JP2008169269A - Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres - Google Patents

Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres Download PDF

Info

Publication number
JP2008169269A
JP2008169269A JP2007002204A JP2007002204A JP2008169269A JP 2008169269 A JP2008169269 A JP 2008169269A JP 2007002204 A JP2007002204 A JP 2007002204A JP 2007002204 A JP2007002204 A JP 2007002204A JP 2008169269 A JP2008169269 A JP 2008169269A
Authority
JP
Japan
Prior art keywords
aggregate particles
order aggregate
phenol resin
microspheres
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007002204A
Other languages
Japanese (ja)
Inventor
Eisuke Haba
英介 羽場
Koichi Takei
康一 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007002204A priority Critical patent/JP2008169269A/en
Publication of JP2008169269A publication Critical patent/JP2008169269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide higher order aggregate particles of phenolic resin fine spheres, which have an extremely small metal impurity content and not needing a grinding process. <P>SOLUTION: The higher order aggregate particles of phenolic resin fine spheres are characterized in that the phenolic resin fine spheres form three-dimensional structures. The phenolic resin fine spheres have an average small diameter of 0.1 to 10 micron meter, and the higher order aggregate particles have an average radius of 0.1 to 1,000 micron meter. The higher order aggregate particles are produced by polymerizing a phenol compound with an aldehyde compound in the presence of an ammonium salt such as ammonium carbonate, ammonium bicarbonate or ammonium acetate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フェノール樹脂微小球の高次凝集体粒子、その製造方法及び炭素微小球の高次凝集体粒子に関する。   The present invention relates to high-order aggregate particles of phenol resin microspheres, a method for producing the same, and high-order aggregate particles of carbon microspheres.

有機高分子の微小球の凝集体は、通常、フェノール類とアルデヒド類とを水性媒体中で重合するゾル−ゲル法により得られ、有機高分子ゲルと呼ばれている。この有機高分子ゲルはレゾール型フェノール樹脂のコロイド微粒子が三次元的に凝集又は架橋することで高次構造を形成する。通常、有機高分子ゲルを構成する一次粒子の粒子径はコロイド微粒子の大きさに対応する10nm〜100nmの範囲であり、該一次粒子が凝集又は架橋すると反応溶液全体が不溶性・不融性の塊状ゲルとなる。有機高分子ゲルを炭化処理することにより製造される炭化物は、通称カーボンゲルと呼ばれ、細孔面積、細孔容積が大きく多孔質構造を持つことから、上下水処理、排ガス処理に用いられる吸着材料や電極材料、触媒等としての用途が期待されており、さまざまな検討が行われている。   The aggregates of organic polymer microspheres are usually obtained by a sol-gel method in which phenols and aldehydes are polymerized in an aqueous medium, and are called organic polymer gels. This organic polymer gel forms a higher-order structure by colloidal fine particles of resol type phenolic resin being three-dimensionally aggregated or cross-linked. Usually, the particle diameter of the primary particles constituting the organic polymer gel is in the range of 10 nm to 100 nm corresponding to the size of the colloidal fine particles, and when the primary particles are aggregated or crosslinked, the entire reaction solution is insoluble and infusible mass. It becomes a gel. Carbide produced by carbonizing organic polymer gel is commonly called carbon gel, and has a porous structure with a large pore area and pore volume, so it is used for water and sewage treatment and exhaust gas treatment. Applications as materials, electrode materials, catalysts, etc. are expected, and various studies have been conducted.

例えば、特開平9−202610号公報(特許文献1)には、R.W.Pekalaの手法に則り、レゾルシノールとホルムアルデヒドを炭酸ナトリウム等の触媒の存在下にゾル−ゲル重合して生じた有機高分子ゲルを、焼成してカーボンゲルを得る方法が開示されている。   For example, Japanese Patent Laid-Open No. 9-202610 (Patent Document 1) discloses R.A. W. In accordance with the method of Pekala, a method of obtaining a carbon gel by baking an organic polymer gel produced by sol-gel polymerization of resorcinol and formaldehyde in the presence of a catalyst such as sodium carbonate is disclosed.

しかしながらこのカーボンゲルの原料となる有機高分子ゲルには問題点も数多くある。第一の問題点は、ゾル−ゲル重合反応に3日〜10日程度と長時間を要することである。従来、有機高分子ゲルは、室温で重合反応を始め、75〜90℃程度の温度で、3〜10日程度保つことで熟成され、高分子ゲルの強度が高くされていた。この熟成された有機高分子ゲルを得る工程が不完全であると、高分子ゲルの強度が不足し、カーボンゲルを生成させるとき、形状を保持できない。従って従来の方法では、この長時間を要する熟成工程が量産性の点で大きな問題であった。   However, the organic polymer gel used as the raw material for the carbon gel has many problems. The first problem is that the sol-gel polymerization reaction requires a long time of about 3 to 10 days. Conventionally, an organic polymer gel has been polymerized at room temperature and aged for about 3 to 10 days at a temperature of about 75 to 90 ° C., thereby increasing the strength of the polymer gel. If the process for obtaining the aged organic polymer gel is incomplete, the strength of the polymer gel is insufficient, and the shape cannot be maintained when the carbon gel is generated. Therefore, in the conventional method, the aging process requiring a long time is a serious problem in terms of mass productivity.

上記問題点に対して、熟成された有機高分子ゲルを短時間で生成する方法が検討されており、例えば、特開2002−003211号公報(特許文献2)には、多価フェノール類及びホルムアルデヒドを水中で反応させて有機高分子ゲルを得、次いで水を添加して加圧密閉下で加熱処理して熟成された有機高分子ゲルを作製し、これを炭素化処理する炭素材料の製造方法が開示されている。しかしながら、前記製造方法では、有機高分子ゲルを熟成する際に加圧密閉容器を用いることから、装置面において製造設備が大掛りになり、量産性の問題は依然として残っていた。   In order to solve the above problems, a method for producing an aged organic polymer gel in a short time has been studied. For example, JP 2002-003211 A (Patent Document 2) discloses polyhydric phenols and formaldehyde. A method for producing a carbon material in which an organic polymer gel is obtained by reacting in water to obtain an organic polymer gel, then water is added, and heat treatment is performed under pressure and sealing to produce an aged organic polymer gel, which is carbonized Is disclosed. However, in the manufacturing method, since a pressure sealed container is used when aging the organic polymer gel, the manufacturing equipment becomes large in terms of the apparatus, and the problem of mass productivity still remains.

