JP2019012757A - Vacuum suction member - Google Patents

Vacuum suction member Download PDF

Info

Publication number
JP2019012757A
JP2019012757A JP2017128069A JP2017128069A JP2019012757A JP 2019012757 A JP2019012757 A JP 2019012757A JP 2017128069 A JP2017128069 A JP 2017128069A JP 2017128069 A JP2017128069 A JP 2017128069A JP 2019012757 A JP2019012757 A JP 2019012757A
Authority
JP
Japan
Prior art keywords
porous member
coating
vacuum suction
porous
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017128069A
Other languages
Japanese (ja)
Other versions
JP6946076B2 (en
Inventor
大樹 赤間
Daiki Akama
大樹 赤間
阿部 敏彦
Toshihiko Abe
敏彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017128069A priority Critical patent/JP6946076B2/en
Publication of JP2019012757A publication Critical patent/JP2019012757A/en
Application granted granted Critical
Publication of JP6946076B2 publication Critical patent/JP6946076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Manipulator (AREA)

Abstract

To provide a vacuum suction member capable of restraining detachment of particles composing a porous member.SOLUTION: A vacuum suction member 3 includes a dense member 1 in which a recess 12 having a top face 4 and a reverse face 5, and recessed in the direction from the top face 4 toward the reverse face 5, and an interconnection path 10 constituted of a through hole provided from the reverse face 5 to the bottom face 13 of the recess 12 are formed, and a porous member 2 housed in the recess 12 of the dense member 1 and at least the lateral face of which is bonded to the dense member 1 over the whole circumference. A coat 22 is covering the top face 4 of the porous member 2, while maintaining gas permeability of a secondary vacuum passage R2 constituted of the open pore 24 of the porous member 2. The coat 22 has a porosity lower than that of the porous member 2.SELECTED DRAWING: Figure 2

Description

本発明は、半導体基板または液晶用ガラス基板など基板を吸着保持するために用いられる真空吸着部材に関する。   The present invention relates to a vacuum suction member used for sucking and holding a substrate such as a semiconductor substrate or a glass substrate for liquid crystal.

露光機などの半導体製造装置において、半導体ウエハなどの基板の均一な吸着のため、例えば多孔質部材からなる載置部が、樹脂またはガラスなどの接着剤により緻密質部材からなる支持部に接合されることで構成された真空吸着部材が提案されている(例えば、特許文献1参照)。当該真空吸着部材によれば、支持部に形成された吸気孔および載置部を通じて、当該載置部に載置された基板に対して真空吸着力を作用させる。多孔質部材は、セラミックス粒子(例えばアルミナ粒子)がガラスにより連結された網目状構造を有している。   In a semiconductor manufacturing apparatus such as an exposure machine, in order to uniformly adsorb a substrate such as a semiconductor wafer, a mounting portion made of, for example, a porous member is bonded to a support portion made of a dense member with an adhesive such as resin or glass. There has been proposed a vacuum adsorbing member constituted by the above (for example, see Patent Document 1). According to the vacuum suction member, a vacuum suction force is applied to the substrate placed on the placement portion through the suction hole and placement portion formed in the support portion. The porous member has a network structure in which ceramic particles (for example, alumina particles) are connected by glass.

特開2005−205507号公報JP 2005-205507 A

しかし、基板を載置部に載置する際、基板と載置部とが擦れ合うことにより多孔質部材を構成する粒子が脱離し、当該脱離粒子によって基板の平坦性が低下する可能性がある。また、当該脱離粒子によって基板の表面に傷跡がつき、当該基板由来の製品の歩留まりを悪化させる可能性がある。   However, when the substrate is placed on the placement portion, the substrate and the placement portion rub against each other, whereby the particles constituting the porous member may be detached, and the flatness of the substrate may be reduced by the detached particles. . Moreover, the surface of the substrate may be scarred by the desorbed particles, which may deteriorate the yield of products derived from the substrate.

そこで、本発明は、多孔質部材を構成する粒子の脱離の抑制を図りうる真空吸着部材を提供することにある。   Then, this invention is providing the vacuum suction member which can aim at suppression of detachment | desorption of the particle | grains which comprise a porous member.

本発明の第1態様の真空吸着部材は、多孔質部材を備え、基板を吸着保持する真空吸着部材であって、前記多孔質部材の前記上面を覆う被膜を備え、前記被膜の気孔率は前記多孔質部材の気孔率よりも小さく、前記多孔質部材が有する開気孔の連通により構成される真空経路の少なくとも一部が被膜により塞がれることなく維持されることを特徴とする。   The vacuum adsorption member according to the first aspect of the present invention is a vacuum adsorption member that includes a porous member and adsorbs and holds a substrate, and includes a coating that covers the upper surface of the porous member, and the porosity of the coating is the The porosity of the porous member is smaller than the porosity of the porous member, and at least a part of the vacuum path formed by the communication of the open pores of the porous member is maintained without being blocked by the coating film.

本発明の第2態様の真空吸着部材は、上面および裏面を有し、前記上面から前記裏面に向かう方向に窪んでいる凹部と、前記裏面から前記凹部の底面にかけて設けられた貫通孔で構成される連通経路と、が形成されている緻密質部材と、前記緻密質部材の前記凹部に収容され、上面および裏面を有し、所定の気孔率を有する多孔質部材と、を備え、基板を吸着保持するための真空吸着部材であって、前記多孔質部材の前記上面には、当該多孔質部材よりも低い気孔率を有する被膜を備え、前記多孔質部材の開気孔または前記多孔質部材および前記被膜に存在する開気孔により構成される2次真空経路の前記被膜の表面と前記多孔質部材の前記裏面との間の連通が維持されていることを特徴とする。   The vacuum suction member according to the second aspect of the present invention has a top surface and a back surface, and includes a recess that is recessed in a direction from the top surface toward the back surface, and a through-hole provided from the back surface to the bottom surface of the recess. And a porous member having a predetermined porosity, which is accommodated in the concave portion of the dense member, has an upper surface and a back surface, and adsorbs a substrate. A vacuum adsorbing member for holding, the upper surface of the porous member is provided with a coating having a lower porosity than the porous member, and the open pores of the porous member or the porous member and the porous member The communication between the surface of the coating and the back surface of the porous member in a secondary vacuum path constituted by open pores existing in the coating is maintained.

本発明の真空吸着部材によれば、基板が真空吸着部材に載置された際、被膜の表面が基板の載置面となり、多孔質部材よりも気孔率が低い被膜によって多孔質部材が基板から保護されているので、当該多孔質部材を構成する粒子の脱落が確実に抑制される。また、多孔質部材の上面に被膜を備えても、多孔質部材が有する開気孔が連通することにより構成されている真空経路(1次真空経路)は塞がれず、前記被膜の表面と前記多孔質部材の前記裏面との間の真空経路(2次真空経路)の連通が維持されることから、その通気性が損なわれないため、真空吸着部材の上面に載置された基板が確実に真空吸着保持される。   According to the vacuum suction member of the present invention, when the substrate is placed on the vacuum suction member, the surface of the coating becomes the placement surface of the substrate, and the porous member is removed from the substrate by the coating having a lower porosity than the porous member. Since it is protected, dropping of the particles constituting the porous member is reliably suppressed. Further, even if a coating is provided on the upper surface of the porous member, the vacuum path (primary vacuum path) configured by communication of open pores of the porous member is not blocked, and the surface of the coating and the porous Since the communication of the vacuum path (secondary vacuum path) with the back surface of the material member is maintained, the air permeability is not impaired, so that the substrate placed on the upper surface of the vacuum suction member is surely vacuumed. Adsorbed and held.

本発明の真空吸着部材において、前記多孔質部材の少なくとも一部は、セラミックス粒子により構成され、前記被膜は、セラミックス溶射膜であることが好ましい。   In the vacuum suction member of the present invention, it is preferable that at least a part of the porous member is composed of ceramic particles, and the coating is a ceramic sprayed film.

当該構成の真空吸着部材によれば、少なくとも一部がセラミックス粒子により構成されている多孔質部材とセラミックス溶射膜である被膜との密着性を高め、被膜の堅固性の向上が図られる。   According to the vacuum suction member of the said structure, the adhesiveness of the porous member and the coating which is a ceramic sprayed film at least one part are improved, and the firmness of a coating is improved.

本発明の真空吸着部材において、前記被膜の気孔率は1%以上かつ20%以下であることが好ましい。   In the vacuum suction member of the present invention, the coating film preferably has a porosity of 1% or more and 20% or less.

当該構成の真空吸着部材によれば、被膜の緻密質性が多孔質部材の保護の観点から適当な範囲に設計される。   According to the vacuum adsorbing member having such a configuration, the denseness of the coating is designed in an appropriate range from the viewpoint of protecting the porous member.

本発明の真空吸着部材において、前記被膜は導電性を有する膜であることが好ましい。   In the vacuum suction member of the present invention, the coating film is preferably a conductive film.

当該構成の真空吸着部材によれば、基板と被膜との摩擦により静電気が発生しても、被膜が連続している範囲で電荷が移動することができ、電荷の滞留が防止される。このため、静電引力が基板と載置部とを離間させる妨げになる事態が回避され、かつ、基板または基板由来の製品の静電破壊が回避される。   According to the vacuum suction member having such a configuration, even if static electricity is generated due to friction between the substrate and the coating film, charges can move within a range in which the coating film is continuous, and charge retention is prevented. For this reason, the situation where the electrostatic attractive force prevents the substrate and the mounting portion from being separated is avoided, and electrostatic breakdown of the substrate or the product derived from the substrate is avoided.

本発明の一実施形態としての真空吸着部材の一部を断面で示す説明図。Explanatory drawing which shows a part of vacuum suction member as one Embodiment of this invention in a cross section. 本発明の一実施形態としての真空吸着部材の多孔質部材の上面に形成された被膜に関する説明図。Explanatory drawing regarding the film formed in the upper surface of the porous member of the vacuum suction member as one Embodiment of this invention.

(第1実施形態)
(構成)
図1には、本発明の一実施形態としての真空吸着部材3の一部を断面で示し、真空吸着部材3は、緻密質部材1と、多孔質部材2と、被膜22と、を備えている。
(First embodiment)
(Constitution)
In FIG. 1, a part of a vacuum suction member 3 as an embodiment of the present invention is shown in cross section, and the vacuum suction member 3 includes a dense member 1, a porous member 2, and a coating 22. Yes.

緻密質部材1は、略平板形状(例えば円盤形状)のアルミナ、窒化珪素、炭化珪素およびジルコニアから選ばれるセラミックス焼結体により構成されている。緻密質部材1は、上面4および裏面5を有し、上面4から底面5に向かう方向に向かって窪んでいる略円形状の凹部12と、底面5から前記凹部12の底面13にかけて設けられた貫通孔で構成される、凹部12の底面13の中央部に開口部を有する連通経路10と、が形成されている。なお、凹部12の底面13は、周縁部から中央部に向かって徐々に低くなるような凹球面状に形成されていてもよい。   The dense member 1 is composed of a ceramic sintered body selected from alumina, silicon nitride, silicon carbide, and zirconia having a substantially flat plate shape (for example, a disk shape). The dense member 1 has a top surface 4 and a back surface 5, and is provided from the bottom surface 5 to the bottom surface 13 of the recess 12 and a substantially circular recess 12 that is recessed in the direction from the top surface 4 toward the bottom surface 5. A communication path 10 having an opening at the center of the bottom surface 13 of the recess 12 is formed. The bottom surface 13 of the recess 12 may be formed in a concave spherical shape that gradually decreases from the peripheral edge toward the center.

多孔質部材2は、表面6および裏面7と、表面6と裏面7との間にある側面8と、を備えた略円盤状の部材であって、アルミナ、アルミナおよびガラスの焼結体、または、炭化珪素およびガラスの焼結体により構成されている。多孔質部材2の気孔が前記表面6と前記裏面7との間で連通することで開気孔を構成し、2次真空経路を構成し、例えば、平均気孔径が10〜150μmになり、気孔率が20〜40%になるように設計されている。多孔質部材2の原料として平均粒子径30〜150μmのアルミナ粉末または炭化珪素粉末が採用されてもよい。多孔質部材2は、緻密質部材1の凹部12に収容され、裏面7が全体的に凹部12の底面13から離間している状態で、側面8が全周にわたり緻密質部材1に対して接合されている。   The porous member 2 is a substantially disk-shaped member having a front surface 6 and a back surface 7 and a side surface 8 between the front surface 6 and the back surface 7, and is a sintered body of alumina, alumina and glass, or Further, it is composed of a sintered body of silicon carbide and glass. The pores of the porous member 2 are communicated between the front surface 6 and the back surface 7 to form open pores and to form a secondary vacuum path. For example, the average pore diameter is 10 to 150 μm, and the porosity Is designed to be 20-40%. An alumina powder or silicon carbide powder having an average particle diameter of 30 to 150 μm may be employed as a raw material for the porous member 2. The porous member 2 is accommodated in the concave portion 12 of the dense member 1, and the side surface 8 is joined to the dense member 1 over the entire circumference in a state where the back surface 7 is entirely separated from the bottom surface 13 of the concave portion 12. Has been.

なお、緻密質部材1および多孔質部材2の接合は、ガラスまたはガラスおよびセラミックスに由来する接合剤を緻密質部材1の凹部12および多孔質部材2の間に介在させた状態で緻密質部材1の凹部12に多孔質部材2を嵌め込み、加熱処理を施すことにより当該接合剤由来の接合層によって緻密質部材1および多孔質部材2が接合されてもよい。   Note that the dense member 1 and the porous member 2 are joined with the dense member 1 in a state in which a bonding agent derived from glass or glass and ceramics is interposed between the concave portion 12 of the dense member 1 and the porous member 2. The dense member 1 and the porous member 2 may be joined by a joining layer derived from the joining agent by fitting the porous member 2 into the recess 12 and performing a heat treatment.

緻密質部材1の凹部12の底面13および側面、ならびに、多孔質部材2の裏面7により画定されている空間は1次真空経路R1を構成する。なお、真空経路は、連通経路10、1次真空経路R1および2次真空経路R2により構成される。   The space defined by the bottom surface 13 and the side surface of the recess 12 of the dense member 1 and the back surface 7 of the porous member 2 constitutes a primary vacuum path R1. The vacuum path is composed of the communication path 10, the primary vacuum path R1, and the secondary vacuum path R2.

凹部12の底面13に連通経路10に連通する溝(例えば、放射状の溝または放射状の溝および同心円状の溝の組み合わせ)が形成されていてもよい。さらに、緻密質部材1の裏面7の一部(溝に該当しない部分)が凹部12の底面13に接合されてもよい。なお、接合剤としては、ガラスまたはガラスおよびセラミックスに由来する接合剤を用いてもよい。   A groove (for example, a radial groove or a combination of a radial groove and a concentric groove) communicating with the communication path 10 may be formed on the bottom surface 13 of the recess 12. Furthermore, a part of the back surface 7 of the dense member 1 (a portion not corresponding to the groove) may be joined to the bottom surface 13 of the recess 12. In addition, as a bonding agent, a bonding agent derived from glass or glass and ceramics may be used.

本発明の一実施形態としての真空吸着部材3の製造は以下のように行われる。まず、アルミナ等で構成される焼結体からなる緻密質部材1が準備される、
多孔質部材2の原料粉末であるアルミナ粉末およびガラス粉末、または、炭化ケイ素粉末およびガラス粉末に、水またはアルコールを加えて混合して調整されたスラリーが、緻密質部材1の凹部12に充填される。連通経路10および凹部12のうち1次真空経路R1を構成する部分には樹脂等の消失部材により予め閉塞または充填されている。
The manufacture of the vacuum suction member 3 as one embodiment of the present invention is performed as follows. First, a dense member 1 made of a sintered body made of alumina or the like is prepared.
Slurries prepared by adding water or alcohol to alumina powder and glass powder, or silicon carbide powder and glass powder, which are raw material powders of the porous member 2 and mixing them, are filled in the concave portions 12 of the dense member 1. The Of the communication path 10 and the recess 12, the part constituting the primary vacuum path R1 is previously closed or filled with a disappearing member such as a resin.

緻密質部材1の凹部12に充填された前記スラリーが十分に乾燥された後、ガラスの軟化点以上で焼成される。これにより、緻密質部材1の凹部12に収容され、下面が全体的に凹部12の底面13から離間している状態で、側面が全周にわたり緻密質部材1に対して接合されている多孔質部材2が形成される。さらに、多孔質部材2の下面および凹部12の底面13により上下が画定された略円柱状の空間が1次真空経路R1と同時に形成される。   After the slurry filled in the concave portion 12 of the dense member 1 is sufficiently dried, it is fired at a temperature equal to or higher than the softening point of the glass. Accordingly, the porous member is accommodated in the concave portion 12 of the dense member 1 and the side surface is joined to the dense member 1 over the entire circumference in a state where the lower surface is entirely separated from the bottom surface 13 of the concave portion 12. Member 2 is formed. Further, a substantially cylindrical space defined by the lower surface of the porous member 2 and the bottom surface 13 of the recess 12 is formed simultaneously with the primary vacuum path R1.

図2に示されているように、多孔質部材2には、その表面6から下面7まで連通する開気孔24により構成されている2次真空経路R2を有している。多孔質部材2の表面6には、少なくとも部分的に、好ましくは全面的に、多孔質部材2の上面または上面付近のセラミックス粒子21を覆う被膜22が形成されている。被膜22が、多孔質部材2の表面6または表面6付近のセラミックス粒子21を部分的に覆っている部分は、被膜22の一部が多孔質部材2の開気孔24を構成する壁面の一部も覆っており、被膜22の一部に開口23が形成される。被膜22は溶射膜により形成されていてもよく、その気孔率は、例えば1〜20%であり、1〜6%であることが好ましい。被膜22の気孔率が1%を下回ると多孔質部材2を構成する粒子と、被膜22の密着性が低下し、被膜22の気孔率が20%を超えると被膜22自体が多孔質部材2から脱離しやすくなる。被膜22の厚さは、例えば1〜300[μm]であり、1〜30[μm]であることが好ましい。被膜22が300μmよりも厚いと2次真空経路R2の通気性が損なわれてしまう。被膜22が1μmよりも薄いと多孔質部材2を構成する粒子の脱粒を抑制する効果が低下してしまう。   As shown in FIG. 2, the porous member 2 has a secondary vacuum path R <b> 2 constituted by open pores 24 communicating from the surface 6 to the lower surface 7. A coating 22 is formed on the surface 6 of the porous member 2 to cover the ceramic particles 21 at or near the upper surface of the porous member 2 at least partially, preferably entirely. The portion where the coating 22 partially covers the surface 6 of the porous member 2 or the ceramic particles 21 in the vicinity of the surface 6 is a part of the wall surface where a part of the coating 22 constitutes the open pores 24 of the porous member 2. The opening 23 is formed in a part of the coating film 22. The coating film 22 may be formed of a sprayed film, and the porosity thereof is, for example, 1 to 20%, and preferably 1 to 6%. When the porosity of the coating film 22 is less than 1%, the adhesion between the particles constituting the porous member 2 and the coating film 22 decreases, and when the porosity of the coating film 22 exceeds 20%, the coating film 22 itself is removed from the porous member 2. It becomes easy to detach. The thickness of the film 22 is, for example, 1 to 300 [μm], and preferably 1 to 30 [μm]. If the coating 22 is thicker than 300 μm, the air permeability of the secondary vacuum path R2 is impaired. When the coating film 22 is thinner than 1 μm, the effect of suppressing the degranulation of the particles constituting the porous member 2 is lowered.

被膜22が、多孔質部材2の上面4または上面4付近のセラミックス粒子21を全面的に覆い、多孔質部材2の開気孔24の開口23を塞いだ状態で覆っている場合、被膜22自体が多孔質部材2とは異なる気孔率を有する多孔質体であることから、被膜22に存在する開気孔と多孔質部材2が有する開気孔24とを合わせて、2次真空経路R2となる。なお、セラミックス粒子21は、断面視で島状となる形態のセラミックス組織を示す。   When the coating 22 covers the ceramic particle 21 near the upper surface 4 or the vicinity of the upper surface 4 of the porous member 2 and covers the openings 23 of the open pores 24 of the porous member 2, the coating 22 itself is Since it is a porous body having a porosity different from that of the porous member 2, the open pores existing in the coating 22 and the open pores 24 of the porous member 2 are combined to form a secondary vacuum path R2. In addition, the ceramic particle | grains 21 show the ceramic structure | tissue of the form which becomes island shape by sectional view.

被膜22は、プラズマ溶射法により形成されてもよい。一対の電極の間にArガスなどの不活性ガスを流しながら放電を生じさせて当該不活性ガス由来のプラズマジェットを発生させ、プラズマジェットに原料粉末を供給して、基材である多孔質部材2に対して吹き付けることにより当該原料粉末由来の溶射膜が被膜22として形成される。   The coating film 22 may be formed by a plasma spraying method. A porous member which is a base material by generating a discharge while flowing an inert gas such as Ar gas between a pair of electrodes to generate a plasma jet derived from the inert gas, and supplying raw material powder to the plasma jet 2 is sprayed to form a sprayed film derived from the raw material powder as the coating 22.

被膜22はmHVOF溶射法により形成されてもよい。アセチレン、エチレン、プロパさせた炎に原料粉末またはそのスラリーを供給して、基材である多孔質部材2に対して吹き付けることにより当該原料粉末由来の溶射膜が被膜22として形成される。   The coating 22 may be formed by the mHVOF spraying method. A raw material powder or slurry thereof is supplied to acetylene, ethylene, or a propelled flame, and sprayed onto the porous member 2 as a base material, whereby a sprayed film derived from the raw material powder is formed as the coating film 22.

被膜22は、イオンプレーティング法により形成されてもよい。チャンバに基材である多孔質部材2を収容し、チャンバを高真空状態(例えば10-5〜10-3[Pa])にしてから不活性ガス(アルゴンなど)または反応性ガス(窒素、炭化水素など)を注入する。電子銃(熱電子発生陰極)からの電子ビームにより原料(金属)を加熱して蒸発させ、当該原料由来のプラズマイオンを発生させ、反応性ガスとの化合物を多孔質部材2に退席させることにより当該原料粉末由来の溶射膜が被膜22として形成される。 The coating 22 may be formed by an ion plating method. The porous member 2 as a base material is accommodated in the chamber, and the chamber is brought to a high vacuum state (for example, 10 −5 to 10 −3 [Pa]), and then an inert gas (such as argon) or a reactive gas (nitrogen, carbonized). Hydrogen). By heating and evaporating the raw material (metal) with an electron beam from an electron gun (thermoelectron generating cathode), generating plasma ions derived from the raw material, and leaving the compound with the reactive gas in the porous member 2 A sprayed film derived from the raw material powder is formed as the coating 22.

そのほか、プラズマCVD法、スパッタリング法などにより被膜22が形成されてもよい。   In addition, the film 22 may be formed by a plasma CVD method, a sputtering method, or the like.

被膜22の上面に基板Wが載置された場合、この基板Wに対して、連通経路10と、緻密質部材1の凹部12の底面13および多孔質部材2の裏面7の間隙により上下が画定されている1次真空経路R1と、多孔質部材2の開気孔24および被膜22に存在する開気孔により構成される2次真空経路R2と、を通じて真空吸引力を作用させて、当該基板Wを吸着保持する。   When the substrate W is placed on the upper surface of the coating 22, the upper and lower sides of the substrate W are defined by the communication path 10 and the gap between the bottom surface 13 of the concave portion 12 of the dense member 1 and the back surface 7 of the porous member 2. The substrate W is moved by applying a vacuum suction force through the primary vacuum path R1 and the secondary vacuum path R2 constituted by the open holes 24 of the porous member 2 and the open holes existing in the coating film 22. Hold by adsorption.

[実施例]
[実施例1]
外径360[mm]、厚さ30[mm]の略円盤状のアルミナ焼結体が緻密質部材1として作製された。緻密質部材1には、径300[mm]、深さ5[mm]の上面4から略円形状に窪んでいる凹部12が形成され、かつ、凹部12の底面13の中央部から緻密質部材1の底面5にわたって径10[mm]の略円形断面の貫通孔が連通経路10として形成された。
[Example]
[Example 1]
A substantially disc-shaped alumina sintered body having an outer diameter of 360 [mm] and a thickness of 30 [mm] was produced as the dense member 1. The dense member 1 has a recess 12 that is recessed in a substantially circular shape from the upper surface 4 having a diameter of 300 [mm] and a depth of 5 [mm], and the dense member from the center of the bottom surface 13 of the recess 12. A through hole having a substantially circular cross section having a diameter of 10 [mm] was formed as the communication path 10 over the bottom surface 5 of 1.

第1のアルミナ原料粉末(平均粒径120[μm])、第2のアルミナ原料粉末(平均粒径60[μm])、ガラス粉末として平均粒径15[μm]のホウ珪酸ガラスおよび蒸留水を、2:1:1:1の質量比で混錬してスラリーが作製された。   First alumina raw material powder (average particle size 120 [μm]), second alumina raw material powder (average particle size 60 [μm]), borosilicate glass having an average particle size 15 [μm] and distilled water as glass powder A slurry was prepared by kneading at a mass ratio of 2: 1: 1: 1.

連通経路10および1次真空経路R1に樹脂(消失部材)を充填した後、緻密質部材1の凹部12にスラリーが充填され、緻密質部材1に振動を加えてスラリー中の粉末を沈降させた。必要に応じて、スラリーの脱泡処理が行われてもよい。その後、100℃での乾燥処理によりスラリーの水分を蒸発させ、1000℃で2〜20[hr]で熱処理されることにより、アルミナ粒子およびガラスにより構成される多孔質部材2が作製された。   After filling the communication path 10 and the primary vacuum path R1 with resin (disappearing member), the concave portion 12 of the dense member 1 is filled with slurry, and the dense member 1 is vibrated to settle the powder in the slurry. . If necessary, the slurry may be defoamed. Then, the water | moisture content of the slurry was evaporated by the drying process at 100 degreeC, and the porous member 2 comprised by the alumina particle and glass was produced by heat-processing at 2 to 20 [hr] at 1000 degreeC.

そして、プラズマ溶射法によりアルミナからなる被膜22が多孔質部材2の表面6に形成されることにより実施例1の真空吸着部材3が作製された。   And the vacuum adsorption member 3 of Example 1 was produced by forming the coating film 22 which consists of alumina on the surface 6 of the porous member 2 by the plasma spraying method.

[実施例2]
プラズマ溶射法ではなくHVOF溶射法により、アルミナ粉末(D50:4[μm])を原料とし、アルミナからなる被膜22が多孔質部材2の表面6に形成されたほかは実施例1と同様の条件により実施例2の真空吸着部材3が作製された。
[Example 2]
The same conditions as in Example 1 except that alumina powder (D50: 4 [μm]) was used as a raw material and the coating film 22 made of alumina was formed on the surface 6 of the porous member 2 by HVOF spraying instead of plasma spraying. Thus, the vacuum suction member 3 of Example 2 was produced.

[実施例3]
HVOF溶射法によりシリコン粉末(D50:2.7[μm])を原料として、シリコンからなる被膜22が多孔質部材2の表面6に形成されたほかは実施例2と同様の条件により実施例3の真空吸着部材3が作製された。
[Example 3]
Example 3 was performed under the same conditions as in Example 2 except that a silicon powder (D50: 2.7 [μm]) was used as a raw material by HVOF spraying to form a coating film 22 made of silicon on the surface 6 of the porous member 2. The vacuum suction member 3 was prepared.

[実施例4]
イオンプレーティング法により、原料としてTiを用い、反応性ガスとしてN2が用いられ、TiNからなる被膜22が多孔質部材2の表面6に形成されたほかは実施例1と同様の条件により実施例4の真空吸着部材3が作製された。
[Example 4]
Implemented under the same conditions as in Example 1 except that Ti was used as a raw material, N 2 was used as a reactive gas, and a coating 22 made of TiN was formed on the surface 6 of the porous member 2 by ion plating. The vacuum suction member 3 of Example 4 was produced.

[比較例]
[比較例1]
被膜22が多孔質部材2の表面6に形成されていないほかは実施例1と同様の条件により比較例1の真空吸着部材が作製された。すなわち、多孔質部材2の表面6が基板Wの載置面になる。
[Comparative example]
[Comparative Example 1]
A vacuum suction member of Comparative Example 1 was produced under the same conditions as in Example 1 except that the film 22 was not formed on the surface 6 of the porous member 2. That is, the surface 6 of the porous member 2 becomes the mounting surface of the substrate W.

(評価方法)
実施例および比較例のそれぞれの真空吸着部材の被膜22の厚さは、断面のSEM観察により測定された。実施例および比較例のそれぞれの真空吸着部材の被膜22の気孔率はJIS R1634に準拠して多孔質部材2についてはアルキメデス法により測定され、被膜22についてはアルキメデス法またはSEM観察による見かけ体積と真比重とに基づいて求める重量気孔率法により測定された。
(Evaluation method)
The thickness of the coating film 22 of each vacuum suction member of the example and the comparative example was measured by SEM observation of the cross section. The porosity of the coating 22 of each of the vacuum adsorption members of the example and the comparative example is measured by the Archimedes method for the porous member 2 in accordance with JIS R1634, and the apparent volume and true by the Archimedes method or SEM observation for the coating 22 are measured. It was measured by the weight porosity method determined based on the specific gravity.

実施例および比較例のそれぞれの真空吸着部材3の被膜22の上面に、または、多孔質部材2の上面に基板Wが載置された後、当該基板Wの表面における傷、スクラッチを評価した。評価方法は、JIS H0614に準拠して蛍光灯を光源とし、基板Wの表面の照度を1000〜2000ルクスとして基板Wの全面の検査を行い、判定基準はマイクロスクラッチ(表面に生じた蛍光灯下で目視される線状の深い傷)について、累計長が基板Wの直径300(mm)/4以下であれば「〇」、それ以上であれば「×」と判定した。   After the substrate W was placed on the upper surface of the coating 22 of the vacuum suction member 3 in each of the example and the comparative example or on the upper surface of the porous member 2, scratches and scratches on the surface of the substrate W were evaluated. In the evaluation method, a fluorescent lamp is used as a light source in accordance with JIS H0614, and the entire surface of the substrate W is inspected with an illuminance on the surface of the substrate W of 1000 to 2000 lux. In the case where the accumulated length is 300 (mm) / 4 or less of the diameter of the substrate W, “◯” is determined, and if it is more than that, “X” is determined.

基板Wが真空吸着部材3に吸着保持されている際の、真空吸引経路(連通経路10→1次真空経路R1→2次真空経路R2)の圧力が、吸着保持力の指標として測定された。被膜22のシート抵抗率が、高抵抗・抵抗率計であるハイレスターUX(三菱化学アナテリック社製)MCP−HT800を用いて測定された。基板Wが真空吸着部材3に吸着保持されている際の、当該基板Wの表面電位が表面電位系#344(トレック・ジャパン社製)を用いて測定された。   The pressure of the vacuum suction path (communication path 10 → primary vacuum path R1 → secondary vacuum path R2) when the substrate W is sucked and held by the vacuum suction member 3 was measured as an index of the suction holding force. The sheet resistivity of the coating film 22 was measured using a Hirester UX (manufactured by Mitsubishi Chemical Analytic) MCP-HT800, which is a high resistance / resistivity meter. The surface potential of the substrate W when the substrate W was sucked and held on the vacuum suction member 3 was measured using a surface potential system # 344 (manufactured by Trek Japan).

当該評価結果が表1にまとめて示されている。   The evaluation results are summarized in Table 1.

表1より次のことがわかる。各実施例の真空吸着部材によれば、吸着保持後の基板Wに傷等がみられなかったのに対して、比較例1の真空吸着部材によれば、吸着保持後の基板Wに傷等がみられた。各実施例の真空吸着部材の基板Wの吸着保持力は、比較例1の真空吸着部材のそれと遜色がなかった。実施例3、4の真空吸着部材によれば、被膜22が導電性を有し、比較例1と比較して基板Wに帯電が抑制されていることが示された。   Table 1 shows the following. According to the vacuum suction member of each example, the substrate W after suction holding was not damaged, whereas the vacuum suction member of Comparative Example 1 was scratched to the substrate W after suction holding. Was seen. The suction holding force of the substrate W of the vacuum suction member of each example was not inferior to that of the vacuum suction member of Comparative Example 1. According to the vacuum suction members of Examples 3 and 4, it was shown that the coating film 22 has conductivity, and the substrate W is suppressed from being charged as compared with Comparative Example 1.

1‥緻密質部材、2‥多孔質部材、3‥真空吸着部材、4‥上面、5‥底面、6‥表面、7‥裏面、8‥側面、10‥連通経路、12‥凹部、13‥底面、21‥セラミックス粒子、22‥被膜、23‥開口、24‥開気孔、25‥被膜表面、R1‥1次真空経路、R2‥2次真空経路。 DESCRIPTION OF SYMBOLS 1 ... Dense member, 2 ... Porous member, 3 ... Vacuum adsorption member, 4 ... Upper surface, 5 ... Bottom surface, 6 ... Surface, 7 ... Back surface, 8 ... Side surface, 10 ... Communication path, 12 ... Recessed part, 13 ... Bottom surface , 21 ceramic particles, 22 coating, 23 opening, 24 open pores, 25 coating surface, R1 primary vacuum path, R2 secondary vacuum path.

Claims (5)

多孔質部材を備え、基板を吸着保持する真空吸着部材であって、
前記多孔質部材の前記上面を覆う被膜を備え、前記被膜の気孔率は前記多孔質部材の気孔率よりも小さく、前記多孔質部材が有する開気孔の連通により構成される真空経路の少なくとも一部が被膜により塞がれることなく維持されることを特徴とする真空吸着部材。
A vacuum suction member that includes a porous member and holds the substrate by suction,
A coating covering the upper surface of the porous member, wherein the porosity of the coating is smaller than the porosity of the porous member, and at least a part of a vacuum path configured by communication of open pores of the porous member Is maintained without being covered with a coating film.
前記多孔質部材の少なくとも一部は、セラミックス粒子により構成され、前記被膜は、セラミックス溶射膜であることを特徴とする請求項1に記載の真空吸着部材。   The vacuum suction member according to claim 1, wherein at least a part of the porous member is made of ceramic particles, and the coating is a ceramic sprayed film. 前記被膜の気孔率は1%以上かつ20%以下であることを特徴とする請求項1または2に記載の真空吸着部材。   The vacuum suction member according to claim 1 or 2, wherein the porosity of the coating is 1% or more and 20% or less. 前記被膜は導電性を有する膜であることを特徴とする請求項1記載の真空吸着部材。   The vacuum suction member according to claim 1, wherein the coating is a conductive film. 上面および裏面を有し、前記上面から前記裏面に向かう方向に窪んでいる凹部と、前記裏面から前記凹部の底面にかけて設けられた貫通孔で構成される連通経路と、が形成されている緻密質部材と、
前記緻密質部材の前記凹部に収容され、上面および裏面を有し、所定の気孔率を有する多孔質部材と、を備え、
基板を吸着保持するための真空吸着部材であって、
前記多孔質部材の前記上面には、当該多孔質部材よりも低い気孔率を有する被膜を備え、
前記多孔質部材の開気孔または前記多孔質部材および前記被膜に存在する開気孔により構成される2次真空経路の前記被膜の表面と前記多孔質部材の前記裏面との間の連通が維持されていることを特徴とする真空吸着部材。
A dense structure having a top surface and a back surface, and a recess that is recessed in a direction from the top surface toward the back surface, and a communication path that includes a through hole provided from the back surface to the bottom surface of the recess. Members,
A porous member housed in the concave portion of the dense member, having an upper surface and a back surface, and having a predetermined porosity,
A vacuum suction member for sucking and holding a substrate,
The upper surface of the porous member includes a coating having a lower porosity than the porous member,
The communication between the surface of the coating in the secondary vacuum path constituted by the open pores of the porous member or the open pores existing in the porous member and the coating and the back surface of the porous member is maintained. A vacuum suction member characterized by comprising:
JP2017128069A 2017-06-29 2017-06-29 Vacuum suction member Active JP6946076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128069A JP6946076B2 (en) 2017-06-29 2017-06-29 Vacuum suction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128069A JP6946076B2 (en) 2017-06-29 2017-06-29 Vacuum suction member

Publications (2)

Publication Number Publication Date
JP2019012757A true JP2019012757A (en) 2019-01-24
JP6946076B2 JP6946076B2 (en) 2021-10-06

Family

ID=65226916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128069A Active JP6946076B2 (en) 2017-06-29 2017-06-29 Vacuum suction member

Country Status (1)

Country Link
JP (1) JP6946076B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092023A1 (en) * 2020-10-28 2022-05-05 京セラ株式会社 Structure for relieving charging
WO2023189675A1 (en) * 2022-03-30 2023-10-05 東京エレクトロン株式会社 Inspection apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340413A (en) * 2004-05-26 2005-12-08 Tanken Seal Seiko Co Ltd Porous material for adsorption pad
JP2005335999A (en) * 2004-05-26 2005-12-08 Tanken Seal Seiko Co Ltd Porous carbon
JP2008211098A (en) * 2007-02-27 2008-09-11 Taiheiyo Cement Corp Vacuum suction apparatus, manufacturing method thereof and method of sucking object to be sucked
WO2009013941A1 (en) * 2007-07-23 2009-01-29 Creative Technology Corporation Substrate suction apparatus and method for manufacturing the same
JP2010109106A (en) * 2008-10-30 2010-05-13 Kyocera Corp Suction cup and vacuum suction apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340413A (en) * 2004-05-26 2005-12-08 Tanken Seal Seiko Co Ltd Porous material for adsorption pad
JP2005335999A (en) * 2004-05-26 2005-12-08 Tanken Seal Seiko Co Ltd Porous carbon
JP2008211098A (en) * 2007-02-27 2008-09-11 Taiheiyo Cement Corp Vacuum suction apparatus, manufacturing method thereof and method of sucking object to be sucked
WO2009013941A1 (en) * 2007-07-23 2009-01-29 Creative Technology Corporation Substrate suction apparatus and method for manufacturing the same
JP2010109106A (en) * 2008-10-30 2010-05-13 Kyocera Corp Suction cup and vacuum suction apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092023A1 (en) * 2020-10-28 2022-05-05 京セラ株式会社 Structure for relieving charging
WO2023189675A1 (en) * 2022-03-30 2023-10-05 東京エレクトロン株式会社 Inspection apparatus

Also Published As

Publication number Publication date
JP6946076B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
US11769683B2 (en) Chamber component with protective ceramic coating containing yttrium, aluminum and oxygen
KR102388784B1 (en) Plasma erosion resistant thin film coating for high temperature application
CN105074901B (en) Electrostatic chuck
US10347520B2 (en) Electrostatic chuck and method for manufacturing electrostatic chuck
JP6715762B2 (en) Method of manufacturing joined body
JP5225024B2 (en) Suction board and vacuum suction device
KR101531726B1 (en) Electrostatic chuck and method for producing same
US10468289B2 (en) Substrate holding member
JP6263484B2 (en) Electrostatic chuck and manufacturing method thereof
CN108842133B (en) Preparation method and equipment of graphical electrostatic chuck
WO2009013941A1 (en) Substrate suction apparatus and method for manufacturing the same
TW201428886A (en) Substrate support assembly having a plasma resistant protective layer
JP6946076B2 (en) Vacuum suction member
TW200947603A (en) Substrate mounting stand for plasma processing device, plasma processing device, and insulating coating deposition method
US20230298861A1 (en) Member for semiconductor manufacturing apparatus
JP2006060040A (en) Electrostatically chucking plate, and manufacturing method thereof
JP2011100844A (en) Device having electrostatic chucking function and method of manufacturing the same
CN109964310A (en) Electric hybrid board carrier
TWI847343B (en) Member for semiconductor manufacturing apparatus
TWI824849B (en) Member for semiconductor manufacturing apparatus
WO2024117149A1 (en) Vacuum chuck and method for producing same
WO2024089762A1 (en) Wafer placement table
JP2004349557A (en) Device for adsorbing large-sized glass substrate for display
JP2019016735A (en) Vacuum suction device
JP2006032461A (en) Electrostatic attraction device and electron source manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6946076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350