JP2004349557A - Device for adsorbing large-sized glass substrate for display - Google Patents

Device for adsorbing large-sized glass substrate for display Download PDF

Info

Publication number
JP2004349557A
JP2004349557A JP2003146524A JP2003146524A JP2004349557A JP 2004349557 A JP2004349557 A JP 2004349557A JP 2003146524 A JP2003146524 A JP 2003146524A JP 2003146524 A JP2003146524 A JP 2003146524A JP 2004349557 A JP2004349557 A JP 2004349557A
Authority
JP
Japan
Prior art keywords
glass substrate
display
substrate
base material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003146524A
Other languages
Japanese (ja)
Other versions
JP4268450B2 (en
Inventor
Kazuhiro Oki
一弘 大木
Shigeto Kamata
重人 鎌田
Takeshi Yakou
猛 谷古宇
Tomoyuki Ogura
知之 小倉
Tatsuya Shiogai
達也 塩貝
Mamoru Ishii
守 石井
Hiromasa Shimojima
浩正 下嶋
Chokusui Odano
直水 小田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Taiheiyo Cement Corp
Ceranx Co Ltd
Original Assignee
Canon Inc
Taiheiyo Cement Corp
Ceranx Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Taiheiyo Cement Corp, Ceranx Co Ltd filed Critical Canon Inc
Priority to JP2003146524A priority Critical patent/JP4268450B2/en
Publication of JP2004349557A publication Critical patent/JP2004349557A/en
Application granted granted Critical
Publication of JP4268450B2 publication Critical patent/JP4268450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for adsorbing a large-sized glass substrate for a display capable of adsorbing a large-scaled glass substrate for a display by a single adsorbing device, and securing the thermal uniformity of the substrate even in a high temperature process. <P>SOLUTION: This device for adsorbing the large-scaled glass substrate for the display is provided with an insulating layer 2 formed at the upper part of a base material 1, an electrode layer 3 formed at the upper part of the insulating layer 2 and a dielectric layer 4 formed so that the electrode layer 3 can be covered. A placing part on the dielectric layer 4 is configured with an embossed shape so that the area of a contact face brought into contact with the large-scaled glass substrate for the display can be set so as to be ranging from 20 to 80% of the overall area of the placing part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ディスプレー用大型ガラス基板を吸着保持するのに用いられる吸着装置に関するもので、さらに詳しくは、基材とこの基材上面に形成されたセラミック絶縁層と、このセラミック絶縁層の上に形成された電極層と、この電極層を被覆するように前記セラミック絶縁層の上に形成されたセラミック誘電体層とを具備し、セラミック誘電体層上の載置部にディスプレー用大型ガラス基板を載置して静電力によりガラス基板を吸着する吸着装置に関するものである。
【0002】
【従来の技術】
近年、大型かつ薄型のディスプレー装置の供給が進むにつれて、このようなディスプレー装置に用いるガラス基板が被加工物となることが多くなり、そこで必要となる大型のガラス基板を加工処理時に吸着保持するための吸着装置にも大型化が求められている。
【0003】
しかし、従来のAl、AlN等のセラミックス製静電吸着装置の場合、製造装置等の問題から、大型の吸着装置の製造は困難な状況にある。その為、分割した静電吸着装置を使用する場合があったが、この場合、ディスプレーの製造プロセスに悪影響を及ぼすという問題があった。これに対しては、特開昭59−152636号公報(特許文献1)に開示されているように、アルミニウム等からなる基材上に、絶縁層、電極層及び誘電体層等を溶射や蒸着により形成する方法を用いることにより、大型の静電吸着装置を得ることが可能である。
【0004】
【特許文献1】
特開昭59−152636号公報
【0005】
【発明が解決しようとする課題】
近年、ディスプレー製造工程の多様化に伴い、そのプロセスもより過酷な条件となってきており、高温が必要なプロセスも必要となってきている。そのため、ディスプレーの製造工程における高温プロセス時の、被吸着物たる基板の均熱性が非常に重要な問題になりつつある。しかし、特許文献1に記載のような従来の静電吸着装置では、高温プロセス時の基板の均熱性確保は困難であった。
【0006】
また上記従来の溶射法により基材上の表層構造を形成する静電吸着装置の場合、基材にはアルミニウム等が用いられており、高温で使用した場合、基材と該基材上に溶射により形成された層とが、熱膨張差により剥離するといった問題もあった。
【0007】
本発明は上記課題に鑑みなされたものであり、ディスプレー用大型ガラス基板を単体の吸着装置で吸着可能でありながら、高温プロセス時においても基板の均熱性を確保することのできるディスプレー用大型ガラス基板吸着装置を提供することを目的とするものである。
