JP4739776B2 - Susceptor - Google Patents

Susceptor Download PDF

Info

Publication number
JP4739776B2
JP4739776B2 JP2005053480A JP2005053480A JP4739776B2 JP 4739776 B2 JP4739776 B2 JP 4739776B2 JP 2005053480 A JP2005053480 A JP 2005053480A JP 2005053480 A JP2005053480 A JP 2005053480A JP 4739776 B2 JP4739776 B2 JP 4739776B2
Authority
JP
Japan
Prior art keywords
susceptor
deposited
film
thickness
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005053480A
Other languages
Japanese (ja)
Other versions
JP2006237498A (en
Inventor
賢三 高橋
暁 野上
清秀 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Rohm Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, Rohm Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2005053480A priority Critical patent/JP4739776B2/en
Publication of JP2006237498A publication Critical patent/JP2006237498A/en
Application granted granted Critical
Publication of JP4739776B2 publication Critical patent/JP4739776B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体製造に用いるサセプタに関し、特に、ケイ素(Si)を気相成長させる際に用いるサセプタに関するものである。   The present invention relates to a susceptor used for semiconductor manufacture, and more particularly to a susceptor used when vapor-phase-growing silicon (Si).

表面粗さRmax(最大高さRy)が0.5μm以下であるサセプタが、例えば、下記特許文献1に開示されている。この特許文献1のものは、黒鉛基材からなる円板状のサセプタ本体の片面に半導体ウエーハを収容する円形の多数のウエーハ収容凹部を設けてなる気相成長用縦型サセプタにおいて、前記ウエーハ収容凹部以外のサセプタ本体の片面の表面粗さRmaxを0.5μm以下としたことを特徴とする気相成長用縦型サセプタである。
特開平10−195660号公報
For example, Patent Document 1 below discloses a susceptor having a surface roughness Rmax (maximum height Ry) of 0.5 μm or less. This patent document 1 discloses a vertical susceptor for vapor phase growth in which a large number of circular wafer housing recesses for housing a semiconductor wafer are provided on one side of a disc-shaped susceptor body made of a graphite substrate. A vertical susceptor for vapor phase growth characterized in that the surface roughness Rmax on one side of the susceptor body other than the recesses is 0.5 μm or less.
Japanese Patent Laid-Open No. 10-195660

特許文献1のような従来の気相成長用サセプタに半導体ウェハをセットして、エピタキシャル成長を行うと、半導体ウェハだけでなく、半導体ウェハの載置部分以外のサセプタ表面にも堆積した膜(以下、堆積膜とする)が形成される。その後、半導体ウェハを取り替えて、新たにエピタキシャル成長を行うという作業を繰り返すと、半導体ウェハの載置部分以外のサセプタ表面には、さらに膜が堆積形成され、抵抗の不良、結晶欠陥、パーティクルを発生させてしまう。したがって、定期的な気相エッチングにより、サセプタ表面上の堆積した膜を除去する作業が必要であった。   When a semiconductor wafer is set on a conventional vapor phase susceptor such as Patent Document 1 and epitaxial growth is performed, not only the semiconductor wafer but also a film deposited on the surface of the susceptor other than the portion on which the semiconductor wafer is mounted (hereinafter referred to as “the semiconductor wafer”). A deposited film) is formed. After that, when the operation of replacing the semiconductor wafer and newly performing epitaxial growth is repeated, a film is further deposited on the surface of the susceptor other than the mounting portion of the semiconductor wafer, causing defective resistance, crystal defects, and particles. End up. Therefore, it is necessary to remove the deposited film on the susceptor surface by periodic vapor-phase etching.

そこで、本発明の目的は、サセプタ上の表面粗さを適正化することにより、サセプタ上の堆積膜の表面粗さを抑え、気相エッチング回数を低減させ得るサセプタを提供することである。   Accordingly, an object of the present invention is to provide a susceptor that can suppress the surface roughness of the deposited film on the susceptor and reduce the number of times of vapor phase etching by optimizing the surface roughness on the susceptor.