第二の問題点は、有機高分子ゲルが塊状物として得られることである。有機高分子ゲルを炭素化したカーボンゲルの有用な用途である吸着材料、電極材料、触媒等は、カーボンゲルの粉末を用いて加工・成形することが多いため、カーボンゲルも粉末で得られることが望ましい。しかしながら、塊状物で得られた有機高分子ゲルを用いて粉末のカーボンゲルを得るには、塊状の有機高分子ゲルを粉砕しなければならず、そのため製造コストが増し、また、粉砕工程中に不純物が混入するなどの問題があった。これに対し、特開2004−315283号公報(特許文献3)では、有機高分子ゲルを粉砕せずに微粒子化する方法が報告されている。前記方法では、粒子状の有機高分子ゲルを得るため、フェノール類とアルデヒド類をゾル−ゲル重合反応して得られる反応生成物を、界面活性剤の存在下にエマルジョン・ゲル化することで粒子状の有機高分子ゲルを得ている。前記方法では、反応生成物の粘度が粒子状の有機高分子ゲルの平均粒径に大きな影響を及ぼすが、反応生成物の粘度の経時変化が大きいため有機高分子ゲルの平均粒径の制御が難しい。また、界面活性剤を使用するため大量の廃溶剤が発生するなど安価に粒子状の有機高分子ゲルを得ることは難しい。更に、その粒子状の有機高分子ゲルの形状が粒子化処理の性質上、真球状の粒子になってしまうことから、用途によっては充填密度の低下を招くという問題点もあった。   The second problem is that the organic polymer gel is obtained as a lump. Adsorption materials, electrode materials, catalysts, etc., which are useful uses of carbon gels obtained by carbonizing organic polymer gels, are often processed and molded using carbon gel powder, so carbon gel can also be obtained in powder form Is desirable. However, in order to obtain a powdered carbon gel using the organic polymer gel obtained from the lump, the lump organic polymer gel has to be crushed, which increases the manufacturing cost, and during the pulverization process There were problems such as contamination of impurities. On the other hand, Japanese Patent Application Laid-Open No. 2004-315283 (Patent Document 3) reports a method of forming organic polymer gel into fine particles without crushing. In the method, in order to obtain a particulate organic polymer gel, the reaction product obtained by sol-gel polymerization reaction of phenols and aldehydes is emulsion-gelled in the presence of a surfactant to form particles. An organic polymer gel is obtained. In the above method, the viscosity of the reaction product greatly affects the average particle size of the particulate organic polymer gel. However, since the change in the viscosity of the reaction product over time is large, the average particle size of the organic polymer gel can be controlled. difficult. Further, since a surfactant is used, it is difficult to obtain a particulate organic polymer gel at a low cost, such as generation of a large amount of waste solvent. Furthermore, since the shape of the particulate organic polymer gel becomes a true spherical particle due to the properties of the particle formation treatment, there is a problem that the packing density is lowered depending on the application.

第三の問題点は、有機高分子ゲル中の金属不純物の含有量についてである。有機高分子ゲルを炭素化したカーボンゲルを吸着材料、電極材料、触媒等に用いる場合、カーボンゲルは高純度であること、すなわち、金属不純物の含有量が少ないことが望ましい。しかしながら、従来のゾル−ゲル重合反応では触媒としてアルカリ金属塩を用いるために、有機高分子ゲル中には金属不純物が残存し、それを用いて得られるカーボンゲル中の金属不純物の含有量が多くなり、純度に劣るといった問題があった。カーボンゲルを洗浄することで、ある程度、金属不純物の含有量を少なくすることができるが、完全にとり除くのは困難で、やはりコストにも影響する。
特開平9−202610号公報 特開2002−003211号公報 特開2004−315283号公報
The third problem is about the content of metal impurities in the organic polymer gel. When a carbon gel obtained by carbonizing an organic polymer gel is used as an adsorbing material, an electrode material, a catalyst, or the like, it is desirable that the carbon gel has high purity, that is, the content of metal impurities is small. However, since an alkali metal salt is used as a catalyst in the conventional sol-gel polymerization reaction, metal impurities remain in the organic polymer gel, and the content of metal impurities in the carbon gel obtained by using it remains large. There was a problem that it was inferior in purity. By cleaning the carbon gel, the content of metal impurities can be reduced to some extent, but it is difficult to completely remove it, which also affects the cost.
JP-A-9-202610 JP 2002-003211 A JP 2004-315283 A

本発明は、金属不純物の含有量が極めて少なく、かつ粉砕工程を不要とするフェノール樹脂微小球の高次凝集体粒子を提供することである。   An object of the present invention is to provide high-order aggregate particles of phenol resin microspheres that have a very low content of metal impurities and do not require a pulverization step.

本発明者らは鋭意検討を行った結果、水性媒体中、フェノール類とアルデヒド類をアンモニウム塩の存在下に反応させることにより、金属含有量が極めて少なく特異な構造を持つフェノール樹脂微小球の高次凝集体粒子を容易かつ低コストで製造することができることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that by reacting phenols and aldehydes in an aqueous medium in the presence of an ammonium salt, the high content of phenol resin microspheres having a very low metal content and a unique structure. The present inventors have found that the next aggregate particles can be produced easily and at low cost, and the present invention has been completed based on this finding.

本発明は、(1)フェノール樹脂微小球が三次元構造を形成してなることを特徴とするフェノール樹脂微小球の高次凝集体粒子に関する。   The present invention relates to (1) higher-order aggregate particles of phenol resin microspheres, wherein the phenol resin microspheres have a three-dimensional structure.

また、本発明は、(2)前記高次凝集体粒子の最長直径R1と、前記最長直径R1の中点を通る最短直径R2との比をR2/R1とした場合、R2/R1の平均値R(ave)が0.95以下であることを特徴とする前記(1)記載のフェノール樹脂微小球の高次凝集体粒子に関する。   Further, the present invention provides (2) an average value of R2 / R1, where R2 / R1 is a ratio of the longest diameter R1 of the higher-order aggregate particles to the shortest diameter R2 passing through the midpoint of the longest diameter R1. R (ave) is 0.95 or less, The high-order aggregate particle of the phenol resin microsphere according to the above (1).

また、本発明は、(3)前記フェノール樹脂微小球の平均微小球径が0.1〜10μmの範囲であることを特徴とする前記(1)又は(2)記載のフェノール樹脂微小球の高次凝集体粒子に関する。   In the present invention, (3) the phenol resin microsphere may have an average diameter of 0.1 to 10 μm, and the phenol resin microsphere may have a high height as described in (1) or (2). It relates to the next aggregate particle.

また、本発明は、(4)前記高次凝集体粒子の平均粒径が0.1〜1000μmであることを特徴とする前記(1)〜(3)のいずれか1項に記載のフェノール樹脂微小球の高次凝集体粒子に関する。   Moreover, this invention is (4) The phenol resin of any one of said (1)-(3) characterized by the average particle diameter of the said higher order aggregate particle being 0.1-1000 micrometers. The present invention relates to high-order aggregate particles of microspheres.

また、本発明は、(5)灰分含有量が1重量%以下であることを特徴とする前記(1)〜(4)のいずれか1項に記載のフェノール樹脂微小球の高次凝集体粒子に関する。   Moreover, this invention is (5) High-order aggregate particle | grains of the phenol resin microsphere of any one of said (1)-(4) characterized by the ash content being 1 weight% or less About.

また、本発明は、(6)水性媒体中、フェノール類とアルデヒド類をアンモニウム塩の存在下に重合反応させることを特徴とするフェノール樹脂微小球の高次凝集体粒子の製造方法に関する。   The present invention also relates to (6) a method for producing high-order aggregate particles of phenol resin microspheres, wherein a phenol and an aldehyde are polymerized in an aqueous medium in the presence of an ammonium salt.

また、本発明は(7)前記(1)〜(5)記載のフェノール樹脂微小球の高次凝集体粒子または前記(6)記載の製造方法によって得られるフェノール樹脂微小球の高次凝集体粒子を500〜3000℃で焼成することにより得られる炭素微小球の高次凝集体粒子に関する。   The present invention also provides (7) high-order aggregate particles of phenol resin microspheres described in (1) to (5) above or high-order aggregate particles of phenol resin microspheres obtained by the production method described in (6) above. The present invention relates to high-order aggregate particles of carbon microspheres obtained by firing at 500 to 3000 ° C.

また、本発明は、(8)前記高次凝集体粒子の平均粒径が0.1〜1000μmであることを特徴とする前記(7)記載の炭素微小球の高次凝集体粒子に関する。   The present invention also relates to (8) the high-order aggregate particles of carbon microspheres according to (7) above, wherein the high-order aggregate particles have an average particle size of 0.1 to 1000 μm.

また、本発明は、(9)前記炭素微小球の平均微小球径が0.1〜10μmの範囲であることを特徴とする前記(7)又は(8)記載の炭素微小球の高次凝集体粒子に関する。   In addition, the present invention provides (9) high-order aggregation of carbon microspheres according to (7) or (8), wherein the average microsphere diameter of the carbon microspheres is in the range of 0.1 to 10 μm. It relates to aggregated particles.

また、本発明は、(10)灰分含有量が2重量%以下であることを特徴とする前記(7)〜(9)のいずれか1項に記載の炭素微小球の高次凝集体粒子に関する。   The present invention also relates to (10) the high-order aggregate particles of carbon microspheres according to any one of (7) to (9), wherein the ash content is 2% by weight or less. .

本発明によれば、金属不純物の含有量が極めて少なく、細孔が発達しており、多孔質構造となるフェノール樹脂微小球の高次凝集体粒子を安価にかつ容易に得ることができる。   According to the present invention, high-order aggregate particles of phenol resin microspheres having a very small content of metal impurities, developed pores, and having a porous structure can be easily obtained at low cost.

本発明のフェノール樹脂微小球の高次凝集体粒子は、フェノール樹脂微小球が三次元構造を形成してなるものである。ここでフェノール樹脂微小球は、水性媒体中、フェノール類とアルデヒド類をアンモニウム塩の存在下に重合反応させた時に重合初期(重合開始から概ね10分以内)に形成されるフェノール樹脂のコロイド粒子であり、最終的に重合反応により得られるの高次凝集体粒子の構成要素となる微小な球状粒子である。   The higher-order aggregate particles of the phenol resin microspheres of the present invention are obtained by forming a three-dimensional structure of phenol resin microspheres. Here, the phenolic resin microspheres are colloidal particles of a phenolic resin formed at the initial stage of polymerization (approximately within 10 minutes from the start of polymerization) when a phenol and an aldehyde are polymerized in an aqueous medium in the presence of an ammonium salt. There are minute spherical particles that finally become constituents of the higher-order aggregate particles obtained by the polymerization reaction.

本発明のフェノール樹脂微小球の高次凝集体粒子は、前記フェノール樹脂微小球同士が、例えば架橋結合や共有結合などの化学的な相互作用または凝集などの物理的な相互作用により集合し三次元構造を形成している。フェノール樹脂微小球の集合の形態は特に限定されないが、通常はランダムに集合している。本発明におけるフェノール樹脂微小球の高次凝集体粒子は、粉砕、解砕などの機械的応力などによる処理をしない限り、その形状を保つため、該高次凝集体粒子を一つの粒子として取り扱うことができる。このように複数のフェノール樹脂微小球が集合し三次元構造を形成して一つの粒子として取り扱えるフェノール樹脂微小球の高次凝集体粒子は、同一の粒子径を持つフェノール樹脂硬化物と比較した場合、外部表面積が大きくなるという点で優れており様々な用途に活用できる。
また、本発明のフェノール樹脂微小球の高次凝集体粒子の最長直径R1と、前記最長直径R1の中点を通る最短直径R2との比をR2/R1とした場合、R2/R1の平均値R(ave)が0.95以下であることが好ましく、0.1〜0.95であることがより好ましく、0.3〜0.9であることが特に好ましい。R(ave)が0.95を超える場合は、高次凝集体粒子の充填密度が低下する傾向にある。R(ave)の値が1に近付くほど高次凝集体粒子の形状は真球状になり、逆に値が小さくなるほど繊維状あるいは平板状になる。
The phenolic resin microsphere high-order aggregate particles of the present invention have a three-dimensional structure in which the phenolic resin microspheres are aggregated by chemical interaction such as cross-linking and covalent bonding or physical interaction such as aggregation. Forming a structure. The form of the assembly of phenol resin microspheres is not particularly limited, but is usually assembled randomly. The high-order aggregate particles of the phenol resin microspheres in the present invention are treated as one particle in order to maintain their shape unless treated by mechanical stress such as pulverization or crushing. Can do. In this way, higher order aggregate particles of phenol resin microspheres that can be handled as a single particle by gathering a plurality of phenol resin microspheres and forming a three-dimensional structure, compared with a cured phenol resin with the same particle size It is excellent in that the external surface area becomes large and can be used for various purposes.
When the ratio of the longest diameter R1 of the high-order aggregate particles of the phenol resin microspheres of the present invention to the shortest diameter R2 passing through the midpoint of the longest diameter R1 is R2 / R1, the average value of R2 / R1 R (ave) is preferably 0.95 or less, more preferably 0.1 to 0.95, and particularly preferably 0.3 to 0.9. When R (ave) exceeds 0.95, the packing density of the higher-order aggregate particles tends to decrease. As the value of R (ave) approaches 1, the shape of the higher-order aggregate particles becomes more spherical, and conversely, the smaller the value, the more fibrous or flat.

ここで、R(ave)値は以下のような方法で求めることができる。まず、無作為にフェノール樹脂微小球の高次凝集体粒子を抽出し、電子顕微鏡により一粒子全体の投影写真を撮る。投影写真の粒子の最長直径R1と、前記最長直径R1の中点を通る最短直径R2の長さをそれぞれ測定し、その比R2/R1を算出する。このR2/R1をR値と定義し、100個の高次凝集体粒子について、平均値を算出することでR(ave)値を求めることができる。   Here, the R (ave) value can be obtained by the following method. First, high-order aggregate particles of phenol resin microspheres are extracted at random, and a projection photograph of the whole particle is taken with an electron microscope. The length of the longest diameter R1 of the projected photograph particles and the shortest diameter R2 passing through the midpoint of the longest diameter R1 are measured, and the ratio R2 / R1 is calculated. This R2 / R1 is defined as an R value, and an R (ave) value can be obtained by calculating an average value for 100 higher-order aggregate particles.

本発明のフェノール樹脂微小球の高次凝集体を構成するフェノール樹脂微小球の平均微小球径は、高次凝集体粒子の比表面積を増やせる点で、0.1〜10μmの範囲であることが好ましく、0.2〜8.0μmの範囲であることがより好ましく、0.4〜6.0μmの範囲であることが特に好ましい。フェノール樹脂微小球の平均微小球径が0.1μm未満である場合は、高次凝集体が粒子として得られず溶液全体が塊状になる傾向があり、10μmを超える場合は、高次凝集体粒子が過剰に大きくなり用途によっては粉砕が必要となる可能性がある。   The average microsphere diameter of the phenol resin microspheres constituting the high-order aggregate of the phenol resin microspheres of the present invention is in the range of 0.1 to 10 μm in that the specific surface area of the high-order aggregate particles can be increased. Preferably, it is in the range of 0.2 to 8.0 μm, more preferably in the range of 0.4 to 6.0 μm. When the average microsphere diameter of the phenol resin microspheres is less than 0.1 μm, higher order aggregates are not obtained as particles, and the whole solution tends to be agglomerated. When the average microsphere diameter exceeds 10 μm, higher order aggregate particles May become excessively large and pulverization may be necessary depending on the application.

フェノール樹脂微小球の平均微小球径は、例えば、電子顕微鏡の投影写真より以下のような方法で算出することができる。まず、無作為にフェノール樹脂微小球の高次凝集体粒子を抽出し、電子顕微鏡により一粒子全体の投影写真を撮る。投影写真の高次凝集体を構成するフェノール樹脂微小球の端部2箇所を結んだ直線のうち最長のものを直径とみなし、投影写真に写るすべてのフェノール樹脂微小球の直径を測定し、その平均値をフェノール樹脂微小球の平均微小球径として算出する。   The average microsphere diameter of the phenol resin microsphere can be calculated, for example, from the projection photograph of an electron microscope by the following method. First, high-order aggregate particles of phenol resin microspheres are extracted at random, and a projection photograph of the whole particle is taken with an electron microscope. The longest straight line connecting the two ends of the phenolic resin microspheres constituting the higher-order aggregate of the projected photograph is regarded as the diameter, and the diameters of all the phenolic resin microspheres appearing in the projected photograph are measured. The average value is calculated as the average microsphere diameter of the phenol resin microspheres.

本発明のフェノール樹脂微小球の高次凝集体粒子の平均粒径は、取り扱い性の点で、0.1〜1000μmの範囲であることが好ましく、0.5〜500μmの範囲であることがより好ましく、1〜100μmの範囲であることが特に好ましい。高次凝集体粒子の平均粒径が0.1μm未満である場合は、粒子が飛散しやすく取り扱い性が悪くなる傾向があり、1000μmを超える場合は、用途によっては粉砕が必要となる可能性がある。高次凝集体粒子の平均粒径は、例えば、レーザー光散乱粒度分布測定装置により測定した粒度分布の50%Dとして算出することができる。   The average particle diameter of the higher-order aggregate particles of the phenol resin microspheres of the present invention is preferably in the range of 0.1 to 1000 μm, more preferably in the range of 0.5 to 500 μm, in terms of handleability. The range of 1 to 100 μm is particularly preferable. When the average particle size of the high-order aggregate particles is less than 0.1 μm, the particles are likely to scatter and the handling property tends to be poor. When the average particle size exceeds 1000 μm, pulverization may be necessary depending on the application. is there. The average particle size of the higher-order aggregate particles can be calculated as, for example, 50% D of the particle size distribution measured by a laser light scattering particle size distribution measuring device.

本発明の高次凝集体粒子の灰分含有量は、純度の点で、1%重量以下であることが好ましく、0.5重量%以下であることがより好ましく、0重量%であることが特に好ましい。灰分含有量が1重量%を超える場合は、用途によっては不純物の溶出等が起こり特性に悪影響を及ぼす傾向がある。高次凝集体粒子の灰分含有量は、試料を空気雰囲気中、加熱し灰化した後の残渣重量を測り、加熱し灰化する前の試料全体の重量に対する比(重量%)として算出したものである。   The ash content of the high-order aggregate particles of the present invention is preferably 1% by weight or less, more preferably 0.5% by weight or less, and particularly preferably 0% by weight in terms of purity. preferable. When the ash content exceeds 1% by weight, impurities may be eluted depending on the application, and the properties tend to be adversely affected. The ash content of the higher-order aggregate particles was calculated as a ratio (% by weight) to the total weight of the sample before heating and ashing after measuring the residue weight after heating and ashing the sample in an air atmosphere. It is.

本発明のフェノール樹脂微小球の高次凝集体粒子の製造方法は特に制限されないが、例えば、水性媒体中、フェノール類とアルデヒド類をアンモニウム塩の存在下に重合反応させる方法が挙げられる。   The method for producing the higher-order aggregate particles of the phenol resin microspheres of the present invention is not particularly limited, and examples thereof include a method in which a phenol and an aldehyde are polymerized in an aqueous medium in the presence of an ammonium salt.

フェノール類とアルデヒド類の使用量は特に限定されず適宜選択されるが、フェノール類に対するアルデヒド類(アルデヒド類/フェノール類)のモル比として、0.8〜3.0であることが好ましく、1.0〜2.5であることがより好ましい。前記モル比が0.8未満である場合は、三次元構造が充分に形成せず、本発明のフェノール樹脂微小球の高次凝集体粒子の特異的な構造が発現し難くなる傾向がある。前記モル比が3.0を越える場合は、未反応のアルデヒド類が多く残存する傾向がある。   The amount of phenols and aldehydes used is not particularly limited and is appropriately selected. The molar ratio of aldehydes (aldehydes / phenols) to phenols is preferably 0.8 to 3.0. More preferably, it is 0.0-2.5. When the molar ratio is less than 0.8, the three-dimensional structure is not sufficiently formed, and the specific structure of the higher-order aggregate particles of the phenol resin microspheres of the present invention tends to be hardly expressed. When the molar ratio exceeds 3.0, a large amount of unreacted aldehydes tend to remain.

水性媒体の使用量も適宜選択されるが、フェノール類及びアルデヒド類の合計重量1重量部に対して、1〜60重量部であることが好ましく、1.5〜30重量部であることがより好ましい。水性媒体の使用量を前記範囲内とすることにより、反応溶液中のフェノール類とアルデヒド類を適切な濃度に調整することができ、組成の均一なフェノール樹脂微小球の高次凝集体粒子が生成し易くなる。水性媒体の使用量が10重量部未満である場合は、組成の均一なフェノール樹脂微小球の高次凝集体粒子が生成し難くなる傾向がある。前記使用量が60重量部を越える場合は、フェノール類とアルデヒド類の濃度が低くなり重合反応の進行が遅くなる傾向があり、さらに、得られるフェノール樹脂微小球の高次凝集体粒子の構造が不安定なものになる傾向がある。なお、フェノール類またはアルデヒド類として水溶液の形態のものを用いる場合は、これに含まれる水分も併せて水性媒体とすることができる。   Although the usage-amount of an aqueous medium is also selected suitably, it is preferable that it is 1-60 weight part with respect to 1 weight part of total weights of phenols and aldehydes, and it is more preferable that it is 1.5-30 weight part. preferable. By setting the amount of aqueous medium used within the above range, phenols and aldehydes in the reaction solution can be adjusted to an appropriate concentration, and high-order aggregate particles of phenol resin microspheres with uniform composition are generated. It becomes easy to do. When the usage-amount of an aqueous medium is less than 10 weight part, there exists a tendency for the high-order aggregate particle | grains of the phenol resin microsphere with a uniform composition to become difficult to produce | generate. When the amount used exceeds 60 parts by weight, the concentration of phenols and aldehydes tends to be low and the progress of the polymerization reaction tends to be slow, and the structure of the high-order aggregate particles of the resulting phenol resin microspheres There is a tendency to become unstable. In addition, when using the thing of the form of aqueous solution as phenols or aldehydes, the water | moisture content contained in this can also be used as an aqueous medium.

本発明で用いられるフェノール類化合物としては、例えば、フェノール;レゾルシノールなどのレゾルシノール類、o−クレゾール、m−クレゾール、p−クレゾール等のクレゾール類;2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール等のキシレノール類;o−エチルフェノール、m−エチルフェノール及びp−エチルフェノール等のエチルフェノール類;イソプロピルフェノール等のプロピルフェノール類;ブチルフェノール、p−tert−ブチルフェノール等のブチルフェノール類;p−tert−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール、p−クミルフェノールなどが挙げられ、特にこれらに限定されるものではない。これらのなかでも、反応性の点で、フェノール性水酸基を1分子あたり2個有するもの又はメタ位に電子供与性の置換基を持つものが好ましく、レゾルシノール又はm−クレゾールが特に好ましい。これらフェノール類は単独で又は2種以上を組み合わせて使用される。   Examples of the phenolic compound used in the present invention include phenol; resorcinols such as resorcinol; cresols such as o-cresol, m-cresol, and p-cresol; 2,3-xylenol, 2,4-xylenol, 2 Xylenols such as 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol; ethylphenols such as o-ethylphenol, m-ethylphenol and p-ethylphenol; isopropylphenol Propylphenols; butylphenols such as butylphenol and p-tert-butylphenol; p-tert-amylphenol, p-octylphenol, p-nonylphenol, p-cumylphenol, and the like. Not. Among these, in terms of reactivity, those having two phenolic hydroxyl groups per molecule or those having an electron donating substituent at the meta position are preferred, and resorcinol or m-cresol is particularly preferred. These phenols are used alone or in combination of two or more.

また、アルデヒド類としては、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、サリチルアルデヒド、ベンズアルデヒド等が挙げられ、特にこれらに限定されるものではない。これらのなかでも、ホルムアルデヒドは水溶性であり、また、フェノール類との反応性が良好であるため反応を効率的に行うことができ、原料コストを低減できる点で好ましい。これらアルデヒド類は単独で又は2種以上を組み合わせて使用される。   Examples of aldehydes include, but are not limited to, formaldehyde, acetaldehyde, butyraldehyde, salicylaldehyde, benzaldehyde, and the like. Among these, formaldehyde is preferable in that it is water-soluble and has good reactivity with phenols so that the reaction can be performed efficiently and the raw material cost can be reduced. These aldehydes are used alone or in combination of two or more.

水性溶媒としては、例えば、蒸留水、イオン交換水、軟水等が挙げられ、特にこれらに限定されるものではない。これらのなかでも、蒸留水又はイオン交換水は金属イオン濃度が低いため、得られるフェノール樹脂微小球の高次凝集体粒子の金属不純物濃度が低減され、灰分含有量が少なくなる点で好ましい。   Examples of the aqueous solvent include distilled water, ion exchange water, soft water, and the like, but are not particularly limited thereto. Among these, distilled water or ion-exchanged water is preferable in that the metal ion concentration is low, so that the metal impurity concentration of the resulting high-order aggregate particles of the phenol resin microspheres is reduced and the ash content is reduced.

本発明では重合反応をアンモニウム塩の存在下に行うことが重要であり、それによって、特異的な構造の高次凝集体を短時間で作製することが可能であり、界面活性剤を使用しなくても粉末として回収することが可能である。これに対して、アンモニウム塩以外の塩基性触媒、例えば炭酸ナトリウムなどのアルカリ金属塩を用いた場合は、重合反応に長時間を要し、また生成物中に金属不純物が残存し純度に劣ってしまうのである。アンモニウム塩としては、無機アンモニウム塩又は有機アンモニウム塩が用いられ、例えば、炭酸アンモニウム、水酸化アンモニウム、炭酸水素アンモニウム、硫酸アンモニウム、硫酸水素アンモニウム、ほう酸アンモニウム、硝酸アンモニウムなどの無機アンモニウム塩;酢酸アンモニウム、アルギン酸アンモニウム、安息香酸アンモニウム、ギ酸アンモニウム、サリチル酸アンモニウムなどの有機アンモニウム塩などが挙げられ、特にこれらに限定されるものではない。これらのなかでも、炭酸アンモニウム、炭酸水素アンモニウム、酢酸アンモニウムなどは安価である点で好ましい。これらは、アンモニウム塩は、単独で又は2種以上を組み合わせて使用される。アンモニウム塩の使用量は、フェノール類またはアルデヒド類の反応性、アンモニウム塩の溶解度等の性状を考慮して適宜最適な範囲を選択することができるが、フェノール類1モルに対し、好ましくは0.001〜5モル、より好ましくは0.002〜3モルである。アンモニウム塩の使用量が前記範囲内である場合は、重合反応によって生成されるフェノール樹脂のコロイド粒子、すなわちフェノール樹脂微小球が短時間に数多く生成するため、フェノール樹脂微小球の高次凝集体粒子を容易に合成することが可能である。アンモニウム塩の使用量が0.001モル未満である場合は、水性溶体の使用量によってはアンモニウム塩の濃度が低くなり、フェノール樹脂のコロイド粒子の形成が不充分になり、高分子樹脂相と水相とに分離し易い傾向がある。アンモニウム塩の使用量が5モルを越える場合は、アンモニウム塩の触媒作用は問題がないものの、重合反応に関与しないアンモニウム塩が増加するため不経済になり易い傾向がある。   In the present invention, it is important to carry out the polymerization reaction in the presence of an ammonium salt, whereby a high-order aggregate having a specific structure can be produced in a short time, and a surfactant is not used. However, it can be recovered as a powder. In contrast, when a basic catalyst other than an ammonium salt, such as an alkali metal salt such as sodium carbonate, is used, the polymerization reaction takes a long time, and metal impurities remain in the product, resulting in poor purity. It ends up. As the ammonium salt, an inorganic ammonium salt or an organic ammonium salt is used. For example, an inorganic ammonium salt such as ammonium carbonate, ammonium hydroxide, ammonium hydrogen carbonate, ammonium sulfate, ammonium hydrogen sulfate, ammonium borate, ammonium nitrate; ammonium acetate, ammonium alginate And organic ammonium salts such as ammonium benzoate, ammonium formate, and ammonium salicylate, and the like are not particularly limited thereto. Among these, ammonium carbonate, ammonium hydrogen carbonate, ammonium acetate, and the like are preferable because they are inexpensive. These ammonium salts are used alone or in combination of two or more. The amount of the ammonium salt used can be appropriately selected in consideration of properties such as the reactivity of phenols or aldehydes and the solubility of the ammonium salt, but is preferably 0.00 per mol of phenols. It is 001-5 mol, More preferably, it is 0.002-3 mol. When the amount of ammonium salt used is within the above range, colloidal particles of phenol resin produced by the polymerization reaction, that is, many phenol resin microspheres are formed in a short time, and therefore higher order aggregate particles of phenol resin microspheres. Can be easily synthesized. When the amount of ammonium salt used is less than 0.001 mol, depending on the amount of aqueous solution used, the concentration of ammonium salt will be low, resulting in insufficient formation of phenol resin colloidal particles, and the polymer resin phase and water. There is a tendency to separate into phases. When the amount of the ammonium salt used exceeds 5 moles, there is no problem with the catalytic action of the ammonium salt, but there is a tendency to be uneconomical because the amount of ammonium salt not involved in the polymerization reaction increases.

重合反応の温度は特に限定されないが、好ましくは0〜100℃、より好ましくは10〜90℃である。温度が0℃未満である場合は、反応が進行し難い傾向がある。温度が100℃を越える場合は、水性媒体の蒸発が促進されるためフェノール樹脂微小球の高次凝集体粒子が生成し難い傾向がある。   Although the temperature of a polymerization reaction is not specifically limited, Preferably it is 0-100 degreeC, More preferably, it is 10-90 degreeC. When temperature is less than 0 degreeC, there exists a tendency for reaction not to advance easily. When the temperature exceeds 100 ° C., evaporation of the aqueous medium is promoted, so that high-order aggregate particles of phenol resin microspheres tend not to be generated.

重合反応の時間は特に限定されないが、好ましくは0.1〜20時間、より好ましくは0.5〜10時間である。反応時間が0.1時間未満である場合は、重合反応の進行が不充分でありフェノール樹脂微小球の高次凝集体粒子の構造が不安定になり易い傾向がある。反応時間が20時間を越える場合は、通常のゾル−ゲル反応と同様に反応時間が掛かりすぎるため生産効率が低下する傾向がある。   Although the time of a polymerization reaction is not specifically limited, Preferably it is 0.1 to 20 hours, More preferably, it is 0.5 to 10 hours. When the reaction time is less than 0.1 hour, the progress of the polymerization reaction is insufficient, and the structure of the higher-order aggregate particles of the phenol resin microspheres tends to be unstable. When the reaction time exceeds 20 hours, the production time tends to decrease because the reaction time is too long as in the normal sol-gel reaction.

本発明の製造方法で得られたフェノール樹脂微小球の高次凝集体粒子は、固液分離工程を経て反応系から取得される。固液分離の方法としては、特に限定されるものではないが、例えば、ろ過、遠心分離、噴霧乾燥等があげられる。   Higher-order aggregate particles of phenol resin microspheres obtained by the production method of the present invention are obtained from the reaction system through a solid-liquid separation step. The solid-liquid separation method is not particularly limited, and examples thereof include filtration, centrifugation, and spray drying.

また、固液分離によって得られたフェノール樹脂微小球の高次凝集体粒子は、所望により乾燥を行ってもよく、乾燥はフェノール樹脂微小球の高次凝集体粒子を構成するフェノール樹脂微小球の三次元構造が実質的に保たれたまま、三次元的ネットワーク構造中の液体分が除去されることが好ましい。乾燥方法としては、例えば、超臨界乾燥法、凍結乾燥法、真空乾燥法、噴霧乾燥法、マイクロ波乾燥法、熱風或いは温風乾燥法等が挙げられる。   Further, the higher-order aggregate particles of the phenol resin microspheres obtained by solid-liquid separation may be dried as desired, and the drying is performed on the phenol resin microspheres constituting the higher-order aggregate particles of the phenol resin microspheres. Preferably, the liquid content in the three-dimensional network structure is removed while the three-dimensional structure is substantially maintained. Examples of the drying method include supercritical drying, freeze drying, vacuum drying, spray drying, microwave drying, hot air or hot air drying.

本発明は、以上の製造方法により、重合反応を短時間化しかつ粉砕工程を不要とする、灰分の含有量が少ないフェノール樹脂微小球の高次凝集体粒子を提供することができる。   The present invention can provide high-order aggregate particles of phenol resin microspheres with a low content of ash, which can shorten the polymerization reaction and eliminate the pulverization step by the above production method.

本発明のフェノール樹脂微小球の高次凝集体粒子は多孔質構造を有しており、化学工業用フィルター、イオン交換樹脂、防音材、上下水処理、廃液処理及び排ガス処理用の吸着材料、触媒担体、電波吸収体、電極材料等として使用することができる。   The high-order aggregate particles of the phenol resin microspheres of the present invention have a porous structure, filters for chemical industry, ion exchange resins, soundproofing materials, adsorbing materials for wastewater treatment and exhaust gas treatment, catalysts It can be used as a carrier, a radio wave absorber, an electrode material or the like.

また、本発明のフェノール樹脂微小球の高次凝集体粒子を常法により焼成して炭素微小球の高次凝集体粒子を製造することも可能である。本発明のフェノール樹脂微小球の高次凝集体粒子は塊状でないため粉砕工程を経ずに焼成工程に移行できる。
焼成は常法により行われ、例えば、電気炉、管状炉、ボックス炉などの高温処理装置を用いて、不活性ガス雰囲気下、500〜3000℃の温度領域で熱処理することにより行われる。不活性ガスとしては、例えば、窒素、アルゴン、ヘリウムなどが用いられる。
It is also possible to produce higher-order aggregate particles of carbon microspheres by firing the higher-order aggregate particles of phenol resin microspheres of the present invention by a conventional method. Since the higher-order aggregate particles of the phenol resin microspheres of the present invention are not agglomerated, they can be transferred to the firing step without going through the pulverization step.
Firing is performed by a conventional method, for example, by heat treatment in a temperature range of 500 to 3000 ° C. in an inert gas atmosphere using a high-temperature treatment apparatus such as an electric furnace, a tubular furnace, or a box furnace. For example, nitrogen, argon, helium, or the like is used as the inert gas.

本発明の炭素微小球の高次凝集体を構成する炭素微小球の平均微小球径は、高次凝集体粒子の比表面積を増やせる点で、0.1〜10μmの範囲であることが好ましく、
0.2〜8.0μmの範囲であることがより好ましく、0.3〜6.0μmの範囲であることが特に好ましい。炭素微小球の平均微小球径が10μmを超える場合は、高次凝集体粒子が過剰に大きくなり用途によっては粉砕が必要となる可能性がある。炭素微小球の平均微小球径は、前記フェノール樹脂微小球の平均微小球径と同様の方法で算出することができる。
The average microsphere diameter of the carbon microspheres constituting the high-order aggregates of the carbon microspheres of the present invention is preferably in the range of 0.1 to 10 μm in that the specific surface area of the high-order aggregate particles can be increased.
The range is more preferably 0.2 to 8.0 μm, and particularly preferably 0.3 to 6.0 μm. When the average microsphere diameter of the carbon microspheres exceeds 10 μm, the higher-order aggregate particles become excessively large, and pulverization may be necessary depending on applications. The average microsphere diameter of the carbon microsphere can be calculated by the same method as the average microsphere diameter of the phenol resin microsphere.

本発明の炭素微小球の高次凝集体粒子の平均粒径は、取り扱い性の点で、0.1〜1000μmの範囲であることが好ましく、0.5〜500μmの範囲であることがより好ましく、0.1〜100μmの範囲であることが特に好ましい。高次凝集体粒子の平均粒径が0.1μm未満である場合は、粒子が飛散しやすく取り扱い性が悪くなる傾向があり、1000μmを超える場合は、用途によっては粉砕が必要となる可能性がある。炭素微小球の高次凝集体粒子の平均粒径は、前記フェノール樹脂微小球の高次凝集体の平均粒径と同様の方法で算出することができる。   The average particle size of the high-order aggregate particles of the carbon microspheres of the present invention is preferably in the range of 0.1 to 1000 μm, more preferably in the range of 0.5 to 500 μm, from the viewpoint of handleability. The range of 0.1 to 100 μm is particularly preferable. When the average particle size of the high-order aggregate particles is less than 0.1 μm, the particles are likely to scatter and the handling property tends to be poor. When the average particle size exceeds 1000 μm, pulverization may be necessary depending on the application. is there. The average particle diameter of the high-order aggregate particles of the carbon microspheres can be calculated by the same method as the average particle diameter of the high-order aggregate of the phenol resin microspheres.

本発明の炭素微小球の高次凝集体粒子の灰分含有量は、純度の点で、2%重量以下であることが好ましく、1重量%以下であることがより好ましく、0.1重量%であることが特に好ましい。灰分含有量が2重量%を超える場合は、用途によっては不純物の溶出等が起こり特性に悪影響を及ぼす傾向がある。炭素微小球の高次凝集体粒子の灰分含有量は、フェノール樹脂微小球の高次凝集体粒子と同様の方法で算出することができる。   The ash content of the high-order aggregate particles of the carbon microspheres of the present invention is preferably 2% by weight or less, more preferably 1% by weight or less, more preferably 0.1% by weight in terms of purity. It is particularly preferred. When the ash content exceeds 2% by weight, impurities may be eluted depending on the application, and the properties tend to be adversely affected. The ash content of the high-order aggregate particles of carbon microspheres can be calculated by the same method as that for the high-order aggregate particles of phenol resin microspheres.

本発明の炭素微小球の高次凝集体粒子は粉末炭素材料として有望であり、例えば、吸着材料、ガスセンサー、触媒金属を担持する炭素担持体、太陽電池用電極担持体、リチウムイオン電池及びキャパシタ用の電極材として有望である。またC/Cコンポジット化等の技術と組み合わせることで、電磁波吸収体への利用も可能であり、その工業的価値はきわめて大きい。   The high-order aggregate particles of the carbon microspheres of the present invention are promising as powdered carbon materials, for example, adsorbing materials, gas sensors, carbon supports for supporting catalytic metals, electrode supports for solar cells, lithium ion batteries, and capacitors. It is promising as an electrode material. In combination with techniques such as C / C composite, it can also be used for electromagnetic wave absorbers, and its industrial value is extremely high.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって本発明を制限するものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.

[実施例1]
レゾルシノール(関東化学株式会社製)55重量部、37%ホルムアルデヒド水溶液(和光純薬工業株式会社製)81重量部、精製水(和光純薬工業株式会社製)110重量部を1000mlのガラスフラスコに入れ、30℃で攪拌機にて150rpmでモノマが溶解するまで攪拌した。その後、炭酸アンモニウム(和光純薬工業株式会社製)5重量部を加えた。反応溶液が白濁した後、反応温度を60℃に昇温し2時間攪拌した。更に、反応温度を90℃に昇温し2時間攪拌した。得られた反応溶液を減圧ろ過法で固液分離し、フェノール樹脂微小球の高次凝集体粒子(含水物)80重量部を得た。
[Example 1]
Resorcinol (manufactured by Kanto Chemical Co., Inc.) 55 parts by weight, 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) 81 parts by weight, and purified water (manufactured by Wako Pure Chemical Industries, Ltd.) 110 parts by weight are placed in a 1000 ml glass flask. The mixture was stirred at 30 ° C. with a stirrer at 150 rpm until the monomer was dissolved. Thereafter, 5 parts by weight of ammonium carbonate (Wako Pure Chemical Industries, Ltd.) was added. After the reaction solution became cloudy, the reaction temperature was raised to 60 ° C. and stirred for 2 hours. Further, the reaction temperature was raised to 90 ° C. and stirred for 2 hours. The obtained reaction solution was subjected to solid-liquid separation by a vacuum filtration method to obtain 80 parts by weight of high-order aggregate particles (hydrated material) of phenol resin microspheres.

フェノール樹脂微小球の高次凝集体粒子(含水物)80重量部を、50℃で真空乾燥を行い水分を除去し、フェノール樹脂微小球の高次凝集体粒子65重量部を得た。   80 parts by weight of phenol resin microsphere high-order aggregate particles (water-containing product) were vacuum-dried at 50 ° C. to remove moisture, and 65 parts by weight of phenol resin microsphere high-order aggregate particles were obtained.

[実施例2]
炭酸アンモニウム5重量部に代えて炭酸水素アンモニウム(和光純薬工業株式会社製)5重量部を用いたこと以外は実施例1と同様の方法で操作を行い、フェノール樹脂微小球の高次凝集体粒子60重量部を得た。
[Example 2]
A high-order aggregate of phenol resin microspheres was prepared in the same manner as in Example 1 except that 5 parts by weight of ammonium hydrogen carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 5 parts by weight of ammonium carbonate. 60 parts by weight of particles were obtained.

[実施例3]
レゾルシノール55重量部に代えてm−クレゾール(関東化学株式会社製)54重量部を用い、炭酸アンモニウムを42重量部用いたこと以外は実施例1と同様の方法で操作を行い、フェノール樹脂微小球の高次凝集体粒子60重量部を得た。
[Example 3]
The phenol resin microspheres were operated in the same manner as in Example 1 except that 54 parts by weight of m-cresol (manufactured by Kanto Chemical Co., Inc.) was used instead of 55 parts by weight of resorcinol and 42 parts by weight of ammonium carbonate was used. As a result, 60 parts by weight of the higher-order aggregate particles were obtained.

[実施例4]
乾燥方法として160℃で2時間熱風乾燥を行ったこと以外は、実施例1と同様の方法で操作を行い、フェノール樹脂微小球の高次凝集体粒子50重量部を得た。
[Example 4]
The operation was performed in the same manner as in Example 1 except that hot air drying was performed at 160 ° C. for 2 hours as a drying method to obtain 50 parts by weight of high-order aggregate particles of phenol resin microspheres.

[比較例1]
レゾルシノール(関東化学株式会社製)55重量部、37%ホルムアルデヒド水溶液(和光純薬工業株式会社製)81重量部、精製水(和光純薬工業株式会社製)110重量部を1000mlのガラスフラスコに入れ、30℃で攪拌機にて150rpmでモノマが溶解するまで攪拌した。その後、炭酸ナトリウム(和光純薬工業株式会社製)5重量部を加えた。反応溶液が白濁した後、反応温度を60℃に昇温し2時間攪拌した。更に、反応温度を90℃に昇温したところ攪拌中にゲル化し塊状物となった。
[Comparative Example 1]
Resorcinol (manufactured by Kanto Chemical Co., Inc.) 55 parts by weight, 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) 81 parts by weight, and purified water (manufactured by Wako Pure Chemical Industries, Ltd.) 110 parts by weight are placed in a 1000 ml glass flask. The mixture was stirred at 30 ° C. with a stirrer at 150 rpm until the monomer was dissolved. Thereafter, 5 parts by weight of sodium carbonate (Wako Pure Chemical Industries, Ltd.) was added. After the reaction solution became cloudy, the reaction temperature was raised to 60 ° C. and stirred for 2 hours. Furthermore, when the reaction temperature was raised to 90 ° C., it gelled during stirring and became a lump.

[比較例2]
レゾルシノール(関東化学株式会社製)55重量部、37%ホルムアルデヒド水溶液(和光純薬工業株式会社製)81重量部、精製水(和光純薬工業株式会社製)110重量部を1000mlのガラスフラスコに入れ、30℃で攪拌機にて150rpmでモノマが完全に溶解するまで攪拌した。その後、炭酸ナトリウム(和光純薬工業株式会社製)2重量部を加え攪拌を続けた。1時間後、攪拌を止め反応溶液を1000mlポリ瓶に移し変え、30℃の恒温槽へ入れた。24時間後に恒温槽の温度を50℃に昇温し再び24時間放置した。その後、恒温槽の温度を90℃に昇温し更に24時間放置し、黒色の塊状物を得た。この塊状物を真空乾燥し有機高分子ゲル58重量部を得た。
[Comparative Example 2]
Resorcinol (manufactured by Kanto Chemical Co., Inc.) 55 parts by weight, 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) 81 parts by weight, and purified water (manufactured by Wako Pure Chemical Industries, Ltd.) 110 parts by weight are placed in a 1000 ml glass flask. The mixture was stirred at 30 ° C. with a stirrer at 150 rpm until the monomer was completely dissolved. Thereafter, 2 parts by weight of sodium carbonate (Wako Pure Chemical Industries, Ltd.) was added and stirring was continued. After 1 hour, stirring was stopped and the reaction solution was transferred to a 1000 ml plastic bottle and placed in a thermostatic bath at 30 ° C. After 24 hours, the temperature of the thermostatic bath was raised to 50 ° C. and left again for 24 hours. Thereafter, the temperature of the thermostatic bath was raised to 90 ° C. and left for 24 hours to obtain a black lump. This lump was vacuum dried to obtain 58 parts by weight of an organic polymer gel.

[比較例3]
レゾルシノール(関東化学株式会社製)55重量部、37%ホルムアルデヒド水溶液(和光純薬工業株式会社製)81重量部、精製水(和光純薬工業株式会社製)110重量部を1000mlのガラスフラスコに入れ、30℃で攪拌機にて150rpmでモノマが溶解するまで攪拌した。その後、炭酸カリウム(和光純薬工業株式会社製)5重量部を加えた。反応溶液が白濁した後、反応温度を60℃に昇温し2時間攪拌した。更に、反応温度を90℃に昇温したところ攪拌中にゲル化し塊状物となった。
[Comparative Example 3]
Resorcinol (manufactured by Kanto Chemical Co., Inc.) 55 parts by weight, 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) 81 parts by weight, and purified water (manufactured by Wako Pure Chemical Industries, Ltd.) 110 parts by weight are placed in a 1000 ml glass flask. The mixture was stirred at 30 ° C. with a stirrer at 150 rpm until the monomer was dissolved. Thereafter, 5 parts by weight of potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After the reaction solution became cloudy, the reaction temperature was raised to 60 ° C. and stirred for 2 hours. Furthermore, when the reaction temperature was raised to 90 ° C., it gelled during stirring and became a lump.

[比較例4]
レゾルシノール(関東化学株式会社製)55重量部、37%ホルムアルデヒド水溶液(和光純薬工業株式会社製)81重量部、精製水(和光純薬工業株式会社製)110重量部を1000mlのガラスフラスコに入れ、30℃で攪拌機にて150rpmでモノマが溶解するまで攪拌した。その後炭酸ナトリウム(和光純薬工業株式会社製)2重量部を加え攪拌を続けた。1時間後、攪拌を止め、反応溶液を1000mlポリ瓶に移し変え30℃の恒温槽へ入れた。2000mlのガラスフラスコ中にシクロヘキサン(和光純薬工業株式会社製)300重量部とソルビタンモノオレエート(SPAN80、アルドリッチ社製)30重量部を溶解した溶液を別途用意し、これに12時間が経過した前記恒温槽中の反応溶液30重量部を滴下しながら加え、800rpmで攪拌しながら25℃で三日間重合反応を行った。反応終了後、反応溶液をろ過し、真空乾燥を行い有機高分子ゲルの球状粒子5重量部を得た。
[Comparative Example 4]
Resorcinol (manufactured by Kanto Chemical Co., Inc.) 55 parts by weight, 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) 81 parts by weight, and purified water (manufactured by Wako Pure Chemical Industries, