JP2008100908A - Formed activated carbon for treating waste gas, and its production method - Google Patents

Formed activated carbon for treating waste gas, and its production method Download PDF

Info

Publication number
JP2008100908A
JP2008100908A JP2007279995A JP2007279995A JP2008100908A JP 2008100908 A JP2008100908 A JP 2008100908A JP 2007279995 A JP2007279995 A JP 2007279995A JP 2007279995 A JP2007279995 A JP 2007279995A JP 2008100908 A JP2008100908 A JP 2008100908A
Authority
JP
Japan
Prior art keywords
weight
activated carbon
coal
anthracite
ash content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007279995A
Other languages
Japanese (ja)
Other versions
JP4708409B2 (en
Inventor
Takayuki Yamada
隆之 山田
Soichi Maeno
宗一 前野
Susumu Abe
進 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2007279995A priority Critical patent/JP4708409B2/en
Publication of JP2008100908A publication Critical patent/JP2008100908A/en
Application granted granted Critical
Publication of JP4708409B2 publication Critical patent/JP4708409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste gas-treating formed activated carbon which is prepared by using anthracite or semianthracite as a raw material and activating carbonized matter having excellent strength and which is superior in balance between strength and adsorbing performance such as desulfurization or denitration, and also to provide its production method. <P>SOLUTION: This waste gas-treating formed activated carbon has an ash content of ≥5 wt.% and <15 wt.%, and the contents of the magnesium, calcium and iron compounds in the total ash are 2 wt.% or more, 8 wt.% or more and 20 wt.% or more, respectively, based on total ash content. A method for production thereof is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃ガス処理用成型活性炭及びその製造方法に関する。さらに詳しくは、灰分含有量が5重量%以上15重量%未満であり、灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物が灰分全体に対してそれぞれ2重量%以上、8重量%以上及び20重量%以上の廃ガス処理用成型活性炭及びその製造方法に関する。   The present invention relates to a molded activated carbon for waste gas treatment and a method for producing the same. More specifically, the ash content is 5% by weight or more and less than 15% by weight, and the magnesium compound, calcium compound and iron compound in the ash are 2% by weight or more, 8% by weight or more and 20% by weight, respectively. The present invention relates to the above-mentioned molded activated carbon for waste gas treatment and a production method thereof.

活性炭は、食品、化学工業などの分野で吸着材として広く使用されており、廃ガス処理などの公害防除の面にも広く活用されている。そして、活性炭の原料としては、木材、木炭、ヤシ殻などの果実殻などの植物系の炭素質物質が多く使用されている。一方、コストの面から鉱物系の炭素質材料を使用した成型活性炭も製造されており、例えば、特開昭52−45598号公報に、固定炭素70%以上の石炭を原料とし、これを微粉砕し、造粒し、1000℃以上の加熱炉中で水蒸気賦活する成型活性炭の製造法が開示されている。   Activated carbon is widely used as an adsorbent in fields such as the food and chemical industries, and is also widely used for pollution control such as waste gas treatment. As a raw material for activated carbon, plant-based carbonaceous materials such as fruit shells such as wood, charcoal and coconut shells are often used. On the other hand, molded activated carbon using a mineral-based carbonaceous material is also produced from the viewpoint of cost. For example, in Japanese Patent Application Laid-Open No. 52-45598, coal with 70% or more of fixed carbon is used as a raw material, and this is pulverized. And the manufacturing method of the shaping | molding activated carbon which granulates and water-steam-activates in a 1000 degreeC or more heating furnace is disclosed.

成型活性炭を脱硫、脱硝などのガス処理用として使用する場合、成型活性炭が高い吸着性能を有すべきことは勿論であるが、脱硫、脱硝などのガス処理を工業的規模で実施する場合、成型活性炭として高い機械的強度を有することが要求される。かかる観点から、上記特開昭52−45598号公報に開示されたホンゲイ炭などの無煙炭から製造された成型活性炭を検討してみると、性能の面で必ずしも満足できるものではないことが判明した。   When using molded activated carbon for gas treatment such as desulfurization and denitration, it is obvious that the molded activated carbon should have high adsorption performance, but when performing gas treatment such as desulfurization and denitration on an industrial scale, molding The activated carbon is required to have high mechanical strength. From this point of view, when examining a molded activated carbon manufactured from anthracite coal such as Honggay coal disclosed in JP-A-52-45598, it has been found that the performance is not always satisfactory.

石炭を原料とする成型活性炭を製造するその他の方法として、特開昭57−100910号公報及び特開平2−69313号公報に、原料を予備乾留して賦活する成型活性コークス又は脱硫用炭材の製造方法が開示されており、特開平7−267619号公報に、原料として粉状活性炭を使用して炭化・賦活して粒状活性炭を製造する方法が開示されている。しかしながら、これらの方法は工程が多く、必ずしも工業的に有利な成型活性炭の製造方法であるとはいえない。   As another method for producing molded activated carbon using coal as a raw material, Japanese Patent Application Laid-Open Nos. 57-110910 and 2-69313 disclose a method of forming activated coke or carbon material for desulfurization in which raw material is activated by preliminary carbonization. A manufacturing method is disclosed, and Japanese Patent Application Laid-Open No. 7-267619 discloses a method of producing granular activated carbon by carbonizing and activating using powdered activated carbon as a raw material. However, these methods have many steps, and are not necessarily industrially advantageous methods for producing molded activated carbon.

また、特開昭57−123809号及び特開昭57−123810号各公報に、非粘結炭、粘結炭及びバインダーからなり、特定のボタン指数などの物性を有する混合物を加熱処理して脱硫用炭素材を製造する方法が開示されているが、これらの方法では高価な粘結炭を使用するためコスト的に不利となることは勿論、非粘結炭と粘結炭を所定の物性を満足するように配合する煩雑さがある。また、粘結炭を使用することにより、成型性、乾留性などへ悪影響を及ぼすことがあり、したがって、これを回避するために成型及び炭化工程で制限を受ける。   In addition, each of JP-A-57-123809 and JP-A-57-123810 discloses desulfurization by heat-treating a mixture comprising non-caking coal, caking coal and binder and having specific physical properties such as a button index. Although methods for producing carbon materials are disclosed, these methods use expensive caking coal, which is disadvantageous in terms of cost. Of course, non-caking coal and caking coal have predetermined physical properties. There is the complexity of blending to satisfy. In addition, the use of caking coal may adversely affect moldability, carbonization, and the like, and therefore is limited in the molding and carbonization processes to avoid this.

さらに、特開平1−126214号公報には、原料石炭として10ミクロン以下に粉砕された非粘結炭を使用する活性炭の製造方法が開示されている。しかしながら、この方法では原料石炭を10ミクロン以下に粉砕するための煩雑な粉砕工程が必要である。   Further, JP-A-1-126214 discloses a method for producing activated carbon using non-caking coal pulverized to 10 microns or less as raw coal. However, this method requires a complicated pulverization step for pulverizing the raw coal to 10 microns or less.

成型活性炭を工業的規模で製造する場合、機械的強度の面からは、粘結性の瀝青炭を使用し、乾留工程で石炭を溶融させた活性炭が使用されるのが殆どであるが、粘結性石炭をそのまま使用すると成型性及び乾留性が悪いため、前処理として石炭を低温乾留した後に、成型、乾留工程を実施することが一般的に行われている。しかしながら、このような前処理を行うと工程が多くなり、高価な瀝青炭を使用することにより、コストが割高になる。一般に、粒状活性炭は、吸着性能を高くすると強度が低下し、一方強度を高くすると吸着性能が低下する傾向があるため、吸着性能、強度ともに満足する炭素材が望まれている。したがって、本発明の目的は、無煙炭や半無煙炭を原料とし、強度に優れた炭化物を賦活した、強度及び脱硫、脱硝などの吸着性能のバランスに優れた廃ガス処理用の成型活性炭とその製造方法を提供することにある。   When manufacturing molded activated carbon on an industrial scale, caustic bituminous coal is used from the viewpoint of mechanical strength, and activated carbon obtained by melting coal in the dry distillation process is mostly used. If the direct coal is used as it is, the moldability and the carbonization are poor, and therefore, it is generally carried out after the coal is subjected to low temperature carbonization as a pretreatment, followed by the molding and carbonization processes. However, when such pretreatment is performed, the number of processes is increased, and the cost is increased by using expensive bituminous coal. In general, granular activated carbon has a tendency to decrease in strength when the adsorption performance is increased, and tends to decrease in adsorption performance when the strength is increased. Therefore, a carbon material satisfying both the adsorption performance and the strength is desired. Accordingly, an object of the present invention is to form an activated carbon for waste gas treatment with an excellent balance of strength and adsorption performance such as desulfurization and denitration, using anthracite or semi-anthracite as a raw material and activating a carbide with excellent strength, and a method for producing the same. Is to provide.

本発明者らは鋭意検討を重ねた結果、乾留性及び強度に影響するのは非粘結性であり、灰分を調節することにより、従来の炭化物よりも乾留性、機械的強度ともに優れた炭化物、及び従来の活性炭よりも脱硫・脱硝性能に優れた成型活性炭を得ることができることを見出し、本発明に至った。すなわち、本発明は、灰分含有量が5重量%以上15重量%未満であり、灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物が灰分全体に対してそれぞれ2重量%以上、8重量%以上及び20重量%以上の廃ガス処理用成型活性炭である。   As a result of intensive studies, the present inventors have determined that carbonization and strength are affected by non-caking, and by adjusting the ash content, the carbonization is superior in carbonization and mechanical strength compared to conventional carbides. And found that it is possible to obtain a molded activated carbon that is more excellent in desulfurization / denitration performance than conventional activated carbon. That is, in the present invention, the ash content is 5% by weight or more and less than 15% by weight, and the magnesium compound, calcium compound and iron compound in the ash content are 2% by weight or more, 8% by weight or more and 20% by weight, respectively. It is a molded activated carbon for waste gas treatment of more than% by weight.

本発明のもう一つの発明は、固定炭素分70重量%以上、かつ灰分3重量%以上10重量%未満の無煙炭に、固定炭素分50重量%以上、かつ灰分3重量%以上25重量%以下の非粘結性半無煙炭を、該無煙炭に対して最大50:50の重量比率で混合した混合物を原料とし、少なくとも、該混合物にバインダーを添加して成型する成型工程と、得られた成型物を乾留する乾留工程を経て製造された炭化物を賦活することを特徴とする灰分中にマグネシウム化合物を2重量%以上、カルシウム化合物を8重量%以上及び鉄化合物を20重量%以上含有する廃ガス処理用成型活性炭の製造方法である。   Another invention of the present invention is an anthracite having a fixed carbon content of 70 wt% or more and an ash content of 3 wt% or more and less than 10 wt%, a fixed carbon content of 50 wt% or more, and an ash content of 3 wt% or more and 25 wt% or less. Using a mixture obtained by mixing non-caking semi-anthracite in a weight ratio of up to 50:50 with respect to the anthracite, at least a molding step of adding a binder to the mixture and molding the resulting molded product Activated carbide produced through a carbonization process for carbonization, for waste gas treatment containing 2% by weight or more of magnesium compound, 8% by weight or more of calcium compound and 20% by weight or more of iron compound in ash This is a method for producing molded activated carbon.

本発明により、灰分含有量が5重量%以上15重量%未満であり、灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物が灰分全体に対してそれぞれ2重量%以上、8重量%以上及び20重量%以上の廃ガス処理用成型活性炭とその製造方法を提供することができる。本発明によれば、瀝青炭のような粘結炭を使用することなく、灰分含有率を調整することによって、強度及び硫黄酸化物、窒素酸化物、塩素化合物などを含む廃ガスの吸着性能のバランスに優れた成型活性炭を安価に製造することができる。   According to the present invention, the ash content is 5% by weight or more and less than 15% by weight, and the magnesium compound, calcium compound and iron compound in the ash content are 2% by weight or more, 8% by weight or more and 20% by weight, respectively. The above-mentioned molded activated carbon for waste gas treatment and a method for producing the same can be provided. According to the present invention, by adjusting the ash content without using caking coal such as bituminous coal, the balance between strength and adsorption performance of waste gas containing sulfur oxide, nitrogen oxide, chlorine compound, etc. Can be produced at low cost.

本発明は、灰分含有量が5重量%以上15重量%未満であり、灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物が灰分全体に対してそれぞれ2重量%以上、8重量%以上及び20重量%以上の廃ガス処理用成型活性炭である。   In the present invention, the ash content is 5% by weight or more and less than 15% by weight, and the magnesium compound, calcium compound and iron compound in the ash are 2% by weight or more, 8% by weight or more and 20% by weight, respectively. This is a molded activated carbon for waste gas treatment.

そして、本発明の成型活性炭は、好ましくは、固定炭素分70重量%以上、かつ灰分3重量%以上10重量%未満の無煙炭に、固定炭素分50重量%以上、かつ灰分3重量%以上25重量%以下の非粘結性半無煙炭を、該無煙炭に対して最大50:50の重量比率で混合した混合物を原料とし、少なくとも、該混合物にバインダーを添加して成型する成型工程と、得られた成型物を乾留する乾留工程を経て製造された炭化物を賦活することによって製造することができる。原料石炭中の固定炭素分及び灰分はJISM8812石炭類及びコークス類−工業分析法に準拠して測定することによって確認することができる。   The molded activated carbon of the present invention is preferably anthracite having a fixed carbon content of 70 wt% or more and an ash content of 3 wt% or more and less than 10 wt%, a fixed carbon content of 50 wt% or more, and an ash content of 3 wt% or more and 25 wt%. % Of non-caking semi-anthracite coal at a maximum weight ratio of 50:50 with respect to the anthracite coal as a raw material, and at least a molding step in which a binder is added to the mixture and obtained It can manufacture by activating the carbide manufactured through the carbonization process of carbonizing a molding. The fixed carbon content and ash content in the raw material coal can be confirmed by measuring in accordance with JISM8812 coals and cokes-industrial analysis method.

原料石炭として粘結性の石炭を使用すると、成型性及び乾留性が著しく低下するため、本発明においては、工程の簡略化、さらには強度向上のために無煙炭と非粘結性半無煙炭が好ましく使用される。石炭原料として無煙炭を選択するには、後述するボタン指数を測定し、該ボタン指数が0の石炭を選択すればよい。本発明の、灰分含有量が5重量%以上15重量%未満で、灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物が灰分全体に対してそれぞれ2重量%以上、8重量%以上及び20重量%以上の廃ガス処理用成型活性炭を得るための無煙炭の具体例としては、中国寧夏地区産の太西炭などをあげることができる。   When caking coal is used as raw coal, moldability and dry distillation are significantly reduced. Therefore, in the present invention, anthracite and non-caking anthracite coal are preferable for simplification of the process and further improvement of strength. used. In order to select anthracite as the coal raw material, a button index, which will be described later, is measured, and coal having the button index of 0 may be selected. In the present invention, the ash content is 5% by weight or more and less than 15% by weight, and the magnesium compound, calcium compound and iron compound in the ash content are 2% by weight or more, 8% by weight or more and 20% by weight or more, respectively. As a specific example of anthracite for obtaining the molded activated carbon for waste gas treatment, there can be mentioned Taisai coal from Ningxia, China.

本発明では、かかる無煙炭に非粘結性半無煙炭を混合することにより高性能化を図ることができる。すなわち、本発明の廃ガス処理用の成型活性炭は、固定炭素分70重量%以上、かつ灰分3重量%以上10重量%未満の無煙炭に、固定炭素分50重量%以上、かつ灰分3重量%以上25重量%以下の非粘結性半無煙炭を、該無煙炭に対して最大50:50の重量比率で混合した混合物を原料とし、少なくとも、該混合物にバインダーを添加して成型する成型工程と、得られた成型物を乾留する乾留工程を経て製造された炭化物を賦活することによって、好ましく製造することができる。   In the present invention, high performance can be achieved by mixing non-caking semi-anthracite with such anthracite. That is, the molded activated carbon for waste gas treatment of the present invention is an anthracite having a fixed carbon content of 70 wt% or more and an ash content of 3 wt% or more and less than 10 wt%, a fixed carbon content of 50 wt% or more, and an ash content of 3 wt% or more. A molding step in which 25% by weight or less of non-caking semi-anthracite is mixed with the anthracite at a maximum weight ratio of 50:50 as a raw material, and at least a binder is added to the mixture for molding. It can manufacture preferably by activating the carbide manufactured through the carbonization process of carbonizing the obtained molding.

無煙炭に混合する非粘結性半無煙炭としては、例えば、中国寧夏地区産の霊武炭などをあげることができる。半無煙炭の混合割合が増加するにつれて、乾留性、強度が低下する傾向にあることから、半無煙炭の混合比率は石炭に対し、最大50:50の重量比率とするのがよく、この範囲で混合割合を調節することによって、所望の成型活性炭を容易に得ることが出来る。   As non-caking semi-anthracite mixed with anthracite, for example, Reimu coal from Ningxia, China can be cited. As the mixing ratio of semi-anthracite coal increases, the carbonization property and strength tend to decrease. Therefore, the mixing ratio of semi-anthracite coal should be a maximum weight ratio of 50:50 with respect to the coal. By adjusting the ratio, the desired molded activated carbon can be easily obtained.

以上述べたように、本発明の廃ガス処理用成型活性炭を製造するための炭化物は、固定炭素分70重量%以上、かつ灰分3重量%以上10重量%未満の無煙炭に、固定炭素分50重量%以上、かつ灰分3重量%以上25重量%以下の非粘結性半無煙炭を、該無煙炭に対して最大50:50の重量比率で混合した混合物を原料とするが、炭化物は、少なくとも、これらの原料にバインダーを添加して成型する成型工程と、得られた成型物を乾留する乾留工程を経て製造される。さらに具体的に説明すると、原料を、好ましくは適度な粒度に微粉砕し、コールタール、コールタールピッチなどの石炭又は石油系のバインダーを添加して混練、成型し、乾留する。   As described above, the carbide for producing the molded activated carbon for waste gas treatment of the present invention is an anthracite having a fixed carbon content of 70% by weight or more and an ash content of 3% by weight or more and less than 10% by weight, and a fixed carbon content of 50% by weight. %, And non-caking semi-anthracite with an ash content of 3 wt% or more and 25 wt% or less is used as a raw material, and a mixture of the anthracite at a maximum weight ratio of 50:50 is used as a raw material. It is manufactured through a molding process in which a binder is added to the raw material and molding, and a carbonization process in which the obtained molded product is carbonized. More specifically, the raw material is preferably finely pulverized to an appropriate particle size, added with coal such as coal tar or coal tar pitch or petroleum-based binder, kneaded, molded, and dry-distilled.

成型工程においては、Z型二軸方式のニーダーなどで微粉砕した原料とバインダーを十分混練し、180kg/cm以上の圧力で成型することにより成型物を斑なく得ることができ好ましい。成型装置としては、ロールプレス式、ディスク型ペレッター式、リング型ペレッター式、押し出し式などの成型装置が使用可能である。成型物の形状はとくに限定されるものではなく、円柱状、円筒状、ペレット状、球状など目的に応じて適宜決めればよい。 In the molding step, the raw material finely pulverized with a Z-type biaxial kneader or the like and the binder are sufficiently kneaded, and molding is preferably performed at a pressure of 180 kg / cm 2 or more, so that a molded product can be obtained without unevenness. As a molding apparatus, a roll press type, a disk type pelleter type, a ring type pelleter type, an extrusion type, or the like can be used. The shape of the molded product is not particularly limited, and may be appropriately determined according to the purpose, such as a columnar shape, a cylindrical shape, a pellet shape, and a spherical shape.

次に、成型物を加熱乾留する。乾留は、還元ガス雰囲気下で550〜750℃まで加熱すればよい。より高性能、より高強度の炭化物又は活性炭を得るには、二段階での乾留、例えば、200〜400℃まで酸化ガス雰囲気下5〜30℃/分で昇温し、さらに550℃〜750℃まで還元ガス雰囲気下5〜30℃/分で昇温するのが好ましい。   Next, the molded product is heated and distilled. The dry distillation may be heated to 550 to 750 ° C. in a reducing gas atmosphere. In order to obtain a higher-performance, higher-strength carbide or activated carbon, dry distillation in two stages, for example, the temperature is raised from 200 to 400 ° C. in an oxidizing gas atmosphere at 5 to 30 ° C./min, and further from 550 to 750 ° C. The temperature is preferably increased at a rate of 5 to 30 ° C./min in a reducing gas atmosphere.

炭化物はさらに賦活して成型活性炭とし、脱硫、脱硝、ダイオキシンなどの塩化物含有ガスなどの廃ガス処理用に使用される。賦活は、水蒸気、二酸化炭素、空気、プロパン燃焼排ガス、これらの混合ガス等の酸化性ガス雰囲気下400〜1100℃で実施するガス賦活や塩化亜鉛、リン酸、塩化カルシウム、硫化カリウムなどの薬剤の存在下400〜800℃程度で実施する薬品賦活が採用される。   The carbide is further activated to form activated carbon, which is used for waste gas treatment such as desulfurization, denitration, and chloride-containing gas such as dioxin. Activation is performed at 400 to 1100 ° C. in an oxidizing gas atmosphere such as water vapor, carbon dioxide, air, propane combustion exhaust gas, and mixed gas thereof, and chemicals such as zinc chloride, phosphoric acid, calcium chloride, and potassium sulfide are used. Chemical activation carried out at about 400 to 800 ° C. in the presence is employed.

より高性能な成型活性炭を得るためには、賦活ガスとして二酸化炭素を10容量%以上含有するガスを使用するのが望ましい。賦活装置としては、ロータリーキルン、流動炉、ヘレショフ炉、スリープ炉等が使用される。炭化物又は成型活性炭は、必要に応じて、酸・水洗、乾燥、篩い分けなどの工程を経て製品化される。   In order to obtain a higher performance molded activated carbon, it is desirable to use a gas containing 10% by volume or more of carbon dioxide as an activation gas. As the activation device, a rotary kiln, a fluid furnace, a Heleshov furnace, a sleep furnace, or the like is used. Carbide or molded activated carbon is commercialized through processes such as acid / water washing, drying, and sieving as required.

本発明の成型活性炭を、脱硫、脱硝、ダイオキシンなどの塩化物含有ガスなどの廃ガス処理用に使用する場合、石炭にはアルカリ金属分及びアルカリ土類金属分が適度に含まれることが望ましい。また、成型活性炭中の灰分含有量、灰分中のマグネシウム金属化合物、カルシウム化合物及び鉄化合物の含有量があまり少ないと廃ガス処理の性能が低下することがあり、灰分含有量があまり多いと活性炭の強度が低下する傾向があるので、とくに脱硫用、脱硝用としては、特定量の灰分を含有し、灰分中には特定量のマグネシウム化合物、カルシウム化合物及び鉄化合物を含有する成型活性炭を使用する。   When the molded activated carbon of the present invention is used for waste gas treatment such as desulfurization, denitration, and chloride-containing gas such as dioxin, it is desirable that the coal contains an alkali metal content and an alkaline earth metal content appropriately. In addition, if the ash content in the molded activated carbon and the magnesium metal compound, calcium compound and iron compound content in the ash are too low, the performance of waste gas treatment may be reduced. If the ash content is too high, the activated carbon Since strength tends to decrease, a specific amount of ash is contained especially for desulfurization and denitration, and molded activated carbon containing specific amounts of magnesium compound, calcium compound and iron compound is used in the ash.

本発明は、灰分含有量が5重量%以上15重量%未満で、灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物が灰分全体に対してそれぞれ2重量%以上、8重量%以上及び20重量%以上の廃ガス処理用成型活性炭であり、灰分含有量及び灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物の含有量は、石炭などの原料を取捨選択することによって調整することが可能である。例えば、原料として無煙炭を使用する場合、無煙炭中の灰分及び灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物含有量を測定し、所望の含有量に調整することができる。以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。   In the present invention, the ash content is 5% by weight or more and less than 15% by weight, and the magnesium compound, calcium compound and iron compound in the ash content are 2% by weight or more, 8% by weight or more and 20% by weight or more, respectively. It is possible to adjust the ash content and the contents of the magnesium compound, calcium compound and iron compound in the ash by selecting raw materials such as coal. For example, when anthracite is used as a raw material, the ash content in the anthracite and the magnesium compound, calcium compound and iron compound content in the ash can be measured and adjusted to the desired content. EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

実施例及び比較例において、物性の測定は以下の方法によった。(1)ボタン指数:JISM88016るつぼ膨張試験方法に準拠し、試料を所定のるつぼに入れて、所定の条件で加熱し、生成した残渣を標準輪郭と比較して表した。(2)固定炭素及び灰分:JISM8812石炭類及びコークス類−工業分析法に準拠して測定した。(3)充填密度:試料を2000mlのメスシリンダーに1000ml充填し、重量を測定した。(4)ロガ強度:試料30gをロガ試験器(225mmφ×70mm)に入れ、50rpmで1000回転後の3.5メッシュ篩分残量を測定した。(5)脱硫性能:試料を充填した反応器に混合ガス(SO:1000ppm、O:2容量%、HO:10容量%、N:残部)を流通させ、165℃で4時間経過時点での反応器入口と出口のSO濃度比から算出した。(6)脱硝性能:試料を充填した反応器に混合ガス(NO:300ppm、NH:300ppm、O:2容量%、HO:10容量%、N:残部)を流通させ、165℃で20時間経過時点での反応器入口と出口のNO濃度比から算出した。(7)比表面積:窒素の吸着量から求めたBET比表面積である。(8)活性炭の灰分:JISK1474活性炭試験方法5.9強熱残分に準拠して測定した。(9)灰分中の金属化合物の組成:理学電機工業株式会社製の蛍光X線分析装置RIX3001で測定した。 In Examples and Comparative Examples, physical properties were measured by the following methods. (1) Button index: Based on the JISM88016 crucible expansion test method, a sample was placed in a predetermined crucible and heated under predetermined conditions, and the generated residue was expressed by comparison with a standard contour. (2) Fixed carbon and ash: Measured according to JIS M8812 coals and cokes-industrial analysis method. (3) Packing density: 1000 ml of the sample was filled in a 2000 ml measuring cylinder and the weight was measured. (4) Logger strength: 30 g of a sample was placed in a logger tester (225 mmφ × 70 mm), and the remaining amount of a 3.5 mesh sieve after 1000 revolutions at 50 rpm was measured. (5) Desulfurization performance: A mixed gas (SO 2 : 1000 ppm, O 2 : 2% by volume, H 2 O: 10% by volume, N 2 : balance) was passed through a reactor filled with a sample, and the reaction was performed at 165 ° C for 4 hours. It was calculated from the SO 2 concentration ratio of the reactor inlet and outlet at the time. (6) Denitration performance: A mixed gas (NO: 300 ppm, NH 3 : 300 ppm, O 2 : 2% by volume, H 2 O: 10% by volume, N 2 : balance) is circulated through the reactor filled with the sample, 165 It was calculated from the NO concentration ratio at the inlet and outlet of the reactor after 20 hours at C. (7) Specific surface area: BET specific surface area determined from the amount of nitrogen adsorbed. (8) Ash content of activated carbon: Measured according to JISK1474 activated carbon test method 5.9 ignition residue. (9) Composition of metal compound in ash: Measured with a fluorescent X-ray analyzer RIX3001 manufactured by Rigaku Corporation.

なお、実施例及び比較例において、特に記述が無い場合はすべて、石炭、半無煙炭、無煙炭などの原料100重量部に、コールタール20重量部、コ−ルタールピッチ20重量部をそれぞれ添加、混練したものを、上田鉄工株式会社製リング型ペレッターで10mm径の円柱状に成型し、最高温度650℃で乾留した後に、窒素60容量%、水蒸気20容量%及び二酸化炭素20容量%の混合ガス中850℃で比表面積が380〜400m/gになるように賦活した。実施例及び比較例で使用した石炭原料の規格を表1に示す。 In Examples and Comparative Examples, unless otherwise specified, 20 parts by weight of coal tar and 20 parts by weight of coal tar pitch were added to and mixed with 100 parts by weight of raw materials such as coal, semi-anthracite, and anthracite. Is molded into a 10 mm diameter cylindrical shape with a ring-type pelleter manufactured by Ueda Tekko Co., Ltd., and dry-distilled at a maximum temperature of 650 ° C., and then 850 ° C. in a mixed gas of 60% nitrogen, 20% steam and 20% carbon dioxide. And activated so that the specific surface area would be 380 to 400 m 2 / g. Table 1 shows the specifications of the coal raw materials used in the examples and comparative examples.

Figure 2008100908
Figure 2008100908

炭化物製造例1
原料無煙炭として中国寧夏地区産の太西炭を使用し、成型及び乾留の各工程を行った。結果を表2に示す。
Carbide production example 1
Taisei coal from Ningxia, China was used as raw anthracite, and each process of molding and dry distillation was performed. The results are shown in Table 2.

炭化物製造例2
原料無煙炭として炭化物製造例1で使用した太西炭80重量%と中国寧夏地区産の霊武炭20重量%からなる混合物を使用し、成型及び乾留を行った。結果を表2に示す。
Carbide production example 2
Molding and dry distillation were performed using a mixture of 80% by weight of Taisai charcoal used in Carbide Production Example 1 and 20% by weight of Reimu coal from Ningxia, China as raw anthracite. The results are shown in Table 2.

炭化物製造例3
原料無煙炭として炭化物製造例1で使用した太西炭60重量%と炭化物製造例2で使用した霊武炭40重量%からなる混合物を使用し、成型及び乾留を行った。結果を表2に示す。
Carbide production example 3
Molding and dry distillation were performed using a mixture of 60% by weight of Taisai charcoal used in Carbide Production Example 1 and 40% by weight of Reimu Charcoal used in Carbide Production Example 2 as raw anthracite. The results are shown in Table 2.

実施例1〜3及び実施例4〜5
炭化物製造例1〜3で得られた炭化物を前記条件で賦活し、成型活性炭を得た(各々実施例1〜3)。また、炭化物製造例1で得られた炭化物を、窒素50容量%、二酸化炭素50容量%の混合ガス中850℃で賦活し(実施例4)、炭化物製造例1で得られた炭化物について混合ガス中850℃で比表面積が約1000m/gになるように賦活度を高めて実施した(実施例5)。灰分及び灰分中の金属化合物の組成を表3に、充填密度、比表面積、ロガ強度、脱硫性能、脱硝性能を表4に示す。
Examples 1-3 and Examples 4-5
The carbides obtained in Carbide Production Examples 1 to 3 were activated under the above conditions to obtain molded activated carbon (Examples 1 to 3, respectively). Further, the carbide obtained in Carbide Production Example 1 was activated at 850 ° C. in a mixed gas of 50% by volume of nitrogen and 50% by volume of carbon dioxide (Example 4). The activation was carried out at a medium temperature of 850 ° C. with a specific surface area of about 1000 m 2 / g (Example 5). Table 3 shows the composition of ash and the metal compound in the ash, and Table 4 shows the packing density, specific surface area, logger strength, desulfurization performance, and denitration performance.

炭化物製造例4
原料無煙炭として炭化物製造例1で使用した太西炭20重量%と炭化物製造例2で使用した霊武炭80重量%からなる混合物を使用し、成型及び乾留の各工程を行った。結果を表2に示す。
Carbide production example 4
A mixture consisting of 20% by weight of Taisai charcoal used in Carbide Production Example 1 and 80% by weight of Reimu Charcoal used in Carbide Production Example 2 was used as the raw anthracite, and each step of molding and dry distillation was performed. The results are shown in Table 2.

炭化物製造例5
原料無煙炭として中国寧夏地区産の太西炭(脱灰品)を使用し、成型及び乾留を行った。結果を表2に示す。
Carbide production example 5
Taisei coal (decalcified product) from Ningxia region, China was used as raw material anthracite, and molding and dry distillation were performed. The results are shown in Table 2.

炭化物製造例6
原料無煙炭として炭化物製造例5の太西炭(脱灰品)80重量%と炭化物製造例2で使用した霊武炭20重量%からなる混合物を使用し、成型及び乾留の各工程を行った。結果を表2に示す。
Carbide production example 6
A mixture consisting of 80% by weight of Taisei charcoal (decalcified product) of Carbide Production Example 5 and 20% by weight of Reimu Charcoal used in Carbide Production Example 2 was used as raw anthracite, and each step of molding and dry distillation was performed. The results are shown in Table 2.

炭化物製造例7
原料石炭に中国山西地区産の粘結性を有する呂梁炭を使用し、成型及び乾留を行ったところ、乾留時に激しく膨らみが発生した。
Carbide production example 7
When Ryo Liang coal with caking properties from the Shanxi area of China was used as raw material coal, and molding and dry distillation were performed, severe swelling occurred during dry distillation.

炭化物製造例8
原料無煙炭として炭化物製造例1で使用した太西炭80重量%と中国山西地区産の呂梁炭20重量%からなる混合物を使用し、成型及び乾留を行った。結果を表2に示す。
Carbide production example 8
Molding and dry distillation were performed using a mixture of 80% by weight of Taisai charcoal used in Carbide Production Example 1 and 20% by weight of Ryo Liang coal from Shanxi District, China as the raw anthracite. The results are shown in Table 2.

炭化物製造例9
原料無煙炭として炭化物製造例1で使用した太西炭80重量%と中国寧夏地区産の霊武炭(脱灰品)20重量%からなる混合物を使用し、成型及び乾留を行った。結果を表2に示す。
Carbide production example 9
Molding and dry distillation were performed using a mixture of 80% by weight of Taisai coal used in Carbide Production Example 1 and 20% by weight of Lingwu coal (demineralized product) from Ningxia, China, as raw anthracite. The results are shown in Table 2.

炭化物製造例10
原料石炭としてベトナム産のホンゲイ炭を使用し、成型及び乾留を行った。結果を表2に示す。
Carbide production example 10
Using Vietnamese gay gay coal as raw coal, molding and dry distillation were performed. The results are shown in Table 2.

比較例1〜3及び比較例4〜5
炭化物製造例4〜6及び炭化物製造例8〜9の炭化物を賦活し、成型活性炭を得た(各々比較例1〜3及び比較例4〜5)。灰分及び灰分中の金属化合物の組成を表3に、充填密度、比表面積、ロガ強度、脱硫性能、脱硝性能を表4に示す。
Comparative Examples 1-3 and Comparative Examples 4-5
The carbides of Carbide Production Examples 4-6 and Carbide Production Examples 8-9 were activated to obtain molded activated carbon (Comparative Examples 1-3 and Comparative Examples 4-5, respectively). Table 3 shows the composition of ash and the metal compound in the ash, and Table 4 shows the packing density, specific surface area, logger strength, desulfurization performance, and denitration performance.

比較例6
炭化物製造例10の炭化物を賦活し、成型活性炭を得た。灰分及び灰分中の金属化合物の組成を表3に、充填密度、比表面積、ロガ強度、脱硫性能、脱硝性能を表4に示す。
Comparative Example 6
The carbide of Carbide Production Example 10 was activated to obtain molded activated carbon. Table 3 shows the composition of ash and the metal compound in the ash, and Table 4 shows the packing density, specific surface area, logger strength, desulfurization performance, and denitration performance.

Figure 2008100908
Figure 2008100908

Figure 2008100908
Figure 2008100908

Figure 2008100908
Figure 2008100908

表2の結果から、原料石炭として、ボタン指数が2.0の呂梁炭を使用した炭化物製造例7及び太西炭に呂梁炭を混合した炭化物製造例8の炭化物では、乾留性が悪く、乾留時に膨れが発生した。特に炭化物製造例7では膨れが激しく、乾留不能であった。また、原料石炭として太西炭20重量%及び霊武炭80重量%の混合物を使用した炭化物製造例4の炭化物のように半無煙炭を規定より多く混合した場合、機械的強度は低く、乾留時に形状維持が困難であった。炭化物製造例3のロガ強度は、炭化物製造例5、炭化物製造例9及び炭化物製造例10と比較して若干低かったが、炭化物製造例3は後述するように、賦活することによりバランスのよい吸着性能及び強度を示すので産業上非常に有用である。   From the results of Table 2, the carbides of Carbide Production Example 7 using Roryo Coal with a button index of 2.0 as raw material coal and Carbide Manufacture Example 8 of Ryogo Coal mixed with Taisei Coal have poor dry distillation properties, and carbonization. Sometimes blisters occurred. In particular, in Carbide Production Example 7, swelling was severe and dry distillation was impossible. In addition, when more than the specified amount of semi-anthracite coal is mixed, such as the carbide in the carbide production example 4 using a mixture of 20% by weight of Taisai coal and 80% by weight of Reimu coal as raw coal, mechanical strength is low, It was difficult to maintain the shape. The logarithmic strength of Carbide Manufacture Example 3 was slightly lower than Carbide Manufacture Example 5, Carbide Manufacture Example 9 and Carbide Manufacture Example 10, but Carbide Manufacture Example 3 has a well-balanced adsorption by activation as described later. Since it shows performance and strength, it is very useful in industry.

表3及び表4の結果から活性炭中の灰分含有量が5重量%以上15重量%未満で、灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物がそれぞれ2重量%以上、8重量%以上及び20重量%以上の実施例1〜5では高い脱硫性能、脱硝性能を示した。それに対し灰分が低く、マグネシウム化合物、カルシウム化合物及び鉄化合物がいずれも少ない比較例2、灰分及び鉄化合物が少ない比較例3、マグネシウム化合物及びカルシウム化合物が少ない比較例4、灰分が少ない比較例5及びカルシウム化合物が少ない比較例6はいずれの場合も脱硫性能、脱硝性能は不足であった。また、灰分含有量が15重量%以上の比較例1については脱硫性能、脱硝性能は良好であったが、灰分含有量が多すぎるために強度が低かった。   From the results of Table 3 and Table 4, the ash content in the activated carbon is 5 wt% or more and less than 15 wt%, and the magnesium compound, calcium compound and iron compound in the ash content are 2 wt% or more, 8 wt% or more and 20 wt%, respectively. % Of Examples 1 to 5 showed high desulfurization performance and denitration performance. On the other hand, Comparative Example 2 in which the ash content is low and the magnesium compound, calcium compound and iron compound are all small, Comparative Example 3 in which the ash content and iron compound are small, Comparative Example 4 in which the magnesium compound and calcium compound are small, Comparative Example 5 in which the ash content is small and In Comparative Example 6 with a small amount of calcium compound, desulfurization performance and denitration performance were insufficient in any case. Moreover, although the desulfurization performance and the denitration performance were favorable about the comparative example 1 whose ash content is 15 weight% or more, since intensity | strength content was too much, intensity | strength was low.

成型活性炭を脱硫及び脱硝用途に使用する場合、工業的見地から、脱硫性能は90%以上、脱硝性能は40%以上、ロガ強度は95%以上が望まれる。表4の結果から、太西炭を単独で使用した実施例1、太西炭80重量%と霊武炭20重量%の混合物及び太西炭60重量%と霊武炭40重量%の混合物を原料としたそれぞれ実施例2及び3の成型活性炭については、賦活後も高強度を維持したまま高脱硫性能が得られ、さらに、窒素と二酸化炭素の混合ガスで賦活した実施例4の成型活性炭では強度、脱硫性能共に非常に良好であった。また、炭化物製造例1の炭化物の賦活度をさらに進めた実施例5の成型活性炭では強度があまり低下することなく、極めて高い脱硫性能が得られ、とくにダイオキシン除去等に有用である。   When using molded activated carbon for desulfurization and denitration applications, it is desirable from an industrial point of view that the desulfurization performance is 90% or more, the denitration performance is 40% or more, and the logger strength is 95% or more. From the results of Table 4, Example 1 using Taisai charcoal alone, a mixture of 80 wt% Taisai charcoal and 20 wt% Reibu charcoal, and a mixture of 60 wt% Taisai charcoal and 40 wt% Reibu charcoal. With regard to the molded activated carbons of Examples 2 and 3 used as raw materials, high desulfurization performance was obtained while maintaining high strength after activation, and further, the molded activated carbon of Example 4 activated with a mixed gas of nitrogen and carbon dioxide Both strength and desulfurization performance were very good. In addition, the molded activated carbon of Example 5 in which the activation degree of the carbide of Carbide Production Example 1 is further advanced can be obtained with extremely high desulfurization performance without a significant decrease in strength, and is particularly useful for removing dioxins.

一方、灰分が3重量%未満の太西炭(脱灰品)を使用した比較例2、太西炭(脱灰品)と霊武炭の混合石炭を使用した比較例3及び太西炭と呂梁炭の混合石炭を使用した比較例4の活性炭は脱硫性能が不十分であった。また、原料石炭として太西炭20重量%及び霊武炭80重量%の混合物を使用した比較例1のように半無煙炭を規定より多く混合した場合、強度が著しく低かった。以上のように、比較例はいずれも強度及び性能のバランスが不満足なものであった。   On the other hand, Comparative Example 2 using Taisai Coal (demineralized product) with an ash content of less than 3% by weight, Comparative Example 3 using Taisei Coal (demineralized product) and Reimu Coal, and Tainishi Co. The activated carbon of Comparative Example 4 using a mixed coal of Ryo Liang Co. had insufficient desulfurization performance. Moreover, when semi-anthracite coal was mixed more than specified as in Comparative Example 1 using a mixture of 20% by weight of Taisai coal and 80% by weight of Reimu coal as raw coal, the strength was remarkably low. As described above, all the comparative examples were unsatisfactory in the balance between strength and performance.

Claims (2)

灰分含有量が5重量%以上15重量%未満であり、灰分中のマグネシウム化合物、カルシウム化合物及び鉄化合物が灰分全体に対してそれぞれ2重量%以上、8重量%以上及び20重量%以上の廃ガス処理用成型活性炭。 Waste gas with an ash content of 5% by weight or more and less than 15% by weight, and a magnesium compound, calcium compound and iron compound in the ash content of 2% by weight, 8% by weight and 20% by weight, respectively Molded activated carbon for processing. 固定炭素分70重量%以上、かつ灰分3重量%以上10重量%未満の無煙炭に、固定炭素分50重量%以上、かつ灰分3重量%以上25重量%以下の非粘結性半無煙炭を、該無煙炭に対して最大50:50の重量比率で混合した混合物を原料とし、少なくとも、該混合物にバインダーを添加して成型する成型工程と、得られた成型物を乾留する乾留工程を経て製造された炭化物を賦活することを特徴とする灰分中にマグネシウム化合物を2重量%以上、カルシウム化合物を8重量%以上及び鉄化合物を20重量%以上含有する廃ガス処理用成型活性炭の製造方法。 An anthracite having a fixed carbon content of 70% by weight or more and an ash content of 3% by weight or more and less than 10% by weight, a non-caking semi-anthracite having a fixed carbon content of 50% by weight or more and an ash content of 3% by weight or more and 25% by weight or less, Made from a mixture mixed at a weight ratio of up to 50:50 with respect to anthracite, using at least a molding process in which a binder is added to the mixture and a dry distillation process in which the resulting molded product is carbonized. A method for producing a molded activated carbon for waste gas treatment, comprising ash containing 2% by weight or more of a magnesium compound, 8% by weight or more of a calcium compound, and 20% by weight or more of an iron compound.
JP2007279995A 2001-07-26 2007-10-29 Molded activated carbon for waste gas treatment and method for producing the same Expired - Lifetime JP4708409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007279995A JP4708409B2 (en) 2001-07-26 2007-10-29 Molded activated carbon for waste gas treatment and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001225325 2001-07-26
JP2001225325 2001-07-26
JP2007279995A JP4708409B2 (en) 2001-07-26 2007-10-29 Molded activated carbon for waste gas treatment and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002214717A Division JP2003147369A (en) 2001-07-26 2002-07-24 Method for forming carbonized product and formed active carbon and carbonized product and formed active carbon produced thereby

Publications (2)

Publication Number Publication Date
JP2008100908A true JP2008100908A (en) 2008-05-01
JP4708409B2 JP4708409B2 (en) 2011-06-22

Family

ID=39435525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279995A Expired - Lifetime JP4708409B2 (en) 2001-07-26 2007-10-29 Molded activated carbon for waste gas treatment and method for producing the same

Country Status (1)

Country Link
JP (1) JP4708409B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550792A (en) * 2020-03-26 2020-08-18 安徽紫荆花壁纸股份有限公司 Waste treatment comprehensive utilization system and method for wallpaper processing
CN114538436A (en) * 2022-03-10 2022-05-27 马鞍山钢铁股份有限公司 Preparation method of efficient low-reaction-heat type desulfurization and denitrification activated carbon
CN115849375A (en) * 2022-12-28 2023-03-28 大同中车煤化有限公司 Coal-based activated carbon and preparation method and application thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245598A (en) * 1975-10-09 1977-04-11 Kagaku Gijutsu Shinkoukai Producing method of active carbon from coal
JPS57100910A (en) * 1980-12-12 1982-06-23 Mitsui Mining Co Ltd Preparation of molded active coke
JPS57123810A (en) * 1981-01-27 1982-08-02 Mitsubishi Chem Ind Ltd Production of carbon material for desulfurization
JPS57123809A (en) * 1981-01-27 1982-08-02 Mitsubishi Chem Ind Ltd Production of carbon material for desulfurization
JPS60255608A (en) * 1984-05-16 1985-12-17 デグーサ・アクチンゲゼルシヤフト Active carbon and manufacture
JPS61178411A (en) * 1985-02-05 1986-08-11 Sumikin Coke Co Ltd Production of granular active carbon
JPH01126214A (en) * 1987-11-10 1989-05-18 Idemitsu Kosan Co Ltd Production of activated carbon
JPH0269313A (en) * 1988-09-03 1990-03-08 Mitsui Mining Co Ltd Coal material for desulfurization and its production
JPH07267619A (en) * 1994-03-31 1995-10-17 Sumitomo Heavy Ind Ltd Production of granular activated carbon
JPH1133397A (en) * 1997-07-25 1999-02-09 Takeda Chem Ind Ltd Bromine affixed active carbon
JPH11347405A (en) * 1998-06-10 1999-12-21 Tetsugen Corp Reusing method of activated coke
JP2000225320A (en) * 1998-12-01 2000-08-15 Mitsubishi Chemicals Corp Method for treating high temperature gas and active carbon
JP2000246059A (en) * 1998-12-28 2000-09-12 Showa Denko Kk Reactive agent for decomposing hardly decomposable organochlorine compound and method for decomposing it
JP2001170481A (en) * 1999-10-06 2001-06-26 Mitsubishi Chemicals Corp Coal-based molded active carbon and method of treating exhaust gas containing dioxins

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245598A (en) * 1975-10-09 1977-04-11 Kagaku Gijutsu Shinkoukai Producing method of active carbon from coal
JPS57100910A (en) * 1980-12-12 1982-06-23 Mitsui Mining Co Ltd Preparation of molded active coke
JPS57123810A (en) * 1981-01-27 1982-08-02 Mitsubishi Chem Ind Ltd Production of carbon material for desulfurization
JPS57123809A (en) * 1981-01-27 1982-08-02 Mitsubishi Chem Ind Ltd Production of carbon material for desulfurization
JPS60255608A (en) * 1984-05-16 1985-12-17 デグーサ・アクチンゲゼルシヤフト Active carbon and manufacture
JPS61178411A (en) * 1985-02-05 1986-08-11 Sumikin Coke Co Ltd Production of granular active carbon
JPH01126214A (en) * 1987-11-10 1989-05-18 Idemitsu Kosan Co Ltd Production of activated carbon
JPH0269313A (en) * 1988-09-03 1990-03-08 Mitsui Mining Co Ltd Coal material for desulfurization and its production
JPH07267619A (en) * 1994-03-31 1995-10-17 Sumitomo Heavy Ind Ltd Production of granular activated carbon
JPH1133397A (en) * 1997-07-25 1999-02-09 Takeda Chem Ind Ltd Bromine affixed active carbon
JPH11347405A (en) * 1998-06-10 1999-12-21 Tetsugen Corp Reusing method of activated coke
JP2000225320A (en) * 1998-12-01 2000-08-15 Mitsubishi Chemicals Corp Method for treating high temperature gas and active carbon
JP2000246059A (en) * 1998-12-28 2000-09-12 Showa Denko Kk Reactive agent for decomposing hardly decomposable organochlorine compound and method for decomposing it
JP2001170481A (en) * 1999-10-06 2001-06-26 Mitsubishi Chemicals Corp Coal-based molded active carbon and method of treating exhaust gas containing dioxins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550792A (en) * 2020-03-26 2020-08-18 安徽紫荆花壁纸股份有限公司 Waste treatment comprehensive utilization system and method for wallpaper processing
CN114538436A (en) * 2022-03-10 2022-05-27 马鞍山钢铁股份有限公司 Preparation method of efficient low-reaction-heat type desulfurization and denitrification activated carbon
CN115849375A (en) * 2022-12-28 2023-03-28 大同中车煤化有限公司 Coal-based activated carbon and preparation method and application thereof

Also Published As

Publication number Publication date
JP4708409B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US4082694A (en) Active carbon process and composition
Tsai et al. Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob
DK2982649T3 (en) Process for the production of activated charcoal
EP0557208B1 (en) High activity, high density activated carbon and method for its preparation.
JP5905953B2 (en) Composition and method for sealing flue gas mercury in concrete
JP4855251B2 (en) Spherical activated carbon and method for producing the same
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
US5238470A (en) Emission control device
JP3746509B1 (en) Spherical activated carbon and its manufacturing method
WO2007140073A2 (en) Process for the manufacture of carbonaceous mercury sorbent from coal
JP2001240407A (en) Activated carbon and its manufacturing method
CA2132521C (en) Method for sox removal by catalytic carbon
JP4708409B2 (en) Molded activated carbon for waste gas treatment and method for producing the same
US20220096981A1 (en) Pelletized activated carbon and methods of production
JP2007331986A (en) Activated carbon
JP2000313611A (en) Active carbon and its production
JPH07267619A (en) Production of granular activated carbon
EP0070321B1 (en) Process for preparing carbonaceous material for use in desulfurization
EP0004044A1 (en) Granular activated carbon manufacture from sub-bituminous coal treated with dilute inorganic acid: direct activation method
IE44193B1 (en) Active carbon
JP2002102689A (en) Carbonaceous adsorbent
JP2009057239A (en) Activated carbon preparation method
JP2003147369A (en) Method for forming carbonized product and formed active carbon and carbonized product and formed active carbon produced thereby
JPH11349320A (en) Production of activated carbon
Monika et al. Porous structure improvement of coal activated carbon using steam activation in pilot scale

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4708409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350