JP4718303B2 - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
JP4718303B2
JP4718303B2 JP2005323032A JP2005323032A JP4718303B2 JP 4718303 B2 JP4718303 B2 JP 4718303B2 JP 2005323032 A JP2005323032 A JP 2005323032A JP 2005323032 A JP2005323032 A JP 2005323032A JP 4718303 B2 JP4718303 B2 JP 4718303B2
Authority
JP
Japan
Prior art keywords
activated carbon
activation
mass
pitch
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005323032A
Other languages
Japanese (ja)
Other versions
JP2007131461A (en
Inventor
俊晴 野中
勝博 長山
健一 上原
邦夫 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2005323032A priority Critical patent/JP4718303B2/en
Publication of JP2007131461A publication Critical patent/JP2007131461A/en
Application granted granted Critical
Publication of JP4718303B2 publication Critical patent/JP4718303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、活性炭の製造方法、特に、吸着剤及び電気二重層キャパシタ用電極材料として好適に使用される活性炭の製造方法に関する。   The present invention relates to a method for producing activated carbon, and more particularly to a method for producing activated carbon that is suitably used as an adsorbent and an electrode material for an electric double layer capacitor.

活性炭の製造方法としては、従来から炭素材料を賦活処理する方法が用いられている。この炭素材料を賦活処理する方法としては、多段炉、ロータリーキルン炉、流動層炉などを用いて賦活する方法が知られている。   As a method for producing activated carbon, a method of activating a carbon material has been conventionally used. As a method of activating the carbon material, a method of activating using a multi-stage furnace, a rotary kiln furnace, a fluidized bed furnace or the like is known.

賦活処理を行う際には、炭素材料を均一に賦活することが重要となる。ここで、炭素材料を均一に賦活するという観点からは、賦活に用いられる賦活ガスと原料である炭素材料との接触面積を大きくとれる流動層炉や攪拌羽根のついたロータリーキルン炉を用いることが比較的有利となる。   When performing the activation treatment, it is important to activate the carbon material uniformly. Here, from the viewpoint of uniformly activating the carbon material, it is compared to using a fluidized bed furnace or a rotary kiln furnace with stirring blades that can increase the contact area between the activation gas used for activation and the carbon material that is the raw material. Advantage.

しかし、上記の流動層炉やロータリーキルン炉で、原料として粒径の小さなもの、例えば平均粒径が20μm未満である球状フェノール樹脂等を用いた場合には、粒径が小さすぎて賦活しづらいという問題がある。例えば、ロータリーキルン炉では、賦活ガスのガス速度を速くすると原料の飛散などの問題が生じ歩留りが低下する。また、流動層炉では粒径が小さすぎる原料は良好な流動化状態を保てず均一な賦活が出来ないという問題がある。   However, in the above fluidized bed furnace or rotary kiln furnace, when a raw material having a small particle size, such as a spherical phenol resin having an average particle size of less than 20 μm, is used, the particle size is too small to be activated. There's a problem. For example, in a rotary kiln furnace, if the gas velocity of the activation gas is increased, problems such as scattering of raw materials occur and the yield decreases. Further, in a fluidized bed furnace, there is a problem that a raw material having a too small particle size cannot maintain a good fluidized state and cannot be activated uniformly.

このような問題に対して、例えば特許文献1には、水溶性フェノール樹脂、液状ピッチ、ポリビニルアルコール(PVA)、カルボキシルメチルセルロース、ゼラチンなどの水溶液のいずれかをバインダーとして用い、3mm程度に造粒してガス賦活する方法が記載されている。
特開2001−143973号公報
For such a problem, for example, Patent Document 1 discloses that a water-soluble phenol resin, liquid pitch, polyvinyl alcohol (PVA), carboxymethyl cellulose, gelatin or the like is used as a binder and granulated to about 3 mm. A method for gas activation is described.
JP 2001-143973 A

しかし、上記特許文献1に記載されている造粒時のバインダーとして用いる、水溶性フェノール樹脂、ポリビニルアルコール(PVA)、カルボキシルメチルセルロース、ゼラチンは、昇温時、例えば400℃程度の温度で残炭率がゼロ近くになる。そのため、バインダーとしてこれらを単独で用いると造粒物はバラバラになり、細粒化しやすい。このため、例えば流動層炉で炭化、賦活をする場合は、良好な流動状態が保てず、賦活が不均一となる、つまり比表面積があまり大きくならず、かつ比表面積のばらつきが大きくなる、という問題がある。   However, the water-soluble phenolic resin, polyvinyl alcohol (PVA), carboxymethyl cellulose, and gelatin used as the binder at the time of granulation described in Patent Document 1 are the residual carbon ratio at a temperature of, for example, about 400 ° C. Becomes near zero. Therefore, when these are used alone as a binder, the granulated material is separated and is easily finely divided. For this reason, for example, when carbonizing and activating in a fluidized bed furnace, it is not possible to maintain a good fluidized state, the activation becomes non-uniform, that is, the specific surface area is not so large, and the variation in specific surface area is large. There is a problem.

また、上記特許文献1に記載されている造粒時のバインダーとして用いるピッチは、炭化することによりバインダーとしての機能を十分に発揮すると考えられる。しかし、ピッチを単独で用いる場合、温度が低いとき、例えば、400℃以下の場合は、バインダーとしての機能が十分ではなく、造粒物を低温で流動するとバラバラになり、細粒化しやすい。このため、流動層で炭化、賦活をする場合は、良好な流動状態が保てず、賦活が不均一となる、つまり比表面積があまり大きくならず、かつ比表面積のばらつきが大きくなる、という問題がある。   Moreover, it is thought that the pitch used as the binder at the time of granulation described in the said patent document 1 fully exhibits the function as a binder by carbonizing. However, when the pitch is used alone, when the temperature is low, for example, when the temperature is 400 ° C. or lower, the function as a binder is not sufficient, and when the granulated material is flowed at a low temperature, it becomes disintegrated and tends to be finely divided. For this reason, when carbonizing and activating in a fluidized bed, there is a problem that a good fluidized state cannot be maintained and activation is not uniform, that is, the specific surface area is not so large and the variation in specific surface area becomes large. There is.

そこで、本発明は、常に賦活を均一に行うことを可能とすることで、比表面積の大きな、且つ、比表面積のばらつきの小さな活性炭の製造方法を提供することを目的とする。   Then, this invention aims at providing the manufacturing method of activated carbon with a large specific surface area and a small dispersion | variation in a specific surface area by always enabling activation uniformly.

本発明者らは、賦活処理を行う際の昇温時に、低温状態から高温状態にかけて、常に均一な賦活を行うことが可能な方法について検討を行った。   The present inventors have studied a method capable of always performing uniform activation from a low temperature state to a high temperature state at the time of temperature increase during the activation treatment.

その結果、造粒時のバインダーとして、「ピッチ」と「ポリビニルアルコール(PVA)」を併用することで、上記課題を解決することができることを見出した。すなわち、低温(例えば、400℃以下)では「ポリビニルアルコール」をバインダーとして機能させ、高温(例えば400℃以上)では、「ピッチ」をバインダーとして機能させることにより、炭化、賦活時に造粒物の形状保持が可能となり、賦活を均一に行うことが可能となり、比表面積の大きな、且つ、比表面積のばらつきの小さな活性炭を製造できることを見出した。   As a result, it has been found that the above-mentioned problems can be solved by using “pitch” and “polyvinyl alcohol (PVA)” together as a binder during granulation. That is, at low temperatures (for example, 400 ° C. or lower), “polyvinyl alcohol” functions as a binder, and at high temperatures (for example, 400 ° C. or higher), “pitch” functions as a binder, so that the shape of the granulated product is carbonized and activated. It has been found that activated carbon having a large specific surface area and a small variation in specific surface area can be produced.

本発明は、以上のような知見に基づいてなされたものであり、以下のような特徴を有する。
[1]フェノール樹脂粉:89〜98.9質量%、ピッチ:1〜10質量%、ならびに、ポリビニルアルコール:0.1〜1質量%を混合し、造粒した後、該造粒した混合物を炭化し、賦活することを特徴とする活性炭の製造方法。
[2]上記[1]において、前記賦活した後に得られた活性炭を解砕し、分級することを特徴とする活性炭の製造方法。
The present invention has been made based on the above findings and has the following characteristics.
[1] Phenol resin powder: 89 to 98.9 mass%, pitch: 1 to 10 mass%, and polyvinyl alcohol: 0.1 to 1 mass%, mixed and granulated, and then the granulated mixture is mixed. A method for producing activated carbon which is carbonized and activated.
[2] The method for producing activated carbon according to [1], wherein the activated carbon obtained after the activation is crushed and classified.

本発明によれば、常に賦活を均一に行うことが可能となり、比表面積の大きな、且つ、比表面積のばらつきの小さな活性炭の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to always perform activation uniformly and the manufacturing method of activated carbon with a large specific surface area and a small dispersion | variation in a specific surface area is provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

本発明の活性炭の製造方法は、フェノール樹脂:89〜98.9質量%、ピッチ:1〜10質量%、ならびに、ポリビニルアルコール:0.1〜1質量%を混合し、造粒した後、該造粒した混合物を炭化し、賦活することを特徴とするものである。   The method for producing the activated carbon of the present invention comprises mixing phenol resin: 89-98.9% by mass, pitch: 1-10% by mass, and polyvinyl alcohol: 0.1-1% by mass, The granulated mixture is carbonized and activated.

さらに、本発明は、前記賦活した後に得られた活性炭を解砕し、分級することが好ましい。これにより、所定の範囲の粒子径に調整された活性炭を得ることが可能となる。   Furthermore, in the present invention, it is preferable that the activated carbon obtained after the activation is crushed and classified. Thereby, it becomes possible to obtain activated carbon adjusted to a particle diameter in a predetermined range.

以下、本発明の各構成要素について詳細に説明する。   Hereinafter, each component of the present invention will be described in detail.

[フェノール樹脂]
原料である混合物中に含まれる前記フェノール樹脂の含有量は89〜98.9質量%とする。前記フェノール樹脂の含有量が89質量%未満では得られる活性炭の収率が低下し、
98.9質量%を超える範囲ではピッチ、PVAなどのバインダー量が少なくなるため、炭化、賦活時に造粒物の形状保持が困難となる。
[Phenolic resin]
Content of the said phenol resin contained in the mixture which is a raw material shall be 89-98.9 mass%. If the content of the phenol resin is less than 89% by mass, the yield of the activated carbon obtained is lowered,
When the amount exceeds 98.9% by mass, the amount of binder such as pitch and PVA decreases, so that it is difficult to maintain the shape of the granulated product during carbonization and activation.

また、前記フェノール樹脂の種類としては、ノボラック型、レゾール型など通常の種類のものが使用できる。また、前記フェノール樹脂の形状としては、特に制限はないが、球状のものを用いることが好ましい。球状フェノール樹脂は、フェノール樹脂の形状が球状に成形されたものであり、賦活により比表面積の大きな活性炭を得ることができるので、この球状フェノール樹脂から製造される球状活性炭の吸着性能はより優れたものになる。   Moreover, as a kind of the said phenol resin, a normal thing, such as a novolak type and a resol type, can be used. Moreover, there is no restriction | limiting in particular as a shape of the said phenol resin, However, It is preferable to use a spherical thing. Spherical phenolic resin is obtained by shaping the phenolic resin into a spherical shape, and activated carbon with a large specific surface area can be obtained by activation. Therefore, the adsorption performance of spherical activated carbon produced from this spherical phenolic resin is more excellent. Become a thing.

さらに、前記球状フェノール樹脂は、破砕炭とは異なり、球状に成形されたものであるため、その炭化、賦活により得られた球状活性炭は、表面に角張った部分が存在しない。そのため、輸送等の際のみならず、流動床式装置に使用された際にも、活性炭粒子表面の角部が擦られて微粉を生じるおそれが少ない。そのため、微粉による装置への悪影響が無く、しかも活性炭粒子表面の微細孔が壊れず、吸着性能等が低下することがないという特徴を有する。   Furthermore, since the spherical phenol resin is formed into a spherical shape unlike crushed coal, the spherical activated carbon obtained by the carbonization and activation thereof has no angular portion on the surface. For this reason, not only during transportation but also when used in a fluidized bed type apparatus, the corners of the surface of the activated carbon particles are less likely to be rubbed to produce fine powder. Therefore, there is no adverse effect on the apparatus due to the fine powder, and the fine pores on the surface of the activated carbon particles are not broken and the adsorption performance and the like are not deteriorated.

また、前記フェノール樹脂の平均粒径は、20μm未満とすることが好ましい。より好ましくは1μm以上、20μm未満である。   The average particle size of the phenol resin is preferably less than 20 μm. More preferably, it is 1 μm or more and less than 20 μm.

[ピッチ]
原料である混合物中に含まれる前記ピッチの含有量は1〜10質量%とする。前記ピッチの含有量が1質量%未満では、炭化工程及び賦活工程における熱処理時に、造粒形状を保てなくなり、10質量%を超えると解砕効率が悪く、破砕状の活性炭が分級されにくくなり純度が上がらず好ましくない。
[pitch]
Content of the said pitch contained in the mixture which is a raw material shall be 1-10 mass%. When the pitch content is less than 1% by mass, the granulated shape cannot be maintained during the heat treatment in the carbonization step and the activation step. The purity does not increase and is not preferable.

また、前記ピッチとしては、その種類は特に限定されないが、炭化時の残炭率(炭化収率)の大きなものを用いることが好ましい。例えば、融点の範囲が50〜350℃である固形ピッチの残炭率は通常50〜95質量%、融点の範囲が30〜50℃未満である液状ピッチの残炭率は通常30〜50質量%であるので、固体ピッチを用いることが好ましい。   Further, the pitch is not particularly limited, but it is preferable to use a pitch having a large residual carbon ratio (carbonization yield) during carbonization. For example, the residual carbon ratio of a solid pitch having a melting point range of 50 to 350 ° C. is usually 50 to 95% by mass, and the residual carbon ratio of a liquid pitch having a melting point range of 30 to less than 50 ° C. is usually 30 to 50% by mass. Therefore, it is preferable to use a solid pitch.

[PVA]
原料である混合物中に含まれるポリビニルアルコール(PVA)の含有量は0.1〜1質量%とする。前記PVAの含有量が0.1質量%未満では、ピッチが軟化、溶融してバインダーとして機能を果たすまで造粒形状が保てず好ましくない。1質量%を超えると原料のフェノール樹脂間に適度な空隙が保てず、賦活ガスが原料間を十分に拡散せず、均一に賦活されないため好ましくない。なお、低温(例えば400℃以下)において、PVAと同様の役割を示すと考えられる水溶性フェノール樹脂、セルロース、ゼラチン、糖蜜などを用いてもよい。
[PVA]
Content of polyvinyl alcohol (PVA) contained in the mixture which is a raw material shall be 0.1-1 mass%. When the PVA content is less than 0.1% by mass, the granulated shape cannot be maintained until the pitch is softened and melted to function as a binder, which is not preferable. If it exceeds 1% by mass, an appropriate gap cannot be maintained between the raw material phenol resins, and the activation gas is not sufficiently diffused between the raw materials and is not activated uniformly. In addition, water-soluble phenol resin, cellulose, gelatin, molasses, etc. that are considered to exhibit the same role as PVA may be used at a low temperature (for example, 400 ° C. or lower).

上述の、フェノール樹脂、ピッチ、PVAの混合方法としては特に限定されない。乾式混合としてもよく、また湿式混合としてもよい。但し、PVAを均一に分散させるためには、これらを水溶液や分散液の状態で混合することが好ましい。   The method for mixing the above-described phenol resin, pitch, and PVA is not particularly limited. It may be dry mixing or may be wet mixing. However, in order to uniformly disperse PVA, it is preferable to mix these in the form of an aqueous solution or a dispersion.

また、前記フェノール樹脂、ピッチ、PVAの混合物の造粒方法としては特に限定されず、転動造粒、流動層造粒、噴出層造粒、解砕造粒、圧縮造粒、押出造粒などの通常の造粒方法を適用することができる。   Moreover, it is not specifically limited as a granulation method of the mixture of the said phenol resin, pitch, and PVA, Rolling granulation, fluidized bed granulation, ejection layer granulation, disintegration granulation, compression granulation, extrusion granulation, etc. The usual granulation method can be applied.

ここで、造粒物の粒子形状としては、0.1〜3mm程度に粗大粒子化させることが好ましい。   Here, as the particle shape of the granulated product, it is preferable to make it coarse particles of about 0.1 to 3 mm.

また、前記造粒した混合物(造粒物)を炭化する炭化処理方法としては、窒素、アルゴン、ヘリウム、キセノン、ネオンなどの不活性ガスおよびこれらの2種以上の混合ガスの非酸化性雰囲気下で300〜2,000℃、好ましくは500〜1,300℃程度の温度範囲において、10分〜30時間程度、前記造粒物を加熱して炭化することにより行われる。   In addition, as a carbonization method for carbonizing the granulated mixture (granulated product), an inert gas such as nitrogen, argon, helium, xenon, neon, or a non-oxidizing atmosphere of a mixture of two or more of these gases is used. In the temperature range of about 300 to 2,000 ° C., preferably about 500 to 1,300 ° C., by heating and granulating the granulated product for about 10 minutes to 30 hours.

また、前記造粒物を炭化した後の炭化物の賦活方法としては特に限定されず、公知慣用の種々の賦活方法を用いることができる。例えば、水蒸気や炭酸ガス(燃焼ガス)や酸素(空気)、その他の酸化ガスと、好ましくは700〜1200℃の温度で接触反応させるガス賦活法や、塩化亜鉛、燐酸塩、水酸化カリウム等のアルカリ金属化合物、硫酸等の酸類を含浸した後、不活性ガス雰囲気中で好ましくは300〜800℃の温度で加熱することによる薬品賦活法などが用いられる。薬品賦活法の場合は、賦活化後、生成物や用いた薬品を酸またはアルカリで中和したり、水洗等を用いて除去することが一般的に行われる。   Moreover, it does not specifically limit as an activation method of the carbide | carbonized_material after carbonizing the said granulated material, Various well-known and usual activation methods can be used. For example, a gas activation method in which water vapor, carbon dioxide gas (combustion gas), oxygen (air), or other oxidizing gas is brought into contact and reaction at a temperature of preferably 700 to 1200 ° C., zinc chloride, phosphate, potassium hydroxide, etc. After impregnating an acid such as an alkali metal compound or sulfuric acid, a chemical activation method by heating at a temperature of preferably 300 to 800 ° C. in an inert gas atmosphere is used. In the case of the chemical activation method, after activation, the product and the chemical used are generally neutralized with an acid or alkali, or removed using water washing or the like.

なお、前記炭化処理及び賦活処理を行う装置としては、例えば、多段炉、ロータリーキルン炉、流動層炉などを用いることができる。   In addition, as an apparatus which performs the said carbonization process and activation process, a multistage furnace, a rotary kiln furnace, a fluidized bed furnace etc. can be used, for example.

また、前記賦活した後に得られた活性炭の解砕方法としては、通常、ハンマーミル、ボールミル、ジェットミル、アトマイザー等を用いることができ、特に限定されない。   Moreover, as a method for crushing the activated carbon obtained after the activation, a hammer mill, a ball mill, a jet mill, an atomizer, or the like can be usually used, and is not particularly limited.

また、前記解砕後の活性炭の分級方法としては、通常、風力分級機、振動ふるい等を用いることができ、特に限定されない。   Moreover, as a classification method of the activated carbon after crushing, an air classifier, a vibration sieve, etc. can be used normally, and it is not specifically limited.

本発明においては、前記分級工程により、解砕後の活性炭中に含まれる微粉を排除することで、前記バインダーとして用いたピッチ由来の破砕物が除去でき、所定の範囲の粒子径に調整された形状の良好な活性炭、例えば球状活性炭のみを純度良く得ることが可能となる。   In the present invention, by eliminating the fine powder contained in the activated carbon after pulverization by the classification step, the pitch-derived crushed material used as the binder can be removed, and the particle diameter is adjusted to a predetermined range. Only activated carbon having a good shape, such as spherical activated carbon, can be obtained with high purity.

以下、本発明の効果を、本発明例(実施例1〜5)及び比較例1〜4により具体的に説明する。なお本発明は下記実施例に限定されるものではない。   Hereinafter, the effects of the present invention will be described in detail with reference to the present invention examples (Examples 1 to 5) and Comparative Examples 1 to 4. The present invention is not limited to the following examples.

なお以下の記載において、平均粒径は、セイシン(株)製のレーザー式粒度計を用い、活性炭を界面活性剤を入れた水に分散させて測定を行った。   In the following description, the average particle size was measured by dispersing activated carbon in water containing a surfactant using a laser type particle size meter manufactured by Seishin Co., Ltd.

また、炭化物及び賦活物のBET比表面積は、Micromeritics(株)製ASAP2400により測定した。測定は、200℃で1.33Pa(10mmTorr)まで真空乾燥後に、相対圧P/P=0.5〜0.15の範囲でBET式により算出した。 Moreover, the BET specific surface area of the carbide | carbonized_material and the activation material was measured by Micromeritics Co., Ltd. ASAP2400. The measurement was performed according to the BET formula in the range of relative pressure P / P 0 = 0.5 to 0.15 after vacuum drying at 200 ° C. to 1.33 Pa (10 mm Torr).

[実施例1]
平均粒径7μmの球状フェノール樹脂粉98.9質量%に、石炭系ピッチ微粉1質量%と、水溶液としたポリビニルアルコール(PVA)0.1質量%とを混合し、転動造粒法により平均粒径0.7mmの球状に造粒した。次に600℃で炭化を行いBET比表面積の測定を行った。結果を下表1に示す。
[Example 1]
98.9% by mass of spherical phenol resin powder having an average particle size of 7 μm is mixed with 1% by mass of coal-based pitch fine powder and 0.1% by mass of polyvinyl alcohol (PVA) as an aqueous solution, and averaged by rolling granulation. Granulated into a spherical shape with a particle size of 0.7 mm. Next, carbonization was performed at 600 ° C., and the BET specific surface area was measured. The results are shown in Table 1 below.

更にロータリーキルン炉により800℃で水蒸気賦活した後、解砕、分級を行い2質量%の微粉を排除して、平均粒径7μmの球状活性炭を得た。この球状活性炭のBET比表面積及び標準偏差の測定を行った。その結果を併せて下表1に示す。   Furthermore, after steam activation at 800 ° C. in a rotary kiln furnace, pulverization and classification were performed to eliminate 2% by mass of fine powder, and spherical activated carbon having an average particle diameter of 7 μm was obtained. The BET specific surface area and standard deviation of this spherical activated carbon were measured. The results are also shown in Table 1 below.

[実施例2〜5、比較例1〜4]
上記実施例1で用いた原料及びその含有量を下表1に示すものに変更した以外は実施例1と同様にして、球状活性炭を得た。炭化物のBET比表面積、球状活性炭のBET比表面積及び標準偏差の測定を実施例1の場合と同様に行い、その結果を下表1に示す。
[Examples 2 to 5, Comparative Examples 1 to 4]
Spherical activated carbon was obtained in the same manner as in Example 1 except that the raw materials used in Example 1 and the contents thereof were changed to those shown in Table 1 below. The measurement of the BET specific surface area of the carbide, the BET specific surface area of the spherical activated carbon, and the standard deviation was performed in the same manner as in Example 1, and the results are shown in Table 1 below.

Figure 0004718303
Figure 0004718303

表1に示すように、本発明に係る実施例1〜5は、比較例に比べて比表面積の大きな、且つ、比表面積のばらつきの小さな活性炭が製造できることが確認できた。   As shown in Table 1, it was confirmed that Examples 1 to 5 according to the present invention can produce activated carbon having a large specific surface area and a small variation in specific surface area as compared with the comparative example.

本発明の活性炭の製造方法により製造された活性炭は、吸着材料、触媒・触媒担体材料、膜材料、電子・電気材料、画像用材料などとして各種工業分野で有用に用いられる。   The activated carbon produced by the activated carbon production method of the present invention is usefully used in various industrial fields as an adsorbing material, a catalyst / catalyst support material, a membrane material, an electronic / electrical material, an imaging material, and the like.

Claims (2)

フェノール樹脂:89〜98.9質量%、ピッチ:1〜10質量%、ならびに、ポリビニルアルコール:0.1〜1質量%を混合し、造粒した後、該造粒した混合物を炭化し、賦活することを特徴とする活性炭の製造方法。   Phenol resin: 89-98.9% by mass, pitch: 1-10% by mass, and polyvinyl alcohol: 0.1-1% by mass are mixed and granulated, and then the granulated mixture is carbonized and activated. And a method for producing activated carbon. 前記賦活した後に得られた活性炭を解砕し、分級することを特徴とする請求項1に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the activated carbon obtained after the activation is crushed and classified.
JP2005323032A 2005-11-08 2005-11-08 Method for producing activated carbon Expired - Fee Related JP4718303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323032A JP4718303B2 (en) 2005-11-08 2005-11-08 Method for producing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323032A JP4718303B2 (en) 2005-11-08 2005-11-08 Method for producing activated carbon

Publications (2)

Publication Number Publication Date
JP2007131461A JP2007131461A (en) 2007-05-31
JP4718303B2 true JP4718303B2 (en) 2011-07-06

Family

ID=38153426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323032A Expired - Fee Related JP4718303B2 (en) 2005-11-08 2005-11-08 Method for producing activated carbon

Country Status (1)

Country Link
JP (1) JP4718303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108516547A (en) * 2018-05-16 2018-09-11 辽宁科技大学 The preparation method of carbon black-coal tar pitch complex spherical activated carbon

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109052397B (en) * 2018-09-25 2021-12-03 湖南曦威新材料有限公司 Preparation method of asphalt-based spherical activated carbon with hierarchical pore structure
CN117711833B (en) * 2024-02-01 2024-04-30 山西三元炭素有限责任公司 Manufacturing method of super-capacitor carbon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224468A (en) * 1995-02-20 1996-09-03 Kanebo Ltd Cylindrically pelletized carbon based adsorbent
JP3628399B2 (en) * 1995-10-18 2005-03-09 カネボウ株式会社 Activated carbon for adsorption of organic chlorine compounds
JP2001143973A (en) * 1999-11-15 2001-05-25 Asahi Glass Co Ltd High density electrode made mainly of spherical activated carbon and electric double layer capacitor
JP3585043B2 (en) * 2003-01-22 2004-11-04 メルク・ホエイ株式会社 Pharmaceutical adsorbent and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108516547A (en) * 2018-05-16 2018-09-11 辽宁科技大学 The preparation method of carbon black-coal tar pitch complex spherical activated carbon

Also Published As

Publication number Publication date
JP2007131461A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US9637390B2 (en) Activated carbon, adsorption material and electrode
KR101342773B1 (en) Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
KR101317546B1 (en) Indium oxide powder and method for producing same
JP6676821B2 (en) Method of producing binder-based activated carbon with no binder
JPH10182150A (en) Ito stock powder and sintered compact and their production
JP2000226602A (en) Tantalum powder for high capacity capacitor
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
JP4718303B2 (en) Method for producing activated carbon
CN100339172C (en) Method for spheroidizing and pelletizing to coagulate metal powder, metal powder and electrolytic capacitor anode
US20160207777A1 (en) Chemical activation of carbon with at least one additive
JP2000313611A (en) Active carbon and its production
JP3706176B2 (en) Aluminum nitride granules and method for producing the same
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
JP4873680B2 (en) Method for producing cubic magnesia powder
JP2010280515A (en) Method for manufacturing activated carbon
US20140294717A1 (en) Chemical activation of carbon via a gas atomization method
JP3934686B2 (en) Method for producing high purity metallic chromium
JPH0583482B2 (en)
KR101583314B1 (en) Metal iron granule and the manufacturing method of the same
JP4300045B2 (en) Method for producing metal oxide microspheres
JP4045178B2 (en) Tantalum oxide slurry, tantalum oxide powder and method for producing them
JP2021005548A5 (en)
JPH02271919A (en) Production of fine powder of titanium carbide
JP7175222B2 (en) Activated carbon manufacturing method
JP4294512B2 (en) Method for producing raw material powder for gas diffusion electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees