JP2010280515A - Method for manufacturing activated carbon - Google Patents

Method for manufacturing activated carbon Download PDF

Info

Publication number
JP2010280515A
JP2010280515A JP2009133080A JP2009133080A JP2010280515A JP 2010280515 A JP2010280515 A JP 2010280515A JP 2009133080 A JP2009133080 A JP 2009133080A JP 2009133080 A JP2009133080 A JP 2009133080A JP 2010280515 A JP2010280515 A JP 2010280515A
Authority
JP
Japan
Prior art keywords
average particle
activated carbon
mass
spherical
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009133080A
Other languages
Japanese (ja)
Inventor
Toshiharu Nonaka
俊晴 野中
嘉則 ▲高▼木
Yoshinori Takagi
Takao Ikeda
隆雄 池田
Tetsuo Shiode
哲夫 塩出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2009133080A priority Critical patent/JP2010280515A/en
Publication of JP2010280515A publication Critical patent/JP2010280515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon having high adsorption ability and useful as an adsorbent, an electrode material of an electric double layer capacitor, and the like. <P>SOLUTION: A method for manufacturing the activated carbon is characterized in that polyvinyl alcohol is added to a dispersion of a spherical phenolic resin having an average particle diameter of 0.1-1 μm in an amount of 0.1-10 mass% based on the total amount of the phenolic resin and polyvinyl alcohol; they are mixed and freed of the liquid; the resulting spherical phenolic resin is coarsely crushed to an average particle diameter of ≥0.1 mm, carbonized and activated; and the resulting activated product is finely crushed to an average particle diameter of 0.1 to <1 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活性炭の製造方法に関し、本発明の方法で得られる活性炭は、吸着材および電気二重層キャパシタの電極材料など、広い用途に利用できる。   The present invention relates to a method for producing activated carbon, and the activated carbon obtained by the method of the present invention can be used in a wide range of applications such as an adsorbent and an electrode material for an electric double layer capacitor.

従来、炭素材料を賦活する方法として多段炉、ロータリーキルン、流動床などが挙げられる。炭素材料に対して均一な賦活を行なうには、賦活ガスと原料との接触面積が大きくとれる流動床や、攪拌羽根のついたロータリーキルンが比較的有利である。但し、本発明で用いるような平均粒径0.1〜1μmの球状フェノール樹脂は粒径が小さく、従来技術では賦活しづらいという欠点を有している。例えば、ロータリーキルンで賦活ガスの流速を速くすると、原料の飛散などの問題で製品の歩留が低下する。また、流動床では、本発明で使用するような粒径が小さい原料は良好な流動化状態を保てないため、均一な賦活ができないという欠点がある。   Conventionally, a multistage furnace, a rotary kiln, a fluidized bed, etc. are mentioned as a method of activating a carbon material. In order to perform uniform activation on the carbon material, a fluidized bed in which the contact area between the activation gas and the raw material can be increased, and a rotary kiln with stirring blades are relatively advantageous. However, the spherical phenol resin having an average particle size of 0.1 to 1 μm as used in the present invention has a defect that the particle size is small and it is difficult to activate in the prior art. For example, if the flow rate of the activation gas is increased with a rotary kiln, the yield of products decreases due to problems such as scattering of raw materials. Moreover, in a fluidized bed, since the raw material with a small particle size used by this invention cannot maintain a favorable fluidization state, there exists a fault that uniform activation cannot be performed.

そこで、これらの欠点を解決するために、予め被賦活物を造粒し、粒径を大きくしたものを賦活する方法が考えられる。例えば、特許文献1には、平均粒径1μm以上、20μm未満のフェノール樹脂にピッチおよびポリビニルアルコール(PVA)を0.1〜1質量%添加して、0.1〜3mmに造粒後、賦活し、7μm程度に微解砕する技術が開示されている。   Therefore, in order to solve these drawbacks, a method is conceivable in which the material to be activated is granulated in advance and the particle size is increased. For example, in Patent Document 1, 0.1 to 1% by mass of pitch and polyvinyl alcohol (PVA) is added to a phenol resin having an average particle size of 1 μm or more and less than 20 μm, and granulated to 0.1 to 3 mm, and then activated. However, a technique for finely crushing to about 7 μm is disclosed.

