂(消失部材)を充填した後、緻密質部材1の凹部12にスラリーが充填され、緻密質部材1に振動を加えてスラリー中の粉末を沈降させた。必要に応じて、スラリーの脱泡処理が行われてもよい。その後、100℃での乾燥処理によりスラリーの水分を蒸発させ、1000℃で2〜20[hr]で熱処理されることにより、アルミナ粒子およびガラスにより構成される多孔質部材2が作製された。 After filling the communication path 10 and the primary vacuum path R1 with the resin (disappearing member), the recess 12 of the dense member 1 was filled with the slurry, and the compact member 1 was vibrated to settle the powder in the slurry. .. If necessary, the slurry may be defoamed. Then, the water content of the slurry was evaporated by a drying treatment at 100 ° C., and the slurry was heat-treated at 1000 ° C. at 2 to 20 [hr] to prepare a porous member 2 composed of alumina particles and glass.

そして、プラズマ溶射法によりアルミナからなる被膜22が多孔質部材2の表面6に形成されることにより実施例1の真空吸着部材3が作製された。 Then, the vacuum suction member 3 of Example 1 was produced by forming a coating film 22 made of alumina on the surface 6 of the porous member 2 by the plasma spraying method.

[実施例2]
プラズマ溶射法ではなくHVOF溶射法により、アルミナ粉末(D50:4[μm])を原料とし、アルミナからなる被膜22が多孔質部材2の表面6に形成されたほかは実施例1と同様の条件により実施例2の真空吸着部材3が作製された。
[Example 2]
The same conditions as in Example 1 except that a coating film 22 made of alumina was formed on the surface 6 of the porous member 2 using alumina powder (D50: 4 [μm]) as a raw material by the HVOF thermal spraying method instead of the plasma spraying method. The vacuum suction member 3 of Example 2 was produced.

[実施例3]
HVOF溶射法によりシリコン粉末(D50:2.7[μm])を原料として、シリコンからなる被膜22が多孔質部材2の表面6に形成されたほかは実施例2と同様の条件により実施例3の真空吸着部材3が作製された。
[Example 3]
Example 3 under the same conditions as in Example 2 except that a coating film 22 made of silicon was formed on the surface 6 of the porous member 2 using silicon powder (D50: 2.7 [μm]) as a raw material by the HVOF thermal spraying method. The vacuum suction member 3 of the above was produced.

[実施例4]
イオンプレーティング法により、原料としてTiを用い、反応性ガスとしてN2が用いられ、TiNからなる被膜22が多孔質部材2の表面6に形成されたほかは実施例1と同様の条件により実施例4の真空吸着部材3が作製された。
[Example 4]
By the ion plating method, Ti was used as a raw material, N 2 was used as a reactive gas, and a coating film 22 made of TiN was formed on the surface 6 of the porous member 2 under the same conditions as in Example 1. The vacuum suction member 3 of Example 4 was produced.

[比較例]
[比較例1]
被膜22が多孔質部材2の表面6に形成されていないほかは実施例1と同様の条件により比較例1の真空吸着部材が作製された。すなわち、多孔質部材2の表面6が基板Wの載置面になる。
[Comparison example]
[Comparative Example 1]
The vacuum suction member of Comparative Example 1 was produced under the same conditions as in Example 1 except that the coating 22 was not formed on the surface 6 of the porous member 2. That is, the surface 6 of the porous member 2 becomes the mounting surface of the substrate W.

(評価方法)
実施例および比較例のそれぞれの真空吸着部材の被膜22の厚さは、断面のSEM観察により測定された。実施例および比較例のそれぞれの真空吸着部材の被膜22の気孔率はJIS R1634に準拠して多孔質部材2についてはアルキメデス法により測定され、被膜22についてはアルキメデス法またはSEM観察による見かけ体積と真比重とに基づいて求める重量気孔率法により測定された。
(Evaluation method)
The thickness of the coating 22 of the vacuum suction member of each of the examples and the comparative examples was measured by SEM observation of the cross section. The porosity of the coating 22 of the vacuum suction member of each of the examples and the comparative examples was measured by the Archimedes method for the porous member 2 in accordance with JIS R1634, and the coating 22 was measured by the Archimedes method or the apparent volume by SEM observation. It was measured by the weight porosity method determined based on the specific gravity.

実施例および比較例のそれぞれの真空吸着部材3の被膜22の上面に、または、多孔質部材2の上面に基板Wが載置された後、当該基板Wの表面における傷、スクラッチを評価した。評価方法は、JIS H0614に準拠して蛍光灯を光源とし、基板Wの表面の照度を1000〜2000ルクスとして基板Wの全面の検査を行い、判定基準はマイクロスクラッチ(表面に生じた蛍光灯下で目視される線状の深い傷)について、累計長が基板Wの直径300(mm)/4以下であれば「〇」、それ以上であれば「×」と判定した。 After the substrate W was placed on the upper surface of the coating film 22 of the vacuum suction member 3 of each of the examples and the comparative examples or on the upper surface of the porous member 2, scratches and scratches on the surface of the substrate W were evaluated. The evaluation method is based on JIS H0614, using a fluorescent lamp as a light source, and inspecting the entire surface of the substrate W with an illuminance of 1000 to 2000 lux on the surface of the substrate W. When the cumulative length is 300 (mm) / 4 or less of the diameter of the substrate W, it is judged as “◯”, and when it is more than that, it is judged as “x”.

基板Wが真空吸着部材3に吸着保持されている際の、真空吸引経路(連通経路10→1次真空経路R1→2次真空経路R2)の圧力が、吸着保持力の指標として測定された。被膜22のシート抵抗率が、高抵抗・抵抗率計であるハイレスターUX(三菱化学アナテリック社製)MCP−HT800を用いて測定された。基板Wが真空吸着部材3に吸着保持されている際の、当該基板Wの表面電位が表面電位系#344(トレック・ジャパン社製)を用いて測定された。 The pressure in the vacuum suction path (communication path 10 → primary vacuum path R1 → secondary vacuum path R2) when the substrate W was sucked and held by the vacuum suction member 3 was measured as an index of the suction holding force. The sheet resistivity of the film 22 was measured using a high resistance / resistivity meter, Hi-Lester UX (manufactured by Mitsubishi Chemical Anateric Corporation) MCP-HT800. The surface potential of the substrate W when the substrate W was sucked and held by the vacuum suction member 3 was measured using a surface potential system # 344 (manufactured by Trek Japan).

当該評価結果が表1にまとめて示されている。 The evaluation results are summarized in Table 1.

Figure 0006946076
Figure 0006946076

表1より次のことがわかる。各実施例の真空吸着部材によれば、吸着保持後の基板Wに傷等がみられなかったのに対して、比較例1の真空吸着部材によれば、吸着保持後の基板Wに傷等がみられた。各実施例の真空吸着部材の基板Wの吸着保持力は、比較例1の真空吸着部材のそれと遜色がなかった。実施例3、4の真空吸着部材によれば、被膜22が導電性を有し、比較例1と比較して基板Wに帯電が抑制されていることが示された。 The following can be seen from Table 1. According to the vacuum suction member of each embodiment, no scratches or the like were found on the substrate W after suction holding, whereas according to the vacuum suction member of Comparative Example 1, the substrate W after suction holding was scratched or the like. Was seen. The suction holding force of the substrate W of the vacuum suction member of each example was not inferior to that of the vacuum suction member of Comparative Example 1. According to the vacuum suction members of Examples 3 and 4, it was shown that the coating film 22 had conductivity, and the substrate W was suppressed from being charged as compared with Comparative Example 1.

1‥緻密質部材、2‥多孔質部材、3‥真空吸着部材、4‥上面、5‥底面、6‥表面、7‥裏面、8‥側面、10‥連通経路、12‥凹部、13‥底面、21‥セラミックス粒子、22‥被膜、23‥開口、24‥開気孔、25‥被膜表面、R1‥1次真空経路、R2‥2次真空経路。 1 ... Dense member, 2 ... Porous member, 3 ... Vacuum suction member, 4 ... Top surface, 5 ... Bottom surface, 6 ... Surface surface, 7 ... Back surface, 8 ... Side surface, 10 ... Communication path, 12 ... Recession, 13 ... Bottom surface , 21 ... Ceramic particles, 22 ... Coating, 23 ... Opening, 24 ... Open pores, 25 ... Coating surface, R1 ... Primary vacuum path, R2 ... Secondary vacuum path.

Claims (4)

多孔質部材を備え、基板を吸着保持する真空吸着部材であって、
前記多孔質部材の前記上面を覆う被膜を備え、前記被膜の気孔率は前記多孔質部材の気孔率よりも小さく、前記被膜の厚さは1μm以上かつ30μm以下であり、前記多孔質部材が有する開気孔の連通により構成される真空経路の少なくとも一部が被膜により塞がれることなく維持されており、前記多孔質部材の少なくとも一部は、セラミックス粒子により構成され、前記被膜は、セラミックス溶射膜であることを特徴とする真空吸着部材。
A vacuum suction member that has a porous member and holds the substrate by suction.
A coating covering the upper surface of the porous member is provided, the porosity of the coating is smaller than the porosity of the porous member, the thickness of the coating is 1 μm or more and 30 μm or less, and the porous member has. At least a part of the vacuum path formed by the communication of the open pores is maintained without being blocked by the coating, and at least a part of the porous member is composed of ceramic particles, and the coating is a ceramic spray film. vacuum suction member, characterized in der Rukoto.
前記被膜の気孔率は1%以上かつ20%以下であることを特徴とする請求項1に記載の真空吸着部材。 The vacuum suction member according to claim 1, wherein the porosity of the coating film is 1% or more and 20% or less. 前記被膜は導電性を有する膜であることを特徴とする請求項1記載の真空吸着部材。 The vacuum suction member according to claim 1, wherein the coating film is a conductive film. 上面および裏面を有し、前記上面から前記裏面に向かう方向に窪んでいる凹部と、前記裏面から前記凹部の底面にかけて設けられた貫通孔で構成される連通経路と、が形成されている緻密質部材と、
前記緻密質部材の前記凹部に収容され、上面および裏面を有し、所定の気孔率を有する多孔質部材と、を備え、
基板を吸着保持するための真空吸着部材であって、
前記多孔質部材の前記上面には、当該多孔質部材よりも低い気孔率を有する被膜を備え、前記被膜の厚さは1μm以上かつ30μm以下であり、
前記多孔質部材の少なくとも一部は、セラミックス粒子により構成され、前記被膜は、セラミックス溶射膜であり、
前記多孔質部材の開気孔または前記多孔質部材および前記被膜に存在する開気孔により構成される2次真空経路の前記被膜の表面と前記多孔質部材の前記裏面との間の連通が維持されていることを特徴とする真空吸着部材。
A dense material that has an upper surface and a back surface and is formed with a recess that is recessed in the direction from the upper surface to the back surface and a communication path formed by a through hole provided from the back surface to the bottom surface of the recess. Parts and
A porous member housed in the recess of the dense member, having an upper surface and a back surface, and having a predetermined porosity.
A vacuum suction member for sucking and holding a substrate.
The upper surface of the porous member is provided with a coating having a porosity lower than that of the porous member, and the thickness of the coating is 1 μm or more and 30 μm or less.
At least a part of the porous member is composed of ceramic particles, and the coating film is a ceramic sprayed film.
Communication between the front surface of the coating and the back surface of the porous member in the secondary vacuum path composed of the open pores of the porous member or the open pores existing in the porous member and the coating is maintained. A vacuum suction member characterized by being present.
JP2017128069A 2017-06-29 2017-06-29 Vacuum suction member Active JP6946076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128069A JP6946076B2 (en) 2017-06-29 2017-06-29 Vacuum suction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128069A JP6946076B2 (en) 2017-06-29 2017-06-29 Vacuum suction member

Publications (2)

Publication Number Publication Date
JP2019012757A JP2019012757A (en) 2019-01-24
JP6946076B2 true JP6946076B2 (en) 2021-10-06

Family

ID=65226916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128069A Active JP6946076B2 (en) 2017-06-29 2017-06-29 Vacuum suction member

Country Status (1)

Country Link
JP (1) JP6946076B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022092023A1 (en) * 2020-10-28 2022-05-05
JP2023148394A (en) * 2022-03-30 2023-10-13 東京エレクトロン株式会社 Inspection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480071B2 (en) * 2004-05-26 2010-06-16 株式会社タンケンシールセーコウ Porous material for suction pad
JP4681255B2 (en) * 2004-05-26 2011-05-11 株式会社タンケンシールセーコウ Porous carbon
JP4666656B2 (en) * 2007-02-27 2011-04-06 太平洋セメント株式会社 Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
WO2009013941A1 (en) * 2007-07-23 2009-01-29 Creative Technology Corporation Substrate suction apparatus and method for manufacturing the same
JP5225024B2 (en) * 2008-10-30 2013-07-03 京セラ株式会社 Suction board and vacuum suction device

Also Published As

Publication number Publication date
JP2019012757A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP5225024B2 (en) Suction board and vacuum suction device
KR101932429B1 (en) Plasma resistant coating layer, method of manufacturing the same and Plasma resistant unit
KR100997374B1 (en) Electrode static chuck and method of manufacturing the same
KR100978957B1 (en) Substrate mounting stage and substrate processing apparatus
KR101531726B1 (en) Electrostatic chuck and method for producing same
US20140116338A1 (en) Coating for performance enhancement of semiconductor apparatus
JP6715762B2 (en) Method of manufacturing joined body
JP6946076B2 (en) Vacuum suction member
WO2009013941A1 (en) Substrate suction apparatus and method for manufacturing the same
US10468289B2 (en) Substrate holding member
US10332771B2 (en) Joined body manufacturing method and joined body
JP2012221979A (en) Plasma processing apparatus
TW201841297A (en) Electrostatic sucker and manufacturing method thereof and plasma treatment device
KR101122709B1 (en) Electrode static chuck
TW200947603A (en) Substrate mounting stand for plasma processing device, plasma processing device, and insulating coating deposition method
JP4031419B2 (en) Electrostatic chuck and manufacturing method thereof
JP2008177339A (en) Electrostatic chuck
KR20100090559A (en) Electrostatic chuck having aerosol coating layer and fabrication method thereof
US20230298861A1 (en) Member for semiconductor manufacturing apparatus
JP2011100844A (en) Device having electrostatic chucking function and method of manufacturing the same
JP2004079861A (en) Electrostatic chuck
WO2024117149A1 (en) Vacuum chuck and method for producing same
TWI847343B (en) Member for semiconductor manufacturing apparatus
JP2004031479A (en) Electrostatic chuck
WO2024089762A1 (en) Wafer placement table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6946076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350