JP4104386B2 - Manufacturing method of electrostatic chuck - Google Patents

Manufacturing method of electrostatic chuck Download PDF

Info

Publication number
JP4104386B2
JP4104386B2 JP2002182748A JP2002182748A JP4104386B2 JP 4104386 B2 JP4104386 B2 JP 4104386B2 JP 2002182748 A JP2002182748 A JP 2002182748A JP 2002182748 A JP2002182748 A JP 2002182748A JP 4104386 B2 JP4104386 B2 JP 4104386B2
Authority
JP
Japan
Prior art keywords
insulating layer
electrostatic chuck
electrode layer
layer
lower insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002182748A
Other languages
Japanese (ja)
Other versions
JP2004031479A (en
Inventor
達也 塩貝
知之 小倉
亜希子 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2002182748A priority Critical patent/JP4104386B2/en
Publication of JP2004031479A publication Critical patent/JP2004031479A/en
Application granted granted Critical
Publication of JP4104386B2 publication Critical patent/JP4104386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、静電チャックに関するもので、さらに詳しくは、基台と、この基台の上面に溶射により形成された下部絶縁層と、この下部絶縁層の上に形成された電極層と、この電極層を被覆するように前記下部絶縁層の上に溶射により形成された上部絶縁層と、を具備する静電チャック及びその製造方法に関するものである。
【0002】
【従来の技術】
半導体製造過程における薄膜形成工程またはドライエッチング工程においては、ウェハ等の平板状の試料を載置する保持装置上に試料を確実に密着させる必要があり、このような要求を満たす試料保持装置としては、静電作用を利用して試料を載置台上に密着・保持する静電チャックが広く用いられている。
ここで、静電チャックとしては、窒化アルミニウム等のセラミックス中に電極を埋設させたものが従来から一般的に使用されているが、最近では、ウェハ等の平板状の試料が大型化する傾向にあり、セラミックスでは対応できなくなってきている現状にある。
従って、金属や金属−セラミックス複合材料等からなる基台に、下部絶縁層とその上に形成された電極層と上部絶縁層とを具備する静電チャックが大型化が可能で、しかも耐熱性及び耐久性が高いことから検討されてきている。
【0003】
【発明が解決しようとする課題】
しかし、上記した静電チャックの絶縁層は溶射法により形成される場合が多く、その絶縁層は多くの微小な細孔が存在する多孔質状になっているため、耐電圧が低いため試料の保持力が低いという課題がある。また、試料と電極層との間で放電が起こる場合があるなどの問題を有している。そこで、静電チャックとして使用する場合に、耐電圧特性を向上させる目的で、特開平6−196548号公報にて開示されているように、封孔処理による微小な細孔を充填することが必要となる。
【0004】
しかしながら、基台に、下部絶縁層とその上に形成された電極層と上部絶縁層とを具備する静電チャックにおいては、内部に形成されている電極層が、溶射法により全面に形成されていることから、封孔処理剤が下部絶縁層にまで、含浸せず、耐電圧特性が劣化するという問題があった。
この為、基台の上面に形成する絶縁層ごとに封孔処理を実施するという方法もあるが、この場合、その上面に形成される溶射皮膜層の密着性が低下し、かえって剥離等の問題が発生しやすくなるという問題があった。
【0005】
本発明は、上述した静電チャックが有する課題に鑑みてなされたものであり、その目的は、内部に形成される電極層を開孔を有する構造にすることによって、封孔処理剤の含浸性を向上させ、耐電圧特性の極めて優れた静電チャックを提供することにある。
【0006】
【課題を解決するための手段】
上記した本発明の目的は、基台と、この基台の上面に溶射により形成された下部絶縁層と、この下部絶縁層の上に形成された電極層と、この電極層を被覆するように前記下部絶縁層の上に溶射により形成された上部絶縁層と、を具備する静電チャックであって、前記下部絶縁層及び前記上部絶縁層には、封孔処理剤が含侵されており、前記電極層の開孔率が5〜80%であることを特徴とする静電チャックによって達成される。
【0007】
また、本発明の目的は、基台上に溶射により下部絶縁層を形成する工程と、封孔処理されていない前記下部絶縁層の上に溶射により開孔率が5〜80%の電極層を形成する工程と、前記電極層を被覆するように前記下部絶縁層の上に溶射により上部絶縁層を形成する工程と、前記上部絶縁層の表面から封孔処理剤を含侵させ、前記電極層の開孔を通って前記下部絶縁層にまで含侵させる工程と、を具備することを特徴とする静電チャックの製造方法によって達成される。
【0008】
【発明の実施の形態】
以下さらに詳細に説明する。
図1に本発明の構成による静電チャックの模式的断面図を示した。
ここで、本発明の静電チャックは、基台1と、この基台1の上面に溶射により形成された下部絶縁層2と、この下部絶縁層2の上に形成された電極層3と、この電極層3を被覆するように前記下部絶縁層2の上に溶射により形成された上部絶縁層4とを具備する。また、5は電極層3と導通している電極端子であり、6は電極端子5と基台1との絶縁を目的とした絶縁管である。
【0009】
本発明では、上記電極層の開孔率が5〜80%であることと静電チャックの表面が封孔処理されていることを提案している。
その理由は、溶射法により形成された皮膜の耐電圧特性向上のために実施する封孔処理工程において、封孔処理剤の含浸性を向上させることを目的としたものである。
ここで、電極層の開孔率が5%未満の場合は、封孔処理剤の含浸性の向上が十分でなく、一方、電極層の開孔率が80%を越えると電極面積が減少するため静電チャックとしての吸着力低下し好ましくない。
【0010】
次に、絶縁層としては、最も一般的なものは酸化アルミニウムであるが、これに限定されるものではなく、必要な特性、たとえば、高い誘電率が必要であれば、必要な誘電率の大きさに応じてセラミックスの種類を適宜選べばよい。
【0011】
本発明の製造方法を述べると、まず基台となる材料を用意する。この基台としては、アルミニウム合金、低熱膨張合金、金属−セラミックス複合材料等を、使用温度を考慮して適宜選択する。
次に、基台表面を酸化アルミニウム、炭化ケイ素等のブラスト材料を用いて表面を均一に粗面化すると共に、洗浄化する。その後、基台との密着性を考慮してアンダ−コ−トとして、ニッケル、アルミニウム、クロム、コバルト、モリブデン等の金属またはこれらの金属の合金をア−ク溶射法もしくはプラズマ溶射法によって形成する。このアンダ−コ−ト層の形成は、使用環境によって適宜実施し、必ずしも必要なものではない。その後、このアンダ−コ−ト層上面にプラズマ溶射法等により、酸化アルミニウム等のセラミックス層からなる下部絶縁層を形成する。
【0012】
次に、その上面にプラズマ溶射法等で電極層を形成する。ここで、電極層に開孔を形成させるには、所望の開孔率を有するマスキングテ−プ(耐熱性テ−プ)を下部絶縁層であるアルミナ上に被覆してから電極層を溶射後にマスキングテ−プをはがしても良いし、もしくは、あらかじめ電極層を溶射後に所望の開孔率を有するパンチングメタル等の金属板を電極層上に置いてからブラスト処理を行い金属板の開孔部にあたる電極層を除去する方法を用いても良い。
【0013】
その後、所定の開孔率を有する電極層上面に、更にプラズマ溶射法等で酸化アルミニウム等のセラミックス層からなる上部絶縁層を形成して静電チャックとする。
【0014】
ここで、形成する絶縁層の厚さは、100〜500μm程度が好ましく、100μmより薄いと耐電圧が低くなり絶縁破壊が起こりやすく、500μmより厚いと電極層および基台との熱膨張差が顕著になり、熱衝撃による亀裂や破損が生じやすく、しかも吸着力も低下するため好ましくない。
ここで、絶縁層であるセラミックス層の種類は最も一般的なものは酸化アルミニウムであるが、これに限定されるものではなく、必要な特性、たとえば、高い誘電率が必要であれば、必要な誘電率の大きさに応じてセラミックスの種類を適宜選べばよい。
【0015】
次に、電極層の厚さとしては、30〜100μm程度が好ましい。その理由は、30μmより薄いと皮膜層が均一に形成されず、吸着力にムラが生じやすくなり、100μmより厚いと、電極層と下部絶縁層との間の段差が大きくなり、その上部に形成される絶縁層の耐電圧特性が低化するため好ましくないからである。
【0016】
また、本発明では、表面が封孔処理されていることを特徴とする静電チャックを提案している。ここで、封孔処理で充填する処理材としては、シリカゾル、アルミナゾル、マグネシアゾルなどのコロイダル状のスラリ−、あるいは、SiO2、Al2O3、TiO2等の金属アルコキシド系ポリマ−及びこれらのポリマ−とメラミン、アクリル、フェノ−ル、フッ素、シリコン、アクリル樹脂等の各種樹脂を含有するものを使用することができる。
【0017】
封孔処理は、溶射被覆により得られた静電チャックを真空デシケ−タ−中で真空吸引した後、上記スラリ−を表面から含浸させ、含浸スラリ−をそのスラリ−の特性を考慮し、乾燥させることによる。
次に、静電チャックの表面の研削加工、ラッピングを行い、所望の表面粗さRa:0.1〜2.0μm程度とする。以上の方法で静電チャックを作製すれば、電極層下部の絶縁層にまで封孔処理剤が含浸し、耐電圧特性が極めて優れた静電チャックが得られる。
【0018】
以下、本発明の実施例を比較例と共に具体的にあげ、本発明をさらに詳細に説明する。
(1)基台の作製
強化材として#180(平均粒径66μm)の市販のSiC粉末70重量部と#500(平均粒径25μm)の市販のSiC粉末30重量部を用い、それにバインダ−としてコロイダルシリカ液をそのシリカ固形分が2重量部となる量を添加し、それに消泡剤としてフォ−マスタVL(サンノプコ社製)を0.2重量部、イオン交換水を24重量部加え、ポットミルで12時間混合した。得られたスラリ−をサイズ:209×157mm、厚さ10mmの成形体が得られるメッシュ付金型に流し込んでフィルタ−プレスし、それを脱型した後、1000℃で焼成してプリフォ−ムを形成した。
得られたプリフォ−ムとAl−12Si−3Mg−2Cu−3Ti組成のアルミニウム合金とを組み合わせ、その合金をプリフォ−ム中に窒素気流中で825℃の温度で60時間非加圧浸透させた後、冷却してSiC粉末の含有率が65体積%の金属−セラミックス複合材料を作製した(サイズ:209×157×10mmt)。この金属−セラミックス複合材料を基台として使用した。
【0019】
(2)絶縁層と電極層の形成
基台表面を絶縁層とよく密着するために、表面粗さがRmaxで5μm以上になるまで、ブラスト処理した後、その上面にプラズマ溶射で酸化アルミニウム層を300μmの厚さに形成する。その後、Ni電極層を50μmの厚さにプラズマ溶射した後、所望の開孔率を有するパンチングメタル用い、これをマスクと使用してブラスト処理を実施し、5〜80%の開孔率を有するNi電極層とした。その後、この上面にプラズマ溶射により酸化アルミニウム層を400μmの厚さに形成した。また比較例として、開孔を有しないものと開孔率が5〜80%の範囲外のNi電極層についても作製した。
【0020】
(3)封孔処理と静電チャックの作製
その後、真空下でSiO2系の金属アルコキシドを用いて封孔処理を実施した後、研削加工、ラップ処理を実施し、トップ層の膜厚が300μmで、かつ、表面粗さRaが0.2μmの静電チャックを作製した。
【0021】
(4)評価
上記のようにして得られた静電チャックに、10KVまでの直流電圧を印加し、下部絶縁層の絶縁破壊電圧を測定することにより耐電圧特性を評価した。
また、印加電圧:1000V時の吸着力を評価した。この際、 吸着力は、真空チャンバ−試験装置内に静電チャックを固定し、真空中でHeガスを吸着物であるSiウエハの裏面から導入し、Siウエハが剥がれる圧力をモニタ−しこの値を吸着力とした。
得られた評価結果を表1にまとめて示した。
【0022】
【表1】

Figure 0004104386
【0023】
表1の結果から、本発明の実施例であるNo.1〜7は下部絶縁層の絶縁破壊電圧が10KVよりも大きく、かつ、吸着力は1000g/cm2を越えて実用上十分な大きさであった。
一方、比較例であるNo.8〜10は下部絶縁層の絶縁破壊電圧が小さく、また、No.11は、吸着力が小さくなり実用上十分ではなかった。
【0024】
【発明の効果】
以上説明したように、本発明によれば、基台に、溶射法により形成した下部絶縁層とその上に形成された電極層と上部絶縁層とを具備する静電チャックにおいて、電極層の開孔率が5〜80%であることにより封孔処理剤の含浸性を向上させることができ、耐電圧特性が極めて優れ、かつ、吸着力の大きい静電チャックを提供できる効果がある。
【図面の簡単な説明】
【図1】本発明の構成による静電チャックの模式的断面図である。
【符号の説明】
1 基台
2 下部絶縁層
3 電極層
4 上部絶縁層
5 電極端子
6 絶縁管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic chuck, and more specifically, a base, a lower insulating layer formed by thermal spraying on the upper surface of the base, an electrode layer formed on the lower insulating layer, The present invention relates to an electrostatic chuck comprising an upper insulating layer formed by thermal spraying on the lower insulating layer so as to cover an electrode layer, and a manufacturing method thereof .
[0002]
[Prior art]
In the thin film formation process or dry etching process in the semiconductor manufacturing process, it is necessary to ensure that the sample adheres securely to a holding device on which a flat sample such as a wafer is placed. As a sample holding device that satisfies such requirements, Electrostatic chucks that adhere and hold a sample on a mounting table using electrostatic action are widely used.
Here, electrostatic chucks in which electrodes are embedded in ceramics such as aluminum nitride have been generally used, but recently, flat samples such as wafers tend to be larger. Yes, with ceramics it is no longer possible to deal with it.
Therefore, an electrostatic chuck having a lower insulating layer, an electrode layer formed thereon, and an upper insulating layer on a base made of metal, a metal-ceramic composite material, or the like can be increased in size, and heat resistance and It has been studied because of its high durability.
[0003]
[Problems to be solved by the invention]
However, the insulating layer of the electrostatic chuck described above is often formed by a thermal spraying method, and the insulating layer is porous with many minute pores. There is a problem that holding power is low. In addition, there is a problem that discharge may occur between the sample and the electrode layer. Therefore, when used as an electrostatic chuck, for the purpose of improving withstand voltage characteristics, it is necessary to fill fine pores by sealing treatment as disclosed in JP-A-6-196548. It becomes.
[0004]
However, in an electrostatic chuck having a base with a lower insulating layer, an electrode layer formed thereon, and an upper insulating layer, the electrode layer formed inside is formed on the entire surface by thermal spraying. Therefore, the sealing agent is not impregnated even in the lower insulating layer, and the withstand voltage characteristic is deteriorated.
For this reason, there is also a method of performing sealing treatment for each insulating layer formed on the upper surface of the base, but in this case, the adhesion of the sprayed coating layer formed on the upper surface is lowered, and on the contrary, problems such as peeling There was a problem that it is easy to occur.
[0005]
The present invention has been made in view of the problems of the electrostatic chuck described above, and the object thereof is to make the electrode layer formed therein have a structure having openings, thereby impregnating the sealing agent. It is an object of the present invention to provide an electrostatic chuck having extremely excellent withstand voltage characteristics.
[0006]
[Means for Solving the Problems]
The object of the present invention described above is to cover the base, the lower insulating layer formed on the upper surface of the base by thermal spraying, the electrode layer formed on the lower insulating layer, and the electrode layer. An electrostatic chuck comprising an upper insulating layer formed by thermal spraying on the lower insulating layer, wherein the lower insulating layer and the upper insulating layer are impregnated with a sealing agent; This is achieved by an electrostatic chuck wherein the aperture ratio of the electrode layer is 5 to 80%.
[0007]
Another object of the present invention is to form a lower insulating layer by thermal spraying on a base, and an electrode layer having a porosity of 5 to 80% by thermal spraying on the lower insulating layer that has not been sealed. Forming the upper insulating layer by spraying on the lower insulating layer so as to cover the electrode layer; impregnating a sealing agent from the surface of the upper insulating layer; and And the step of impregnating the lower insulating layer through the openings of the electrostatic chuck.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
This will be described in more detail below.
FIG. 1 shows a schematic cross-sectional view of an electrostatic chuck according to the configuration of the present invention.
Here, the electrostatic chuck of the present invention includes a base 1, a lower insulating layer 2 formed by thermal spraying on the upper surface of the base 1, an electrode layer 3 formed on the lower insulating layer 2, An upper insulating layer 4 formed by thermal spraying on the lower insulating layer 2 is provided so as to cover the electrode layer 3. Reference numeral 5 denotes an electrode terminal that is electrically connected to the electrode layer 3, and reference numeral 6 denotes an insulating tube intended to insulate the electrode terminal 5 from the base 1.
[0009]
The present invention proposes that the aperture ratio of the electrode layer is 5 to 80% and that the surface of the electrostatic chuck is sealed.
The reason is to improve the impregnation property of the sealing agent in the sealing treatment step performed for improving the withstand voltage characteristics of the coating formed by the thermal spraying method.
Here, when the aperture ratio of the electrode layer is less than 5%, the impregnation of the sealing agent is not sufficiently improved. On the other hand, when the aperture ratio of the electrode layer exceeds 80%, the electrode area decreases. Therefore, the attractive force as an electrostatic chuck is lowered, which is not preferable.
[0010]
Next, the most common insulating layer is aluminum oxide, but it is not limited to this. If necessary characteristics, for example, a high dielectric constant is required, the required dielectric constant is large. The type of ceramic may be appropriately selected according to the thickness.
[0011]
The production method of the present invention will be described. First, a material to be a base is prepared. As this base, an aluminum alloy, a low thermal expansion alloy, a metal-ceramic composite material, or the like is appropriately selected in consideration of the operating temperature.
Next, the surface of the base is uniformly roughened and cleaned using a blast material such as aluminum oxide or silicon carbide. Thereafter, in consideration of adhesion to the base, a metal such as nickel, aluminum, chromium, cobalt, molybdenum, or an alloy of these metals is formed as an undercoat by arc spraying or plasma spraying. . The formation of the undercoat layer is appropriately performed depending on the use environment, and is not necessarily required. Thereafter, a lower insulating layer made of a ceramic layer such as aluminum oxide is formed on the upper surface of the undercoat layer by plasma spraying or the like.
[0012]
Next, an electrode layer is formed on the upper surface by plasma spraying or the like. Here, in order to form apertures in the electrode layer, a masking tape (heat-resistant tape) having a desired aperture ratio is coated on the lower insulating layer of alumina, and then the electrode layer is sprayed. The masking tape may be peeled off, or a metal plate such as a punching metal having a desired aperture ratio is placed on the electrode layer after thermal spraying of the electrode layer in advance, and then the blast treatment is performed to open the metal plate. A method of removing the corresponding electrode layer may be used.
[0013]
Thereafter, an upper insulating layer made of a ceramic layer such as aluminum oxide is further formed on the upper surface of the electrode layer having a predetermined aperture ratio by plasma spraying or the like to obtain an electrostatic chuck.
[0014]
Here, the thickness of the insulating layer to be formed is preferably about 100 to 500 μm. If the thickness is less than 100 μm, the withstand voltage is lowered and dielectric breakdown is likely to occur. Therefore, it is not preferable because cracks and breakage due to thermal shock are likely to occur, and the adsorptive power also decreases.
Here, the most common type of ceramic layer as an insulating layer is aluminum oxide, but it is not limited to this, and it is necessary if necessary characteristics such as a high dielectric constant are required. What is necessary is just to select the kind of ceramics suitably according to the magnitude | size of a dielectric constant.
[0015]
Next, the thickness of the electrode layer is preferably about 30 to 100 μm. The reason is that if it is thinner than 30 μm, the film layer is not formed uniformly and unevenness in the adsorption force is likely to occur, and if it is thicker than 100 μm, the step between the electrode layer and the lower insulating layer becomes larger and formed on the upper part. This is because the withstand voltage characteristic of the insulating layer to be reduced is not preferable.
[0016]
Moreover, the present invention proposes an electrostatic chuck characterized in that the surface is sealed. Here, as the processing material to be filled in the sealing treatment, colloidal slurry such as silica sol, alumina sol, magnesia sol, or metal alkoxide polymer such as SiO 2 , Al 2 O 3 , TiO 2 and the like, and these A material containing various resins such as a polymer and melamine, acrylic, phenol, fluorine, silicon, and acrylic resin can be used.
[0017]
In the sealing treatment, an electrostatic chuck obtained by thermal spray coating is vacuum-sucked in a vacuum desiccator, and then the slurry is impregnated from the surface, and the impregnated slurry is dried in consideration of the characteristics of the slurry. By letting
Next, the surface of the electrostatic chuck is ground and lapped to obtain a desired surface roughness Ra: about 0.1 to 2.0 μm. If the electrostatic chuck is manufactured by the above method, the sealing agent is impregnated into the insulating layer below the electrode layer, and an electrostatic chuck having extremely excellent withstand voltage characteristics can be obtained.
[0018]
Hereinafter, the present invention will be described in more detail with reference to specific examples together with comparative examples.
(1) Production of the base: 70 parts by weight of commercially available SiC powder of # 180 (average particle size 66 μm) and 30 parts by weight of commercially available SiC powder of # 500 (average particle size 25 μm) were used as a binder. Add the colloidal silica liquid in an amount that makes the silica solid content 2 parts by weight, add 0.2 parts by weight of Formaster VL (manufactured by San Nopco) and 24 parts by weight of ion-exchanged water as an antifoaming agent, Mixed for hours. The obtained slurry was poured into a mold with a mesh to obtain a molded product of size: 209 x 157 mm and thickness 10 mm, filter pressed, demolded, and then fired at 1000 ° C to form a preform. Formed.
After combining the obtained preform and an aluminum alloy having an Al-12Si-3Mg-2Cu-3Ti composition, the alloy was infiltrated into the preform in a nitrogen stream at a temperature of 825 ° C. for 60 hours under no pressure. After cooling, a metal-ceramic composite material with a SiC powder content of 65% by volume was produced (size: 209 × 157 × 10 mmt). This metal-ceramic composite material was used as a base.
[0019]
(2) Formation of insulating layer and electrode layer In order to bring the base surface into close contact with the insulating layer, after blasting until the surface roughness is 5 μm or more in Rmax, an aluminum oxide layer is formed on the upper surface by plasma spraying. It is formed to a thickness of 300 μm. After that, after the Ni electrode layer is plasma sprayed to a thickness of 50 μm, a punching metal having a desired aperture ratio is used, and this is used as a mask to perform a blast treatment, thereby having an aperture ratio of 5 to 80%. A Ni electrode layer was used. Thereafter, an aluminum oxide layer having a thickness of 400 μm was formed on the upper surface by plasma spraying. In addition, as a comparative example, a Ni electrode layer having no aperture and an aperture ratio outside the range of 5 to 80% was also produced.
[0020]
(3) Sealing treatment and production of electrostatic chuck After performing sealing treatment using SiO 2 metal alkoxide under vacuum, grinding and lapping were performed, and the film thickness of the top layer was 300 μm In addition, an electrostatic chuck having a surface roughness Ra of 0.2 μm was manufactured.
[0021]
(4) Evaluation The withstand voltage characteristics were evaluated by applying a DC voltage up to 10 KV to the electrostatic chuck obtained as described above and measuring the dielectric breakdown voltage of the lower insulating layer.
Further, the adsorption force at an applied voltage of 1000 V was evaluated. At this time, the adsorption force is determined by fixing the electrostatic chuck in the vacuum chamber test equipment, introducing He gas from the back of the Si wafer that is the adsorbate in vacuum, and monitoring the pressure at which the Si wafer peels off. Was the adsorption power.
The obtained evaluation results are summarized in Table 1.
[0022]
[Table 1]
Figure 0004104386
[0023]
From the results in Table 1, No. 1 which is an example of the present invention. In Nos. 1 to 7, the dielectric breakdown voltage of the lower insulating layer was larger than 10 KV, and the adsorptive power exceeded 1000 g / cm 2 and was sufficiently large for practical use.
On the other hand, No. which is a comparative example. Nos. 8 to 10 have a lower dielectric breakdown voltage of the lower insulating layer. No. 11 was not practically sufficient because the adsorptive power was small.
[0024]
【The invention's effect】
As described above, according to the present invention, in an electrostatic chuck including a lower insulating layer formed by thermal spraying, an electrode layer formed thereon, and an upper insulating layer on a base, the electrode layer is opened. When the porosity is 5 to 80%, the impregnation property of the sealing agent can be improved, and there is an effect that it is possible to provide an electrostatic chuck having extremely excellent withstand voltage characteristics and a large adsorption force.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an electrostatic chuck according to the configuration of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base 2 Lower insulating layer 3 Electrode layer 4 Upper insulating layer 5 Electrode terminal 6 Insulating tube

Claims (1)

基台上に溶射により下部絶縁層を形成する工程と、封孔処理されていない前記下部絶縁層の上に溶射により開孔率が5〜80%の電極層を形成する工程と、前記電極層を被覆するように前記下部絶縁層の上に溶射により上部絶縁層を形成する工程と、前記上部絶縁層の表面から封孔処理剤を含侵させ、前記電極層の開孔を通って前記下部絶縁層にまで含侵させる工程と、を具備することを特徴とする静電チャックの製造方法。Forming a lower insulating layer on the base by thermal spraying , forming an electrode layer having a porosity of 5 to 80% by thermal spraying on the lower insulating layer not sealed ; and the electrode layer Forming an upper insulating layer on the lower insulating layer by spraying so as to cover the lower insulating layer, impregnating a sealing agent from the surface of the upper insulating layer, and opening the lower electrode through the opening of the electrode layer. And a step of impregnating the insulating layer to the insulating layer.
JP2002182748A 2002-06-24 2002-06-24 Manufacturing method of electrostatic chuck Expired - Lifetime JP4104386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182748A JP4104386B2 (en) 2002-06-24 2002-06-24 Manufacturing method of electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182748A JP4104386B2 (en) 2002-06-24 2002-06-24 Manufacturing method of electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2004031479A JP2004031479A (en) 2004-01-29
JP4104386B2 true JP4104386B2 (en) 2008-06-18

Family

ID=31179161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182748A Expired - Lifetime JP4104386B2 (en) 2002-06-24 2002-06-24 Manufacturing method of electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4104386B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542959B2 (en) * 2005-07-14 2010-09-15 東京エレクトロン株式会社 Electrostatic chucking electrode, substrate processing apparatus, and method of manufacturing electrostatic chucking electrode
JP2007258240A (en) * 2006-03-20 2007-10-04 Tokyo Electron Ltd Surface processing method
JP4992389B2 (en) * 2006-11-06 2012-08-08 東京エレクトロン株式会社 Mounting apparatus, plasma processing apparatus, and plasma processing method
WO2012166256A1 (en) * 2011-06-02 2012-12-06 Applied Materials, Inc. Electrostatic chuck aln dielectric repair
CN114713473A (en) * 2022-02-28 2022-07-08 广东粤科新材料科技有限公司 Method for sealing holes by thermal spraying coating

Also Published As

Publication number Publication date
JP2004031479A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4744855B2 (en) Electrostatic chuck
KR100793676B1 (en) Electrostatic chuck and producing method thereof
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP4272786B2 (en) Electrostatic chuck member and manufacturing method thereof
JP4066329B2 (en) Electrostatic chuck manufacturing method and electrostatic chuck obtained using the same
KR101276506B1 (en) Surface-treated ceramic member, method for producing same, and vacuum processing device
JP2007173596A (en) Electrostatic chuck
KR20130123821A (en) Plasma resistant coating layer, method of manufacturing the same and plasma resistant unit
JP2010109106A (en) Suction cup and vacuum suction apparatus
JP2005317749A (en) Holding body for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus loaded therewith
JP4104386B2 (en) Manufacturing method of electrostatic chuck
JP4031419B2 (en) Electrostatic chuck and manufacturing method thereof
JP4326874B2 (en) Electrostatic chuck and manufacturing method thereof
JP2005063991A (en) Semiconductor manufacturing equipment
JP2004079861A (en) Electrostatic chuck
JP4523134B2 (en) Vacuum processing apparatus member and electrostatic chuck
JPH09283606A (en) Electrostatic chuck
JP3966201B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP4064835B2 (en) Electrostatic chuck and manufacturing method thereof
JP4917715B2 (en) Electrostatic chuck
JP4268450B2 (en) Large glass substrate adsorption device for display
JP2002184851A (en) Electrostatic chuck stage and its manufacturing method
JP4510358B2 (en) Electrostatic chuck and manufacturing method thereof
JP4749971B2 (en) Ceramic heater and manufacturing method thereof
JP2007194393A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Ref document number: 4104386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250