また、特許文献2には、0.5〜2,000μmの球状フェノール樹脂にポリビニルアルコール(PVA)を添加し、0.5〜5mmに造粒後、賦活して、1〜10μmに微解砕する技術が開示されている。特許文献3には、平均粒径0.1〜150μmの粒状フェノール樹脂:100質量部に対してPVA:5〜50質量部を添加して、1mm程度に造粒後、炭化し、賦活化する方法が考案されているが、微解砕は記載されてない。   In Patent Document 2, polyvinyl alcohol (PVA) is added to a spherical phenol resin of 0.5 to 2,000 μm, granulated to 0.5 to 5 mm, activated and finely crushed to 1 to 10 μm. Techniques to do this are disclosed. In Patent Literature 3, granular phenol resin having an average particle diameter of 0.1 to 150 μm: PVA: 5 to 50 parts by mass are added to 100 parts by mass, granulated to about 1 mm, carbonized, and activated. A method has been devised, but fine disintegration is not described.

このように従来技術では、最終製品である活性炭の粒径が大きく(1μm以上)のため、吸着性能(例えば、メチレンブルー吸着能)が十分ではない。   Thus, in the prior art, the activated carbon, which is the final product, has a large particle size (1 μm or more), so that the adsorption performance (for example, methylene blue adsorption ability) is not sufficient.

特開2007−131461号公報JP 2007-131461 A 特開2001−143973号公報JP 2001-143973 A 特開平9−11409号公報Japanese Patent Laid-Open No. 9-11409

本発明の目的は、上記従来技術の問題点を解決し、吸着材や電気二重層キャパシタの電極材料などに有用な吸着能が高い活性炭を提供することである。   The object of the present invention is to solve the above-mentioned problems of the prior art and to provide activated carbon having a high adsorptive capacity useful for an adsorbent, an electrode material of an electric double layer capacitor, and the like.

上記目的は以下の本発明によって達成される。すなわち、本発明は、平均粒径が0.1〜1μmの球状フェノール樹脂の分散液に、該フェノール樹脂とポリビニルアルコールの合計量に対して、0.1〜10質量%のポリビニルアルコールを添加し、混合し、脱液した後、得られた球状フェノール樹脂を平均粒径0.1mm以上に粗解砕し、炭化し、賦活した後、得られた賦活物を平均粒径が0.1μm以上、1μm未満に微解砕することを特徴とする活性炭の製造方法を提供する。   The above object is achieved by the present invention described below. That is, in the present invention, 0.1 to 10% by mass of polyvinyl alcohol is added to a dispersion of spherical phenol resin having an average particle size of 0.1 to 1 μm with respect to the total amount of the phenol resin and polyvinyl alcohol. After mixing and draining, the obtained spherical phenol resin was coarsely crushed to an average particle size of 0.1 mm or more, carbonized and activated, and then the obtained activated product had an average particle size of 0.1 μm or more. Provided is a method for producing activated carbon, characterized by being finely pulverized to less than 1 μm.

本発明によれば、吸着材や電気二重層キャパシタの電極材料などに有用な吸着能が高い(例えば、メチレンブルー吸着能が200ml/g以上)活性炭を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, activated carbon with high adsorptive ability useful for an adsorbent, the electrode material of an electric double layer capacitor, etc. (for example, methylene blue adsorption ability is 200 ml / g or more) can be provided.