本発明のサセプタは、少なくとも1つのザグリを有するCVD−SiC被覆黒鉛からなるSiのエピタキシャル成長用のサセプタであって、ザグリ面以外の表面における算術平均粗さRaが0.5μmよりも大きく1.0μm未満である。なお、ザグリ面以外の表面の算術平均粗さRaは、0.8μm以上且つ1.0μm未満であることが好ましい。ここで、「ザグリ面以外の表面」とは、上記引用文献1に開示される「ウエーハ収容凹部以外のサセプタ本体の片面」と同様のものである。
The susceptor of the present invention is a susceptor for epitaxial growth of Si made of CVD-SiC-coated graphite having at least one counterbore, and has an arithmetic average roughness Ra on a surface other than the counterbore surface larger than 0.5 μm and 1.0. It is less than μm. In addition, it is preferable that arithmetic mean roughness Ra of surfaces other than the counterbore surface is 0.8 μm or more and less than 1.0 μm. Here, the “surface other than the counterbore surface” is the same as “one side of the susceptor body other than the wafer housing recess” disclosed in the above cited reference 1.

なお、上述の最大高さRy(表面粗さRmax)とは、粗さ曲線から、その平均線の方向に標準長さだけ抜き取り、この抜き取り部分の平均線から最も高い山頂までの高さYpと最も低い谷底までの深さYvとの和のことである。一箇所でも際立って高い山や深い谷があると、大きな値になってしまい測定値のバラツキが大きくなる特徴がある。
また、算術平均粗さRaとは、粗さ曲線から、その平均線の方向に標準長さだけ抜き取り、この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し、平均した値のことである。一つの傷が測定値に及ぼす影響が非常に小さくなり、安定した結果が得られる特徴がある。
また、本願は、ウエハ収容凹部以外の全表面にわたって平均的に滑らかで、堆積膜の付着量を少なくするサセプタを提供することが最大の目的であり、表面の一部に大きな傷があったとしても、堆積膜の付着量に大きな影響を与えることがないサセプタを提供することをも目的としている。
以上の理由により本願の目的とするサセプタの評価には、算術平均粗さRaでなければならないと判断する。
Note that the above-mentioned maximum height Ry (surface roughness Rmax), the roughness curve, the average line direction of the extraction only standard length Sada, the height Yp to highest peak from the mean line of this extracted portion It is the sum of the depth Yv to the lowest valley bottom. If there is a conspicuously high mountain or deep valley even in one place, it becomes a large value and there is a feature that the variation of the measured value becomes large.
Further, the arithmetic mean roughness Ra, the roughness curve, the average line direction extraction only standard length Sada the sums of the absolute values of deviations from a mean line of this extracted portion to a measurement curve, the average value of That is. There is a feature that the influence of one scratch on the measured value becomes very small and a stable result can be obtained.
In addition, the main purpose of the present application is to provide a susceptor that is smooth on the entire surface other than the wafer receiving recesses and that reduces the amount of deposited film deposited, and there is a large scratch on a part of the surface. Another object of the present invention is to provide a susceptor that does not greatly affect the adhesion amount of the deposited film.
For the reasons described above, it is determined that the arithmetic average roughness Ra must be used for the evaluation of the susceptor targeted by the present application.

本発明によれば、サセプタ上の堆積膜の成長速度を減少させ、抵抗の不良、結晶欠陥、パーティクルの発生を堆積膜の一定膜厚まで抑制することができるので、気相エッチング回数を低減できる。   According to the present invention, since the growth rate of the deposited film on the susceptor can be reduced and the generation of defective resistance, crystal defects, and particles can be suppressed to a certain thickness of the deposited film, the number of times of vapor phase etching can be reduced. .

本発明の実施形態に係るサセプタは、CVD−SiC被覆黒鉛からなるSiのエピタキシャル成長用のサセプタであって、ザグリ面以外の表面の算術平均粗さRaが0.1〜1μmのものである。本サセプタは、少なくとも1つのザグリを有すればよく、枚葉式(図3)、バレル式(図4)、パンケーキ式(図5)、いずれの型のものでもよい。   The susceptor according to the embodiment of the present invention is a susceptor for epitaxial growth of Si made of CVD-SiC-coated graphite, and has an arithmetic average roughness Ra of 0.1 to 1 μm on the surface other than the counterbore surface. The susceptor only needs to have at least one counterbore, and may be any of a single wafer type (FIG. 3), a barrel type (FIG. 4), and a pancake type (FIG. 5).

CVD法において、ガスの種類の選択や温度等の調整を行うことで、ザグリ面以外の表面の算術平均粗さRaが0.1〜1μmのサセプタを容易に製造することができる。   In the CVD method, a susceptor having an arithmetic average roughness Ra of 0.1 to 1 μm on the surface other than the counterbore can be easily manufactured by selecting the type of gas and adjusting the temperature.

また、CVD法でSiC膜を炭素基材表面に形成した後、SiC膜表面を研磨して、ザグリ面以外の表面の算術平均粗さRaが0.1〜1μmとなるように調整してもよい。この研磨方法としては、例えば、Ra1〜5μmのCVD−SiC膜を被覆した治具によって行うSiC共材研磨が挙げられる。また、他の方法として、研磨剤を用いて、乾式又は湿式研磨を行ってもよい。このとき、Ra0.1〜1μmを実現するために、#350以上、好ましくは#600以上のSiC若しくはダイヤモンドの研磨剤を使用する。また、砥石で直接研磨することとしてもよい。
算術平均粗さRa0.1μm以下のSiC膜の表面でも本発明と同様な効果が得られるが、研磨コストが高くさらに生産性も低いので、ザグリ面以外の表面の算術平均粗さRaは0.1〜1μmとすることが好ましく、0.1〜0.5μmとすることがさらに好ましい。
In addition, after forming the SiC film on the carbon substrate surface by the CVD method, the SiC film surface is polished and adjusted so that the arithmetic average roughness Ra of the surface other than the counterbore surface is 0.1 to 1 μm. Good. As this polishing method, for example, SiC co-material polishing performed with a jig coated with a CVD-SiC film of Ra 1 to 5 μm can be mentioned. As another method, dry or wet polishing may be performed using an abrasive. At this time, in order to realize Ra 0.1 to 1 μm, a SiC or diamond abrasive of # 350 or more, preferably # 600 or more is used. Moreover, it is good also as grind | polishing directly with a grindstone.
The same effect as that of the present invention can be obtained even on the surface of an SiC film having an arithmetic average roughness Ra of 0.1 μm or less, but since the polishing cost is high and the productivity is low, the arithmetic average roughness Ra of the surface other than the counterbore surface is 0. The thickness is preferably 1 to 1 μm, and more preferably 0.1 to 0.5 μm.

本実施形態によれば、容易に製造でき、かつ、コストを抑制し、さらに堆積膜の膜厚を一定以上厚くできるサセプタを提供できる。また、本実施形態に係るサセプタは、パーティクルの発生を堆積膜の一定膜厚まで抑制することができるので、エッチング回数を低減できるものである。   According to the present embodiment, it is possible to provide a susceptor that can be easily manufactured, that can reduce costs, and that can further increase the thickness of the deposited film. Moreover, since the susceptor according to the present embodiment can suppress the generation of particles to a certain thickness of the deposited film, the number of etchings can be reduced.

(実施例1)
CVD装置内において、1250℃、SiCl4/C38/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。サセプタの算術平均粗さRaは0.8μm(Ry6μm)であった。このサセプタを用いてSiをエピタキシャル成長させたところ、堆積Si膜の厚さが150μmになったところでパーティクルが発生した。図6に示すように、堆積Si膜の厚さが50μmの時の走査型電子顕微鏡(SEM)による表面および断面観察からは、堆積Siの表面に凹凸が多少観察されるようになる。また、図7に示すように、堆積Si膜の厚さが50μmの時のサセプタ表面のX線回折図形(XRD)から、Si(111)/Si(220)の相対強度は0.04であった。
Example 1
In a CVD apparatus, a SiC substrate of 100 μm was coated on a graphite substrate using SiCl 4 / C 3 H 8 / H 2 gas at 1250 ° C. The arithmetic average roughness Ra of the susceptor was 0.8 μm (Ry6 μm). When Si was epitaxially grown using this susceptor, particles were generated when the thickness of the deposited Si film reached 150 μm. As shown in FIG. 6, from the observation of the surface and the cross section by the scanning electron microscope (SEM) when the thickness of the deposited Si film is 50 μm, some unevenness is observed on the surface of the deposited Si. Further, as shown in FIG. 7, the relative intensity of Si (111) / Si (220) was 0.04 from the X-ray diffraction pattern (XRD) of the susceptor surface when the thickness of the deposited Si film was 50 μm. It was.

参考例1
CVD装置内において、1400℃、SiCl/C/Hガスを用い、黒鉛基材に100μmのSiC被覆を行った。SiC製砥石と純水とを用いて、ザグリ以外の面を約10μm湿式研磨し、サセプタの算術平均粗さRaを0.3μm(Ry2.5μm)に調整した。このサセプタを用いてSiをエピタキシャル成長させたところ、堆積Si膜の厚さが160μmになったところでパーティクルが発生した。図8に示すように、堆積Si膜の厚さが50μmの時のSEMによる表面および断面観察からは、堆積Siの表面が滑らかであることが観察される。図9に示すように、堆積Si膜の厚さが50μmの時のサセプタ表面のXRDからは、Si(111)/Si(220)の相対強度は、0であった。
( Reference Example 1 )
In a CVD apparatus, 1400 ° C., SiCl 4 / C 3 H 8 / H 2 gas was used, and a graphite substrate was coated with 100 μm of SiC. A surface other than the counterbore was wet-polished by about 10 μm using a SiC grindstone and pure water, and the arithmetic average roughness Ra of the susceptor was adjusted to 0.3 μm (Ry 2.5 μm). When Si was epitaxially grown using this susceptor, particles were generated when the thickness of the deposited Si film reached 160 μm. As shown in FIG. 8, it is observed from the surface and cross-sectional observation by SEM when the thickness of the deposited Si film is 50 μm that the surface of the deposited Si is smooth. As shown in FIG. 9, the relative intensity of Si (111) / Si (220) was 0 from the XRD of the susceptor surface when the thickness of the deposited Si film was 50 μm.

(比較例1)
CVD装置内において、1400℃、SiCl4/C38/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。サセプタの算術平均粗さRaは5μm(Ry27μm)であった。このサセプタを用いてSiをエピタキシャル成長させたところ、堆積Si膜の厚さが40μmになったところでパーティクルが発生した。図10に示すように、堆積Si膜の厚さが50μmの時のSEMによる表面および断面観察からは、堆積Siの表面が大きな凹凸であることが観察される。大きな凹凸が観察されると,パーティクル発生の原因となる。図11に示すように、堆積Si膜の厚さが50μmの時のサセプタ表面のXRDからは、Si(111)/Si(220)の相対強度は、0.47であった。相対強度が0.2以上となると,抵抗の不良および結晶欠陥が発生する原因となる。
(Comparative Example 1)
In a CVD apparatus, a SiC substrate of 100 μm was coated on a graphite substrate using SiCl 4 / C 3 H 8 / H 2 gas at 1400 ° C. The arithmetic average roughness Ra of the susceptor was 5 μm (Ry 27 μm). When Si was epitaxially grown using this susceptor, particles were generated when the thickness of the deposited Si film reached 40 μm. As shown in FIG. 10, from the surface and cross-sectional observation by SEM when the thickness of the deposited Si film is 50 μm, it is observed that the surface of the deposited Si has large irregularities. When large irregularities are observed, it causes generation of particles. As shown in FIG. 11, the relative intensity of Si (111) / Si (220) was 0.47 from the XRD of the susceptor surface when the thickness of the deposited Si film was 50 μm. When the relative strength is 0.2 or more, it causes a defective resistance and a crystal defect.

(比較例2)
CVD装置内において、1400℃、SiCl4/C38/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。ザグリ以外の面を約3μm乾式研磨し、サセプタの算術平均粗さRaを2μm(Ry11μm)に調整した。このサセプタを用いてSiをエピタキシャル成長させたところ、堆積Si膜の厚さが60μmになったところでパーティクルが発生した。図12に示すように、堆積Si膜の厚さが50μmの時のSEMによる表面および断面観察からは、堆積Siの表面が大きな凹凸であることが観察される。大きな凹凸が観察されると,パーティクル発生の原因となる。図13に示すように、堆積Si膜の厚さが50μmの時のサセプタ表面のXRDからは、Si(111)/Si(220)の相対強度は、0.24であった。相対強度が0.2以上となると,抵抗の不良および結晶欠陥が発生する原因となる。
(Comparative Example 2)
In a CVD apparatus, a SiC substrate of 100 μm was coated on a graphite substrate using SiCl 4 / C 3 H 8 / H 2 gas at 1400 ° C. The surface other than the counterbore was dry-polished by about 3 μm, and the arithmetic average roughness Ra of the susceptor was adjusted to 2 μm (Ry11 μm). When Si was epitaxially grown using this susceptor, particles were generated when the thickness of the deposited Si film reached 60 μm. As shown in FIG. 12, from the surface and cross-sectional observation by SEM when the thickness of the deposited Si film is 50 μm, it is observed that the surface of the deposited Si has large irregularities. When large irregularities are observed, it causes generation of particles. As shown in FIG. 13, the relative strength of Si (111) / Si (220) was 0.24 from the XRD of the susceptor surface when the thickness of the deposited Si film was 50 μm. When the relative strength is 0.2 or more, it causes a defective resistance and a crystal defect.

(比較例3)
CVD装置内において、1400℃、SiCl4/C38/H2ガスを用い、黒鉛基材に100μmのSiC被覆を行った。回転式研磨装置を用いて、ダイヤモンド砥粒と純水を用いてザグリ以外の面を約20μm湿式研磨し、サセプタの算術平均粗さRaを0.05μm(Ry0.4μm)に調整した。このサセプタを用いてSiをエピタキシャル成長させたところ、堆積Si膜の厚さが165μmになったところでパーティクルが発生した。図14に示すように、堆積Si膜の厚さが50μmの時のSEMによる表面および断面観察からは、堆積Siの表面が滑らかであることが観察される。図15に示すように、堆積Si膜の厚さが50μmの時のサセプタ表面のXRDからは、Si(111)/Si(220)の相対強度は、0であった。
(Comparative Example 3)
In a CVD apparatus, a SiC substrate of 100 μm was coated on a graphite substrate using SiCl 4 / C 3 H 8 / H 2 gas at 1400 ° C. A surface other than the counterbore was wet-polished by about 20 μm using diamond abrasive grains and pure water using a rotary polishing apparatus, and the arithmetic average roughness Ra of the susceptor was adjusted to 0.05 μm (Ry 0.4 μm). When Si was epitaxially grown using this susceptor, particles were generated when the thickness of the deposited Si film reached 165 μm. As shown in FIG. 14, it is observed from the surface and cross-sectional observation by SEM when the thickness of the deposited Si film is 50 μm that the surface of the deposited Si is smooth. As shown in FIG. 15, the relative strength of Si (111) / Si (220) was 0 from the XRD of the susceptor surface when the thickness of the deposited Si film was 50 μm.

これらの結果をまとめて図1、図16、図17のグラフに示す。実施例1では、堆積Si膜が150μmに達するまで、参考例1では堆積Si膜が160μmに達するまで、抵抗の不良、結晶欠陥、パーティクルが発生しなかったのに対し、比較例1、2ではそれぞれ40μm、60μmになったところで、抵抗の不良、結晶欠陥、パーティクルが発生した。これらの結果により、本発明に係る実施例1及び参考例1によれば、比較例1〜2に比べ、抵抗の不良、結晶欠陥、パーティクルの発生を堆積Si膜の一定膜厚まで抑制することができるので、エッチング回数を低減できるサセプタを容易に製造することができることがわかる。また、比較例3では,堆積Si膜が165μmに達するまで、抵抗の不良、結晶欠陥、パーティクルの発生はなかったが、回転式研磨装置を用いなければならず研磨コストが高額になった。さらに,複雑な形状のサセプタには応用できないデメリットもあることがわかった。 These results are collectively shown in the graphs of FIGS. 1, 16, and 17. In Example 1, until the deposited Si film reached 150 μm, and in Reference Example 1 , until the deposited Si film reached 160 μm, defective resistance, crystal defects, and particles did not occur, whereas in Comparative Examples 1 and 2, When the thickness was 40 μm and 60 μm, resistance failure, crystal defects, and particles were generated. From these results, according to Example 1 and Reference Example 1 according to the present invention, compared to Comparative Examples 1 and 2, it is possible to suppress the generation of defective resistance, crystal defects, and particles to a certain thickness of the deposited Si film. Therefore, it can be seen that a susceptor capable of reducing the number of etchings can be easily manufactured. In Comparative Example 3, there was no defective resistance, crystal defects, or particles until the deposited Si film reached 165 μm. However, a rotary polishing apparatus had to be used, and the polishing cost was high. Furthermore, it was found that there are some disadvantages that cannot be applied to complex shaped susceptors.

図2に本発明にかかる実施例、参考例及び比較例のサセプタのザグリ以外の表面の算術平均粗さRaと最大高さRyの関係を示す。最大高さRy(表面粗さRmax)を0.5μm以下にするためには,算術平均粗さRaを少なくとも0.03μm以下にする必要があることが分かる。 FIG. 2 shows the relationship between the arithmetic average roughness Ra and the maximum height Ry of the surface of the susceptor other than counterbore in the examples , reference examples, and comparative examples according to the present invention. It can be seen that in order to make the maximum height Ry (surface roughness Rmax) 0.5 μm or less, the arithmetic average roughness Ra needs to be at least 0.03 μm or less.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples.

本発明に係る実施例、参考例及び比較例のSiC算術表面粗さとパーティクル発生時のEPI−Si膜厚との関係を示すグラフ。Examples of the present invention, a graph showing the relationship between the EPI-Si film thickness of the SiC arithmetic surface roughness and particle event of Reference Examples and Comparative Examples. 本発明に係る実施例、参考例及び比較例のSiC算術表面粗さRaとSiC最大高さRyの関係を示すグラフ。The graph which shows the relationship between SiC arithmetic surface roughness Ra of the Example which concerns on this invention , a reference example, and a comparative example, and SiC maximum height Ry. 本発明を用いることが可能な枚葉式サセプタを示す上視図。The top view which shows the single wafer type susceptor which can use this invention. 本発明を用いることが可能なバレル式サセプタを示す側面図。The side view which shows the barrel type susceptor which can use this invention. 本発明を用いることが可能なパンケーキ式サセプタを示す上視図。The top view which shows the pancake type susceptor which can use this invention. 本発明に係る実施例1のサセプタの表面及び断面の走査型電子顕微鏡写真。The scanning electron micrograph of the surface and cross section of the susceptor of Example 1 which concerns on this invention. 本発明に係る実施例1のサセプタの表面のX線回折図形を示すグラフ。The graph which shows the X-ray-diffraction figure of the surface of the susceptor of Example 1 which concerns on this invention. 本発明に係る参考例1のサセプタの表面及び断面の走査型電子顕微鏡写真。The scanning electron micrograph of the surface and cross section of the susceptor of the reference example 1 which concerns on this invention. 本発明に係る参考例1のサセプタの表面のX線回折図形を示すグラフ。The graph which shows the X-ray-diffraction figure of the surface of the susceptor of the reference example 1 which concerns on this invention. 比較例1のサセプタの表面及び断面の走査型電子顕微鏡写真。The scanning electron micrograph of the surface and cross section of the susceptor of the comparative example 1. 比較例1のサセプタの表面のX線回折図形を示すグラフ。The graph which shows the X-ray-diffraction figure of the surface of the susceptor of the comparative example 1. 比較例2のサセプタの表面及び断面の走査型電子顕微鏡写真。The scanning electron micrograph of the surface and cross section of the susceptor of the comparative example 2. 比較例2のサセプタの表面のX線回折図形を示すグラフ。The graph which shows the X-ray-diffraction figure of the surface of the susceptor of the comparative example 2. 比較例3のサセプタの表面及び断面の走査型電子顕微鏡写真。The scanning electron micrograph of the surface and cross section of the susceptor of the comparative example 3. 比較例3のサセプタの表面のX線回折図形を示すグラフ。The graph which shows the X-ray-diffraction figure of the surface of the susceptor of the comparative example 3. 本発明に係る実施例、参考例および比較例のSiC算術表面粗さRaとSi(111)/Si(220)相対強度との関係を示すグラフ。Examples of the present invention, a graph showing the relationship between the Reference Examples and SiC arithmetic surface roughness Ra and Si in Comparative Example (111) / Si (220) relative intensity. 本発明に係る実施例、参考例および比較例のSiC最大粗さRyとSi(111)/Si(220)相対強度との関係を示すグラフ。Examples of the present invention, Reference Examples and Comparative Examples of SiC maximum roughness Ry and Si (111) / Si (220 ) a graph showing the relationship between the relative intensity.

Claims (2)

少なくとも1つのザグリを有するCVD−SiC被覆黒鉛基材からなるSiのエピタキシャル成長用のサセプタであって、ザグリ面以外の表面における算術平均粗さRa(JIS B 0601 1994)が0.5μmよりも大きく1.0μm未満であるサセプタ。 A susceptor for epitaxial growth of Si consisting of CVD-SiC coated graphite substrate having at least one counterbore, the arithmetic mean roughness Ra of the surface other than the counterbore surface (JIS B 0601 1994) is greater than 0.5 [mu] m 1 A susceptor that is less than 0.0 μm. ザグリ面以外の表面における算術平均粗さRaが0.8μm以上且つ1.0μm未満である請求項1記載のサセプタ。
The susceptor according to claim 1, wherein the arithmetic average roughness Ra on the surface other than the counterbore surface is 0.8 μm or more and less than 1.0 μm.
JP2005053480A 2005-02-28 2005-02-28 Susceptor Expired - Fee Related JP4739776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053480A JP4739776B2 (en) 2005-02-28 2005-02-28 Susceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053480A JP4739776B2 (en) 2005-02-28 2005-02-28 Susceptor

Publications (2)

Publication Number Publication Date
JP2006237498A JP2006237498A (en) 2006-09-07
JP4739776B2 true JP4739776B2 (en) 2011-08-03

Family

ID=37044778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053480A Expired - Fee Related JP4739776B2 (en) 2005-02-28 2005-02-28 Susceptor

Country Status (1)

Country Link
JP (1) JP4739776B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021968B2 (en) * 2007-08-03 2011-09-20 Shin-Etsu Handotai Co., Ltd. Susceptor and method for manufacturing silicon epitaxial wafer
SG2014015127A (en) * 2009-04-27 2014-06-27 Asahi Glass Co Ltd Semiconductor heat treatment member having sic film
JP2012222287A (en) * 2011-04-13 2012-11-12 Shimadzu Corp Plasma cvd deposition apparatus and substrate mounting device
JP6232680B2 (en) * 2013-09-06 2017-11-22 大陽日酸株式会社 How to clean the susceptor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853453B2 (en) * 1997-01-06 2006-12-06 徳山東芝セラミックス株式会社 Vertical susceptor for vapor phase growth
JP4372988B2 (en) * 2000-05-22 2009-11-25 東洋炭素株式会社 CVD-SiC excellent in NH3 resistance, CVD-SiC coating material excellent in NH3 resistance, and jig for CVD or MBE apparatus
JP2002043397A (en) * 2000-07-26 2002-02-08 Hitachi Chem Co Ltd Susceptor
JP4223455B2 (en) * 2004-03-23 2009-02-12 コバレントマテリアル株式会社 Susceptor

Also Published As

Publication number Publication date
JP2006237498A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
EP2514857B1 (en) SiC EPITAXIAL WAFER AND METHOD FOR MANUFACTURING SAME
US8823015B2 (en) Silicon carbide epitaxial wafer and manufacturing method therefor
JP5076020B2 (en) SiC epitaxial wafer
TWI388686B (en) Acceptor
JP4322846B2 (en) Susceptor
JP3938361B2 (en) Carbon composite material
JP4581081B2 (en) Method for producing silicon carbide smoothed substrate used for producing epitaxial wafer, apparatus for smoothing silicon carbide substrate surface and SiC epitaxial growth
KR20140024473A (en) Sic epitaxial wafer and method for producing same, and device for producing sic epitaxial wafer
TWI725910B (en) Wafer, epitaxial wafer and manufacturing method of the same
JP4739776B2 (en) Susceptor
JP2008109125A (en) Silicon single-crystal substrate, and its manufacturing method
JP5759534B2 (en) Manufacture and reproduction of coated graphite articles and graphite articles by reactive ion etching
TW201921423A (en) Wafers having III-Nitride and diamond layer
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
US10654150B2 (en) Grinding disk and method of manufacturing the same
JP4739777B2 (en) Susceptor
WO2018207942A1 (en) Susceptor, method for producing epitaxial substrate, and epitaxial substrate
JP2009239103A (en) Treatment method for planarization
JP4261600B2 (en) Nitride semiconductor devices
JP5652402B2 (en) Semiconductor manufacturing jig and manufacturing method thereof
TWI776220B (en) Epitaxial wafer, wafer and manufacturing method of the same
TWI811880B (en) Refractory carbide layer
KR102283075B1 (en) SiC MEMBER AND SUBSTRATE-HOLDING MEMBER FORMED OF SiC MEMBER, AND METHOD FOR PRODUCING THE SAME
WO2023008439A1 (en) Member for semiconductor production apparatus and method for producing said member
WO2015186546A1 (en) SiC COATED MATERIAL AND JIG FOR CVD SYSTEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees