JP5076020B2 - SiC epitaxial wafer - Google Patents

SiC epitaxial wafer Download PDF

Info

Publication number
JP5076020B2
JP5076020B2 JP2011233966A JP2011233966A JP5076020B2 JP 5076020 B2 JP5076020 B2 JP 5076020B2 JP 2011233966 A JP2011233966 A JP 2011233966A JP 2011233966 A JP2011233966 A JP 2011233966A JP 5076020 B2 JP5076020 B2 JP 5076020B2
Authority
JP
Japan
Prior art keywords
sic
sic epitaxial
gas
wafer
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011233966A
Other languages
Japanese (ja)
Other versions
JP2012051795A (en
JP2012051795A5 (en
Inventor
大祐 武藤
賢治 百瀬
道哉 小田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011233966A priority Critical patent/JP5076020B2/en
Publication of JP2012051795A publication Critical patent/JP2012051795A/en
Publication of JP2012051795A5 publication Critical patent/JP2012051795A5/ja
Application granted granted Critical
Publication of JP5076020B2 publication Critical patent/JP5076020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はSiCエピタキシャルウェハ、特に、欠陥密度が低く、膜厚及びキャリア濃度の均一性が高く、ステップバンチングがない高品質のSiCエピタキシャルウェハに関するものである。   The present invention relates to a SiC epitaxial wafer, and particularly to a high-quality SiC epitaxial wafer having a low defect density, a high uniformity of film thickness and carrier concentration, and no step bunching.

地球温暖化問題への対応として、省エネルギー技術の向上が求められている。多くの技術項目が取り上げられている中、電力変換時のエネルギーロスを低減するパワーエレクトロニクス技術は、基幹技術として位置づけられている。パワーエレクトロニクスは、従来シリコン(Si)半導体を用いて技術改良がなされ性能を向上させてきたが、シリコンの材料物性の限界からその性能向上も限界に近づきつつあると言われている。そのため、シリコンよりも物性限界を大きくとれる炭化珪素(SiC)に期待が集まっている。炭化珪素はシリコンに対して、例えば、バンドギャップは約3倍、絶縁破壊電界強度は約10倍、熱伝導度は約3倍という優れた物性を有しており、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。   Improvement of energy-saving technology is required as a response to the global warming problem. While many technical items are taken up, power electronics technology that reduces energy loss during power conversion is positioned as a core technology. Conventionally, power electronics have been improved by using silicon (Si) semiconductors to improve the performance. However, it is said that the performance improvement is approaching the limit due to the limitations of the physical properties of silicon. For this reason, there is an expectation for silicon carbide (SiC) that can take a physical property limit larger than that of silicon. Silicon carbide, for example, has excellent physical properties such as a band gap of about 3 times, a breakdown electric field strength of about 10 times, and a thermal conductivity of about 3 times that of silicon. Application to operating devices is expected.

SiCデバイスの実用化の促進には、高品質の結晶成長技術、高品質のエピタキシャル成長技術の確立が不可欠である。   In order to promote the practical application of SiC devices, it is essential to establish high-quality crystal growth technology and high-quality epitaxial growth technology.

SiCは多くのポリタイプを有するが、実用的なSiCデバイスを作製する為に主に使用されているのは4H−SiCである。SiCデバイスの基板としては昇華法等で作製したバルク結晶から加工したSiC単結晶ウェハを用い、通常、この上にSiCデバイスの活性領域となるSiCエピタキシャル膜を化学的気相成長法(CVD)によって形成する。
エピタキシャル膜中には基板に用いているポリタイプと異なるポリタイプが混入しやすく、例えば、基板に4H−SiCを使った場合には3C−SiCや8H−SiCが混入する。異なるポリタイプの混入は結晶格子の積層構造を乱し、積層欠陥となる。
エピタキシャル成長は、これらの混入を抑制するため、SiC単結晶基板を微傾斜させてステップフロー成長(原子ステップからの横方向成長)させて行うのが一般的であるが、速い成長速度を持つステップが遅い成長速度を持つステップに追いついて合体し、ステップバンチングが発生する。
SiC has many polytypes, but 4H-SiC is mainly used to fabricate practical SiC devices. A SiC single crystal wafer processed from a bulk crystal produced by a sublimation method or the like is used as the substrate of the SiC device, and an SiC epitaxial film that becomes an active region of the SiC device is usually formed thereon by chemical vapor deposition (CVD). Form.
A polytype different from the polytype used for the substrate is likely to be mixed in the epitaxial film. For example, when 4H—SiC is used for the substrate, 3C—SiC or 8H—SiC is mixed. The mixing of different polytypes disturbs the laminated structure of the crystal lattice, resulting in a stacking fault.
Epitaxial growth is generally performed by step-flow growth (lateral growth from atomic steps) by slightly tilting a SiC single crystal substrate in order to suppress these contaminations, but there are steps with a high growth rate. Step bunching occurs after catching up with a step having a slow growth rate and coalescing.

高品質のエピタキシャル膜の作製には、積層欠陥及びステップバンチングを低減させる必要がある。また、エピタキシャル膜の表面の三角形状の欠陥(以下「三角欠陥」という)を低減し、面内における膜厚のばらつきやキャリア濃度のばらつきの低減も必要である。   In order to produce a high quality epitaxial film, it is necessary to reduce stacking faults and step bunching. In addition, it is necessary to reduce triangular defects (hereinafter referred to as “triangular defects”) on the surface of the epitaxial film, and to reduce variations in in-plane film thickness and carrier concentration.

<低オフ角SiC単結晶基板上のエピタキシャル成長>
SiC基板が2インチ程度までのサイズの場合では SiC単結晶基板のオフ角は主に8°が用いられてきた。このオフ角においてはウェハ表面のテラス幅が小さく、容易にステップフロー成長が得られるが、オフ角が大きいほど、SiCインゴットから得られるウェハ枚数が少なくなる。そのため、3インチ以上のSiC基板においては、主に4°程度のオフ角のものが用いられている。
コスト削減の観点から、さらなる低オフ角、最も望ましくはステップフロー成長をさせることが可能なオフ角として知られる0.4°程度の微傾斜オフ角SiC単結晶基板上のエピタキシャル成長技術の確立が求められている。
<Epitaxial growth on low off-angle SiC single crystal substrate>
In the case where the SiC substrate has a size up to about 2 inches, the off-angle of the SiC single crystal substrate has been mainly 8 °. At this off-angle, the terrace width on the wafer surface is small and step flow growth can be easily obtained. However, the larger the off-angle, the smaller the number of wafers obtained from the SiC ingot. For this reason, SiC substrates having an off angle of about 4 ° are mainly used for SiC substrates of 3 inches or more.
From the viewpoint of cost reduction, establishment of an epitaxial growth technique on a SiC single crystal substrate having a slightly lower off-angle, and most preferably a finely inclined off-angle of about 0.4 °, which is known as an off-angle capable of performing step flow growth, is required. It has been.

しかしながら、低オフ角になるほど、SiC単結晶基板(ウェハ)の表面のテラス幅が大きくなるため、ステップ端に取り込まれるマイグレーション原子の取り込まれ速度、すなわちステップ端の成長速度にバラツキが生じやすく、その結果、遅い成長速度のステップに速い成長速度のステップが追いついて合体し、ステップバンチングが発生するという問題がある。特にエピタキシャル面がSi面の場合、C面よりも表面原子のマイグレーションが抑えられるため、容易にステップバンチングを生じる。ステップバンチングの低減は低オフ角SiC単結晶基板の利用には大きな課題である。
また、例えば、0.4°のオフ角のウェハでは4°のオフ角のウェハに比べてテラス幅は10倍になり、ステップフロー成長させる長さが一桁長くなるので、従来用いられてきた常識的なステップフロー成長の条件がそのまま使えないおそれがある。
However, the lower the off angle, the larger the terrace width of the surface of the SiC single crystal substrate (wafer). Therefore, the migration rate of migration atoms taken into the step end, that is, the growth rate of the step end tends to vary. As a result, there is a problem that a step with a fast growth rate catches up with a step with a slow growth rate, and step bunching occurs. In particular, when the epitaxial surface is a Si surface, the migration of surface atoms is suppressed as compared with the C surface, so that step bunching occurs easily. Reduction of step bunching is a major issue for the use of low off-angle SiC single crystal substrates.
In addition, for example, a 0.4 ° off-angle wafer has a terrace width 10 times that of a 4 ° off-angle wafer, and the step flow growth length is an order of magnitude longer. There is a possibility that common-sense step flow growth conditions cannot be used as they are.

<ステップバンチング及びその観察・評価>
ステップバンチングとは、表面において原子ステップ(通常2〜10原子層程度)が集まって合体する現象をいい、この表面の段差自体を指すこともある。非特許文献2に典型的なステップバンチングが示されている。
従来、ステップバンチングの観察・評価は、微分干渉顕微鏡等の光学顕微鏡と原子分解能を有する原子間力顕微鏡(AFM)との組み合わせで行われることが多かった(例えば、非特許文献2、3)。
<Step bunching and its observation and evaluation>
Step bunching refers to a phenomenon in which atomic steps (usually about 2 to 10 atomic layers) gather and coalesce on the surface, and sometimes refers to the surface step itself. Non-patent document 2 shows a typical step bunching.
Conventionally, observation and evaluation of step bunching has often been performed by a combination of an optical microscope such as a differential interference microscope and an atomic force microscope (AFM) having atomic resolution (for example, Non-Patent Documents 2 and 3).

<三角欠陥及び積層欠陥並びにそれらの観察・評価>
本明細書において「三角欠陥」とは、SiC単結晶基板を微傾斜させる[11−20]方向に垂直に辺を有する略三角形状の欠陥であって、エピタキシャル膜の表面に存在するものをいう(尚、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味する)。サイズは、オフ角度、欠陥の起点の深さ及び膜厚によるが、エピタキシャル膜の表面側から観察した場合、一辺のサイズは2μm〜1mm程度であり、高さ/深さは50nm程度である。レーザー光を用いる光学式表面検査装置、広範囲観察型原子間力顕微鏡、微分干渉顕微鏡等によって検出することができる。
<Triangular defects and stacking faults and their observation and evaluation>
In this specification, the “triangular defect” refers to a substantially triangular defect having a side perpendicular to the [11-20] direction that slightly tilts the SiC single crystal substrate and exists on the surface of the epitaxial film. (In this specification, in the Miller index notation, “-” means a bar attached to the index immediately after that.) The size depends on the off angle, the depth of the defect starting point, and the film thickness, but when observed from the surface side of the epitaxial film, the size of one side is about 2 μm to 1 mm, and the height / depth is about 50 nm. It can be detected by an optical surface inspection apparatus using laser light, a wide-range observation type atomic force microscope, a differential interference microscope, or the like.

また、積層欠陥は、結晶格子面の積み重ねがずれることにより生じる面欠陥の一種であるが、本明細書において「積層欠陥」とは、フォトルミネッセンス(PL)測定によって、SiC単結晶基板を微傾斜させる[11−20]方向に垂直に辺を有する略三角形状の発光点又は暗部として検出されるものである。サイズは、オフ角度、欠陥の起点の深さ及び膜厚によるが、エピタキシャル膜の表面側から観察した場合、一辺のサイズは2〜400μm程度、面積は100μm〜80000μm程度である。発光の場合には、420〜430nm付近で3Cのポリタイプの積層欠陥、460nm付近で8Hのポリタイプの積層欠陥が検出される。750nm以上のIR光で検出した場合には、3C及び8Hを含む全ての積層欠陥が暗転部として検出される(非特許文献1)。
尚、フォトルミネッセンス(PL)測定ではエピタキシャル膜の膜中に存在する積層欠陥を検出できるので、本明細書の「積層欠陥」とはエピタキシャル膜の膜全体に存在する「積層欠陥」が対象となる。従って、エピタキシャル膜中に存在するが表面には現れていないものも対象になり、この点でエピタキシャル膜の表面に現れているもののみが対象となる「三角欠陥」とは異なる。
In addition, the stacking fault is a kind of surface defect that occurs when the stacking of crystal lattice planes is deviated. In this specification, “stacking fault” means that the SiC single crystal substrate is slightly tilted by photoluminescence (PL) measurement. It is detected as a substantially triangular light emitting point or dark part having sides perpendicular to the [11-20] direction. Size, off-angle, depending on the depth and thickness of the origin of the defect, when observed from the surface side of the epitaxial film, one side size of about 2~400Myuemu, an area of 100μm 2 ~80000μm 2 about. In the case of light emission, a 3C polytype stacking fault is detected near 420 to 430 nm, and an 8H polytype stacking fault is detected near 460 nm. When detected with IR light of 750 nm or more, all stacking faults including 3C and 8H are detected as dark transitions (Non-Patent Document 1).
In addition, since the stacking fault that exists in the film of the epitaxial film can be detected by the photoluminescence (PL) measurement, the “stacking fault” in this specification refers to the “stacking fault” that exists in the entire film of the epitaxial film. . Accordingly, those that are present in the epitaxial film but not appearing on the surface are also targeted, and in this respect, only those appearing on the surface of the epitaxial film are different from the “triangular defects” that are targeted.

「三角欠陥」の低減の方法については、特許文献1において、SiC単結晶基板上に、材料ガス中に含まれる炭素と珪素の原子数比(C/Si比)を0.7として、1625℃の成長温度で成長させた5μmのSiCエピタキシャル層(「欠陥低減層」)の表面において、三角欠陥密度が2.5個/cmであったこと(実施例1)、また、この欠陥低減層の層厚を0.5μmにして、この層の上に原子数比(C/Si比)を1.2として同じ成長温度(1625℃)で成長させた10μmのSiCエピタキシャル層(活性層)の表面では三角欠陥密度が2個/cmであったこと(実施例2)、さらには、欠陥低減層を形成せずに、原子数比(C/Si比)を1.6として1625℃で成長させた10μmのSiCエピタキシャル層の表面において、三角欠陥密度が5〜10個/cmであったこと(比較例)が報告されている。
特許文献1では、従来の成長温度1500〜1600℃よりも高い成長温度でエピタキシャル成長させることに着目しているが、「三角欠陥」の低減のためには「欠陥低減層」の形成が必要とされている。また、「1625℃」という従来の成長温度より高い成長温度という要件だけでは三角欠陥密度を低減できないことが示されている。
Regarding a method of reducing “triangular defects”, in Patent Document 1, an atomic ratio (C / Si ratio) of carbon and silicon contained in a material gas is set to 1625 ° C. on an SiC single crystal substrate. The triangular defect density was 2.5 / cm 2 on the surface of a 5 μm SiC epitaxial layer (“defect reduction layer”) grown at a growth temperature of (Example 1), and this defect reduction layer Of the 10 μm SiC epitaxial layer (active layer) grown at the same growth temperature (1625 ° C.) with an atomic ratio (C / Si ratio) of 1.2 and a layer thickness of 0.5 μm. The triangular defect density on the surface was 2 pieces / cm 2 (Example 2). Furthermore, without forming a defect reduction layer, the atomic number ratio (C / Si ratio) was 1.6 at 1625 ° C. On the surface of the grown 10 μm SiC epitaxial layer, It has been reported that the triangular defect density was 5 to 10 / cm 2 (comparative example).
In Patent Document 1, attention is paid to epitaxial growth at a growth temperature higher than the conventional growth temperature of 1500 to 1600 ° C. However, in order to reduce “triangular defects”, it is necessary to form a “defect reduction layer”. ing. Further, it has been shown that the triangular defect density cannot be reduced only by the requirement of a growth temperature higher than the conventional growth temperature of “1625 ° C.”.

<ガスエッチング及び原料ガスの供給>
SiC単結晶基板上にSiCエピタキシャル膜を成膜する際には従来、機械研磨を行った後、化学的機械研磨(CMP)及びガスエッチングを順に行ってSiC単結晶基板の表面処理を行った後、化学的気相成長法によりSiCエピタキシャル膜を成膜していた。ガスエッチングは、研磨工程に起因するダメージや研磨痕(スクラッチ)の除去や表面平坦化のために、前処理として1500℃程度の高温で主に水素ガスを用いてエッチングを行うものである。
<Gas etching and supply of source gas>
Conventionally, when a SiC epitaxial film is formed on a SiC single crystal substrate, after mechanical polishing, chemical mechanical polishing (CMP) and gas etching are sequentially performed to perform surface treatment of the SiC single crystal substrate. An SiC epitaxial film was formed by chemical vapor deposition. In the gas etching, etching is mainly performed using hydrogen gas at a high temperature of about 1500 ° C. as a pretreatment in order to remove damage caused by the polishing process, polishing marks (scratches), and planarize the surface.

ガスエッチングに際しては、SiCエピタキシャル膜の原料ガスであるプロパン(C)ガスを水素雰囲気に添加しながら行われていた(特許文献2、特許文献3の段落[0002]、および非特許文献4)。非特許文献4に示されているように、水素ガスエッチングは良好なエピタキシャル表面を得るためには必須とされているが、水素のみではSiドロップレットが発生してしまうことが示されており、Cを添加することで、その発生を抑制できる効果があるとされている。
しかしながら、研磨によるダメージや研磨痕(スクラッチ)が、ガスエッチング後の基板表面にも残留していると、その後、その基板表面に形成されたエピタキシャル膜中に異種ポリタイプや転位、積層欠陥などが導入されてしまうという問題があった。そこでこれを回避するために、ガスエッチング時間を延長してエッチング量を増加させすぎてしまうと、今度は基板表面で表面再構成が生じて、エピタキシャル成長開始前に基板表面にステップバンチングを生じさせてしまうという問題があった。
Gas etching was performed while adding propane (C 3 H 8 ) gas, which is a raw material gas for the SiC epitaxial film, to a hydrogen atmosphere (Patent Document 2, Paragraph [0002] of Patent Document 3, and Non-Patent Document). 4). As shown in Non-Patent Document 4, hydrogen gas etching is essential to obtain a good epitaxial surface, but it has been shown that Si droplets are generated only with hydrogen, It is said that the addition of C 3 H 8 has an effect of suppressing the generation.
However, if damage or scratches (scratches) due to polishing remain on the substrate surface after the gas etching, then there are different polytypes, dislocations, stacking faults, etc. in the epitaxial film formed on the substrate surface. There was a problem of being introduced. Therefore, in order to avoid this, if the gas etching time is extended to increase the etching amount too much, this time, surface reconstruction occurs on the substrate surface, and step bunching occurs on the substrate surface before the start of epitaxial growth. There was a problem that.

そこで、このステップバンチングの発生を抑制するために、エッチング量を減少させる方法として、ガスエッチングに際して原料ガスであるシラン(SiH)ガスを水素ガスに添加しながら行う方法が提案された(特許文献3)。 Therefore, in order to suppress the occurrence of this step bunching, as a method for reducing the etching amount, there has been proposed a method in which silane (SiH 4 ) gas, which is a raw material gas, is added to hydrogen gas during gas etching (Patent Document). 3).

特許文献2及び3のいずれの方法においても、SiCエピタキシャル膜の原料ガスであるCガス、又は、SiHガスを添加してガスエッチングを行うが、ガスエッチング後にその添加ガスを排気することなく、そのまま続けて他方のガスを導入してSiCエピタキシャル膜の成膜工程に入る(特許文献2の図2、特許文献3の図4)。すなわち、SiCエピタキシャル膜の成長を開始する前に、SiC基板の表面に、プロパン(C)ガス、又は、シラン(SiH)ガスが既に存在する状態となっている。 In both methods of Patent Documents 2 and 3, gas etching is performed by adding C 3 H 8 gas or SiH 4 gas, which is a raw material gas for the SiC epitaxial film, and after the gas etching, the added gas is exhausted. Without continuing, the other gas is introduced and the SiC epitaxial film is formed (FIG. 2 of Patent Document 2 and FIG. 4 of Patent Document 3). That is, propane (C 3 H 8 ) gas or silane (SiH 4 ) gas already exists on the surface of the SiC substrate before starting the growth of the SiC epitaxial film.

このように特許文献2及び3に代表されるような現在一般に行われている方法では、SiCエピタキシャル膜の成長を開始するに際して、原料ガスであるCガス及びSiHガスの供給は同時には行なっていなかった。 As described above, in the currently generally performed methods represented by Patent Documents 2 and 3, when the growth of the SiC epitaxial film is started, the supply of the C 3 H 8 gas and the SiH 4 gas as the raw material gases is simultaneously performed. Did not do.

特開2009−256138号公報JP 2009-256138 A 特許第4238357号公報Japanese Patent No. 4238357 特開2005−277229号公報JP 2005-277229 A

Materials Science Forum vols. 615-617(2009) pp 129-132Materials Science Forum vols. 615-617 (2009) pp 129-132 Mater. Sci. Forum 527-529, (2006) pp. 239-242Mater. Sci. Forum 527-529, (2006) pp. 239-242 Journal Cryst. Growth 291, (2006) pp. 370-374Journal Cryst. Growth 291, (2006) pp. 370-374 Journal Cryst. Growth 291, (2002) pp. 1213-1218Journal Cryst. Growth 291, (2002) pp. 1213-1218

本発明は、上記事情を鑑みてなされたもので、三角欠陥及び積層欠陥が低減され、膜厚及びキャリア濃度の均一性が向上し、ウェハの全面にステップバンチングがないステップバンチングフリーという従来に比べて格段に高品質のSiCエピタキシャルウェハを提供することを目的とする。   The present invention has been made in view of the above circumstances. Triangular defects and stacking faults are reduced, the uniformity of film thickness and carrier concentration is improved, and step bunching is free compared to the conventional case where there is no step bunching on the entire surface of the wafer. An object of the present invention is to provide a SiC epitaxial wafer of extremely high quality.

三角欠陥及び積層欠陥はSiCデバイスの特性、歩留り、及び信頼性に悪影響を及ぼすから、その低減が不可欠であるが、本発明が対象とする低オフ角のSiCエピタキシャルウェハでは、三角欠陥を低減する方法については特許文献1があるが、積層欠陥を低減する方法についてはほとんど報告がないのが現状である。   Triangular defects and stacking faults adversely affect the characteristics, yield, and reliability of SiC devices and therefore must be reduced. However, the low-off-angle SiC epitaxial wafer targeted by the present invention reduces triangular defects. Although there is Patent Document 1 regarding the method, there is almost no report on a method for reducing stacking faults.

そこで、まず、三角欠陥及び積層欠陥の低減について、エピタキシャル成長時の成長温度と、三角欠陥及び積層欠陥の密度との関係を調べた。
表1は、4°のオフ角で傾斜させた4H−SiC単結晶基板のSi面上に、成長速度を5μm/hに固定して1500℃〜1650℃の成長温度でSiCのエピタキシャル層を成膜したSiCエピタキシャルウェハの三角欠陥及び積層欠陥の密度の結果を示すものである。1500℃〜1600℃は従来成長温度として通常用いられてきた温度範囲内のものであるのに対して、1650℃は通常用いられてきた温度範囲よりも50℃高い。
三角欠陥密度はレーザー光を用いる光学式表面検査装置(KLA−Tencor社製Candela CS20)で測定し、積層欠陥密度はフォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)で測定した結果である。
Therefore, first, regarding the reduction of triangular defects and stacking faults, the relationship between the growth temperature during epitaxial growth and the density of triangular defects and stacking faults was examined.
Table 1 shows that an epitaxial layer of SiC is formed on a Si surface of a 4H—SiC single crystal substrate inclined at an off angle of 4 ° at a growth temperature of 1500 ° C. to 1650 ° C. with a growth rate fixed at 5 μm / h. 3 shows the results of the density of triangular defects and stacking faults of a coated SiC epitaxial wafer. 1500 ° C. to 1600 ° C. is within the temperature range conventionally used as the growth temperature, whereas 1650 ° C. is 50 ° C. higher than the temperature range normally used.
The triangular defect density is measured by an optical surface inspection apparatus using laser light (Candela CS20 manufactured by KLA-Tencor), and the stacking fault density is a result measured by a photoluminescence imaging apparatus (PLI-100 manufactured by Photon Design).

三角欠陥及び積層欠陥の主な原因は共通であり、(1)成膜装置内のダウンフォール等の異物、(2)成長中のステップフロー不十分、が挙げられるが、三角欠陥には(1)成膜装置のダウンフォール等の異物、の寄与が大きく、積層欠陥には(2)成長中のステップフロー不十分、の寄与が大きいと考えられる。   The main causes of triangular defects and stacking faults are the same, including (1) foreign matter such as downfall in the film forming apparatus and (2) insufficient step flow during growth. ) The contribution of foreign matter such as downfall of the film forming apparatus is large, and it is considered that the contribution of (2) insufficient step flow during growth to the stacking fault is large.

1500℃〜1600℃の成長温度では、積層欠陥密度の方が三角欠陥密度より高い。これは、従来成長温度として通常用いられてきた温度範囲では、(2)成長中のステップフロー不十分の寄与が、(1)成膜装置内のダウンフォール等の異物の寄与、よりも大きいことを示している。
これに対して、1650℃の成長温度では、三角欠陥密度の方が積層欠陥密度より高い。これは、従来成長温度として通常用いられてきた温度範囲よりも高い1650℃においては、(1)成膜装置内のダウンフォール等の異物の寄与が、(2)成長中のステップフロー不十分の寄与、よりも大きいことを示している。
この結果は、従来の成長温度(1400〜1600℃)よりも高い温度に、より良好なステップフロー成長が行われる温度が存在していることを示している。すなわち、従来の成長温度(1400〜1600℃)より高い温度においては、より理論に近い成長が行われると考えられる。
At a growth temperature of 1500 ° C. to 1600 ° C., the stacking fault density is higher than the triangular defect density. This is because, in the temperature range normally used as the conventional growth temperature, (2) the contribution of insufficient step flow during growth is larger than (1) the contribution of foreign matter such as downfall in the film forming apparatus. Is shown.
On the other hand, at the growth temperature of 1650 ° C., the triangular defect density is higher than the stacking fault density. This is because, at 1650 ° C., which is higher than the temperature range normally used as a conventional growth temperature, (1) contribution of foreign matters such as downfall in the film forming apparatus is (2) insufficient step flow during growth. Indicates that the contribution is greater than.
This result indicates that there is a temperature at which better step flow growth is performed at a temperature higher than the conventional growth temperature (1400 to 1600 ° C.). That is, it is considered that growth closer to the theory is performed at a temperature higher than the conventional growth temperature (1400 to 1600 ° C.).

そこで、本発明者は、鋭意研究の結果、0.4〜5°の範囲のオフ角ごとに、成長温度と成長速度とを見直し、三角欠陥及び積層欠陥を著しく低減する適切な成長温度と成長速度との組み合わせを見出した。   Therefore, as a result of diligent research, the inventor has reviewed the growth temperature and growth rate for each off angle in the range of 0.4 to 5 °, and has achieved an appropriate growth temperature and growth that significantly reduces triangular defects and stacking faults. I found a combination with speed.

さらに、三角欠陥及び積層欠陥の低減に対して、SiC単結晶基板のエピタキシャル成長時のおもて面(エピタキシャル膜形成面、主面)及び裏面の加熱状況の違いに着目した。すなわち、SiC単結晶基板はエピタキシャル成長時に加熱されるが、SiC単結晶基板の裏面はSiC単結晶基板を支持する支持部材に直接接触して支持されており、支持部材から直接加熱される。これに対して、おもて面はエピタキシャル膜を形成するために真空空間に剥き出しの状態にあり、直接加熱されない。さらに、キャリアガスである水素がおもて面上を流れるため、熱が持ち去られる。これらのことから、エピタキシャル成長時のおもて面は裏面に対して低い温度になる。例えば、ホットウォール型の成膜装置の場合は、おもて面はウェハから離間して配置した輻射加熱部材からの輻射熱及び裏面から基板内を通って伝わる伝導熱によって加熱される。このようなSiC単結晶基板のエピタキシャル成長時のおもて面(主面)及び裏面の加熱状況の違いのため、おもて面は裏面よりも温度が低い状態にあり、この温度差に起因して熱膨張の大きさがおもて面は裏面よりも小さく、エピタキシャル成長時にはSiC単結晶基板はおもて面が凹むように変形する。この変形量は、ウェハの表面と裏面の温度差が大きいほど大きくなる。そのため、本発明のように従来よりも高い温度でウェハを加熱する場合には、従来よりも大きな変形量になるため、より顕著な問題になる。特に、ウェハの外周領域はウェハを支持する加熱部材から浮いてしまうことになり、ウェハ表面の温度は必要とされる温度よりも下がってしまう。その結果、三角欠陥及び積層欠陥が発生しない温度範囲と成長速度範囲でエピタキシャル成長を行った場合であっても、外周部分には三角欠陥及び積層欠陥が高密度に発生することになる。さらにSiC単結晶基板の反りは微視的には結晶格子面の反りであり、基板表面の結晶格子面が凹んだ状態でエピタキシャル層が堆積されることが転位などの欠陥形成に繋がり、積層欠陥の一因になり得ることに着目したのである。
そこで、SiC単結晶基板のエピタキシャル成長時のおもて面(主面)及び裏面の加熱状況の違いに起因した基板の凹み(反り)を解消した状態でエピタキシャル成長を行うということに想到した。具体的には、室温において主面に対して凸状となるようにSiC単結晶基板を加工してエピタキシャル成長時において基板の凹み(反り)を低減した状態、好ましくは解消した状態でエピタキシャル成長を行うこととした。
この結果、基板の凹み(反り)を低減した状態、好ましくは解消した状態にするにより、基板支持部材とSiC単結晶基板とが密接に接するようになって、基板の温度分布(特に中央部分と周辺部分との温度差が大きい)が低減するため、膜厚及びキャリア濃度の均一性が向上することを見出した。
Further, in order to reduce triangular defects and stacking faults, attention was paid to the difference in heating conditions on the front surface (epitaxial film forming surface, main surface) and the back surface during the epitaxial growth of the SiC single crystal substrate. That is, the SiC single crystal substrate is heated at the time of epitaxial growth, but the back surface of the SiC single crystal substrate is supported in direct contact with a support member that supports the SiC single crystal substrate, and is directly heated from the support member. On the other hand, the front surface is exposed to a vacuum space to form an epitaxial film and is not directly heated. Furthermore, since the carrier gas hydrogen flows over the front surface, heat is taken away. For these reasons, the front surface during epitaxial growth is at a lower temperature than the back surface. For example, in the case of a hot wall type film forming apparatus, the front surface is heated by radiant heat from a radiant heating member disposed away from the wafer and conduction heat transmitted from the back surface through the substrate. Due to the difference in the heating conditions of the front surface (main surface) and the back surface during the epitaxial growth of such a SiC single crystal substrate, the front surface is in a state of lower temperature than the back surface. The surface of the thermal expansion is smaller than the back surface, and the SiC single crystal substrate is deformed so that the front surface is recessed during epitaxial growth. The amount of deformation increases as the temperature difference between the front surface and the back surface of the wafer increases. Therefore, when the wafer is heated at a temperature higher than that of the prior art as in the present invention, the amount of deformation becomes larger than that of the prior art, which is a more significant problem. In particular, the outer peripheral region of the wafer will float from the heating member that supports the wafer, and the temperature of the wafer surface will fall below the required temperature. As a result, even when epitaxial growth is performed in a temperature range and a growth rate range in which triangular defects and stacking faults do not occur, triangular defects and stacking defects are generated at high density in the outer peripheral portion. Further, the warpage of the SiC single crystal substrate is microscopically the warpage of the crystal lattice plane, and the deposition of the epitaxial layer with the crystal lattice plane of the substrate surface being recessed leads to the formation of defects such as dislocations, resulting in stacking faults. We focused on the fact that it can contribute to the problem.
Accordingly, the inventors have conceived that the epitaxial growth is performed in a state in which the dent (warpage) of the substrate due to the difference in the heating state of the front surface (main surface) and the back surface at the time of epitaxial growth of the SiC single crystal substrate is eliminated. Specifically, the SiC single crystal substrate is processed so as to be convex with respect to the main surface at room temperature, and the epitaxial growth is performed in a state where dents (warpage) of the substrate are reduced, preferably eliminated, during epitaxial growth. It was.
As a result, the substrate support member and the SiC single crystal substrate come into close contact with each other by reducing the dent (warp) of the substrate, preferably eliminating it, and the temperature distribution of the substrate (particularly the central portion). It has been found that the uniformity of the film thickness and the carrier concentration is improved.

また、ステップバンチングを低減する方法の現状は以下の通りである。
原子分解能を有するAFM(以下「通常のAFM」という)は表面の原子配列を直接観察できるものの、最大観察範囲は10〜20μm□程度であり、それ以上の広範囲の測定は機構上困難である。しかしながら、SiCエピタキシャル膜表面のステップバンチングはウェハの端から端まで連続しているものと認識されていたため、光学顕微鏡と組み合わせることによって、そのAFMの機構上の欠点も特に不都合とされてはいなかった。
また、AFMよりも広範囲の200μm〜1mm□程度の範囲を観察するのに微分干渉顕微鏡が用いられるが、この微分干渉顕微鏡(例えば、非特許文献3)では、ステップの高さを定量化することができず、また、特に倍率が大きいときに数nmの高さのステップを検出することができないという不都合があった。
The current state of the method for reducing step bunching is as follows.
Although AFM having atomic resolution (hereinafter referred to as “normal AFM”) can directly observe the atomic arrangement on the surface, the maximum observation range is about 10 to 20 μm □, and measurement over a wide range beyond that is difficult due to the mechanism. However, since step bunching on the surface of the SiC epitaxial film was recognized as being continuous from end to end of the wafer, the mechanical defects of the AFM were not particularly inconvenient when combined with an optical microscope. .
In addition, a differential interference microscope is used to observe a wide range of about 200 μm to 1 mm □ than the AFM. In this differential interference microscope (for example, Non-Patent Document 3), the step height is quantified. In addition, there is an inconvenience that a step having a height of several nm cannot be detected particularly when the magnification is large.

ステップバンチングはSiCエピタキシャル膜表面の平坦化を妨げるものであるから、SiCデバイスの高性能化のためにはその発生を抑制する必要がある。ステップバンチングは表面の段差であるため、特に、SiCエピタキシャル膜表面に酸化膜を形成し、その界面に通電させるMOSFETにおいて、その存在は動作性能および信頼性に致命的な影響を与える場合がある。そのため、従来からこのステップバンチングの抑制の研究は精力的に行われてきた。   Since step bunching hinders flattening of the surface of the SiC epitaxial film, it is necessary to suppress its generation in order to improve the performance of the SiC device. Since step bunching is a step in the surface, the presence of an oxide film on the surface of the SiC epitaxial film and the current flowing through the interface may have a fatal effect on the operating performance and reliability. Therefore, research on the suppression of step bunching has been energetically performed.

このMOSFETを含めたSiCパワーデバイスの活性領域は通常のAFMの測定範囲よりも大きい。そのため、優れた特性を有するデバイスを作製可能とするエピタキシャル成長表面を得るためには、通常のAFMあるいは微分干渉顕微鏡による評価では十分とは言えない。   The active region of the SiC power device including this MOSFET is larger than the normal AFM measurement range. For this reason, in order to obtain an epitaxially grown surface capable of producing a device having excellent characteristics, evaluation with a normal AFM or differential interference microscope is not sufficient.

また、上述の通り、ガスエッチングの際に原料ガスであるCガス、又は、SiHガスを添加して行うのが一般的であり、その後にその添加ガスを排気することなくそのまま続けて他方のガスを導入してSiCエピタキシャル膜の成膜工程を行っていた。この場合、これらの原料ガスの基板表面への供給は同時になされていなかった。水素ガスだけでエッチングを行う場合もあったが、原料ガスの基板表面への同時供給の重要性は認識されていなかった。 Further, as described above, it is common to add C 3 H 8 gas or SiH 4 gas, which is a raw material gas, during gas etching, and then continue without adding the added gas. Then, the other gas was introduced to perform the SiC epitaxial film forming process. In this case, these source gases have not been supplied to the substrate surface at the same time. Although etching may be performed using only hydrogen gas, the importance of simultaneous supply of source gas to the substrate surface has not been recognized.

<短いステップバンチング>
本発明者らは、高さ方向の感度がAFMと同程度であって、かつ、レーザー光を用い、微分干渉顕微鏡よりも広範囲を観察することができる光学式表面検査装置と、広範囲観察型のAFM(以下「広範囲観察型AFM」という)とを組み合わせて用いて、従来の方法でステップバンチングを抑制したとされたSiCエピタキシャルウェハの観察・評価を行い、通常のAFMや微分干渉顕微鏡では捉えることが困難なステップバンチングが表面の標準的な状態として存在することを見出した。
<Short step bunching>
The present inventors have developed an optical surface inspection apparatus capable of observing a wider range than a differential interference microscope, using a laser beam and having a sensitivity in the height direction similar to that of an AFM, and a wide-range observation type. In combination with AFM (hereinafter referred to as "wide-range observation type AFM"), SiC epitaxial wafers that have been considered to suppress step bunching by conventional methods are observed and evaluated, and captured by ordinary AFMs and differential interference microscopes. It was found that difficult step bunching exists as a standard state of the surface.

新たに存在を明らかにしたステップバンチングは、平均100μm程度の間隔で存在し、[1−100]方向に100〜500μmの長さを有していた。また、後述するが、このステップバンチングは、らせん転位が成長表面に現れて形成されるシャローピットが表面に段差を形成し、それが原因で発生するものであり、らせん転位は元々、エピタキシャル成長膜の基板として用いるSiC単結晶基板中に含まれるものなので、基板起因と言えるものである。   The step bunchings that have been newly clarified existed at an average interval of about 100 μm and had a length of 100 to 500 μm in the [1-100] direction. As will be described later, this step bunching is caused by shallow pits formed by screw dislocations appearing on the growth surface and forming steps on the surface, and screw dislocations are originally formed in the epitaxially grown film. Since it is contained in the SiC single crystal substrate used as a substrate, it can be said that it originates in the substrate.

他方、従来既知のステップバンチング(以下、「従来のステップバンチング」という)は平均1.5μm程度の間隔で存在し、[1−100]方向に5mm以上の長さを有するものである。また、その発生は元々、SiC単結晶基板の表面はオフ角度があるため、表面にはそれに対応した原子ステップがあり、この原子ステップはエピタキシャル成長、あるいはガスエッチングの過程で移動するが、ステップ間でこの移動速度にばらつきが生じるとこれらのステップ同士がお互い合体して生ずるものであり、基板中の転位には関係なく発生するものである。   On the other hand, conventionally known step bunching (hereinafter referred to as “conventional step bunching”) is present at an average interval of about 1.5 μm and has a length of 5 mm or more in the [1-100] direction. Moreover, since the surface of the SiC single crystal substrate originally has an off angle, there is an atomic step corresponding to the surface, and this atomic step moves during the process of epitaxial growth or gas etching. When the movement speed varies, these steps are combined with each other, and occur regardless of dislocations in the substrate.

そこで、本明細書では、新たにその存在を明らかにしたステップバンチングを従来のステップバンチングと区別して、「短いステップバンチング」と記載する。   Therefore, in the present specification, step bunching whose presence has been newly clarified is described as “short step bunching” in distinction from conventional step bunching.

図1に、通常のAFM(Veeco Instrument社製Dimension V)によって観察したSiCエピタキシャルウェハ表面の10μm□のAFM像(立体表示の表面斜視像)を示す。図1(a)は従来のステップバンチングを示すAFM像であり、図1(b)は短いステップバンチングを示すAFM像である。   FIG. 1 shows a 10 μm square AFM image (stereoscopic surface perspective image) of the surface of an SiC epitaxial wafer observed by a normal AFM (Dimension V manufactured by Veeco Instrument). FIG. 1A is an AFM image showing conventional step bunching, and FIG. 1B is an AFM image showing short step bunching.

図1(b)に矢印Aで示したようなAFM像が得られた場合、又は、一画面の走査ではなくカンチレバーの数回の往復走査でこのようなAFM像の一部が得られた場合は、ノイズと判断されたり、又は、表面の標準的な状態を示すものではなく、たまたま特異な状態を有する領域を観察したものと判断されて、他の領域に移動して観察をするのが通常であった。そのため、短いステップバンチングは従来、通常のAFMや微分干渉顕微鏡においても観察されていたはずとも言えるが、少なくともSiCエピタキシャル膜表面の標準的な状態を示すものと認識されていなかったものである。   When an AFM image as indicated by an arrow A in FIG. 1B is obtained, or when a part of such an AFM image is obtained by several reciprocating scans of the cantilever instead of a single screen scan Is judged as noise, or does not indicate the standard state of the surface, it is determined that it has happened to observe an area that has a peculiar state, and it moves to another area for observation. It was normal. Therefore, although it can be said that short step bunching has been observed in conventional AFM and differential interference microscope, it has not been recognized as showing at least the standard state of the SiC epitaxial film surface.

図2に、本発明で用いた広範囲観察型AFM(キーエンス社製ナノスケールハイブリッド顕微鏡VN−8000)によって観察したSiCエピタキシャル膜表面の200μm□のAFM像を示す。
図2(a)は従来のステップバンチングを示すAFM像であり、図2(b)は短いステップバンチングを示すAFM像である。
FIG. 2 shows an AFM image of 200 μm □ on the surface of the SiC epitaxial film observed by the wide-area observation type AFM (Nanoscale Hybrid Microscope VN-8000 manufactured by Keyence Co., Ltd.) used in the present invention.
2A is an AFM image showing conventional step bunching, and FIG. 2B is an AFM image showing short step bunching.

従来のステップバンチングについては図2(a)に示すように、通常のAFM像と同様、平均1.5μm程度の間隔で存在することが観察できる。これに対して、図2(b)には2本のライン(矢印B、C)が等しい間隔で安定に観察されていることがわかる。200μm□という広範囲でこのようにステップが安定に観察できることは単なるノイズや特異な表面領域を示すものではないこと、そして、従来のステップバンチングとは性質の異なるステップバンチングの存在を裏付けるものである。   As shown in FIG. 2A, it can be observed that conventional step bunching exists at an average interval of about 1.5 μm, as in a normal AFM image. In contrast, FIG. 2B shows that two lines (arrows B and C) are observed stably at equal intervals. The fact that steps can be observed stably in a wide range of 200 μm □ does not indicate mere noise or a peculiar surface area, and confirms the existence of step bunching that is different from conventional step bunching.

短いステップバンチングの存在を他の表面検査装置でも確認するため、レーザー光を用いる光学式表面検査装置(KLA−Tencor社製Candela CS20)による観察を行った。この光学式表面検査装置は、測定範囲が数μm□〜4インチ□以上のウェハ全面であって広範囲観察型AFMよりも大きいため、短いステップバンチングの密度を測定するのにも適している。   In order to confirm the presence of short step bunching with another surface inspection apparatus, observation was performed with an optical surface inspection apparatus using a laser beam (Candela CS20 manufactured by KLA-Tencor). This optical surface inspection apparatus is suitable for measuring the density of short step bunching because the entire surface of the wafer having a measurement range of several μm □ to 4 inches □ or more is larger than the wide-area observation type AFM.

本発明で用いる光学式表面検査装置(KLA−Tencor社製Candela CS20と同じ原理で表面検査をする装置)とは、レーザー光をウェハに対して斜めに入射して、ウェハ表面からの散乱光の強度、および反射光の強度と反射位置を検出するシステムを有することを特徴とするものである。ウェハの表面はスパイラルスキャンされる。反射位置は、ウェハ表面の凸凹をなぞるように変化するため、この位置情報からラフネス(表面粗さ)を算出することができる。ステップバンチングに対応した周期の表面ラフネス情報を抽出するため、100μmのフィルターを計算時に使用し、ウェハ表面の長周期のうねり情報を除去する。   The optical surface inspection apparatus used in the present invention (apparatus that performs surface inspection based on the same principle as CANDELA CS20 manufactured by KLA-Tencor) is a method in which laser light is incident on a wafer obliquely and scattered light from the wafer surface It has the system which detects intensity | strength, the intensity | strength of reflected light, and a reflective position, It is characterized by the above-mentioned. The surface of the wafer is spiral scanned. Since the reflection position changes so as to trace the unevenness of the wafer surface, roughness (surface roughness) can be calculated from this position information. In order to extract surface roughness information having a period corresponding to step bunching, a 100 μm filter is used in the calculation, and long-period waviness information on the wafer surface is removed.

ただし、ステップバンチングは[1−100]方向に並行であるため、スパイラルスキャン中、レーザー光とスキャン方向が並行になってしまう領域では、ステップが検出されない。そのため、ラフネス情報の算出には、一般的な極座標における55°〜125°と235°〜305°のそれぞれ70°の範囲を選択する。また、スパイラルスキャンの中心はほとんどレーザー光が動かない特異点になってしまうため、その付近における反射光の位置情報は、ラフネスを反映しなくなる。そのため、中心のφ10mmの範囲は算出領域から除外した。このようにして設定される計算範囲はウェハ全面の約35%であるが、ステップバンチングについて、この範囲のモフォロジーは、ウェハ全面をほぼ反映している。このようにして計算されたラフネスは、AFMを用いて測定されたラフネスと相関があることから、実際の表面モフォロジーに即したものであることがわかる。   However, since step bunching is parallel to the [1-100] direction, a step is not detected in a region where the laser beam and the scanning direction are parallel during spiral scanning. Therefore, for the calculation of roughness information, a range of 70 ° between 55 ° to 125 ° and 235 ° to 305 ° in general polar coordinates is selected. Further, since the center of the spiral scan is a singular point where the laser beam hardly moves, the position information of the reflected light in the vicinity does not reflect the roughness. Therefore, the central φ10 mm range was excluded from the calculation area. The calculation range set in this way is about 35% of the entire wafer surface. However, with respect to step bunching, the morphology in this range almost reflects the entire wafer surface. Since the roughness calculated in this way has a correlation with the roughness measured using the AFM, it can be seen that the roughness is in accordance with the actual surface morphology.

<短いステップバンチングの発生起源>
図3に、光学式表面検査装置で短いステップバンチングが観察されたSiCエピタキシャルウェハの微分干渉顕微鏡による観察結果を示す。矢印で示すように、顕著なシャローピットとそれに付随した短いステップバンチングを確認することができる。エピ層表面におけるシャローピットの深さは6.3nmであった。
<Origin of short step bunching>
FIG. 3 shows the observation result of the SiC epitaxial wafer in which short step bunching is observed with the optical surface inspection apparatus, using a differential interference microscope. As shown by the arrows, a noticeable shallow pit and accompanying short step bunching can be confirmed. The depth of the shallow pits on the epilayer surface was 6.3 nm.

さらに、図4に、このシャローピットの起源を確認するためにKOHエッチングを行った後の微分干渉顕微鏡による観察結果を示す。矢印でその一部を示すように、らせん転位の存在と付随する短いステップバンチングを確認できる。このことから、短いステップバンチングは、表面に発生したシャローピットの段差によってステップフォロー成長が阻害された結果、生じたものと推察できる。こうして、短いステップバンチングの発生の起源が基板から引き継がれたエピ層中のらせん転位に起因したシャローピットであることが理解できる。   Further, FIG. 4 shows an observation result by a differential interference microscope after performing KOH etching in order to confirm the origin of the shallow pit. As indicated by the arrows, the presence of screw dislocations and the accompanying short step bunching can be confirmed. From this, it can be inferred that the short step bunching occurred as a result of step follow growth being hindered by the step of the shallow pit generated on the surface. Thus, it can be understood that the origin of the short step bunching is the shallow pit caused by the screw dislocation in the epi layer inherited from the substrate.

以上の通り、本発明者らは、光学式表面検査装置と広範囲観察型AFMという従来とは異なる表面検査装置を組み合わせてSiCエピタキシャル膜表面を観察・評価することにより、この短いステップバンチングが表面の特異な状態ではなく、標準的な状態として存在することを見出した。そして、本発明者らは、鋭意研究を重ねた結果、短いステップバンチングの起源を明らかにすると共に、その発生を抑制して、ステップバンチングフリーのSiCエピタキシャルウェハを製造する方法に到達したのである。   As described above, the present inventors have observed this short step bunching on the surface by observing and evaluating the surface of the SiC epitaxial film by combining an optical surface inspection device and a surface inspection device different from the conventional one called a wide-range observation type AFM. It was found that it exists as a standard state, not a unique state. As a result of intensive studies, the present inventors have clarified the origin of short step bunching and suppressed the occurrence of the step bunching, thereby reaching a method for manufacturing a step bunching-free SiC epitaxial wafer.

この短いステップバンチングの存在が品質バラツキの主原因の一つであったものと考えられる。   The presence of this short step bunching is considered to be one of the main causes of quality variation.

ステップバンチングについては、従来のステップバンチングとその発生起源が異なり、SiC単結晶基板に起因する短いステップバンチングを発見し、従来のステップバンチングに加えて、この基板起因の短いステップバンチングを低減するために基板の研磨工程において必要な条件を見出した。そして、かかる条件で研磨したSiC単結晶基板にガスエッチングを施してSiC単結晶基板を清浄化し、このSiC単結晶基板を用いれば、炭化珪素のエピタキシャル成長に必要とされる量の炭素含有ガス及び珪素含有ガスを所定の濃度比で基板表面に同時に供給して成膜を行うことにより、従来のステップバンチング及び短いステップバンチングが著しく低減することを見出した。さらに供給を同時に停止してガスを除くまで基板温度を保持し、その後に降温することによって、ステップバンチングフリーのSiCエピタキシャルウェハが得られることを見出したのである。   In order to reduce the short step bunching caused by the SiC single crystal substrate, in addition to the conventional step bunching, the short step bunching caused by the SiC single crystal substrate was discovered. Necessary conditions were found in the polishing process of the substrate. Then, the SiC single crystal substrate polished under such conditions is subjected to gas etching to clean the SiC single crystal substrate. If this SiC single crystal substrate is used, an amount of carbon-containing gas and silicon required for epitaxial growth of silicon carbide can be obtained. It has been found that conventional step bunching and short step bunching are remarkably reduced by simultaneously forming the film by supplying the contained gas to the substrate surface at a predetermined concentration ratio. Further, the inventors have found that a step bunching-free SiC epitaxial wafer can be obtained by simultaneously stopping the supply and maintaining the substrate temperature until the gas is removed and then lowering the temperature.

本発明は、以下の手段を提供する。
〕0.4°〜5°のオフ角で傾斜させた4H−SiC単結晶基板上にSiCエピタキシャル層を形成したSiCエピタキシャルウェハであって、ステップバンチングがなく、かつ、前記SiCエピタキシャル層中の積層欠陥の密度が1個/cm以下であることを特徴とするSiCエピタキシャルウェハ。
〕0.4°〜5°のオフ角で傾斜させた4H−SiC単結晶基板上にSiCエピタキシャル層を形成したSiCエピタキシャルウェハであって、短いステップバンチングがなく、かつ、前記SiCエピタキシャル層中の積層欠陥の密度が1個/cm以下であることを特徴とするSiCエピタキシャルウェハ。
〕前記SiCエピタキシャル層の膜厚分布が2%以下であり、かつ、そのキャリア濃度分布が10%以下であると共に、室温において前記SiCエピタキシャルウェハの主面が凸状に反り、該凸の曲率半径が10m以上1000m以下の範囲にあることを特徴とする前項〔1〕又は〕のいずれかに記載のSiCエピタキシャルウェハ。
ここで、「主面」とは、4H−SiC単結晶基板においてエピタキシャル膜を成長させる面をいう。
また、「膜厚分布」及び「キャリア濃度分布」は、ウェハ上の複数箇所のサンプルを用いて{(最大値−最小値)/(最大値+最小値)}×100(%)から求める。
また、凸の曲率半径の適切な範囲は4H−SiC単結晶基板のサイズに依存するが、ここでは3〜4インチのものを想定している。
The present invention provides the following means.
[ 1 ] A SiC epitaxial wafer in which a SiC epitaxial layer is formed on a 4H-SiC single crystal substrate tilted at an off angle of 0.4 ° to 5 °, without step bunching, and in the SiC epitaxial layer A SiC epitaxial wafer, wherein the density of stacking faults is 1 piece / cm 2 or less.
[ 2 ] A SiC epitaxial wafer in which a SiC epitaxial layer is formed on a 4H—SiC single crystal substrate tilted at an off angle of 0.4 ° to 5 °, and there is no short step bunching, and the SiC epitaxial layer A SiC epitaxial wafer characterized in that the density of stacking faults therein is 1 piece / cm 2 or less.
[ 3 ] The film thickness distribution of the SiC epitaxial layer is 2% or less and the carrier concentration distribution is 10% or less, and the main surface of the SiC epitaxial wafer warps in a convex shape at room temperature, SiC epitaxial wafer any crab described items [1] or [2], which radius of curvature lies in the 1000m below the range of 10 m.
Here, the “main surface” refers to a surface on which an epitaxial film is grown on a 4H—SiC single crystal substrate.
The “film thickness distribution” and the “carrier concentration distribution” are obtained from {(maximum value−minimum value) / (maximum value + minimum value)} × 100 (%) using samples at a plurality of locations on the wafer.
Moreover, although the suitable range of a convex curvature radius is dependent on the size of a 4H-SiC single crystal substrate, the thing of 3-4 inches is assumed here.

上記の構成によれば、三角欠陥及び積層欠陥が低減され、キャリア濃度及び膜厚の均一性が向上し、ウェハの全面にステップバンチングがないステップバンチングフリーという従来に比べて格段に高品質のSiCエピタキシャルウェハを提供することができる。   According to the above configuration, triangular defects and stacking faults are reduced, carrier concentration and film thickness uniformity are improved, and step bunching free, which has no step bunching on the entire surface of the wafer, is much higher quality than conventional SiC. An epitaxial wafer can be provided.

三角欠陥及び積層欠陥が少なく、面内均一性良好でステップバンチングがない高品質の上記構成のSiCエピタキシャルウェハを用いて電子デバイスを作製することにより、電子デバイスの特性安定性や特性向上、さらには歩留まり向上という効果が得られる。   By producing electronic devices using high-quality SiC epitaxial wafers with the above configuration with few triangular defects and stacking faults, good in-plane uniformity, and no step bunching, the characteristics stability and characteristics of electronic devices can be improved. The effect of improving the yield is obtained.

炭化珪素膜のエピタキシャル成長を、(1)オフ角が0.4°〜2°の4H−SiC単結晶基板を用いる場合は、炭化珪素膜をエピタキシャル成長させる成長温度を1600〜1640℃とするときは、成長速度を1〜3μm/hとして行い、成長温度を1640〜1700℃とするときは、成長速度を3〜4μm/hとして行い、成長温度を1700〜1800℃とするときは、成長速度を4〜10μm/hとして行い、(2)オフ角が2°〜5°の4H−SiC単結晶基板を用いる場合は、炭化珪素膜をエピタキシャル成長させる成長温度を1600〜1640℃とするときは、成長速度を2〜4μm/hとして行い、成長温度を1640〜1700℃とするときは、成長速度を4〜10μm/hとして行い、成長温度を1700〜1800℃とするときは、成長速度を10〜20μm/hとして行う、ことにより、SiCエピタキシャル層の表面の三角形状の欠陥密度が1個/cm以下であり、SiCエピタキシャルウェハ層中の積層欠陥の密度が1個/cm以下であるSiCエピタキシャルウェハが得られる。 Epitaxial growth of silicon carbide film (1) When a 4H-SiC single crystal substrate with an off angle of 0.4 ° to 2 ° is used, when the growth temperature for epitaxial growth of the silicon carbide film is 1600 to 1640 ° C., When the growth rate is 1 to 3 μm / h and the growth temperature is 1640 to 1700 ° C., the growth rate is 3 to 4 μm / h. When the growth temperature is 1700 to 1800 ° C., the growth rate is 4 (2) When a 4H—SiC single crystal substrate with an off angle of 2 ° to 5 ° is used, when the growth temperature for epitaxially growing the silicon carbide film is 1600 to 1640 ° C., the growth rate When the growth temperature is 1640 to 1700 ° C., the growth rate is 4 to 10 μm / h, and the growth temperature is 1700 to 1800 ° C. When performs growth rate of 10 to 20 [mu] m / h, by, triangular defect density on the surface of the SiC epitaxial layer has a 1 / cm 2 or less, the density of stacking faults of SiC epitaxial wafer layer A SiC epitaxial wafer of 1 piece / cm 2 or less is obtained.

通常のAFMでSiCエピタキシャルウェハ表面のステップバンチングを測定した像であり、(a)従来のステップバンチング、(b)短いステップバンチング、を示す像である。It is the image which measured the step bunching of the SiC epitaxial wafer surface by normal AFM, and is an image which shows (a) conventional step bunching and (b) short step bunching. 広範囲観察型AFMでSiCエピタキシャルウェハ表面のステップバンチングを測定した像であり、(a)従来のステップバンチング、(b)短いステップバンチング、を示す像である。It is the image which measured the step bunching of the SiC epitaxial wafer surface by the wide observation type AFM, and is an image which shows (a) conventional step bunching and (b) short step bunching. 短いステップバンチングを含むSiCエピタキシャルウェハを微分干渉顕微鏡で測定した像である。It is the image which measured the SiC epitaxial wafer containing a short step bunching with the differential interference microscope. KOHエッチング後に図3で用いたウェハを微分干渉顕微鏡で測定した像である。4 is an image obtained by measuring the wafer used in FIG. 3 with a differential interference microscope after KOH etching. 広範囲観察型AFMで4°オフ角のSiCエピタキシャルウェハのSi面を測定した像であり、(a)本発明のSiCエピタキシャルウェハ、(b)従来のSiCエピタキシャルウェハ、を示す像である。It is the image which measured Si surface of the SiC epitaxial wafer of 4 degrees off angle by wide observation type AFM, and is an image which shows (a) SiC epitaxial wafer of the present invention, and (b) conventional SiC epitaxial wafer. レーザー光を用いる光学式表面検査装置で4°オフ角のSiCエピタキシャルウェハのSi面を測定した像であり、(a)本発明のSiCエピタキシャルウェハ、(b)従来のSiCエピタキシャルウェハ、を示す像である。It is the image which measured the Si surface of the SiC epitaxial wafer of a 4 degrees off angle with the optical surface inspection apparatus using a laser beam, (a) SiC epitaxial wafer of this invention, (b) Image which shows the conventional SiC epitaxial wafer It is. フォトルミネッセンスイメージング装置で4°オフ角のSiCエピタキシャルウェハのSi面を測定した像であり、(a)本発明のSiCエピタキシャルウェハ、(b)従来のSiCエピタキシャルウェハ、を示す像である。It is the image which measured the Si surface of the SiC epitaxial wafer of 4 degrees off angle with the photoluminescence imaging device, and is an image which shows (a) SiC epitaxial wafer of the present invention, and (b) conventional SiC epitaxial wafer. レーザー光を用いる光学式表面検査装置で従来の0.8°オフ角のSiCエピタキシャルウェハのC面を測定した、(a)像であり、(b)欠陥マップ、である。It is (a) image and (b) defect map which measured C surface of the SiC epitaxial wafer of the conventional 0.8 degree off angle | corner with the optical surface inspection apparatus using a laser beam. レーザー光を用いる光学式表面検査装置で本発明の0.8°オフ角のSiCエピタキシャルウェハのC面を観察した、(a)像であり、(b)欠陥マップ、である。They are (a) image and (b) defect map which observed the C surface of the SiC epitaxial wafer of the 0.8 degree off angle | corner of this invention with the optical surface inspection apparatus using a laser beam. フォトルミネッセンスイメージング装置で0.8°オフ角のSiCエピタキシャルウェハのC面を測定した像であり、(a)本発明のSiCエピタキシャルウェハ、(b)従来のSiCエピタキシャルウェハ、を示す像である。It is the image which measured the C surface of the SiC epitaxial wafer of 0.8 degree off angle with the photoluminescence imaging device, and is an image which shows (a) SiC epitaxial wafer of the present invention, and (b) conventional SiC epitaxial wafer. 本発明のSiCエピタキシャルウェハの製造で用いる成膜装置の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the film-forming apparatus used by manufacture of the SiC epitaxial wafer of this invention. (a)本発明に係るSiC単結晶基板表面の断面を透過型電子顕微鏡で測定した像であり、(b)は(a)の拡大像である。(A) It is the image which measured the cross section of the SiC single crystal substrate surface concerning this invention with the transmission electron microscope, (b) is an enlarged image of (a). (a)従来のSiC単結晶基板表面の断面を透過型電子顕微鏡で測定した像であり、(b)は(a)の拡大像である。(A) It is the image which measured the cross section of the surface of the conventional SiC single crystal substrate with the transmission electron microscope, (b) is an enlarged image of (a). 比較例2のSiCエピタキシャルウェハ表面を(a)レーザー光を用いる光学式表面検査装置で測定した像であり、(b)広範囲観察型AFMで観察した像、である。It is the image which measured the SiC epitaxial wafer surface of the comparative example 2 with the optical surface test | inspection apparatus using a laser beam, (b) The image observed with the wide observation type AFM.

以下、本発明を適用した一実施形態であるSiCエピタキシャルウェハ及びその製造方法について、図面を用いて詳細に説明する。   Hereinafter, an SiC epitaxial wafer which is an embodiment to which the present invention is applied and a manufacturing method thereof will be described in detail with reference to the drawings.

[SiCエピタキシャルウェハ]
図5及び図6に、4°のオフ角で傾斜させた4H−SiC単結晶基板のSi面上にSiCのエピタキシャル層を成膜した、本発明の実施形態であるSiCエピタキシャルウェハを、広範囲観察型AFM及びレーザー光を用いる光学式表面検査装置(KLA−Tencor社製Candela CS20)で観察した結果を示す。
[SiC epitaxial wafer]
5 and 6, the SiC epitaxial wafer according to the embodiment of the present invention, in which the SiC epitaxial layer is formed on the Si surface of the 4H—SiC single crystal substrate inclined at an off angle of 4 °, is observed over a wide range. The result observed with the optical surface inspection apparatus (Kandela CS20 by KLA-Tencor) using a type | mold AFM and a laser beam is shown.

図5(a)は、本発明のSiCエピタキシャルウェハの表面の200μm□の広範囲観察型AFM像である。また、図5(b)に従来のSiCエピタキシャルウェハ表面の200μm□の広範囲観察型AFM像を示す。   FIG. 5A is a wide-range observation type AFM image of 200 μm □ on the surface of the SiC epitaxial wafer of the present invention. FIG. 5 (b) shows a 200 μm □ wide-range observation type AFM image of the surface of a conventional SiC epitaxial wafer.

本発明のSiCエピタキシャルウェハのAFM像では、全くステップが観察されない(ステップの線密度0本/mm−1)。このサンプルの他の領域についてもほとんどステップが観察されなかった。従って、ステップバンチングフリーが実現されており、ステップの線密度は5mm−1以下であることがわかる。また、表面の二乗平均粗さRqは0.5nmであり、最大高低差Ryは0.8nmであった。同じサンプルでランダムに選んだ3個の領域の平均のRqは0.41nmであり、また、平均のRyは0.82nmであった。従って、観察した表面の二乗平均粗さRqが1.0nm以下であり、かつ、最大高低差Ryが3.0nm以下であることがわかる。 In the AFM image of the SiC epitaxial wafer of the present invention, no steps are observed (linear density of steps: 0 lines / mm −1 ). Few steps were observed for other areas of this sample. Therefore, step bunching free is realized, and it can be seen that the linear density of the step is 5 mm −1 or less. Further, the root mean square roughness Rq was 0.5 nm, and the maximum height difference Ry was 0.8 nm. The average Rq of three regions selected at random in the same sample was 0.41 nm, and the average Ry was 0.82 nm. Therefore, it can be seen that the observed root mean square roughness Rq is 1.0 nm or less and the maximum height difference Ry is 3.0 nm or less.

これに対して、従来のSiCエピタキシャルウェハでは、線密度340本/mm−1で多数のステップが合体したステップバンチングが観察された。このサンプルの他の3個の領域の平均のステップ線密度は362本/mm−1であった。また、ステップは観察範囲を超えて延びていることがわかる。
また、表面の二乗平均粗さRqは2.4nmであり、最大高低差Ryは3.6nmであった。同じサンプルでランダムに選んだ3個の領域の平均のRqは3.2nmであり、また、平均のRyは4.5nmであった。
On the other hand, in the conventional SiC epitaxial wafer, step bunching in which many steps were combined at a linear density of 340 lines / mm −1 was observed. The average step line density of the other three regions of this sample was 362 lines / mm −1 . It can also be seen that the steps extend beyond the observation range.
Further, the root mean square roughness Rq was 2.4 nm, and the maximum height difference Ry was 3.6 nm. The average Rq of three regions randomly selected from the same sample was 3.2 nm, and the average Ry was 4.5 nm.

図6(a)及び(b)にそれぞれ、図5(a)及び(b)の同一サンプルの1mm□範囲について、レーザー光を用いる光学式表面検査装置によって観察した像(以下「カンデラ像」という)を示す。
観察した表面の二乗平均粗さRqは、本発明のSiCエピタキシャルウェハでは0.54nmであった。これに対して、従来のSiCエピタキシャルウェハでは1.7nmであり、本発明と従来のSiCエピタキシャルウェハの表面平坦性に明らかな差異を有することがわかる。
FIGS. 6 (a) and 6 (b) are images observed by an optical surface inspection apparatus using laser light (hereinafter referred to as “candela image”) for the 1 mm □ range of the same sample in FIGS. 5 (a) and 5 (b), respectively. ).
The observed root mean square roughness Rq of the SiC epitaxial wafer of the present invention was 0.54 nm. On the other hand, it is 1.7 nm in the conventional SiC epitaxial wafer, and it can be seen that there is a clear difference in surface flatness between the present invention and the conventional SiC epitaxial wafer.

図7(a)に、4°のオフ角で傾斜させた4H−SiC単結晶基板のSi面上にSiCのエピタキシャル層を成膜した、本発明のSiCエピタキシャルウェハをフォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)で観察したPLイメージ像を示す。また、図7(b)に、4°のオフ角で傾斜させた4H−SiC単結晶基板のSi面上に従来の方法によりSiCのエピタキシャル層を成膜したSiCエピタキシャルウェハをフォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)で観察したPLイメージ像を示す。
図7(a)で示した本発明のSiCエピタキシャルウェハでは三角形状の発光・吸収が観察されず、積層欠陥が存在しない。また、ウェハ全域について測定を行ったところ、その積層欠陥密度は0個/cmであった。
これに対して、図7(b)で示した従来の方法によるSiCエピタキシャルウェハでは、1個の三角形状の発光・吸収が観察され、積層欠陥が存在する。また、ウェハ 全域について測定を行ったところ、その積層欠陥密度は2.8個/cmであった。
FIG. 7A shows a photoluminescence imaging device (photon design) of a SiC epitaxial wafer of the present invention in which a SiC epitaxial layer is formed on the Si surface of a 4H—SiC single crystal substrate inclined at an off angle of 4 °. The PL image observed by PLI-100 manufactured by the company is shown. FIG. 7B shows a photoluminescence imaging apparatus (SiC epitaxial wafer) in which a SiC epitaxial wafer is formed by forming a SiC epitaxial layer on a Si surface of a 4H—SiC single crystal substrate inclined at an off angle of 4 ° by a conventional method. The PL image image observed by Photon Design PLI-100) is shown.
In the SiC epitaxial wafer of the present invention shown in FIG. 7A, triangular light emission / absorption is not observed, and there is no stacking fault. Moreover, when the measurement was performed for the entire wafer, the stacking fault density was 0 / cm 2 .
In contrast, in the SiC epitaxial wafer according to the conventional method shown in FIG. 7B, one triangular light emission / absorption is observed, and stacking faults exist. Moreover, when the measurement was performed on the entire area of the wafer, the stacking fault density was 2.8 / cm 2 .

図8(a)及び(b)に、0.8°のオフ角で傾斜させた4H−SiC単結晶基板のC面上に従来の方法によりSiCのエピタキシャル層を成膜したSiCエピタキシャルウェハを光学式表面検査装置(KLA−Tencor社製Candela CS20)で観察した結果(カンデラ像(a))及びカンデラ像に基づく欠陥マップ(b))を示す。
図8(a)で示した10mm×15mmの広範囲のカンデラ像において、3個の三角欠陥が観察される。また、図8(b)で示したウェハ全面の欠陥マップにおいて、三角欠陥密度は3.1個/cm(三角欠陥を含めた欠陥密度は4個/cm)であり、ウェハ全域に三角欠陥が存在していた。
8 (a) and 8 (b) show an optical view of a SiC epitaxial wafer in which a SiC epitaxial layer is formed on a C-plane of a 4H—SiC single crystal substrate inclined at an off angle of 0.8 ° by a conventional method. The result (candela image (a)) and the defect map (b) based on a candela image which were observed with the type | formula surface inspection apparatus (Candela CS20 by KLA-Tencor) are shown.
Three triangular defects are observed in a wide range of candela images of 10 mm × 15 mm shown in FIG. Further, in the defect map of the entire wafer surface shown in FIG. 8B, the triangular defect density is 3.1 / cm 2 (the defect density including the triangular defect is 4 / cm 2 ), and the entire area of the wafer is triangular. There was a defect.

図9(a)及び(b)に、0.8°のオフ角で傾斜させた4H−SiC単結晶基板のC面上にSiCのエピタキシャル層を成膜した、本発明の実施形態であるSiCエピタキシャルウェハを光学式表面検査装置(KLA−Tencor社製Candela CS20)で観察した結果(カンデラ像(a))及びカンデラ像に基づく欠陥マップ(b))を示す。
図9(a)で示した10mm×15mmの広範囲のカンデラ像において、三角欠陥は全く観察されない。また、図9(b)で示したウェハ全面の欠陥マップにおいて、三角欠陥密度は0.4個/cm(三角欠陥を含めた欠陥密度は1.2個/cm)であり、図8で示した従来のSiCエピタキシャルウェハに比べて著しく低減されていることがわかる。特に、ウェハの周縁領域における低減が大きい。これは主面を凸状に加工された4H−SiC単結晶基板を用いてエピタキシャル成長時において基板の凹み(反り)を低減した状態でエピタキシャル成長を行った効果によると考えられる。最適な曲率半径の凸状に加工することにより、中央部の欠陥密度もさらに低減すると考えられる。
9 (a) and 9 (b), an SiC epitaxial layer is formed on the C-plane of a 4H—SiC single crystal substrate tilted at an off angle of 0.8 °, which is an embodiment of the present invention. The result (candela image (a)) and defect map (b) based on a candela image of an epitaxial wafer observed with an optical surface inspection apparatus (Candela CS20 manufactured by KLA-Tencor) are shown.
In the 10 mm × 15 mm wide candela image shown in FIG. 9A, no triangular defect is observed. Further, in the defect map of the entire wafer surface shown in FIG. 9B, the triangular defect density is 0.4 / cm 2 (the defect density including the triangular defect is 1.2 / cm 2 ). It can be seen that it is significantly reduced as compared with the conventional SiC epitaxial wafer shown in FIG. In particular, the reduction in the peripheral region of the wafer is large. This is considered to be due to the effect of epitaxial growth using a 4H—SiC single crystal substrate whose main surface is processed into a convex shape while reducing the dent (warpage) of the substrate during epitaxial growth. It is considered that the defect density in the central part is further reduced by processing into a convex shape having an optimal curvature radius.

図10(a)に、図9で示した本発明の実施形態であるSiCエピタキシャルウェハについてフォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)で観察したPLイメージ像を示す。図10(b)は図8で示した従来の方法により作製したSiCエピタキシャルウェハのPLイメージ像である。
図10(a)で示した本発明のSiCエピタキシャルウェハでは三角形状の発光・吸収が観察されず、積層欠陥が存在しない。また、ウェハ全域について測定を行ったところ、その積層欠陥密度は0.1個/cmであった。
これに対して、図10(b)で示した従来の方法によるSiCエピタキシャルウェハでは、3個の三角形状の発光・吸収が観察され、積層欠陥が存在する。また、ウェハ全域について測定を行ったところ、その積層欠陥密度は1.8個/cmであった。
FIG. 10A shows a PL image image of the SiC epitaxial wafer according to the embodiment of the present invention shown in FIG. 9, which is observed with a photoluminescence imaging apparatus (PLI-100 manufactured by Photon Design). FIG. 10B is a PL image of a SiC epitaxial wafer manufactured by the conventional method shown in FIG.
In the SiC epitaxial wafer of the present invention shown in FIG. 10A, triangular light emission / absorption is not observed, and there is no stacking fault. Moreover, when the measurement was performed on the entire wafer, the stacking fault density was 0.1 / cm 2 .
On the other hand, in the SiC epitaxial wafer according to the conventional method shown in FIG. 10B, three triangular light emission / absorptions are observed, and stacking faults exist. Moreover, when the measurement was performed on the entire wafer, the stacking fault density was 1.8 / cm 2 .

[SiCエピタキシャル膜の成膜装置]
図11は、本発明のSiCエピタキシャルウェハ膜の成膜装置の一例の概略図である。
この炭化珪素膜の成膜装置101は、複数のウェハ設置部102bを支持するプラネタリ102と熱輻射部材103との間に設けられた反応室104と、熱輻射部材103の中央部を貫通して反応室104内にガスを供給するガス供給部105と、プラネタリ102及び熱輻射部材103をそれぞれ加熱する高周波コイル106、107とを備えている。公転用回転軸102aは、ガス供給部105の直下に配置されている。
この構成によって、ガス供給部105を中心軸にしてSiC単結晶ウェハをプラネタリ102によって例えば、5〜20rpmの回転速度で公転させるとともに、SiC単結晶ウェハの中心を軸にしてSiC単結晶ウェハ自体をウェハ設置部102bによって例えば、50〜200rpmの回転速度で自転させるようになっている。
このように、ウェハ設置部102bとプラネタリ102とを自回転せることにより、SiCウェハの膜厚やキャリア濃度、温度分布の面内均一性を向上させる構成となっている。
また、高周波コイル106、107を反応室104の上下に配置する構成によって、基板を高温に加熱することができる。
[SiC epitaxial film deposition system]
FIG. 11 is a schematic diagram of an example of an apparatus for forming an SiC epitaxial wafer film of the present invention.
This silicon carbide film forming apparatus 101 penetrates through a reaction chamber 104 provided between a planetary 102 and a heat radiation member 103 that supports a plurality of wafer placement portions 102b, and a central portion of the heat radiation member 103. The gas supply part 105 which supplies gas in the reaction chamber 104, and the high frequency coils 106 and 107 which heat the planetary 102 and the heat radiation member 103, respectively are provided. The revolution rotating shaft 102 a is disposed directly below the gas supply unit 105.
With this configuration, the SiC single crystal wafer is revolved at a rotational speed of, for example, 5 to 20 rpm by the planetary 102 with the gas supply unit 105 as the central axis, and the SiC single crystal wafer itself is centered on the center of the SiC single crystal wafer. For example, the wafer mounting portion 102b rotates at a rotational speed of 50 to 200 rpm.
In this way, the wafer installation portion 102b and the planetary 102 are rotated by themselves to improve the in-plane uniformity of the SiC wafer thickness, carrier concentration, and temperature distribution.
In addition, the substrate can be heated to a high temperature by the configuration in which the high-frequency coils 106 and 107 are arranged above and below the reaction chamber 104.

ウェハ設置部102bにはSiCウェハの凸状に形成された成長面(おもて面)を上にしてセットする。エピタキシャル膜の成長時にSiCウェハを加熱していくと、SiCウェハのおもて面と裏面とで温度差が生じる。これは、基板のおもて面はガス供給部105から供給されるガスによって冷却されるためである。このため、エピタキシャル膜成長時はおもて面と裏面の温度差に起因した熱膨張差により基板が反ってしまい、その結果、ウェハ設置部102bからSiCウェハの一部からが浮き、加熱がSiCウェハ全体に均一に伝わらない。   The wafer mounting portion 102b is set with the growth surface (front surface) formed in a convex shape of the SiC wafer facing upward. When the SiC wafer is heated during the growth of the epitaxial film, a temperature difference occurs between the front surface and the back surface of the SiC wafer. This is because the front surface of the substrate is cooled by the gas supplied from the gas supply unit 105. For this reason, at the time of epitaxial film growth, the substrate is warped due to the difference in thermal expansion caused by the temperature difference between the front surface and the back surface. Not transmitted uniformly throughout.

[SiCエピタキシャルウェハの製造方法]
以下、本発明を適用した一実施形態であるSiCエピタキシャルウェハの製造方法について詳細に説明する。
[Manufacturing method of SiC epitaxial wafer]
Hereinafter, a manufacturing method of a SiC epitaxial wafer which is one embodiment to which the present invention is applied will be described in detail.

<凸状加工工程>
SiC単結晶基板(ウェハ)の作製は昇華法などの方法によって製造された4H−SiCインゴットをスライスすることから始める。
スライスは通常、内周刃又はワイヤーソーによって行われるが、近年では、量産性の良いワイヤーソーが用いられることが一般的である。
凸状加工を行う場合はこのスライスの段階で凸状加工を行う。
具体的には、切断時のワイヤーのたわみ量を2mm以上とし、ワイヤー往復方向がなす直線を含む平面を円柱状インゴットの外周に対する垂直面とが形成する角度を数度程度傾けることによって、インゴットから切り出されるSiC単結晶ウェハの少なくとも一方の面の形状を凸状に加工することができる。この時、角度を1°以上3°以下とすることで、凸の曲率半径が10m以上1000m以下の範囲になる。また、凸の方向はエピタキシャル面に使用する面になるように、その傾斜角度を変える。
<Convex process>
The production of the SiC single crystal substrate (wafer) starts by slicing a 4H-SiC ingot manufactured by a method such as a sublimation method.
Slicing is usually performed with an inner peripheral blade or a wire saw, but in recent years, a wire saw with good mass productivity is generally used.
When performing convex processing, convex processing is performed in the stage of this slice.
Specifically, the amount of deflection of the wire at the time of cutting is set to 2 mm or more, and by tilting the angle formed by the plane perpendicular to the outer periphery of the cylindrical ingot with respect to the plane including the straight line formed by the wire reciprocating direction, from the ingot The shape of at least one surface of the SiC single crystal wafer to be cut out can be processed into a convex shape. At this time, by setting the angle to 1 ° or more and 3 ° or less, the convex curvature radius is in the range of 10 m or more and 1000 m or less. Further, the inclination angle is changed so that the convex direction becomes a surface used for the epitaxial surface.

凸状(湾曲、反り)加工されたSiC単結晶基板は、主面において連続的かつ一様に凸状とされていることが好ましい。連続的かつ一様に凸状とは、角張ったところが無く滑らかな状態であって、部分的に凹状になっているところがないことを意味する。凸の曲率半径は10m以上1000m以下の範囲であることが好ましい。10m以下の場合はエピタキシャル成長時の熱膨張によって室温時の主面の凹みを十分に低減できず、また、1000m以上の場合は凸状(湾曲)加工の効果が十分ではないからである。
凸状(湾曲、反り)の大きさを計測して定量化する方法はいくつかあるが、例えば、凸状(湾曲、反り)の曲率半径はウェハ平面度測定解析装置(例えば、エスオーエル株式会社製UltraSort)で測定したWarpから決定することができる。Warpは、計測方法としてはウェハをチャックしないフリーな状態で、焦平面を基準面として、その面から上下方法のズレの最大値の合計で定義されるもので、ウェハの反りの定量化の場合に一般的に用いられる指標の一つである。ウェハ形状が一様に上に凸などの単純な形状の場合には、Warpの計測値が一般的な定義での反りの値に一致する。
また、SiC単結晶基板は主面が湾曲しているもの、または、SiC単結晶基板自体が主面に向けて凸状に反っているもの、のいずれか一方を満たすものを用いればよいが、主面が湾曲しかつSiC単結晶基板自体が凸状に反っているものを形成してもよい。
It is preferable that the SiC single crystal substrate processed into a convex shape (curved, warped) is continuously and uniformly convex on the main surface. Continuously and uniformly convex means that there are no angular portions and a smooth state, and there are no portions that are partially concave. The convex curvature radius is preferably in the range of 10 m to 1000 m. This is because if it is 10 m or less, the depression of the main surface at room temperature cannot be sufficiently reduced by thermal expansion during epitaxial growth, and if it is 1000 m or more, the effect of the convex (curved) processing is not sufficient.
There are several methods of measuring and quantifying the size of the convex shape (curvature, warpage). For example, the curvature radius of the convex shape (curvature, warpage) is measured by a wafer flatness measurement analyzer (for example, manufactured by S-Oel Corporation). It can be determined from Warp measured by UltraSort). Warp is a measurement method that is defined as the sum of the maximum deviations of the up and down method from the focal plane with the focal plane as the reference plane in a free state where the wafer is not chucked. Is one of the commonly used indicators. When the wafer shape is a simple shape such as a uniform convex shape, the Warp measurement value matches the warp value in the general definition.
In addition, the SiC single crystal substrate may be one that satisfies either one of the main surface being curved or the SiC single crystal substrate itself being warped convexly toward the main surface. The main surface may be curved and the SiC single crystal substrate itself may be convexly warped.

<研磨工程>
研磨工程では、スライス工程においてウェハ表面に残留した4H−SiC単結晶基板について、その表面の格子乱れ層が3nm以下となるまで研磨する。
「格子乱れ層」とは前述の通り、TEMの格子像(格子が確認できる像)において、SiC単結晶の原子層(格子)に対応する縞状構造又はその縞の一部が明瞭になっていない層をいう。
<Polishing process>
In the polishing process, the 4H—SiC single crystal substrate remaining on the wafer surface in the slicing process is polished until the lattice disorder layer on the surface becomes 3 nm or less.
As described above, the “lattice disordered layer” has a striped structure corresponding to the atomic layer (lattice) of the SiC single crystal or a part of the stripe in the TEM lattice image (image in which the lattice can be confirmed). Refers to no layer.

まず、「格子乱れ層」の存在及び特徴を説明するために、図12及び図13に、研磨工程後のSiC単結晶基板の表面近傍の透過型電子顕微鏡(TEM)像を示す。   First, in order to explain the existence and characteristics of the “lattice disordered layer”, FIGS. 12 and 13 show transmission electron microscope (TEM) images near the surface of the SiC single crystal substrate after the polishing step.

図12(a)、(b)は、本発明のSiC単結晶基板の例を示すTEM像である。
図12(a)で示したTEM像において表面の平坦性の乱れは観察できない。また、その拡大像である格子像(図12(b))において、最上層の原子層(格子)だけに乱れが観察され、その下の原子層(格子)からは明瞭な縞状構造が観察できる。矢印で挟まれた層が「格子乱れ層」である。
このTEM像から、表面の「格子乱れ層」が3nm以下であることが確認できる。
12 (a) and 12 (b) are TEM images showing examples of the SiC single crystal substrate of the present invention.
In the TEM image shown in FIG. 12A, the surface flatness disorder cannot be observed. Further, in the lattice image (FIG. 12B), which is an enlarged image, disorder is observed only in the uppermost atomic layer (lattice), and a clear striped structure is observed from the lower atomic layer (lattice). it can. A layer sandwiched by arrows is a “lattice disorder layer”.
From this TEM image, it can be confirmed that the “lattice disordered layer” on the surface is 3 nm or less.

図13(a)、(b)は、3nm以上の格子乱れ層が表面に存在するSiC単結晶基板の例を示すTEM像である。
図13(a)で示したTEM像において明らかな表面平坦性の乱れが観察され、また、図13(a)で平坦に見える部分でも、その拡大像である格子像(図13(b))において、表面から6nm以上にわたって縞状構造の乱れが観察できる。
このTEM像において7nm程度の「格子乱れ層」(像中の右側の矢印で挟まれた層)が観察でき、このサンプルでは表面の「格子乱れ層」が3nm以下を達成できていないことがわかる。
FIGS. 13A and 13B are TEM images showing an example of a SiC single crystal substrate having a lattice disorder layer of 3 nm or more on the surface.
In the TEM image shown in FIG. 13A, a clear disturbance of surface flatness is observed, and a lattice image (FIG. 13B) which is an enlarged image of a portion which appears flat in FIG. 13A. In FIG. 5, the disturbance of the stripe structure can be observed over 6 nm from the surface.
In this TEM image, a “lattice disorder layer” of about 7 nm (a layer sandwiched between arrows on the right side in the image) can be observed, and it can be seen that the surface “lattice disorder layer” cannot achieve 3 nm or less in this sample. .

以下に、本工程の実施形態について説明する。
研磨工程は、通常ラップと呼ばれる粗研磨、ポリッシュとよばれる精密研磨、さらに超精密研磨である化学的機械研磨(以下、CMPという)など複数の研磨工程が含まれる。研磨工程は湿式で行われることが多いが、この工程で共通するのは、研磨布を貼付した回転する定盤に、研磨スラリーを供給しつつ、炭化珪素基板を接着した研磨ヘッドを押しあてて行われることである。本発明で用いる研磨スラリーは、基本的にはそれらの形態で用いられるが、研磨スラリーを用いる湿式研磨であれば形態は問わない。
Below, the embodiment of this process is described.
The polishing process includes a plurality of polishing processes such as rough polishing usually called lapping, precision polishing called polishing, and chemical mechanical polishing (hereinafter referred to as CMP) which is ultra-precision polishing. The polishing process is often performed in a wet manner, but the common process in this process is to apply a polishing head to which a silicon carbide substrate is bonded while supplying polishing slurry to a rotating surface plate to which a polishing cloth is attached. Is to be done. The polishing slurry used in the present invention is basically used in such a form, but the form is not limited as long as it is wet polishing using the polishing slurry.

砥粒として用いられる粒子はこのpH領域において溶解せず分散する粒子であればよい。本発明においては研磨液のpHが2未満であるのが好ましく、この場合、研磨粒子としてはダイヤモンド、炭化珪素、酸化アルミニウム、酸化チタン、酸化ケイ素などが使用できる。本発明において砥粒として用いられるのは平均径1〜400nm、望ましくは10〜200nm、さらに望ましくは10〜150nmの研磨粒子である。良好な最終仕上げ面を得るためには、粒子径の小さなものが安価に市販されている点でシリカが好適である。さらに好ましくはコロイダルシリカである。コロイダルシリカ等の研磨剤の粒径は、加工速度、面粗さ等の加工特性によって適宜選択することができる。より高い研磨速度を要求する場合は粒子径の大きな研磨材を使用することができる。面粗さが小さい、すなわち高度に平滑な面を必要とするときは小さな粒子径の研磨材を使用することができる。平均粒子径が400nmを超えるものは高価である割には研磨速度が高くなく、不経済である。粒子径が1nm未満のような極端に小さいものは研磨速度が著しく低下する。   The particles used as the abrasive grains may be particles that do not dissolve and disperse in this pH range. In the present invention, the pH of the polishing liquid is preferably less than 2. In this case, diamond, silicon carbide, aluminum oxide, titanium oxide, silicon oxide, or the like can be used as the abrasive particles. In the present invention, abrasive particles having an average diameter of 1 to 400 nm, preferably 10 to 200 nm, more preferably 10 to 150 nm are used as abrasive grains. In order to obtain a good final finished surface, silica is preferred in that small particles are commercially available at low cost. More preferred is colloidal silica. The particle size of an abrasive such as colloidal silica can be appropriately selected depending on processing characteristics such as processing speed and surface roughness. When a higher polishing rate is required, an abrasive having a large particle size can be used. When the surface roughness is small, that is, when a highly smooth surface is required, an abrasive having a small particle diameter can be used. Those having an average particle diameter exceeding 400 nm are expensive because they are expensive and the polishing rate is not high. When the particle diameter is extremely small such as less than 1 nm, the polishing rate is remarkably reduced.

研磨材粒子の添加量としては1質量%〜30質量%、望ましくは1.5質量%〜15質量%である。30質量%を超えると研磨材粒子の乾燥速度が速くなり、スクラッチの原因となる恐れが高くなり、また、不経済である。また、研磨材粒子が1質量%未満では加工速度が低くなりすぎるため好ましくない。   The addition amount of the abrasive particles is 1% by mass to 30% by mass, desirably 1.5% by mass to 15% by mass. If it exceeds 30% by mass, the drying speed of the abrasive particles becomes high, which increases the risk of causing scratches, and is uneconomical. Further, if the abrasive particles are less than 1% by mass, the processing speed becomes too low, which is not preferable.

本発明における研磨スラリーは水系研磨スラリーであり、20℃におけるpHは2.0未満、望ましくは1.5未満、さらに望ましくは1.2未満である。pHが2.0以上の領域では十分な研磨速度が得られない。一方で、スラリーをpH2未満とすることによって、通常の室内環境下においても炭化珪素に対する化学的反応性が著しく増加し、超精密研磨が可能になる。炭化珪素は研磨スラリー中にある酸化物粒子の機械的作用によって直接除去されるのではなく、研磨液が炭化珪素単結晶表面を酸化ケイ素に化学反応させ、その酸化ケイ素を砥粒が機械作用的に取り除いていくという機構であると考えられる。したがって研磨液組成を炭化珪素が反応しやすくなるような液性にすること、すなわちpHを2未満にすることと、砥粒として適度な硬度をもつ酸化物粒子を選定することはスクラッチ傷や加工変質層のない、平滑な面を得るために非常に重要である。   The polishing slurry in the present invention is a water-based polishing slurry, and the pH at 20 ° C. is less than 2.0, desirably less than 1.5, and more desirably less than 1.2. In the region where the pH is 2.0 or more, a sufficient polishing rate cannot be obtained. On the other hand, by making the slurry less than pH 2, the chemical reactivity with respect to silicon carbide is remarkably increased even under a normal indoor environment, and ultraprecision polishing becomes possible. The silicon carbide is not directly removed by the mechanical action of the oxide particles in the polishing slurry, but the polishing liquid causes the silicon carbide single crystal surface to chemically react with the silicon oxide, and the silicon oxide is mechanically treated by the abrasive grains. It is thought that it is a mechanism that removes it. Therefore, making the polishing composition liquid so that silicon carbide can easily react, that is, setting the pH to less than 2, and selecting oxide particles having an appropriate hardness as abrasive grains can cause scratches and scratches. It is very important to obtain a smooth surface without an altered layer.

研磨スラリーは、塩酸、硝酸、燐酸、硫酸からなる酸のうち、少なくとも1種類以上、望ましくは2種類以上を用いてpHを2未満になるよう調整する。複数の酸を用いることが有効であることの原因は不明であるが、実験で確かめられており、複数の酸が相互に作用し、効果を高めている可能性がある。酸の添加量としては、たとえば、硫酸0.5〜5質量%、燐酸0.5〜5質量%、硝酸0.5〜5質量%、塩酸0.5〜5質量%の範囲で、適宜、種類と量を選定し、pHが2未満となるようにするとよい。   The polishing slurry is adjusted to have a pH of less than 2 using at least one or more, preferably two or more, acids of hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid. The reason why it is effective to use a plurality of acids is unknown, but it has been confirmed by experiments, and there is a possibility that a plurality of acids interact with each other and enhance the effect. As the addition amount of the acid, for example, in a range of 0.5 to 5% by mass of sulfuric acid, 0.5 to 5% by mass of phosphoric acid, 0.5 to 5% by mass of nitric acid, and 0.5 to 5% by mass of hydrochloric acid, The type and amount are selected so that the pH is less than 2.

無機酸が有効であるのは有機酸に比べ強酸であり、所定の強酸性研磨液に調整するには極めて好都合であるためである。有機酸を使用したのでは強酸性研磨液の調整に困難が伴う。
炭化珪素の研磨は、強酸性研磨液によって炭化珪素の表面に生成した酸化膜に対する反応性により、酸化層を酸化物粒子により除去することで行われるが、この表面酸化を加速するために、研磨スラリーに酸化剤を添加すると更に優れた効果が認められる。酸化剤としては過酸化水素、過塩素酸、重クロム酸カリウム、過硫酸アンモニウムサルフェートなどが挙げられる。たとえば、過酸化水素水であれば0.5〜5質量%、望ましくは1.5〜4質量%加えることにより研磨速度が向上するが、酸化剤は過酸化水素水に限定されるものではない。
The inorganic acid is effective because it is a stronger acid than the organic acid and is extremely convenient for adjusting to a predetermined strongly acidic polishing liquid. If an organic acid is used, it is difficult to adjust the strongly acidic polishing liquid.
The polishing of silicon carbide is performed by removing the oxide layer with oxide particles due to the reactivity to the oxide film generated on the surface of silicon carbide by the strongly acidic polishing liquid. In order to accelerate this surface oxidation, polishing is performed. When an oxidizing agent is added to the slurry, a further excellent effect is recognized. Examples of the oxidizing agent include hydrogen peroxide, perchloric acid, potassium dichromate, ammonium persulfate sulfate, and the like. For example, in the case of hydrogen peroxide solution, the polishing rate is improved by adding 0.5 to 5% by mass, preferably 1.5 to 4% by mass, but the oxidizing agent is not limited to hydrogen peroxide solution. .

研磨スラリーは研磨材のゲル化を抑制するためにゲル化防止剤を添加することが出来る。ゲル化防止剤の種類としては、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリエチレンホスホン酸等のリン酸エステル系のキレート剤が好適に用いられる。ゲル化防止剤は0.01〜6質量%の範囲、好ましくは0.05〜2質量%で添加するのがよい。   An anti-gelling agent can be added to the polishing slurry in order to suppress gelation of the abrasive. As the type of the gelation inhibitor, phosphate ester-type chelating agents such as 1-hydroxyethylidene-1,1-diphosphonic acid and aminotriethylenephosphonic acid are preferably used. The anti-gelling agent is added in the range of 0.01 to 6% by mass, preferably 0.05 to 2% by mass.

本発明の研磨工程において表面の格子乱れ層を3nm以下にするには、CMP前の機械研磨において加工圧力を350g/cm以下にし、直径5μm以下の砥粒を用いることによって、ダメージ層を50nmに抑えておくのが好ましく、さらにCMPにおいては、研磨スラリーとして平均粒子径が10nm〜150nmの研磨材粒子及び無機酸を含み、20℃におけるpHが2未満であるのが好ましく、研磨材粒子がシリカであって、1質量%から30質量%含むのがさらに好ましく、無機酸が塩酸、硝酸、燐酸、硫酸のうちの少なくとも1種類であるのがより好ましい。 In order to make the surface disordered layer of 3 nm or less in the polishing process of the present invention, the damage pressure is reduced to 50 nm by using a polishing pressure of 350 g / cm 2 or less and using abrasive grains having a diameter of 5 μm or less in mechanical polishing before CMP. Further, in CMP, the polishing slurry contains abrasive particles having an average particle size of 10 nm to 150 nm and an inorganic acid, and preferably has a pH of less than 2 at 20 ° C. Silica, more preferably 1 to 30% by mass, and more preferably at least one of inorganic acid, hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid.

<清浄化(ガスエッチング)工程>
清浄化工程では、水素雰囲気下で、前記研磨及び凸状加工後の基板を1400〜1800℃にしてその表面を清浄化(ガスエッチング)する。
<Cleaning (gas etching) process>
In the cleaning process, the surface of the substrate after the polishing and the convex processing is cleaned at 1400 to 1800 ° C. in a hydrogen atmosphere (gas etching).

以下、本工程の実施形態について説明する。
ガスエッチングは、SiC単結晶基板を1400〜1800℃に保持し、水素ガスの流量を40〜120slm、圧力を100〜250mbarとして、5〜30分間行う。
Hereinafter, an embodiment of this process will be described.
The gas etching is performed for 5 to 30 minutes by holding the SiC single crystal substrate at 1400 to 1800 ° C., setting the flow rate of hydrogen gas to 40 to 120 slm, and the pressure to 100 to 250 mbar.

研磨後のSiC単結晶基板を洗浄した後、基板をエピタキシャル成長装置例えば、量産型の複数枚プラネタリー型CVD装置内にセットする。装置内に水素ガスを導入後、圧力を100〜250mbarに調整する。その後、装置の温度を上げ、基板温度を1400〜1600℃、好ましくは1480℃以上にして、1〜30分間、水素ガスによって基板表面のガスエッチングを行う。かかる条件で水素ガスによるガスエッチングを行った場合、エッチング量は0.05〜0.4μm程度になる。   After the polished SiC single crystal substrate is cleaned, the substrate is set in an epitaxial growth apparatus, for example, a mass production type multiple planetary CVD apparatus. After introducing hydrogen gas into the apparatus, the pressure is adjusted to 100 to 250 mbar. Thereafter, the temperature of the apparatus is raised, the substrate temperature is set to 1400 to 1600 ° C., preferably 1480 ° C. or higher, and gas etching of the substrate surface is performed with hydrogen gas for 1 to 30 minutes. When gas etching with hydrogen gas is performed under such conditions, the etching amount is about 0.05 to 0.4 μm.

基板表面は研磨工程によりダメージを受けており、TEMにおいて「格子乱れ層」として検出できるダメージだけでなく、TEMによって検出できない格子の歪み等がさらに深くまで存在していると考えられる。ガスエッチングはこのようにダメージを受けた層(以下「ダメージ層」という)を除去することを目的としているが、ガスエッチングが十分ではなく、ダメージ層が残留すると、エピタキシャル成長層中に異種ポリタイプや転位、積層欠陥などが導入されてしまうし、また、エッチングを施しすぎると、基板表面で表面再構成が生じ、エピタキシャル成長開始前にステップバンチングを生じさせてしまう。そのため、ダメージ層とガスエッチング量とを最適化することが重要であるが、本発明者らは、鋭意研究の結果、ステップバンチングフリーのSiCエピタキシャルウェハの製造における十分条件として、基板表面の格子乱れ層を3nm以下にまで薄くした時のダメージ層と、上述のガスエッチング条件との組み合わせを見出したのである。   The surface of the substrate is damaged by the polishing process, and it is considered that not only damage that can be detected as a “lattice disorder layer” in the TEM but also distortion of the lattice that cannot be detected by the TEM exists. The purpose of gas etching is to remove the damaged layer (hereinafter referred to as “damage layer”). However, when the gas etching is not sufficient and the damaged layer remains, different types of polytypes and Dislocations, stacking faults, and the like are introduced, and if etching is performed too much, surface reconstruction occurs on the substrate surface, and step bunching occurs before the start of epitaxial growth. For this reason, it is important to optimize the damaged layer and the amount of gas etching. However, as a result of intensive studies, the present inventors have found that the substrate surface has a lattice disorder as a sufficient condition in the production of a step bunching-free SiC epitaxial wafer. They found a combination of the damage layer when the layer was thinned to 3 nm or less and the gas etching conditions described above.

清浄化(ガスエッチング)工程後の基板の表面について、光学式表面検査装置を用いてウェハ全面の35%以上の領域を解析したエピタキシャル層最表面の二乗平均粗さRqが1.3nm以下であることが確認できる。また、原子間力顕微鏡を用いて測定した場合、10μm□では1.0nm以下であり、また、200μm□では1.0nm以下であり、かつ200μm□に観察される長さ100〜500μmのステップバンチング(短いステップバンチング)における最大高低差Ryが3.0nm以下であることが確認できる。また、このステップの線密度が5mm−1以下であることが確認できる。
この後の成膜工程及び降温工程において、この基板表面の平坦性を維持することが重要となる。
About the surface of the substrate after the cleaning (gas etching) step, the root mean square roughness Rq of the outermost surface of the epitaxial layer obtained by analyzing an area of 35% or more of the entire wafer surface using an optical surface inspection apparatus is 1.3 nm or less. I can confirm that. In addition, when measured using an atomic force microscope, the step bunching is 1.0 nm or less at 10 μm □, 1.0 nm or less at 200 μm □, and 100 to 500 μm in length observed at 200 μm □. It can be confirmed that the maximum height difference Ry in (short step bunching) is 3.0 nm or less. Moreover, it can confirm that the linear density of this step is 5 mm <-1> or less.
It is important to maintain the flatness of the substrate surface in the subsequent film forming process and temperature lowering process.

水素ガスにSiHガス及び/又はCガスを添加することもできる。らせん転位に起因したシャローピットに短いステップバンチングが付随して発生する場合があるが、リアクタ内の環境をSiリッチにするため、0.009mol%未満の濃度のSiHガスを水素ガスに添加してガスエッチングを行うことにより、シャローピットの深さを浅くすることができ、シャローピットに付随する短いステップバンチングの発生を抑制できる。
SiHガス及び/又はCガスを添加した場合は、成膜(エピタキシャル成長)工程前に、一旦排気を行って水素ガス雰囲気にするのが好ましい。
SiH 4 gas and / or C 3 H 8 gas may be added to the hydrogen gas. Although short step bunching may occur along with shallow pits caused by screw dislocation, SiH 4 gas having a concentration of less than 0.009 mol% is added to hydrogen gas to make the environment in the reactor Si-rich. By performing gas etching, the depth of the shallow pit can be reduced, and the occurrence of short step bunching associated with the shallow pit can be suppressed.
When SiH 4 gas and / or C 3 H 8 gas is added, it is preferable to evacuate once to form a hydrogen gas atmosphere before the film formation (epitaxial growth) step.

<成膜(エピタキシャル成長)工程>
成膜(エピタキシャル成長)工程では、(エピタキシャル膜の成長温度が清浄化(ガスエッチング)温度よりも高い場合では昇温後に)前記清浄化後の基板の表面に、炭化珪素のエピタキシャル成長に必要とされる量のSiHガスとCガスとを濃度比C/Siが0.7〜1.2で同時に供給して炭化珪素をエピタキシャル成長させる。
<Film formation (epitaxial growth) process>
In the film formation (epitaxial growth) step (after the temperature rise when the growth temperature of the epitaxial film is higher than the cleaning (gas etching) temperature), it is required for the epitaxial growth of silicon carbide on the surface of the cleaned substrate. A quantity of SiH 4 gas and C 3 H 8 gas are simultaneously supplied at a concentration ratio C / Si of 0.7 to 1.2 to epitaxially grow silicon carbide.

また、上述したように、「同時に供給」とは、完全に同一時刻であることまでは要しないが、数秒以内であることを意味する。後述する実施例で示したアイクストロン社製Hot Wall SiC CVD(VP2400HW)を用いた場合、SiHガスとCガスの供給時間差が5秒以内であれば、ステップバンチングフリーのSiCエピタキシャルウェハが製造できた。 Further, as described above, “simultaneous supply” means that it is not necessary to be completely at the same time, but is within several seconds. When using Hot Wall SiC CVD (VP2400HW) manufactured by Ixtron shown in the examples described later, if the difference in supply time between SiH 4 gas and C 3 H 8 gas is within 5 seconds, step bunching-free SiC epitaxial wafer Could be manufactured.

SiHガス及びCガスの各流量、圧力、基板温度、成長温度はそれぞれ、15〜150sccm、3.5〜60sccm、80〜250mbar、1600℃より高く1800℃以下、成長速度は毎時1〜20μmの範囲内で、オフ角、膜厚、キャリア濃度の均一性、成長速度を制御しながら決定する。成膜開始と同時にドーピングガスとして窒素ガスを導入することで、エピタキシャル層中のキャリア濃度を制御することができる。成長中のステップバンチングを抑制する方法として成長表面におけるSi原子のマイグレーションを増やすために、供給する原料ガスの濃度比C/Siを低くすることが知られているが、本発明ではC/Siは0.7〜1.2である。また、成長させるエピタキシャル層は通常、膜厚については5〜20μm程度であり、キャリア濃度については2〜15×1015cm−3程度である。 Each flow rate, pressure, substrate temperature, and growth temperature of SiH 4 gas and C 3 H 8 gas are 15 to 150 sccm, 3.5 to 60 sccm, 80 to 250 mbar, higher than 1600 ° C. and lower than 1800 ° C., and the growth rate is 1 per hour. Within a range of ˜20 μm, it is determined while controlling the off angle, film thickness, carrier concentration uniformity, and growth rate. By introducing nitrogen gas as a doping gas simultaneously with the start of film formation, the carrier concentration in the epitaxial layer can be controlled. As a method for suppressing step bunching during growth, in order to increase the migration of Si atoms on the growth surface, it is known to lower the concentration ratio C / Si of the source gas to be supplied. 0.7-1.2. The epitaxial layer to be grown is usually about 5 to 20 μm in thickness and about 2 to 15 × 10 15 cm −3 in carrier concentration.

成長温度及び成長速度は、SiC単結晶基板のオフ角に応じて、
(1)オフ角が0.4°〜2°の4H−SiC単結晶基板を用いる場合は、炭化珪素膜をエピタキシャル成長させる成長温度を1600〜1640℃とするときは、成長速度を1〜3μm/hとして行い、成長温度を1640〜1700℃とするときは、成長速度を3〜4μm/hとして行い、成長温度を1700〜1800℃とするときは、成長速度を4〜10μm/hとして行い、
(2)オフ角が2°〜5°の4H−SiC単結晶基板を用いる場合は、炭化珪素膜をエピタキシャル成長させる成長温度を1600〜1640℃とするときは、成長速度を2〜4μm/hとして行い、成長温度を1640〜1700℃とするときは、成長速度を4〜10μm/hとして行い、成長温度を1700〜1800℃とするときは、成長速度を10〜20μm/hとして行う。
The growth temperature and growth rate depend on the off angle of the SiC single crystal substrate.
(1) When a 4H—SiC single crystal substrate with an off angle of 0.4 ° to 2 ° is used, when the growth temperature for epitaxial growth of the silicon carbide film is 1600 to 1640 ° C., the growth rate is 1 to 3 μm / When the growth temperature is 1640 to 1700 ° C., the growth rate is 3 to 4 μm / h. When the growth temperature is 1700 to 1800 ° C., the growth rate is 4 to 10 μm / h.
(2) When a 4H—SiC single crystal substrate with an off angle of 2 ° to 5 ° is used, when the growth temperature for epitaxial growth of the silicon carbide film is 1600 to 1640 ° C., the growth rate is set to 2 to 4 μm / h. When the growth temperature is 1640 to 1700 ° C., the growth rate is 4 to 10 μm / h. When the growth temperature is 1700 to 1800 ° C., the growth rate is 10 to 20 μm / h.

<降温工程>
降温工程では、SiHガスとCガスの供給を同時に停止し、SiHガスとCガスとを排気するまで基板温度を保持し、その後降温する。
<Cooling process>
The cooling step, to stop the supply of the SiH 4 gas and a C 3 H 8 gas is simultaneously holds the substrate temperature until the exhaust and SiH 4 gas and a C 3 H 8 gas is, then cooled.

成膜後、SiHガスとCガスの供給、並びにドーピングガスとして導入窒素ガスを止めて降温するが、このときにもSiCエピタキシャル膜表面ではガスエッチングが生じて表面のモフォロジーを悪化させ得る。この表面モフォロジーの悪化を抑制するため、SiHガスおよびCガスの供給を停止するタイミングと、降温のタイミングとが重要である。SiHガスとCガスの供給を同時に停止した後、供給したこれらのガスが基板表面から無くなるまで成長温度を保持し、その後平均毎分50℃程度の速度で室温まで降温することにより、モフォロジーの悪化が抑制されることがわかった。 After film formation, the supply of SiH 4 gas and C 3 H 8 gas and the introduction of nitrogen gas as a doping gas are stopped and the temperature is lowered. At this time as well, gas etching occurs on the surface of the SiC epitaxial film, deteriorating the surface morphology. obtain. In order to suppress the deterioration of the surface morphology, the timing of stopping the supply of the SiH 4 gas and the C 3 H 8 gas and the timing of temperature decrease are important. By simultaneously stopping the supply of SiH 4 gas and C 3 H 8 gas, holding the growth temperature until these supplied gases disappear from the substrate surface, and then lowering the temperature to room temperature at an average rate of about 50 ° C. It was found that deterioration of morphology was suppressed.

以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
本実施例では、珪素含有ガスとしてSiHガスおよび炭素含有ガスとしてCガス、ドーピングガスとしてNガス、キャリアガスおよびエッチングガスとしてHガスを使用し、量産型の複数枚プラネタリー(自公転)型CVD装置であるアイクストロン社製Hot Wall SiC CVD(VP2400HW)によって、4H−SiC単結晶の(0001)面に対して<11−20>軸方向へ微傾斜させたSi面又はC面にSiCエピタキシャル膜を成長させた。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
In this embodiment, SiH 4 gas as a silicon-containing gas and C 3 H 8 gas as a carbon-containing gas, N 2 gas as a doping gas, H 2 gas as a carrier gas and an etching gas are used, and a mass production type multiple-planetary is used. Si surface slightly tilted in the <11-20> axial direction with respect to the (0001) plane of 4H-SiC single crystal by Hot Wall SiC CVD (VP2400HW) manufactured by Ixtron, which is a (automatic revolution) type CVD apparatus A SiC epitaxial film was grown on the C plane.

[オフ角4°の4H−SiC単結晶基板のSi面]
(実施例1)
4°のオフ角で傾斜させた4H−SiC単結晶基板のSi面上にSiCのエピタキシャル層を成膜したものである。
本実施例では、4H−SiC単結晶基板については、凸状加工を施していない。
研磨工程において、CMP前の機械研磨は直径5μm以下の砥粒を用いて、加工圧力を350g/cmで行った。また、CMPは、研磨材粒子として平均粒子径が10〜150nmのシリカ粒子を用い、無機酸として硫酸を含み、20℃におけるpHが1.9の研磨スラリーを用いて、30分間行った。これにより、表面の格子乱れ層を3nm以下とした。
研磨後の基板をRCA洗浄後、成長装置内に導入した。尚、RCA洗浄とは、Siウェハに対して一般的に用いられている湿式洗浄方法であり、硫酸・アンモニア・塩酸と過酸化水素水を混合した溶液ならびにフッ化水素酸水溶液を用いて、基板表面の有機物や重金属、パーティクルを除去することができる。
清浄化(ガスエッチング)工程は、水素ガスの流量100slm、リアクタ内圧力を200mbar、基板温度を1500℃で、20分間行った。
SiCエピタキシャル成長工程では、基板温度を1650℃とし、SiHガス及びCガスが基板主面に同時に供給されるように、Cガス24sccm及びSiHガス8sccmを同時に供給開始して行った。C/Siは1.0を選択した。リアクタ内圧力を200mbarとし、成長速度5μm/hで2時間成長工程を実施して、厚さ10μmのSiCエピタキシャル層を成膜した。
[Si surface of 4H-SiC single crystal substrate with an off angle of 4 °]
Example 1
A SiC epitaxial layer is formed on the Si surface of a 4H—SiC single crystal substrate inclined at an off angle of 4 °.
In this embodiment, the 4H—SiC single crystal substrate is not subjected to convex processing.
In the polishing step, mechanical polishing before CMP was performed at a processing pressure of 350 g / cm 2 using abrasive grains having a diameter of 5 μm or less. Further, CMP was performed for 30 minutes using silica particles having an average particle diameter of 10 to 150 nm as abrasive particles, and using a polishing slurry containing sulfuric acid as an inorganic acid and having a pH of 1.9 at 20 ° C. Thereby, the lattice disorder layer on the surface was made 3 nm or less.
The polished substrate was introduced into the growth apparatus after RCA cleaning. The RCA cleaning is a wet cleaning method generally used for Si wafers, and a substrate is prepared by using a mixed solution of sulfuric acid / ammonia / hydrochloric acid and hydrogen peroxide solution and a hydrofluoric acid aqueous solution. Organic substances, heavy metals and particles on the surface can be removed.
The cleaning (gas etching) step was performed at a hydrogen gas flow rate of 100 slm, a reactor internal pressure of 200 mbar, and a substrate temperature of 1500 ° C. for 20 minutes.
In the SiC epitaxial growth process, the substrate temperature is set to 1650 ° C., and C 3 H 8 gas 24 sccm and SiH 4 gas 8 sccm are simultaneously started so that SiH 4 gas and C 3 H 8 gas are simultaneously supplied to the main surface of the substrate. went. C / Si was selected to be 1.0. A SiC epitaxial layer having a thickness of 10 μm was formed by carrying out a growth process for 2 hours at a growth rate of 5 μm / h with the pressure in the reactor set to 200 mbar.

こうして作製したSiCエピタキシャルウェハについて、広範囲観察型AFM(キーエンス社製ナノスケールハイブリッド顕微鏡VN−8000)、光学式表面検査装置(KLA−Tencor社製Candela CS20)、及び、フォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)で測定した結果はそれぞれ、図5(a)、図6(a)、及び図7(a)に示した通りである。
光学式表面検査装置で測定したRqは1.2nmであり、広範囲観察型AFMで測定したRqは0.4nm、最大高低差Ryは0.6nmであり、ステップバンチングは観察されなかった。
また、SiCエピタキシャルウェハのエピタキシャル膜の表面の三角欠陥の密度は0.6個/cmであり、SiCエピタキシャルウェハのエピタキシャル膜の膜中の積層欠陥の密度は0個/cmであった。
About the SiC epitaxial wafer produced in this way, a wide-range observation type AFM (Nanoscale hybrid microscope VN-8000 manufactured by Keyence), an optical surface inspection device (Candela CS20 manufactured by KLA-Tencor), and a photoluminescence imaging device (Photon Design) The results measured with PLI-100 manufactured are as shown in FIGS. 5 (a), 6 (a), and 7 (a), respectively.
Rq measured by the optical surface inspection apparatus was 1.2 nm, Rq measured by the wide-range observation type AFM was 0.4 nm, the maximum height difference Ry was 0.6 nm, and step bunching was not observed.
Further, the density of triangular defects on the surface of the epitaxial film of the SiC epitaxial wafer was 0.6 / cm 2 , and the density of stacking faults in the film of the epitaxial film of the SiC epitaxial wafer was 0 / cm 2 .

(比較例1)
SiCエピタキシャルウェハの作製条件は、基板成長温度を1600℃とした点を除いて、実施例1と同じである。
こうして作製したSiCエピタキシャルウェハについて、光学式表面検査装置(KLA−Tencor社製Candela CS20)及びフォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)で測定した結果、SiCエピタキシャルウェハの表面の三角欠陥の密度は2.4個/cmであり、ウェハ全域に三角欠陥が存在していた。またSiCエピタキシャルウェハの膜中の積層欠陥密度は2.8個/cmであり、本発明の実施例1に比べてかなり大きい。
この比較から、従来の成長温度の上限(1600℃)よりも高い温度に欠陥密度を低減する成長温度が存在することがわかった。
(Comparative Example 1)
The production conditions of the SiC epitaxial wafer are the same as those in Example 1 except that the substrate growth temperature is 1600 ° C.
The SiC epitaxial wafer thus fabricated was measured with an optical surface inspection device (Candela CS20 manufactured by KLA-Tencor) and a photoluminescence imaging device (PLI-100 manufactured by Photon Design). As a result, triangular defects on the surface of the SiC epitaxial wafer were measured. The density was 2.4 / cm 2 , and triangular defects were present throughout the wafer. Further, the stacking fault density in the film of the SiC epitaxial wafer is 2.8 / cm 2, which is considerably larger than that of the first embodiment of the present invention.
From this comparison, it was found that there is a growth temperature that reduces the defect density at a temperature higher than the upper limit (1600 ° C.) of the conventional growth temperature.

[オフ角1.2°の4H−SiC単結晶基板のSi面]
(実施例2)
成長速度4μm/hで2.5時間成長工程を実施した以外は、実施例1と同じ作製条件でSiCエピタキシャルウェハを作製した。
作製したSiCエピタキシャルウェハについて、光学式表面検査装置(KLA−Tencor社製Candela CS20)、フォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)、及び、広範囲観察型AFM(キーエンス社製ナノスケールハイブリッド顕微鏡VN−8000)によって測定・評価した。
三角欠陥密度は0.4個/cmであり、積層欠陥密度は0.1個/cmであった。また、ステップバンチングは観察されなかった。
いずれも1個/cm以下であって、実施例1よりさらに低いオフ角1.2°の4H−SiC単結晶基板についても欠陥密度が低い極めて高品質のエピタキシャル膜が形成されていた。
[Si surface of 4H-SiC single crystal substrate with an off angle of 1.2 °]
(Example 2)
A SiC epitaxial wafer was fabricated under the same fabrication conditions as in Example 1 except that the growth process was performed at a growth rate of 4 μm / h for 2.5 hours.
About the produced SiC epitaxial wafer, an optical surface inspection apparatus (CANDELA CS20 manufactured by KLA-Tencor), a photoluminescence imaging apparatus (PLI-100 manufactured by Photon Design), and a wide range observation type AFM (Nanoscale hybrid microscope manufactured by Keyence Corporation) VN-8000).
The triangular defect density was 0.4 / cm 2 , and the stacking fault density was 0.1 / cm 2 . Step bunching was not observed.
All of them were 1 piece / cm 2 or less, and an extremely high quality epitaxial film having a low defect density was formed on a 4H—SiC single crystal substrate having an off angle of 1.2 °, which is lower than that of Example 1.

[オフ角0.8°の4H−SiC単結晶基板のC面]
(実施例3)
マルチワイヤーソーを用いて、Si面を、凸の曲率半径が50mとなるように凸状にスライス加工し、成長速度4μm/hで2.5時間成長工程を実施した以外は、実施例1と同じ作製条件でSiCエピタキシャルウェハを作製した。
作製したSiCエピタキシャルウェハについて、光学式表面検査装置(KLA−Tencor社製Candela CS20)、及び、フォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)で測定した結果はそれぞれ、図9に示した通りである。三角欠陥密度は0.4個/cmであり、積層欠陥密度は0.2個/cmであった。いずれも1個/cm以下であって、低オフ角の4H−SiC単結晶基板のSi面についても欠陥密度が低い極めて高品質のエピタキシャル膜が形成された。
また、光学式表面検査装置(KLA−Tencor社製Candela CS20)及び広範囲観察型AFM(キーエンス社製ナノスケールハイブリッド顕微鏡VN−8000)の測定において、ステップバンチングは観察されなかった。
膜厚均一性については水銀プローブ濃度分析器(Hg−CV)((SSSM社製495CV SYSTEM)を用い、キャリア濃度均一性については高速フーリエ変換赤外線吸収分析装置(FT−IR)(ナノメトリクス社製QS1200)を用いて測定した。
膜厚均一性は2%であり、キャリア濃度均一性は8%であり、面内の均一性が良好なSiCエピタキシャル層が形成されていた。「膜厚分布」及び「キャリア濃度分布」は、ウェハ上の8箇所のサンプルを用いて{(最大値−最小値)/(最大値+最小値)}×100(%)から求めたものである。凸状加工を行わなかった場合は、膜厚均一性は5〜10%程度であり、キャリア濃度均一性は15〜20%程度であるから、凸状加工を行うことにより、膜厚及びキャリア濃度の均一性が向上した。
[C-plane of 4H-SiC single crystal substrate with off angle of 0.8 °]
(Example 3)
Example 1 except that the Si surface was sliced into a convex shape using a multi-wire saw so that the convex curvature radius was 50 m, and the growth step was performed at a growth rate of 4 μm / h for 2.5 hours. A SiC epitaxial wafer was produced under the same production conditions.
About the produced SiC epitaxial wafer, the result measured with the optical surface inspection apparatus (Candela CS20 by KLA-Tencor) and the photoluminescence imaging apparatus (PLI-100 by Photon Design) is respectively as shown in FIG. It is. The triangular defect density was 0.4 / cm 2 , and the stacking fault density was 0.2 / cm 2 . In each case, an extremely high quality epitaxial film having a defect density of 1 piece / cm 2 or less and having a low defect density was formed on the Si surface of the 4H—SiC single crystal substrate having a low off-angle.
In addition, step bunching was not observed in the measurement of the optical surface inspection apparatus (Candela CS20 manufactured by KLA-Tencor) and the wide-area observation type AFM (Nanoscale hybrid microscope VN-8000 manufactured by Keyence).
For film thickness uniformity, a mercury probe concentration analyzer (Hg-CV) ((495CV SYSTEM made by SSSM) was used, and for carrier concentration uniformity, a fast Fourier transform infrared absorption analyzer (FT-IR) (manufactured by Nanometrics) QS1200).
The film thickness uniformity was 2%, the carrier concentration uniformity was 8%, and a SiC epitaxial layer with good in-plane uniformity was formed. The “film thickness distribution” and “carrier concentration distribution” are obtained from {(maximum value−minimum value) / (maximum value + minimum value)} × 100 (%) using eight samples on the wafer. is there. When the convex processing is not performed, the film thickness uniformity is about 5 to 10%, and the carrier concentration uniformity is about 15 to 20%. Improved uniformity.

(比較例2)
SiCエピタキシャルウェハの作製条件は、基板成長温度を1600℃とした点を除いて、実施例3と同じである。
こうして作製したSiCエピタキシャルウェハについて、光学式表面検査装置(KLA−Tencor社製Candela CS20)及びフォトルミネッセンスイメージング装置(フォトンデザイン社製PLI−100)で測定した結果は、図8及び図10(b)に示した通りであり、SiCエピタキシャルウェハの表面の三角欠陥の密度は4個/cmであり、ウェハ全域に三角欠陥が存在していた。またSiCエピタキシャルウェハの膜中の積層欠陥密度は1.8個/cmであり、本発明の実施例3に比べてかなり大きい。
この比較から、従来の成長温度の上限(1600℃)よりも高い温度に欠陥密度を低減する成長温度が存在することがわかった。
(Comparative Example 2)
The production conditions of the SiC epitaxial wafer are the same as those in Example 3 except that the substrate growth temperature is 1600 ° C.
The SiC epitaxial wafer thus fabricated was measured with an optical surface inspection device (Candela CS20 manufactured by KLA-Tencor) and a photoluminescence imaging device (PLI-100 manufactured by Photon Design). The results are shown in FIGS. The density of triangular defects on the surface of the SiC epitaxial wafer was 4 / cm 2 , and there were triangular defects throughout the wafer. Further, the stacking fault density in the film of the SiC epitaxial wafer is 1.8 / cm 2, which is considerably higher than that of Example 3 of the present invention.
From this comparison, it was found that there is a growth temperature that reduces the defect density at a temperature higher than the upper limit (1600 ° C.) of the conventional growth temperature.

[ステップバンチング低減の効果]
次に、炭素と珪素の原子数比C/Si、及び、珪素含有ガス及び炭素含有ガスの同時供給について、ステップバンチング低減に与える効果を調べた結果を示す。
尚、上記2つの要件の与える効果を確認することを目的としているため、以下で示すSiCエピタキシャルウェハ(サンプル)については、エピタキシャル成長の成長温度は1600℃以下であり、凸状加工も施していない。
本実施例では、珪素含有ガスとしてSiHガスおよび炭素含有ガスとしてCガス、ドーピングガスとしてNガス、キャリアガスおよびエッチングガスとしてHガスあるいはHClガスを使用し、アイクストロン社製Hot Wall SiC CVD(VP2400HW)によって、4H−SiC単結晶の(0001)面に対して<11−20>軸方向へ4°傾けたSi面にSiCエピタキシャル膜を成長させた。得られたエピタキシャルウェハ表面のラフネスについて、光学式表面検査装置(KLA−Tencor社製Candela CS20)と、通常のAFM(Veeco Instrument社製Dimension V)及び広範囲観察型AFM(キーエンス社製ナノスケールハイブリッド顕微鏡VN−8000)を用いて調べた。
[Effects of reducing step bunching]
Next, the results of examining the effect on the step bunching reduction with respect to the carbon / silicon atomic ratio C / Si and the simultaneous supply of the silicon-containing gas and the carbon-containing gas are shown.
In addition, since it aims at confirming the effect which said two requirements give, about the SiC epitaxial wafer (sample) shown below, the growth temperature of epitaxial growth is 1600 degrees C or less, and convex processing is not given.
In this example, SiH 4 gas as a silicon-containing gas and C 3 H 8 gas as a carbon-containing gas, N 2 gas as a doping gas, H 2 gas or HCl gas as a carrier gas and an etching gas are used. A SiC epitaxial film was grown on a Si surface inclined by 4 ° in the <11-20> axis direction with respect to the (0001) plane of the 4H—SiC single crystal by Hot Wall SiC CVD (VP2400HW). Regarding the roughness of the surface of the obtained epitaxial wafer, an optical surface inspection apparatus (Candela CS20 manufactured by KLA-Tencor), a normal AFM (Dimension V manufactured by Veeco Instrument) and a wide range observation type AFM (Nanoscale hybrid microscope manufactured by Keyence) VN-8000).

(サンプル1)
研磨工程及びその後の洗浄については実施例1と同じ条件で行った。
清浄化(ガスエッチング)工程は、水素ガスの流量90slm、リアクタ内圧力を200mbar、基板温度を1550℃で、10分間行った。
SiCエピタキシャル成長工程は、SiHガス及びCガスの流量を48sccm、17.6sccmで基板面に同時に供給されるようにCガスを供給後、3秒後、SiHガスを供給した。C/Siは1.1を選択した。リアクタ内圧力を200mbar、基板温度を1550℃として、成長速度5μm/hで2時間成長工程を実施して、厚さ10μmのSiCエピタキシャル層を成膜した。
(Sample 1)
The polishing step and subsequent cleaning were performed under the same conditions as in Example 1.
The cleaning (gas etching) step was carried out at a hydrogen gas flow rate of 90 slm, a reactor pressure of 200 mbar, and a substrate temperature of 1550 ° C. for 10 minutes.
In the SiC epitaxial growth process, after supplying C 3 H 8 gas so that the flow rates of SiH 4 gas and C 3 H 8 gas are simultaneously supplied to the substrate surface at 48 sccm and 17.6 sccm, SiH 4 gas is supplied after 3 seconds. did. C / Si selected 1.1. A growth process was performed for 2 hours at a growth rate of 5 μm / h with a reactor internal pressure of 200 mbar and a substrate temperature of 1550 ° C., thereby forming a 10 μm thick SiC epitaxial layer.

こうして作製したSiCエピタキシャルウェハについて、広範囲観察型AFM及び光学式表面検査装置で測定した結果はそれぞれ、光学式表面検査装置で測定したRqは1.2nmであり、広範囲観察型AFMで測定したRqは0.4nmであり、最大高低差Ryは0.7nmであり、ステップバンチングは観察されなかった。   With respect to the SiC epitaxial wafer thus fabricated, the Rq measured with the wide-area observation type AFM and the optical surface inspection apparatus was 1.2 nm, and the Rq measured with the wide-area observation type AFM was Rq. It was 0.4 nm, the maximum height difference Ry was 0.7 nm, and no step bunching was observed.

(サンプル2)
サンプル1とガスエッチングの条件を除いて同じ条件でSiCエピタキシャルウェハを製造した。ガスエッチング工程において、水素ガスに0.008mol%の濃度のSiHガスを添加して行った点が実施例4と異なる。
(Sample 2)
A SiC epitaxial wafer was manufactured under the same conditions as in Sample 1 except for gas etching conditions. The gas etching step is different from Example 4 in that SiH 4 gas having a concentration of 0.008 mol% is added to hydrogen gas.

こうして作製したSiCエピタキシャルウェハについて、光学式表面検査装置及び広範囲観察型AFMで測定した。サンプル1と同様のイメージが観察され、光学式表面検査装置で測定したRqは1.1nmであり、広範囲観察型AFMで測定したRqは0.4nm、最大高低差Ryは0.7nmであった。   The SiC epitaxial wafer thus produced was measured with an optical surface inspection apparatus and a wide-range observation type AFM. An image similar to Sample 1 was observed, Rq measured with an optical surface inspection apparatus was 1.1 nm, Rq measured with a wide-range observation type AFM was 0.4 nm, and the maximum height difference Ry was 0.7 nm. .

(サンプル1及び2との比較例1)
SiCエピタキシャル成長工程において、SiHガスとCガスとを濃度比C/Siを1.9として導入したこと、及び、Cガスを導入して30秒後にSiHガスを導入したことを除いて、サンプル1と同じ条件でSiCエピタキシャルウェハを作製した。
(Comparative Example 1 with Samples 1 and 2)
In the SiC epitaxial growth process, SiH 4 gas and C 3 H 8 gas were introduced at a concentration ratio C / Si of 1.9, and SiH 4 gas was introduced 30 seconds after the introduction of C 3 H 8 gas. The SiC epitaxial wafer was produced on the same conditions as the sample 1 except this.

作製したSiCエピタキシャルウェハの光学式表面検査装置、広範囲観察型AFMで測定した像はそれぞれ、図6(b)、図5(b)に示した通りである。
カンデラ像及びAFM像において、ウェハ表面全体に従来のステップバンチングが観察された。光学式表面検査装置で測定した二乗平均粗さRqは1.7nmであり、広範囲観察型AFMで測定した二乗平均粗さRqは2.4nmであり、最大高低差Ryは3.6nmであった。
Images of the manufactured SiC epitaxial wafer measured by an optical surface inspection apparatus and a wide-area observation type AFM are as shown in FIGS. 6B and 5B, respectively.
In the candela image and the AFM image, conventional step bunching was observed over the entire wafer surface. The root mean square roughness Rq measured by the optical surface inspection apparatus was 1.7 nm, the root mean square roughness Rq measured by the wide-range observation type AFM was 2.4 nm, and the maximum height difference Ry was 3.6 nm. .

(サンプル1及び2との比較例2)
SiCエピタキシャル成長工程において、Cガスを導入して30秒後にSiHガスを導入したことを除いて、実施例1と同じ条件でSiCエピタキシャルウェハを作製した。従って、比較例1との比較では、SiHガスとCガスとを濃度比C/Siを1.1として導入した点が異なる。
(Comparative Example 2 with Samples 1 and 2)
In the SiC epitaxial growth step, a SiC epitaxial wafer was produced under the same conditions as in Example 1 except that the C 3 H 8 gas was introduced and the SiH 4 gas was introduced 30 seconds later. Therefore, the comparison with Comparative Example 1 is that SiH 4 gas and C 3 H 8 gas are introduced at a concentration ratio C / Si of 1.1.

図14(a)、(b)に、作製したSiCエピタキシャルウェハについて、カンデラ像、広範囲観察型AFM像を示す。
光学式表面検査装置で測定した二乗平均粗さRqは1.4nmであり、広範囲観察型AFMで測定した二乗平均粗さRqは1.4nmであり、最大高低差Ryは2.8nmであった。ステップの線密度は10本/mm−1であった。
FIGS. 14A and 14B show a candela image and a wide-range observation type AFM image for the manufactured SiC epitaxial wafer.
The root mean square roughness Rq measured by the optical surface inspection apparatus was 1.4 nm, the root mean square roughness Rq measured by the wide range observation type AFM was 1.4 nm, and the maximum height difference Ry was 2.8 nm. . The linear density of the step was 10 / mm −1 .

カンデラ像及びAFM像のいずれにおいても、従来のステップバンチングは観察されなかった。この結果は、SiHガスとCガスとを濃度比C/Siが従来のステップバンチングの発生を抑制するのに重要であることを示している。そして、濃度比C/Siを0.7〜1.2の範囲にすることで従来のステップバンチングの発生を抑制できることを確認した。 Conventional step bunching was not observed in either the candela image or the AFM image. This result shows that the concentration ratio C / Si between SiH 4 gas and C 3 H 8 gas is important for suppressing the occurrence of conventional step bunching. And it confirmed that generation | occurrence | production of the conventional step bunching can be suppressed by making density | concentration ratio C / Si into the range of 0.7-1.2.

本発明のSiCエピタキシャルウェハは、三角欠陥及び積層欠陥が低減され、キャリア濃度及び膜厚の均一性が高く、ステップバンチングフリーのSiCエピタキシャルウェハであり、パワーデバイス、高周波デバイス、高温動作デバイス等種々の炭化珪素半導体装置の製造に利用することができる。
The SiC epitaxial wafer of the present invention is a step-bunching-free SiC epitaxial wafer in which triangular defects and stacking faults are reduced, the carrier concentration and film thickness are high, and various devices such as power devices, high-frequency devices, and high-temperature operation devices. It can be used for the manufacture of a silicon carbide semiconductor device.

Claims (3)

0.4°〜5°のオフ角で傾斜させた4H−SiC単結晶基板上にSiCエピタキシャル層を形成したSiCエピタキシャルウェハであって、ステップバンチングがなく、かつ、前記SiCエピタキシャル層中の積層欠陥の密度が1個/cm以下であることを特徴とするSiCエピタキシャルウェハ。 A SiC epitaxial wafer in which a SiC epitaxial layer is formed on a 4H-SiC single crystal substrate tilted at an off angle of 0.4 ° to 5 °, which is free from step bunching and has stacking faults in the SiC epitaxial layer The SiC epitaxial wafer characterized by having a density of 1 piece / cm 2 or less. 0.4°〜5°のオフ角で傾斜させた4H−SiC単結晶基板上にSiCエピタキシャル層を形成したSiCエピタキシャルウェハであって、短いステップバンチングがなく、かつ、前記SiCエピタキシャル層中の積層欠陥の密度が1個/cm以下であることを特徴とするSiCエピタキシャルウェハ。 A SiC epitaxial wafer in which a SiC epitaxial layer is formed on a 4H-SiC single crystal substrate tilted at an off angle of 0.4 ° to 5 °, without short step bunching, and in the SiC epitaxial layer. A SiC epitaxial wafer having a defect density of 1 piece / cm 2 or less. 前記SiCエピタキシャル層の面方向の膜厚分布が2%以下であり、かつ、面方向のキャリア濃度分布が10%以下であると共に、室温において前記SiCエピタキシャルウェハの主面が凸状に反り、該凸の曲率半径が10m以上1000m以下の範囲にあることを特徴とする請求項1又は2のいずれかに記載のSiCエピタキシャルウェハ。 The film thickness distribution in the plane direction of the SiC epitaxial layer is 2% or less, and the carrier concentration distribution in the plane direction is 10% or less, and the main surface of the SiC epitaxial wafer warps in a convex shape at room temperature, claim 1 or 2 of the SiC epitaxial wafer of any crab according convex curvature radius lies in the 1000m below the range of 10 m.
JP2011233966A 2011-10-25 2011-10-25 SiC epitaxial wafer Active JP5076020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233966A JP5076020B2 (en) 2011-10-25 2011-10-25 SiC epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233966A JP5076020B2 (en) 2011-10-25 2011-10-25 SiC epitaxial wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009283113A Division JP4887418B2 (en) 2009-12-14 2009-12-14 Method for manufacturing SiC epitaxial wafer

Publications (3)

Publication Number Publication Date
JP2012051795A JP2012051795A (en) 2012-03-15
JP2012051795A5 JP2012051795A5 (en) 2012-05-24
JP5076020B2 true JP5076020B2 (en) 2012-11-21

Family

ID=45905586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233966A Active JP5076020B2 (en) 2011-10-25 2011-10-25 SiC epitaxial wafer

Country Status (1)

Country Link
JP (1) JP5076020B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897834B2 (en) 2011-07-19 2016-03-30 昭和電工株式会社 Method for manufacturing SiC epitaxial wafer
KR101926694B1 (en) * 2012-05-30 2018-12-07 엘지이노텍 주식회사 Silicon carbide epi wafer and method of fabricating the same
KR101897062B1 (en) * 2012-05-31 2018-09-12 엘지이노텍 주식회사 Silicon carbide epi wafer and method of fabricating the same
KR101926678B1 (en) * 2012-05-31 2018-12-11 엘지이노텍 주식회사 Silicon carbide epi wafer and method of fabricating the same
JP6037671B2 (en) * 2012-06-19 2016-12-07 昭和電工株式会社 SiC epitaxial wafer and manufacturing method thereof
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
KR102131245B1 (en) * 2013-06-28 2020-08-05 엘지이노텍 주식회사 Epitaxial wafer
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
JP6122704B2 (en) * 2013-06-13 2017-04-26 昭和電工株式会社 SiC epitaxial wafer and manufacturing method thereof
KR102165615B1 (en) * 2013-06-24 2020-10-14 엘지이노텍 주식회사 Epitaxial wafer
JP6136772B2 (en) * 2013-08-30 2017-05-31 株式会社デンソー Method for producing silicon carbide single crystal
JP6315579B2 (en) 2014-07-28 2018-04-25 昭和電工株式会社 Method for manufacturing SiC epitaxial wafer
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
JP6696499B2 (en) * 2015-11-24 2020-05-20 住友電気工業株式会社 Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP6762484B2 (en) * 2017-01-10 2020-09-30 昭和電工株式会社 SiC epitaxial wafer and its manufacturing method
JP6758491B2 (en) * 2017-05-17 2020-09-23 三菱電機株式会社 SiC epitaxial wafer and its manufacturing method
JP7125252B2 (en) * 2017-08-30 2022-08-24 昭和電工株式会社 SiC epitaxial wafer and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285202B2 (en) * 2004-03-26 2013-09-11 一般財団法人電力中央研究所 Bipolar semiconductor device and manufacturing method thereof
JP2007182330A (en) * 2004-08-24 2007-07-19 Bridgestone Corp Silicon carbide monocrystal wafer and its manufacturing method
JP2006321707A (en) * 2005-04-22 2006-11-30 Bridgestone Corp Silicon carbide single crystal wafer and process for producing the same
JP4946202B2 (en) * 2006-06-26 2012-06-06 日立金属株式会社 A method for manufacturing a silicon carbide semiconductor epitaxial substrate.
JP4523935B2 (en) * 2006-12-27 2010-08-11 昭和電工株式会社 An aqueous polishing slurry for polishing a silicon carbide single crystal substrate and a polishing method.
JP5273741B2 (en) * 2007-09-12 2013-08-28 昭和電工株式会社 Epitaxial SiC single crystal substrate and method of manufacturing epitaxial SiC single crystal substrate
JP4959763B2 (en) * 2009-08-28 2012-06-27 昭和電工株式会社 SiC epitaxial wafer and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012051795A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP4887418B2 (en) Method for manufacturing SiC epitaxial wafer
JP5076020B2 (en) SiC epitaxial wafer
JP4959763B2 (en) SiC epitaxial wafer and manufacturing method thereof
JP6122704B2 (en) SiC epitaxial wafer and manufacturing method thereof
JP5961357B2 (en) SiC epitaxial wafer and manufacturing method thereof
JP5384714B2 (en) SiC epitaxial wafer and manufacturing method thereof
JP5897834B2 (en) Method for manufacturing SiC epitaxial wafer
KR101412227B1 (en) Silicon carbide epitaxial wafer and process for production thereof, silicon carbide bulk substrate for epitaxial growth purposes and process for production thereof, and heat treatment apparatus
JP6037671B2 (en) SiC epitaxial wafer and manufacturing method thereof
US20170121850A1 (en) Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
JP5604577B2 (en) SiC epitaxial wafer
JP5375768B2 (en) Manufacturing method of silicon epitaxial wafer
TW202130863A (en) Group iii nitride single crystal substrate and method for manufacture thereof
JP5124690B2 (en) SiC epitaxial wafer
JP6069545B2 (en) Evaluation method of SiC epitaxial wafer
JP2005260218A (en) Sic single crystal base material and manufacturing method of the same, semiconductor film formation base material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120319

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Ref document number: 5076020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350