次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。
本発明で使用するフェノール樹脂の種類としては、ノボラック型、レゾール型など、通常の種類のものが使用できる。また、前記フェノール樹脂の形状としては、平均粒径が0.1〜1μmの球状のものを用いる。球状フェノール樹脂は、フェノール樹脂の形状が球状に成形されたものであり、賦活により比表面積の大きな活性炭を得ることができるので、この球状フェノール樹脂から製造される球状活性炭の吸着性能はより優れたものになる。球状フェノール樹脂の平均粒径が0.1μmより小さい場合にはハンドリングが困難であり、好ましくない。一方、球状フェノール樹脂の平均粒径が1μmを超える場合には、吸着性能、例えば、メチレンブルー吸着能が低くなり、好ましくない。
Next, the present invention will be described in more detail with reference to preferred embodiments.
As the type of the phenol resin used in the present invention, a normal type such as a novolac type or a resol type can be used. Moreover, as a shape of the said phenol resin, the spherical thing whose average particle diameter is 0.1-1 micrometer is used. Spherical phenol resin is obtained by shaping the phenol resin into a spherical shape, and activated carbon having a large specific surface area can be obtained by activation. Therefore, the adsorption performance of the spherical activated carbon produced from this spherical phenol resin is more excellent. Become a thing. When the average particle size of the spherical phenol resin is smaller than 0.1 μm, handling is difficult, which is not preferable. On the other hand, when the average particle diameter of the spherical phenol resin exceeds 1 μm, the adsorption performance, for example, methylene blue adsorption ability is lowered, which is not preferable.

さらに、前記球状フェノール樹脂は、破砕炭とは異なり、球状に成形されたものであるため、その炭化および賦活により得られた球状活性炭は、表面に角張った部分が存在しない。そのため、輸送などの際のみならず、流動床式装置に使用された際にも、活性炭粒子表面の角部が擦られて微粉を生じるおそれが少ない。そのため、微粉による装置への悪影響がなく、しかも活性炭粒子表面の微細孔が壊れず、吸着性能などが低下することがないという特徴を有する。   Furthermore, since the spherical phenol resin is formed into a spherical shape unlike crushed coal, the spherical activated carbon obtained by the carbonization and activation thereof does not have an angular portion on the surface. For this reason, not only during transportation but also when used in a fluidized bed apparatus, there is little risk that the corners on the surface of the activated carbon particles are rubbed to produce fine powder. Therefore, there is no adverse effect on the apparatus due to the fine powder, and the fine pores on the surface of the activated carbon particles are not broken, and the adsorption performance and the like are not deteriorated.

上記球状フェノール樹脂と混合するポリビニルアルコール(PVA)の添加量は、フェノール樹脂とポリビニルアルコールの合計量に対して、0.1〜10質量%である。PVAの添加量が0.1質量%より少ないと炭化/賦活中に造粒形状が保てず、原料の飛散が起こり、製品の歩留が低くなり好ましくない。一方、PVAの添加量が10質量%より多いと強固に造粒されすぎて、原料のフェノール樹脂と同等の1次粒子の平均粒径に戻りにくくなり、好ましくない。   The addition amount of polyvinyl alcohol (PVA) mixed with the spherical phenol resin is 0.1 to 10% by mass with respect to the total amount of the phenol resin and polyvinyl alcohol. If the amount of PVA added is less than 0.1% by mass, the granulated shape cannot be maintained during carbonization / activation, the raw material is scattered, and the yield of the product is lowered. On the other hand, when the addition amount of PVA is more than 10% by mass, it is not preferable because it is too granulated and it is difficult to return to the average particle diameter of primary particles equivalent to the raw material phenol resin.

前記フェノール樹脂と上記PVAとの混合は、両者を均一に混合するために、液−液混合するのが好ましい。したがって、フェノール樹脂は予め分散媒体(例えば水)に分散しておき、PVAをこの分散媒体である水に溶解して、両者を撹拌混合することが好ましい。   The phenol resin and the PVA are preferably mixed in a liquid-liquid manner in order to uniformly mix them. Therefore, it is preferable to disperse the phenol resin in advance in a dispersion medium (for example, water), dissolve PVA in water as the dispersion medium, and stir and mix the two.

混合および撹拌後、媒体(例えば水)を除去し、得られた混合物を平均粒径0.1mm以上に粗解砕する。好ましくは平均粒径0.1〜3mmに粗解砕する。粗解砕物の粒径が小さすぎると、炭化および賦活時に粗解砕物が飛散してしまう。一方、粗解砕粒径が大きすぎると、ハンドリングが難しくなる。   After mixing and stirring, the medium (for example, water) is removed, and the resulting mixture is roughly crushed to an average particle size of 0.1 mm or more. Preferably, it is roughly crushed to an average particle size of 0.1 to 3 mm. If the particle size of the coarsely pulverized product is too small, the coarsely pulverized product is scattered during carbonization and activation. On the other hand, when the coarsely pulverized particle size is too large, handling becomes difficult.

次に、上記粗解砕物を炭化する。炭化方法としては、窒素、アルゴン、ヘリウム、キセノン、ネオンなどの不活性ガスおよびこれらの2種以上の混合ガスの非酸化性雰囲気下で300〜2,000℃、好ましくは500〜1,300℃程度の温度範囲において、10分〜30時間程度、前記粗解砕物を加熱して炭化する方法が好ましい。   Next, the crude pulverized product is carbonized. As the carbonization method, an inert gas such as nitrogen, argon, helium, xenon, or neon and a mixed gas of two or more of these gases are used at 300 to 2,000 ° C., preferably 500 to 1,300 ° C. In the temperature range of about, a method of heating and carbonizing the crude crushed material for about 10 minutes to 30 hours is preferable.

炭化物の賦活方法としては特に限定されず、公知慣用の種々の賦活方法を用いることができる。例えば、水蒸気や炭酸ガス(燃焼ガス)や酸素(空気)、その他の酸化ガスと、好ましくは700〜1,200℃の温度で接触反応させるガス賦活法や、塩化亜鉛、燐酸塩、水酸化カリウムなどのアルカリ金属化合物、硫酸などの酸類を含浸した後、不活性ガス雰囲気中で好ましくは300〜800℃の温度で加熱することによる薬品賦活法などが用いられる。薬品賦活法の場合は、賦活化後、生成物や用いた薬品を酸またはアルカリで中和したり、水洗などを用いて除去することが一般的に行われる。   The activation method of the carbide is not particularly limited, and various known and usual activation methods can be used. For example, a gas activation method in which water, carbon dioxide (combustion gas), oxygen (air), or other oxidizing gas is brought into contact and reaction at a temperature of preferably 700 to 1,200 ° C., zinc chloride, phosphate, potassium hydroxide After impregnating an alkali metal compound such as sulfuric acid or an acid such as sulfuric acid, a chemical activation method by heating in an inert gas atmosphere preferably at a temperature of 300 to 800 ° C. is used. In the case of the chemical activation method, after activation, the product and the chemical used are generally neutralized with an acid or alkali, or removed using water washing or the like.

なお、前記炭化処理および賦活処理を行なう装置としては、例えば、多段炉、ロータリーキルン炉、流動床炉などを用いることができる。   In addition, as an apparatus which performs the said carbonization process and activation process, a multistage furnace, a rotary kiln furnace, a fluidized bed furnace etc. can be used, for example.

賦活した後に、賦活物を平均粒径が0.1μm以上、1μm未満に微解砕して所望の活性炭を得る。賦活物の平均粒径が小さすぎるとハンドリングが困難になり、一方、賦活物の平均粒径が大きすぎると吸着性能、例えば、メチレンブルー吸着能が低い(200ml/g未満)。   After activation, the activated product is finely pulverized to an average particle size of 0.1 μm or more and less than 1 μm to obtain a desired activated carbon. If the average particle size of the activation product is too small, handling becomes difficult, while if the average particle size of the activation product is too large, the adsorption performance, for example, methylene blue adsorption ability is low (less than 200 ml / g).

前記微解砕方法は、通常、ハンマーミル、ボールミル、ジェットミル、アトマイザーなどを用いることができ、特に限定されない。また、得られた活性炭は、分級して使用することができる。   As the fine crushing method, a hammer mill, a ball mill, a jet mill, an atomizer or the like can be usually used, and is not particularly limited. Moreover, the obtained activated carbon can be classified and used.

以下、本発明を実施例および比較例によって具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
以下において活性炭の粗解砕品の平均粒径は、ふるいにより求めた。フェノール樹脂、賦活品、微解砕品の平均粒径はセイシン企業(株)製のレーザー式粒度計LMS−300を用いて、界面活性剤を入れた水に分散させて測定を行った。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, this invention is not limited to a following example.
In the following, the average particle diameter of the coarsely pulverized activated carbon was determined by sieving. The average particle diameters of the phenol resin, the activated product, and the finely pulverized product were measured by dispersing them in water containing a surfactant using a laser particle size meter LMS-300 manufactured by Seishin Enterprise Co., Ltd.

活性炭のBET比表面積は、Micromeritics(株)製のASAP2400により測定した。測定は、200℃で1.33kPa(10mmTorr)まで真空乾燥後に、相対圧P/P0=0.05〜0.15の範囲でBET式により算出した。   The BET specific surface area of the activated carbon was measured by ASAP2400 manufactured by Micromeritics. The measurement was performed according to the BET formula in the range of relative pressure P / P0 = 0.05 to 0.15 after vacuum drying at 200 ° C. to 1.33 kPa (10 mm Torr).

活性炭のメチレンブルー吸着能はJIS K1474(2007年)に準拠して測定を行った。   The methylene blue adsorption ability of the activated carbon was measured according to JIS K1474 (2007).

[実施例1]
平均粒径0.60μmの微粒球状フェノール樹脂分散液(固形分99.9質量部)に、固形分比で0.1質量部のPVAを混合し、脱水し、粗解砕し、平均粒径0.2mmの破砕状とした。粗解砕品を700℃で炭化を行い、さらにロータリーキルンで800℃で水蒸気賦活したところ、歩留が53質量%であった。
[Example 1]
PVA with a solid content ratio of 0.1 part by mass is mixed with fine spherical phenol resin dispersion (solid content 99.9 parts by mass) with an average particle size of 0.60 μm, dehydrated, coarsely crushed, The crushed state was 0.2 mm. When the coarsely crushed product was carbonized at 700 ° C. and further steam activated at 800 ° C. in a rotary kiln, the yield was 53 mass%.

上記賦活物を、日本ニューマチック製のジェットミルのPJM−80SPを使用し、回収は高性能集塵機エクセルフィルターを用いて、微解砕したところ、BET比表面積1,150m2/g、メチレンブルー吸着能240ml/gの球状活性炭が得られた。この球状活性炭の平均粒径は0.58μmで、解砕歩留は99質量%であった。 The above activated material was finely pulverized using a PJM-80SP jet mill manufactured by Nippon Pneumatic Co., Ltd. using a high-performance dust collector Excel filter. The BET specific surface area was 1,150 m 2 / g and the methylene blue adsorption capacity 240 ml / g of spherical activated carbon was obtained. The spherical activated carbon had an average particle size of 0.58 μm and a crushing yield of 99% by mass.

[実施例2]
平均粒径0.60μmの微粒球状フェノール樹脂分散液(固形分90質量部)に、10質量部のPVAを混合し、脱水し、粗解砕し、平均粒径0.2mmの破砕状とした。該粗解砕品を700℃で炭化を行い、さらにロータリーキルンで800℃で水蒸気賦活したところ、歩留が55質量%であった。
[Example 2]
10 parts by mass of PVA was mixed with fine spherical phenol resin dispersion liquid (solid content 90 parts by mass) having an average particle diameter of 0.60 μm, dehydrated, and coarsely crushed into a crushed form with an average particle diameter of 0.2 mm. . The coarsely pulverized product was carbonized at 700 ° C., and further steam activated at 800 ° C. with a rotary kiln. The yield was 55% by mass.

該賦活物を微解砕したところ、BET比表面積1,180m2/g、メチレンブルー吸着能235ml/gの球状活性炭が得られた。この球状活性炭の平均粒径は0.57μmで、解砕歩留は99質量%であった。 When the activated product was finely pulverized, spherical activated carbon having a BET specific surface area of 1,180 m 2 / g and a methylene blue adsorption capacity of 235 ml / g was obtained. The spherical activated carbon had an average particle size of 0.57 μm and a crushing yield of 99% by mass.

[実施例3]
平均粒径0.60μmの微粒球状フェノール樹脂分散液(固形分97質量部)に、3質量部のPVAを混合し、脱水し、粗解砕し、平均粒径0.2mmの破砕状とした。該粗解砕品を700℃で炭化を行い、さらにロータリーキルンで800℃で水蒸気賦活したところ、歩留が54質量%であった。
[Example 3]
3 parts by weight of PVA was mixed with fine spherical phenol resin dispersion liquid (solid content: 97 parts by weight) having an average particle diameter of 0.60 μm, dehydrated, and coarsely crushed into a crushed shape having an average particle diameter of 0.2 mm. . The crude pulverized product was carbonized at 700 ° C., and further steam activated at 800 ° C. in a rotary kiln. The yield was 54% by mass.

該賦活物を微解砕したところ、BET比表面積1,140m2/g、メチレンブルー吸着能253ml/gの球状活性炭が得られた。この球状活性炭の平均粒径は0.56μmで、解砕歩留は99質量%であった。 When the activated product was finely pulverized, spherical activated carbon having a BET specific surface area of 1,140 m 2 / g and a methylene blue adsorption capacity of 253 ml / g was obtained. The spherical activated carbon had an average particle size of 0.56 μm and a crushing yield of 99% by mass.

[実施例4]
平均粒径0.60μmの微粒球状フェノール樹脂分散液(固形分93質量部)に、7質量部のPVAを混合し、脱水し、粗解砕し、平均粒径0.2mmの破砕状とした。該粗解砕品を700℃で炭化を行い、さらにロータリーキルンで800℃で水蒸気賦活したところ、歩留が55質量%であった。
[Example 4]
7 parts by mass of PVA was mixed with a fine spherical phenol resin dispersion (solid content: 93 parts by mass) having an average particle diameter of 0.60 μm, dehydrated, and coarsely crushed to obtain a crushed shape having an average particle diameter of 0.2 mm. . The coarsely pulverized product was carbonized at 700 ° C., and further steam activated at 800 ° C. with a rotary kiln. The yield was 55% by mass.

該賦活物を微解砕したところ、BET比表面積1,140m2/g、メチレンブルー吸着能242ml/gの球状活性炭が得られた。この球状活性炭の平均粒径は0.57μmで、解砕歩留は99質量%であった。 When the activated product was finely pulverized, spherical activated carbon having a BET specific surface area of 1,140 m 2 / g and a methylene blue adsorption capacity of 242 ml / g was obtained. The spherical activated carbon had an average particle size of 0.57 μm and a crushing yield of 99% by mass.

[比較例1]
平均粒径0.60μmの粒球状フェノール樹脂分散液(固形分99.95質量部)に、固形分比で0.05質量部のPVAを混合し、脱水し、粗解砕し、平均粒径0.2mmの破砕状とした。該粗解砕品を700℃で炭化を行い、さらにロータリーキルンで800℃で水蒸気賦活したところ、歩留が10質量%であった。
[Comparative Example 1]
A spherical spherical phenol resin dispersion liquid (solid content 99.95 parts by mass) having an average particle diameter of 0.60 μm was mixed with 0.05 part by mass of PVA in a solid content ratio, dehydrated, roughly crushed, and average particle diameter The crushed state was 0.2 mm. The coarsely pulverized product was carbonized at 700 ° C., and further steam activated at 800 ° C. in a rotary kiln. The yield was 10% by mass.

該賦活物を微解砕したところ、BET比表面積1,180m2/g、メチレンブルー吸着能241ml/gの球状活性炭が得られた。この球状活性炭の平均粒径は0.57μmで、解砕歩留は99質量%であった。 When the activated product was finely pulverized, spherical activated carbon having a BET specific surface area of 1,180 m 2 / g and a methylene blue adsorption capacity of 241 ml / g was obtained. The spherical activated carbon had an average particle size of 0.57 μm and a crushing yield of 99% by mass.

[比較例2]
平均粒径0.60μmの微粒球状フェノール樹脂分散液(固形分89質量部)に、固形分比で11質量部のPVAを混合し、脱水し、粗解砕し、平均粒径0.2mmの破砕状とした。該粗解砕品を700℃で炭化を行い、さらにロータリーキルンで800℃で水蒸気賦活したところ、歩留が10質量%であった。
[Comparative Example 2]
11 parts by mass of PVA in a solid content ratio is mixed with a fine spherical phenol resin dispersion liquid (solid content 89 parts by mass) having an average particle diameter of 0.60 μm, dehydrated, and coarsely crushed. It was crushed. The coarsely pulverized product was carbonized at 700 ° C., and further steam activated at 800 ° C. in a rotary kiln. The yield was 10% by mass.

該賦活物を微解砕したところ、BET比表面積1,180m2/g、メチレンブルー吸着能233ml/gの球状活性炭が得られた。この球状活性炭の平均粒径は6.5μmで、解砕歩留は99質量%であった。 When the activated product was finely pulverized, spherical activated carbon having a BET specific surface area of 1,180 m 2 / g and a methylene blue adsorption capacity of 233 ml / g was obtained. The spherical activated carbon had an average particle size of 6.5 μm and a crushing yield of 99% by mass.

[比較例3]
平均粒径0.60μmの微粒球状フェノール樹脂分散液(固形分90質量部)に、固形分比で10質量部のPVAを混合し、脱水し、粗解砕し、平均粒径0.08mmの破砕状とした。該粗解砕品を700℃で炭化を行い、さらにロータリーキルンで800℃で水蒸気賦活したところ、歩留が8質量%であった。
[Comparative Example 3]
10 parts by mass of PVA in a solid content ratio is mixed with fine spherical phenol resin dispersion liquid (solid content: 90 parts by mass) having an average particle diameter of 0.60 μm, dehydrated, coarsely crushed, and an average particle diameter of 0.08 mm. It was crushed. The coarsely crushed product was carbonized at 700 ° C., and further steam activated at 800 ° C. in a rotary kiln. The yield was 8% by mass.

該賦活物を微解砕したところ、BET比表面積1,158m2/g、メチレンブルー吸着能231ml/gの球状活性炭が得られた。この球状活性炭の平均粒径は0.58μmで、解砕歩留は99質量%であった。 When the activated product was finely pulverized, spherical activated carbon having a BET specific surface area of 1,158 m 2 / g and a methylene blue adsorption capacity of 231 ml / g was obtained. The spherical activated carbon had an average particle size of 0.58 μm and a crushing yield of 99% by mass.

[比較例4]
微解砕をしない以外は、実施例2と同様の操作を行なったところ、歩留が55質量%であった。また、BET比表面積1,180m2/g、メチレンブルー吸着能135ml/gの球状活性炭が得られた。この球状活性炭の平均粒径は200μmで、解砕歩留は99質量%であった。
以上の実施例および比較例に製造条件、活性炭歩留およびその性状を示す。
[Comparative Example 4]
When the same operation as in Example 2 was performed except that fine crushing was not performed, the yield was 55% by mass. Further, spherical activated carbon having a BET specific surface area of 1,180 m 2 / g and a methylene blue adsorption capacity of 135 ml / g was obtained. The spherical activated carbon had an average particle size of 200 μm and a crushing yield of 99% by mass.
The production conditions, activated carbon yield, and properties thereof are shown in the above examples and comparative examples.

Figure 2010280515
Figure 2010280515

表1に示すように、本発明に係る実施例1〜4は、比較例に比べて賦活歩留が高く、かつ平均粒径が原料の微粒球状フェノール樹脂と同等の平均粒径になり、メチレンブルー吸着能の高い活性炭であることを確認できた。   As shown in Table 1, Examples 1 to 4 according to the present invention have a higher activation yield than that of the comparative example, and the average particle size is the same as that of the fine spherical phenol resin as a raw material. It was confirmed that the activated carbon had a high adsorption capacity.

本発明の製造方法により製造された活性炭は、吸着材料、電子、電気材料などとして各種工業分野で有用である。   The activated carbon produced by the production method of the present invention is useful in various industrial fields as an adsorbing material, an electronic material, an electric material, and the like.

Claims (1)

平均粒径が0.1〜1μmの球状フェノール樹脂の分散液に、該フェノール樹脂とポリビニルアルコールの合計量に対して、0.1〜10質量%のポリビニルアルコールを添加し、混合し、脱液した後、得られた球状フェノール樹脂を平均粒径0.1mm以上に粗解砕し、炭化し、賦活した後、得られた賦活物を平均粒径が0.1μm以上、1μm未満に微解砕することを特徴とする活性炭の製造方法。   To a dispersion of a spherical phenol resin having an average particle size of 0.1 to 1 μm, 0.1 to 10% by mass of polyvinyl alcohol is added to the total amount of the phenol resin and polyvinyl alcohol, mixed, and devolatilized. Then, the obtained spherical phenol resin was roughly crushed to an average particle size of 0.1 mm or more, carbonized, and activated, and the obtained activated product was finely pulverized to an average particle size of 0.1 μm or more and less than 1 μm. The manufacturing method of activated carbon characterized by crushing.
JP2009133080A 2009-06-02 2009-06-02 Method for manufacturing activated carbon Pending JP2010280515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133080A JP2010280515A (en) 2009-06-02 2009-06-02 Method for manufacturing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133080A JP2010280515A (en) 2009-06-02 2009-06-02 Method for manufacturing activated carbon

Publications (1)

Publication Number Publication Date
JP2010280515A true JP2010280515A (en) 2010-12-16

Family

ID=43537652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133080A Pending JP2010280515A (en) 2009-06-02 2009-06-02 Method for manufacturing activated carbon

Country Status (1)

Country Link
JP (1) JP2010280515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203783A (en) * 2012-03-27 2013-10-07 Hiroshima Univ Production method of spherical phenolic resin granule, production method of carbon material, and production method of activated carbon material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203783A (en) * 2012-03-27 2013-10-07 Hiroshima Univ Production method of spherical phenolic resin granule, production method of carbon material, and production method of activated carbon material

Similar Documents

Publication Publication Date Title
KR101311038B1 (en) Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
Ma et al. Adsorption and regeneration of leaf-based biochar for p-nitrophenol adsorption from aqueous solution
EP2407423A1 (en) Porous carbon and process for producing same
JP6676821B2 (en) Method of producing binder-based activated carbon with no binder
JP4855251B2 (en) Spherical activated carbon and method for producing the same
TW200815287A (en) Porous calcium oxide particulate and porous calcium hydroxide particulate
JP4890444B2 (en) Granules comprising porous particles containing calcium and / or magnesium
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
EP3285272B1 (en) A method for making activated nano-porous carbon
JP4694288B2 (en) Low temperature calcined carbon for electrode materials
CN105727886B (en) A kind of charcoal ferrotitanium sieve and silica-sesquioxide compound and its preparation method and application
EP3027557A1 (en) Chemical activation of carbon with at least one additive
JP4718303B2 (en) Method for producing activated carbon
JP2010180086A (en) Method for producing slaked lime
JP2010168271A (en) Method for producing alumina
JP4944466B2 (en) Anhydrous magnesium carbonate powder and method for producing the same
WO2009123097A1 (en) Basic magnesium sulfate granule and process for production thereof
Joshi et al. Sodium hydroxide activated nanoporous carbons based on Lapsi seed stone
JP2010280515A (en) Method for manufacturing activated carbon
JP2020001968A (en) Method of manufacturing granulated particle for producing ceramic
JP3706176B2 (en) Aluminum nitride granules and method for producing the same
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
JP2008169269A (en) Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres
EP3786113A1 (en) Metahalloysite powder and metahalloysite powder production method
JP2008100908A (en) Formed activated carbon for treating waste gas, and its production method