【0008】
また更に本発明は、高温プロセス時に、基材と該基材上に溶射により形成された層とが剥離しないディスプレー用大型ガラス基板吸着装置を提供することをも目的とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するための発明は、
溶射法により、基材の上部に設けられたセラミック絶縁層と、このセラミック絶縁層の上部に設けられた電極層と、この電極層を被覆するように設けられたセラミック誘電体層とを具備するディスプレー用大型ガラス基板吸着装置であって、前記セラミック誘電体層上の載置部の、ディスプレー用大型ガラス基板と接触する接触面の面積が、載置部の全面積の20〜80%となるように、載置部がエンボス形状を有していることを特徴とするディスプレー用大型ガラス基板である。
【0010】
また本発明は、
「前記基材の20〜200℃における平均の熱膨張係数と、基材上に設けられる前記、セラミック絶縁層とセラミック誘電体層の20〜200℃における平均の熱膨張係数との差が、2×10−6/℃以下であること」、
「前記電極層への給電に用いる給電端子を具備し、該給電端子の20〜200℃における平均の熱膨張係数と、前記基材の20〜200℃における平均の熱膨張係数との差が2×10−6/℃以下であること」、
「前記接触面のRaが、1.0μm以下であること」、
を好ましい態様として含むものである。
【0011】
【発明の実施の形態】
図1は本発明の構成によるディスプレー用大型ガラス基板吸着装置(以下静電吸着装置と略)の模式的断面図である。
【0012】
ここで、本発明の静電吸着装置は、基材1と、この基材1の上面に溶射により形成された絶縁層2と、この絶縁層2に上に溶射により形成された電極層3と、この電極層3を被覆するように前記絶縁層2の上に溶射により形成された絶縁層4とを具備する。また、5は導電性材料からなる給電ピンであり電極層3と導通している。6は給電ピン5と基材1との絶縁を目的とした絶縁管である。これら給電ピン5と絶縁管6とにより、電極層3に電荷を供給する給電端子が構成されている。
【0013】
そして本発明では、このような静電吸着装置の表面、即ち誘電体層上の載置部が、エンボス形状を有している。図2は本発明の静電吸着装置の載置部の形状の一例を示す斜視図である。このように、載置部のエンボス形状は、載置部上に載置されるディスプレー用大型ガラス基板(以下、基板と略)と接触する接触面の面積が、載置部の全面積の20〜80%となるように形成されている。
【0014】
これにより、単一の静電吸着装置により、被吸着物たる大型の基板を平坦に保って吸着させつつ、高温プロセス時においても基板の均熱性が確保できることとなる。上記接触面の面積が載置部の全面積の20%未満の場合、基板の均熱性確保には有効であるが、基板の平面度が得られ難くなり、80%を超えると均熱性確保が十分ではなくなってしまう。
【0015】
本発明においてエンボス形状とは、図2に示すように、頂部が平坦な凸部7が載置部10の全域に渡って形成され、かつ該凸部の高さが揃えられた浮き彫り状の形状を意味している。凸部7の平坦な頂部上に基板が載置されるため、この部分が基板と接触する載置部の接触面8となる。
【0016】
凸部は、図2に示すように不連続に複数に分けて形成されていても良いし、全域に渡って連続的に形成されていても良いが、載置する基板の均熱性確保を考慮すると、図2に示すように不連続に複数に分けて形成されていることが好ましい。
【0017】
エンボス形状を構成する凸部の高さは10μm〜100μm程度であり、基板を平坦な状態で支持する必要があるため、載置部全体に渡って略均一に凸部が配置されていることが好ましい。
【0018】
尚、本発明におけるエンボス形状は、図2に示す形態に限らず、ディスプレー用大型ガラス基板と接触する接触面の面積が、載置部の全面積の20〜80%の範囲の接触面積を有していれば良い。従って、凸部の接触面の形状は、図2に示すような円形の他にも、角形、多角形や、載置部を横切って平行に並べられた長尺形等が挙げられるが、これらに制限されるものではない。また、凸部の接触面の面方向の大きさについては、例えば上記円形等で別個に形成される形状であれば径がφ1.5〜φ10程度、長尺形状等であれば、短手方向の幅が1.5mm〜10mm程度であることが好ましい。さらに凸部の側面は、図2のように直立状である必要はなく、傾斜していても構わない。
【0019】
また本発明では、基材の、20〜200℃における平均の熱膨張係数と、その上部に設けられる絶縁層、誘電体層といった各層の20〜200℃における平均の熱膨張係数との差が、2×10−6/℃以下であることが好ましい。こうすることで、高温(〜350℃)で使用した場合の各層間で熱膨張差による剥離を防ぐことができる。
【0020】
さらに本発明では、給電端子の20〜200℃における平均の熱膨張係数と、前記基材の20〜200℃における平均の熱膨張係数との差が2×10−6/℃以下であることが好ましい。こうすることで、高温(〜350℃)で使用した場合の給電端子を構成する材質と基材との熱膨張差による、給電ピンの突き上げ等によるクラック等の発生を抑制することが可能となる。
【0021】
また、本発明では、静電吸着装置の誘電体層と基板との接触面のRaが、1.0μm以下であることが好ましい。これは、表面のRaが1.0μmを超えると静電吸着力の低下する為である。
【0022】
次に、本発明の静電吸着装置の製造方法を説明する。
【0023】
まず基材となる材料を用意する。前記、セラミック絶縁層とセラミック誘電体層を溶射法により形成していることから、このセラミック層との熱膨張差を考慮して、基材を選定しなければならない。この基材としては、インバーやコバルト合金等の低熱膨張合金、或いは金属−セラミックス複合材料(MMC)等を、該基材上に設ける各層の熱膨張係数を考慮して選択するのが好ましい。
【0024】
次に、基材に、その上部に形成される電極層への給電を目的とした給電端子を接着する。給電端子としては、基材と、さらに好ましくはその上部に形成される各層とも、熱膨張係数をマッチングさせるために、図1に示した様に、給電ピンとして低熱膨張合金、MMC等を用い、これに酸化アルミニウム等を溶射して作製したものや、給電ピンをマシナブルセラミックス等からなる絶縁管に接着した構造のもの等を用いることが好ましい。この場合、給電ピン及び絶縁管、即ち給電端子の20〜200℃の平均熱膨張係数と、基材の20〜200℃の平均熱膨張係数との差を2×10−6/℃以下とすることが望ましい。こうすることで、高温時に給電ピン材質の突き上げにより、基材上の各層にクラック等が発生することを抑制することが可能となる。
【0025】
次に、基材表面を酸化アルミニウム、炭化ケイ素等のブラスト材料を用いて表面を均一に粗面化すると共に、洗浄する。その後、基材との密着性を考慮してアンダーコートとして、ニッケル、アルミニウム、クロム、コバルト、モリブデン等の金属の層、又は夫々がこれらの金属からなる複数の層を溶射法によって形成する。このアンダーコート層の形成は、使用環境によって適宜実施し、必ずしも必要なものではない。その後、このアンダーコート層上面にプラズマ溶射法等により、酸化アルミニウム等のセラミックスからなる絶縁層を形成する。
【0026】
次に、この絶縁層へ封孔処理を実施する。この封孔処理は、絶縁層への封孔処理剤の含浸を完全なものにする為である。この工程における封孔処理は、使用環境によって適宜実施し必ずしも必要なものではない。
【0027】
次に、その上面にプラズマ溶射法等で電極層を形成する。電極層には、ニッケル、タングステン、アルミニウム等が好ましく使用できる。電極層の厚さとしては、30〜100μm程度が好ましい。その理由は、30μmより薄いと層が均一に形成されず、吸着力にムラが生じやすくなり、100μmより厚いと、電極層と絶縁層との間の段差が大きくなり、上部に形成される誘電体層の耐電圧特性が低下するため好ましくないからである。
【0028】
その後、この上面に、更にプラズマ溶射法等で酸化アルミニウム−5重量%酸化チタン等のセラミックス層からなる誘電体層を形成して静電吸着装置とする。
【0029】
次に、溶射法により形成された層中のポアを充填する封孔処理を実施する。封孔処理剤としては、シリカゾル、アルミナゾル、マグネシアゾルなどのコロイダル状のスラリー、あるいは、SiO、Al、TiO等の金属アルコキシド系ポリマー及びこれらのポリマーとマラミン、アクリル、フェノール、フッ素、シリコン、アクリル樹脂等の各種樹脂を含有するものを使用することができる。
【0030】
尚、上記絶縁層及び誘電体層の厚さは、100〜500μm程度が好ましく、100μmより薄いと耐電圧が低くなり絶縁破壊が起こりやすく、500μmより厚いと電極層及び基材との熱膨張差が顕著になり、熱衝撃による亀裂や破損が生じやすく、しかも吸着力も低下するため好ましくない。
【0031】
また、絶縁層であるセラミックス層の種類は最も一般的なものは酸化アルミニウムであるが、これに限定されるものではなく、基材との熱膨張差等を考慮し、セラミックスの種類を適宜選べばよい。また、誘電体層であるセラミックス層の種類は、最も一般的なものは酸化アルミニウム−酸化チタン系のものであるが、これに限定されるものではなく、必要な特性、例えば、高い誘電率が必要であれば、必要な誘電率の大きさに応じてセラミックスの種類を適宜選べばよい。
【0032】
次に、研削加工、ラップ処理を実施し、誘電体層表面を表面粗さRa:1.0μm以下とする。その後、ブラスト処理を行い、載置部を上記のエンボス形状とする。
【0033】
次に、先程と同様の封孔処理を実施する。
【0034】
以上のような方法で静電吸着装置を作製すれば、高温(〜350℃)で使用が可能で耐電圧特性が極めて優れ、被吸着物たる基板の均熱性確保にも優れ、さらには熱膨張差により基材上に設けられた各層の剥離も防止された静電吸着装置が得られる。
【0035】
【実施例】
以下、本発明の実施例と比較例とをあげて本発明をさらに詳細に説明する。
【0036】
(実施例)
(1)基材の作製
強化材として#180(平均粒径66μm)の市販のSiC粉末70重量部と#500(平均粒径25μm)の市販のSiC粉末30重量部を用い、それにバインダーとしてコロイダルシリカ液を、そのシリカ固形分が2重量部となる量を添加し、それに消泡剤としてフォーマスタVL(サンノプコ社製)を0.2重量部、イオン交換水を24重量部加え、ポットミルで12時間混合した。こうして得られたスラリーをサイズ1008×680mm、厚さ40mmの成形体が得られるメッシュ付金型に流し込んでフィルタープレスし、それを脱型した後、1000℃で焼成してプリフォームを形成した。
【0037】
得られたプリフォームとAl−12Si−3Mg−2Cu−3Ti組成のアルミニウム合金とを組み合わせ、その合金をプリフォーム中に窒素気流中で825℃の温度で60時間非加圧浸透させた後、冷却してSiC粉末の含有率が70体積%の金属−セラミックス複合材料を作製した(サイズ:1008×680×40mmt)。この金属−セラミックス複合材料を基材として使用した。
【0038】
(2)給電端子の接着
この基材に、後工程で基材上に形成される電極層に給電するための給電端子を接着する。この給電端子としては、基材に用いた金属−セラミックス複合材料との熱膨張差を考慮して、ニレジストD−5(低熱膨張合金)等からなる給電ピンとマシナブルセラミックス(ホトベールL)製の絶縁管を使用した。
【0039】
(3)絶縁層の形成
基材表面を、絶縁層との密着力を向上させる為に、表面粗さがRmaxで5μm以上になるまで、ブラスト処理した後、その上面にプラズマ溶射で酸化アルミニウム層を400μmの厚さに形成する。
【0040】
(4)絶縁層封孔処理
次に、基材上に形成された絶縁層へ、大気中でSiO系の金属アルコキシドを用いて封孔処理を実施した。
【0041】
(5)電極層、誘電体層の形成
次に、Ni電極層を50μmの厚さにプラズマ溶射した後、この上面にプラズマ溶射により酸化アルミニウム−5重量%酸化チタン層を500μmの厚さに形成した。
【0042】
(6)封孔処理と研削、ラップ、ブラスト処理
その後、(4)と同様の方法でSiO系の金属アルコキシドを用いて封孔処理を実施した後、平面研削盤を用いてトップ層の厚みを370μmになるまで研削加工し、その後ラップ処理を実施しトップ層の厚みが350μmでかつ表面粗さRaを0.5μmとした。その後、この静電吸着装置表面をブラスト加工して、被吸着物との接触面積が70%のエンボス形状とした。このエンボス形状は、50μm程の高さで、接触面の形状が直径4.7mmの円形状の凸部が、正方格子上に並んだ、図2に示すような形状とした。
【0043】
(7)封孔処理
その後、(4)と同様の方法でSiO系の金属アルコキシドを用いて封孔処理を実施し、静電吸着装置を作製した。
【0044】
(比較例1)
基材としてアルミニウム(5052)を用いた他は、実施例と同様の方法で静電吸着装置を作製した。
【0045】
(比較例2)
給電ピンの材質をアルミニウム(5052)とした他は、実施例と同様の方法で静電吸着装置を作製した。
【0046】
(比較例3)
載置部を、ディスプレー用大型ガラス基板と接触する接触面の面積が、載置部の全面積の90%となるようなエンボス形状とした他は、実施例と同様の方法で静電吸着装置を作製した。
【0047】
(比較例4)
静電吸着装置表面のRaを1.5μmとした他は、実施例と同様の方法で静電吸着装置を作製した(表面の加工は、研削加工)。
【0048】
(比較例5)
載置部を、ディスプレー用大型ガラス基板と接触する接触面の面積が、載置部の全面積の10%となるようなエンボス形状とした他は、実施例と同様の方法で静電吸着装置を作製した。
【0049】
(評価)
評価は、各静電吸着装置について、室温⇔350℃の温度サイクル試験を実施し、試験前後の耐電圧試験を実施することによって行った。
【0050】
耐電圧試験は、静電吸着装置表面にディスプレー用大型ガラス基板を設置し、印加電圧:3000Vの電圧を印加して行った。○は耐電圧試験を実施しても変化のなかったものであり、×は耐電圧試験を行った結果、絶縁破壊が発生したものである。
【0051】
またさらに、上記温度サイクル試験を行った後に、静電吸着装置に吸着させた状態における基板の均熱性、及び静電吸着装置の吸着力の評価も行った。
【0052】
均熱性の評価は、静電吸着装置上面にディスプレー用大型ガラス基板を設置し、静電吸着装置下部をヒーターで加熱し、基板の温度分布をサーモグラフィーで観察することによって行った。100℃設定での加熱時の温度分布が10℃以内を○、10℃を超えるものは×とした。
【0053】
吸着力の評価は、静電吸着装置を真空チャンバー試験装置中に設置し、真空下で吸着治具を引っ張る方法によって行った。印加電圧:1000Vにおける吸着力が1000g/cm以上のものを○、それ以下のものを×とした。
【0054】
【表1】

Figure 2004349557
【0055】
【発明の効果】
以上説明したように本発明によれば、ディスプレー用大型ガラス基板を単体の吸着装置で吸着可能でありながら、高温プロセス時においても基板の均熱性を確保することのできるディスプレー用大型ガラス基板吸着装置を提供することができる。
【0056】
また更に本発明によれば、高温プロセス時に、基材と該基材上に溶射により形成された層とが剥離しないディスプレー用大型ガラス基板吸着装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の静電吸着装置の一実施形態を示す模式的断面図である。
【図2】本発明の静電吸着装置の載置部の形状の一例を示す斜視図である。
【符号の説明】
1 基材
2 絶縁層
3 電極層
4 誘電体層
5 給電ピン
6 マシナブルセラミックス
7 凸部
8 接触面
10 載置部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a suction device used to hold a large glass substrate for display by suction, and more particularly, to a base material, a ceramic insulating layer formed on the base material upper surface, and a ceramic insulating layer formed on the ceramic insulating layer. A formed electrode layer, and a ceramic dielectric layer formed on the ceramic insulating layer so as to cover the electrode layer, a large glass substrate for display on a mounting portion on the ceramic dielectric layer. The present invention relates to a suction device that is placed and sucks a glass substrate by electrostatic force.
[0002]
[Prior art]
In recent years, as the supply of large and thin display devices has progressed, the glass substrates used for such display devices have often become workpieces, and the large glass substrates required therefor have to be suction-held during processing. There is also a demand for larger adsorption devices.
[0003]
However, in the case of a conventional electrostatic adsorption device made of ceramics such as Al 2 O 3 and AlN, it is difficult to manufacture a large-sized adsorption device due to a problem of a production device or the like. For this reason, a divided electrostatic attraction device may be used in some cases, but in this case, there is a problem that the manufacturing process of the display is adversely affected. On the other hand, as disclosed in JP-A-59-152636 (Patent Document 1), an insulating layer, an electrode layer, a dielectric layer, and the like are sprayed or deposited on a substrate made of aluminum or the like. By using the method formed by the method described above, it is possible to obtain a large electrostatic attraction device.
[0004]
[Patent Document 1]
JP-A-59-152636
[Problems to be solved by the invention]
In recent years, with the diversification of display manufacturing processes, the process has become more severe, and a process requiring a high temperature is also required. Therefore, the temperature uniformity of the substrate, which is the object to be adsorbed, is becoming a very important problem during the high temperature process in the display manufacturing process. However, in the conventional electrostatic attraction device as described in Patent Literature 1, it has been difficult to ensure uniformity of the substrate during a high-temperature process.
[0006]
Also, in the case of an electrostatic attraction device that forms a surface layer structure on a substrate by the above conventional thermal spraying method, aluminum or the like is used for the substrate, and when used at a high temperature, the substrate and the substrate are sprayed on the substrate. There is also a problem that the layer formed by the above-mentioned method is separated due to a difference in thermal expansion.
[0007]
The present invention has been made in view of the above problems, and a large glass substrate for a display that can secure the uniform temperature of a substrate even during a high-temperature process while being able to adsorb a large glass substrate for a display with a single suction device. It is an object of the present invention to provide an adsorption device.
[0008]
It is still another object of the present invention to provide a large-sized glass substrate suction device for a display in which a substrate and a layer formed on the substrate by thermal spraying do not peel off during a high-temperature process.
[0009]
[Means for Solving the Problems]
The invention for solving the above-mentioned problem is:
A ceramic insulating layer provided on the base material by a thermal spraying method, an electrode layer provided on the ceramic insulating layer, and a ceramic dielectric layer provided so as to cover the electrode layer. In the large-sized glass substrate suction device for display, an area of a contact surface of the mounting portion on the ceramic dielectric layer, which is in contact with the large-sized glass substrate for display, is 20 to 80% of the total area of the mounting portion. Thus, a large-sized glass substrate for a display characterized in that the mounting portion has an embossed shape.
[0010]
Also, the present invention
The difference between the average thermal expansion coefficient of the base material at 20 to 200 ° C and the average thermal expansion coefficient of the ceramic insulating layer and the ceramic dielectric layer provided on the base material at 20 to 200 ° C is 2 × 10 −6 / ° C. or less ”,
"A power supply terminal for supplying power to the electrode layer is provided, and a difference between an average thermal expansion coefficient of the power supply terminal at 20 to 200 ° C and an average thermal expansion coefficient of the base material at 20 to 200 ° C is 2 × 10 −6 / ° C. or less ”,
"Ra of the contact surface is 1.0 μm or less",
As a preferred embodiment.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic sectional view of a large-sized glass substrate suction device for display (hereinafter abbreviated as electrostatic suction device) according to the configuration of the present invention.
[0012]
Here, the electrostatic adsorption device of the present invention includes a substrate 1, an insulating layer 2 formed on the upper surface of the substrate 1 by thermal spraying, and an electrode layer 3 formed on the insulating layer 2 by thermal spraying. And an insulating layer 4 formed by thermal spraying on the insulating layer 2 so as to cover the electrode layer 3. Reference numeral 5 denotes a power supply pin made of a conductive material, which is electrically connected to the electrode layer 3. Reference numeral 6 denotes an insulating tube for the purpose of insulating the power supply pin 5 from the base 1. The power supply pin 5 and the insulating tube 6 constitute a power supply terminal for supplying electric charges to the electrode layer 3.
[0013]
In the present invention, the surface of such an electrostatic attraction device, that is, the mounting portion on the dielectric layer has an embossed shape. FIG. 2 is a perspective view showing an example of the shape of the mounting portion of the electrostatic suction device of the present invention. As described above, the embossed shape of the mounting portion is such that the area of the contact surface in contact with the large glass substrate for display (hereinafter, abbreviated as “substrate”) mounted on the mounting portion is 20% of the total area of the mounting portion. 8080%.
[0014]
This makes it possible to secure the uniform temperature of the substrate even during a high-temperature process, while keeping a large substrate as an object to be adsorbed flat and adsorbed by a single electrostatic adsorption device. When the area of the contact surface is less than 20% of the total area of the mounting portion, it is effective to secure the uniformity of the substrate, but it is difficult to obtain the flatness of the substrate, and when it exceeds 80%, the uniformity of the substrate is secured. It will not be enough.
[0015]
In the present invention, as shown in FIG. 2, the embossed shape is a relief shape in which a convex portion 7 having a flat top is formed over the entire area of the mounting portion 10 and the height of the convex portion is uniform. Means Since the substrate is mounted on the flat top of the convex portion 7, this portion becomes the contact surface 8 of the mounting portion in contact with the substrate.
[0016]
The protrusions may be formed discontinuously as a plurality of parts as shown in FIG. 2 or may be formed continuously over the entire area. Then, as shown in FIG. 2, it is preferable to be formed in a discontinuous manner by being divided into a plurality.
[0017]
The height of the projections forming the embossed shape is about 10 μm to 100 μm, and it is necessary to support the substrate in a flat state. Therefore, it is necessary that the projections are arranged substantially uniformly over the entire mounting portion. preferable.
[0018]
In addition, the embossed shape in the present invention is not limited to the form shown in FIG. 2, and the area of the contact surface in contact with the large glass substrate for display has a contact area in the range of 20 to 80% of the total area of the mounting portion. Just do it. Accordingly, the shape of the contact surface of the convex portion may be, in addition to the circular shape as shown in FIG. 2, a square, a polygon, a long shape arranged in parallel across the mounting portion, and the like. It is not limited to. Further, the size of the contact surface of the convex portion in the surface direction is, for example, about 1.5 to 10 in diameter if it is a separately formed shape such as the above-mentioned circular shape, and short side if it is a long shape. Is preferably about 1.5 mm to 10 mm. Further, the side surface of the convex portion does not need to be upright as shown in FIG. 2 and may be inclined.
[0019]
Further, in the present invention, the difference between the average thermal expansion coefficient at 20 to 200 ° C. of the base material and the average thermal expansion coefficient at 20 to 200 ° C. of each layer such as an insulating layer and a dielectric layer provided thereon is: It is preferably at most 2 × 10 −6 / ° C. This can prevent peeling due to a difference in thermal expansion between the layers when used at a high temperature (up to 350 ° C.).
[0020]
Furthermore, in the present invention, the difference between the average thermal expansion coefficient of the power supply terminal at 20 to 200 ° C. and the average thermal expansion coefficient of the base material at 20 to 200 ° C. is 2 × 10 −6 / ° C. or less. preferable. By doing so, it is possible to suppress the occurrence of cracks and the like due to pushing up of the power supply pin due to the difference in thermal expansion between the material constituting the power supply terminal and the base material when used at a high temperature (up to 350 ° C.). .
[0021]
Further, in the present invention, it is preferable that Ra of the contact surface between the dielectric layer of the electrostatic chuck and the substrate is 1.0 μm or less. This is because when the surface Ra exceeds 1.0 μm, the electrostatic attraction force decreases.
[0022]
Next, a method for manufacturing the electrostatic suction device of the present invention will be described.
[0023]
First, a material to be a base material is prepared. Since the ceramic insulating layer and the ceramic dielectric layer are formed by thermal spraying, the base material must be selected in consideration of the difference in thermal expansion between the ceramic insulating layer and the ceramic dielectric layer. As this substrate, a low thermal expansion alloy such as invar or a cobalt alloy, or a metal-ceramic composite material (MMC) is preferably selected in consideration of the thermal expansion coefficient of each layer provided on the substrate.
[0024]
Next, a power supply terminal for supplying power to an electrode layer formed thereon is bonded to the base material. As the power supply terminal, as shown in FIG. 1, a low thermal expansion alloy, MMC, or the like is used as the power supply pin to match the thermal expansion coefficients of the base material and, more preferably, each of the layers formed thereon. It is preferable to use one made by spraying aluminum oxide or the like on this, or one having a structure in which a power supply pin is bonded to an insulating tube made of machinable ceramics or the like. In this case, the difference between the average thermal expansion coefficient of the power supply pin and the insulating tube, that is, the power supply terminal at 20 to 200 ° C., and the average thermal expansion coefficient of the base material at 20 to 200 ° C. is 2 × 10 −6 / ° C. or less. It is desirable. By doing so, it is possible to suppress the occurrence of cracks and the like in each layer on the base material due to pushing up of the power supply pin material at a high temperature.
[0025]
Next, the surface of the base material is uniformly roughened using a blast material such as aluminum oxide or silicon carbide, and washed. Thereafter, a layer of a metal such as nickel, aluminum, chromium, cobalt, or molybdenum, or a plurality of layers each of these metals is formed by thermal spraying as an undercoat in consideration of the adhesion to the substrate. The formation of the undercoat layer is appropriately performed depending on the use environment and is not always necessary. Thereafter, an insulating layer made of a ceramic such as aluminum oxide is formed on the undercoat layer by a plasma spraying method or the like.
[0026]
Next, a sealing process is performed on the insulating layer. This sealing treatment is to complete the impregnation of the insulating layer with the sealing agent. The sealing treatment in this step is appropriately performed depending on the use environment and is not always necessary.
[0027]
Next, an electrode layer is formed on the upper surface by a plasma spraying method or the like. Nickel, tungsten, aluminum or the like can be preferably used for the electrode layer. The thickness of the electrode layer is preferably about 30 to 100 μm. The reason for this is that if the thickness is less than 30 μm, the layer is not formed uniformly, and the adsorption force tends to be uneven. If the thickness is more than 100 μm, the step between the electrode layer and the insulating layer becomes large, and the dielectric formed on the top This is because the withstand voltage characteristics of the body layer deteriorate, which is not preferable.
[0028]
Thereafter, a dielectric layer made of a ceramic layer such as aluminum oxide-5% by weight titanium oxide is further formed on the upper surface by a plasma spraying method or the like, to obtain an electrostatic chuck.
[0029]
Next, a sealing treatment for filling pores in the layer formed by the thermal spraying method is performed. Examples of the sealing agent include colloidal slurries such as silica sol, alumina sol, and magnesia sol, or metal alkoxide-based polymers such as SiO 2 , Al 2 O 3 , and TiO 2, and these polymers and malamine, acrylic, phenol, and fluorine. A resin containing various resins such as silicon, acrylic resin and the like can be used.
[0030]
The thickness of the insulating layer and the dielectric layer is preferably about 100 to 500 μm. If the thickness is less than 100 μm, the withstand voltage is reduced and dielectric breakdown easily occurs. If the thickness is more than 500 μm, the thermal expansion difference between the electrode layer and the base material is increased. And cracks and breakage due to thermal shock are likely to occur, and the attraction force is undesirably reduced.
[0031]
The most common type of ceramic layer, which is an insulating layer, is aluminum oxide, but is not limited to this, and the type of ceramic can be appropriately selected in consideration of the difference in thermal expansion with the base material. Just fine. The most common type of ceramic layer, which is a dielectric layer, is an aluminum oxide-titanium oxide-based type, but is not limited thereto. If necessary, the type of ceramics may be appropriately selected according to the required dielectric constant.
[0032]
Next, grinding and lapping are performed so that the surface of the dielectric layer has a surface roughness Ra of 1.0 μm or less. After that, blast processing is performed to make the mounting portion have the above-mentioned embossed shape.
[0033]
Next, the same sealing treatment as described above is performed.
[0034]
When the electrostatic chuck is manufactured by the above method, it can be used at a high temperature (up to 350 ° C.), has extremely excellent withstand voltage characteristics, has excellent heat uniformity of a substrate to be sucked, and has thermal expansion. An electrostatic attraction device in which each layer provided on the base material is prevented from being separated due to the difference can be obtained.
[0035]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.
[0036]
(Example)
(1) Production of a base material 70 parts by weight of a commercially available SiC powder # 180 (average particle diameter 66 μm) and 30 parts by weight of a commercially available SiC powder # 500 (average particle diameter 25 μm) were used as a reinforcing material, and colloidal was used as a binder. A silica liquid was added in an amount such that the silica solid content became 2 parts by weight, and 0.2 parts by weight of FORMASTER VL (manufactured by San Nopco) and 24 parts by weight of ion-exchanged water were added as defoaming agents. Mix for 12 hours. The slurry thus obtained was poured into a mesh-equipped mold having a size of 1008 x 680 mm and a thickness of 40 mm, and was subjected to filter press. After demolding, the resultant was fired at 1000 ° C to form a preform.
[0037]
The obtained preform was combined with an aluminum alloy having the composition of Al-12Si-3Mg-2Cu-3Ti, and the alloy was non-pressurized and infiltrated into the preform at 825 ° C. for 60 hours in a nitrogen stream, and then cooled. As a result, a metal-ceramic composite material having a SiC powder content of 70% by volume was produced (size: 1008 × 680 × 40 mmt). This metal-ceramic composite material was used as a substrate.
[0038]
(2) Adhesion of power supply terminal A power supply terminal for supplying power to an electrode layer formed on the substrate in a later step is adhered to the substrate. As the power supply terminal, a power supply pin made of Niresist D-5 (low thermal expansion alloy) or the like and an insulating material made of machinable ceramics (Photoveel L) are used in consideration of the thermal expansion difference with the metal-ceramic composite material used for the base material. Tubes were used.
[0039]
(3) Forming the insulating layer The surface of the base material is blasted until the surface roughness becomes 5 μm or more in Rmax in order to improve the adhesion to the insulating layer, and then the aluminum oxide layer is formed on the upper surface by plasma spraying. Is formed to a thickness of 400 μm.
[0040]
(4) Sealing treatment of insulating layer Next, sealing treatment was performed on the insulating layer formed on the base material using an SiO 2 -based metal alkoxide in the air.
[0041]
(5) Formation of Electrode Layer and Dielectric Layer Next, after a Ni electrode layer is plasma-sprayed to a thickness of 50 μm, an aluminum oxide-5% by weight titanium oxide layer is formed to a thickness of 500 μm on the upper surface by plasma spraying. did.
[0042]
(6) Sealing treatment and grinding, lapping and blasting After that, sealing treatment is performed using a SiO 2 -based metal alkoxide in the same manner as in (4), and then the thickness of the top layer is determined using a surface grinder. Was ground to 370 μm, and then lapping was performed to make the thickness of the top layer 350 μm and the surface roughness Ra 0.5 μm. Thereafter, the surface of the electrostatic attraction device was blasted to form an embossed shape having a contact area with the object to be attracted of 70%. The embossed shape had a height of about 50 μm, and the shape of the contact surface was 4.7 mm in diameter, and circular convex portions having a diameter of 4.7 mm were arranged on a square lattice as shown in FIG.
[0043]
(7) Sealing treatment After that, sealing treatment was performed using a SiO 2 -based metal alkoxide in the same manner as in (4) to produce an electrostatic attraction device.
[0044]
(Comparative Example 1)
An electrostatic chuck was manufactured in the same manner as in the example except that aluminum (5052) was used as the base material.
[0045]
(Comparative Example 2)
An electrostatic chuck was manufactured in the same manner as in the example, except that the material of the power supply pin was aluminum (5052).
[0046]
(Comparative Example 3)
The electrostatic adsorbing device is formed in the same manner as in the embodiment, except that the mounting portion has an embossed shape such that the area of the contact surface that contacts the large-sized glass substrate for display is 90% of the total area of the mounting portion. Was prepared.
[0047]
(Comparative Example 4)
An electrostatic attraction device was manufactured in the same manner as in the example except that Ra on the surface of the electrostatic attraction device was set to 1.5 μm (the surface processing was grinding).
[0048]
(Comparative Example 5)
The electrostatic adsorbing device is the same as that of the embodiment except that the mounting portion has an embossed shape such that the area of the contact surface that contacts the large-sized glass substrate for display is 10% of the total area of the mounting portion. Was prepared.
[0049]
(Evaluation)
The evaluation was performed by performing a temperature cycle test at room temperature⇔350 ° C. for each electrostatic chuck and performing a withstand voltage test before and after the test.
[0050]
The withstand voltage test was performed by placing a large glass substrate for display on the surface of the electrostatic chuck and applying a voltage of 3000 V. ○ indicates that there was no change even when the withstand voltage test was performed, and X indicates that dielectric breakdown occurred as a result of the withstand voltage test.
[0051]
Furthermore, after performing the temperature cycle test, the uniformity of the substrate in a state where the substrate was attracted to the electrostatic attraction device and the attraction force of the electrostatic attraction device were also evaluated.
[0052]
The evaluation of the thermal uniformity was performed by placing a large glass substrate for display on the upper surface of the electrostatic chuck, heating the lower portion of the electrostatic chuck with a heater, and observing the temperature distribution of the substrate by thermography. When the temperature distribution at the time of heating at a setting of 100 ° C. was within 10 ° C., it was evaluated as “good”, and when it exceeded 10 ° C., it was evaluated as “bad”.
[0053]
The evaluation of the attraction force was performed by a method in which an electrostatic attraction device was installed in a vacuum chamber test device, and the attraction jig was pulled under vacuum. When the applied force at 1000 V was 1000 g / cm 2 or more, it was evaluated as ○, and when it was lower than that, it was evaluated as ×.
[0054]
[Table 1]
Figure 2004349557
[0055]
【The invention's effect】
As described above, according to the present invention, a large-sized glass substrate suction device for a display capable of securing the uniform temperature of a substrate even during a high-temperature process while being able to suck a large-sized glass substrate for a display by a single suction device. Can be provided.
[0056]
Furthermore, according to the present invention, it is possible to provide a large-sized glass substrate suction device for display, in which a substrate and a layer formed on the substrate by thermal spraying are not separated during a high-temperature process.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an embodiment of the electrostatic suction device of the present invention.
FIG. 2 is a perspective view showing an example of a shape of a mounting portion of the electrostatic suction device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base material 2 Insulating layer 3 Electrode layer 4 Dielectric layer 5 Power supply pin 6 Machinable ceramics 7 Convex part 8 Contact surface 10 Mounting part

Claims (4)

溶射法により、基材の上部に設けられたセラミック絶縁層と、このセラミック絶縁層の上部に設けられた電極層と、この電極層を被覆するように設けられたセラミック誘電体層とを具備するディスプレー用大型ガラス基板吸着装置であって、
前記セラミック誘電体層上の載置部の、ディスプレー用大型ガラス基板と接触する接触面の面積が、載置部の全面積の20〜80%となるように、載置部がエンボス形状を有していることを特徴とするディスプレー用大型ガラス基板吸着装置。
A ceramic insulating layer provided on the base material by a thermal spraying method, an electrode layer provided on the ceramic insulating layer, and a ceramic dielectric layer provided so as to cover the electrode layer. A large glass substrate suction device for display,
The mounting portion has an embossed shape such that the area of the contact surface of the mounting portion on the ceramic dielectric layer that contacts the large-sized glass substrate for display is 20 to 80% of the total area of the mounting portion. A large-sized glass substrate suction device for a display, characterized in that:
前記基材の20〜200℃における平均の熱膨張係数と、基材上に設けられるセラミック絶縁層とセラミック誘電体層の20〜200℃における平均の熱膨張係数との差が、2×10−6/℃以下であることを特徴とする請求項1に記載のディスプレー用大型ガラス基板吸着装置。The difference between the average thermal expansion coefficient of the base material at 20 to 200 ° C. and the average thermal expansion coefficient of the ceramic insulating layer and the ceramic dielectric layer provided on the base material at 20 to 200 ° C. is 2 × 10 − The large glass substrate adsorption device for a display according to claim 1, wherein the temperature is 6 / ° C or less. 前記電極層への給電に用いる給電端子を具備し、該給電端子の20〜200℃における平均の熱膨張係数と、前記基材の20〜200℃における平均の熱膨張係数との差が2×10−6/℃以下であることを特徴とする請求項1又は2に記載のディスプレー用大型ガラス基板吸着装置。A power supply terminal used for power supply to the electrode layer, wherein a difference between an average thermal expansion coefficient of the power supply terminal at 20 to 200 ° C. and an average thermal expansion coefficient of the base material at 20 to 200 ° C. is 2 × The large-sized glass substrate suction device for a display according to claim 1, wherein the temperature is 10 −6 / ° C. or less. 前記接触面のRaが、1.0μm以下であることを特徴とする請求項1〜3のいずれかに記載のディスプレー用大型ガラス基板吸着装置。The large glass substrate suction device for a display according to any one of claims 1 to 3, wherein Ra of the contact surface is 1.0 µm or less.
JP2003146524A 2003-05-23 2003-05-23 Large glass substrate adsorption device for display Expired - Fee Related JP4268450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146524A JP4268450B2 (en) 2003-05-23 2003-05-23 Large glass substrate adsorption device for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146524A JP4268450B2 (en) 2003-05-23 2003-05-23 Large glass substrate adsorption device for display

Publications (2)

Publication Number Publication Date
JP2004349557A true JP2004349557A (en) 2004-12-09
JP4268450B2 JP4268450B2 (en) 2009-05-27

Family

ID=33533352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146524A Expired - Fee Related JP4268450B2 (en) 2003-05-23 2003-05-23 Large glass substrate adsorption device for display

Country Status (1)

Country Link
JP (1) JP4268450B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194393A (en) * 2006-01-19 2007-08-02 Taiheiyo Cement Corp Electrostatic chuck
JP2012203286A (en) * 2011-03-28 2012-10-22 Techno Quartz Kk Liquid crystal substrate hold panel and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152636A (en) * 1983-02-21 1984-08-31 Toshiba Corp Static chucking device
JPH0855905A (en) * 1994-07-19 1996-02-27 Internatl Business Mach Corp <Ibm> Electrostatic chuck with improved wafer temperature uniformity
JPH10150100A (en) * 1996-09-19 1998-06-02 Hitachi Ltd Electrostatic chuck, method and system for processing sample using it
JPH10189696A (en) * 1996-12-26 1998-07-21 Kyocera Corp Power feeding structure for wafer holder
JPH1174336A (en) * 1997-08-29 1999-03-16 Kyocera Corp Wafer support member
JP2000021962A (en) * 1998-07-03 2000-01-21 Hitachi Ltd Electrostatic chuck device
JP2001351966A (en) * 2000-06-05 2001-12-21 Sumitomo Osaka Cement Co Ltd Suscepter and method for manufacturing the suscepter
JP2004282047A (en) * 2003-02-25 2004-10-07 Kyocera Corp Electrostatic chuck

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152636A (en) * 1983-02-21 1984-08-31 Toshiba Corp Static chucking device
JPH0855905A (en) * 1994-07-19 1996-02-27 Internatl Business Mach Corp <Ibm> Electrostatic chuck with improved wafer temperature uniformity
JPH10150100A (en) * 1996-09-19 1998-06-02 Hitachi Ltd Electrostatic chuck, method and system for processing sample using it
JPH10189696A (en) * 1996-12-26 1998-07-21 Kyocera Corp Power feeding structure for wafer holder
JPH1174336A (en) * 1997-08-29 1999-03-16 Kyocera Corp Wafer support member
JP2000021962A (en) * 1998-07-03 2000-01-21 Hitachi Ltd Electrostatic chuck device
JP2001351966A (en) * 2000-06-05 2001-12-21 Sumitomo Osaka Cement Co Ltd Suscepter and method for manufacturing the suscepter
JP2004282047A (en) * 2003-02-25 2004-10-07 Kyocera Corp Electrostatic chuck

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194393A (en) * 2006-01-19 2007-08-02 Taiheiyo Cement Corp Electrostatic chuck
JP2012203286A (en) * 2011-03-28 2012-10-22 Techno Quartz Kk Liquid crystal substrate hold panel and manufacturing method thereof

Also Published As

Publication number Publication date
JP4268450B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4744855B2 (en) Electrostatic chuck
KR101142000B1 (en) Electrostatic chuck
KR20070066890A (en) Electrostatic chuck
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP3975944B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP4942364B2 (en) Electrostatic chuck, wafer holding member, and wafer processing method
JP5225024B2 (en) Suction board and vacuum suction device
JP4387563B2 (en) Susceptor and method of manufacturing susceptor
JP4066329B2 (en) Electrostatic chuck manufacturing method and electrostatic chuck obtained using the same
JP2006332204A (en) Electrostatic chuck
CN105074902A (en) Electrostatic chuck device
JP4031419B2 (en) Electrostatic chuck and manufacturing method thereof
JP4326874B2 (en) Electrostatic chuck and manufacturing method thereof
JP2005063991A (en) Semiconductor manufacturing equipment
JP5396176B2 (en) Wafer mounting table and manufacturing method thereof
JPH10229115A (en) Vacuum chuck for wafer
CN105190838B (en) The operation substrate and semiconductor composite base plate of semiconductor composite base plate
CN104241182A (en) Manufacturing method of electrostatic suction cup, electrostatic suction cup and plasma processing device
JP2004079861A (en) Electrostatic chuck
JP4268450B2 (en) Large glass substrate adsorption device for display
JP4104386B2 (en) Manufacturing method of electrostatic chuck
JP2002170871A (en) Electrostatic chuck
JP6503689B2 (en) Electrostatic chuck device and method of manufacturing the same
JP3965468B2 (en) Electrostatic chuck
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees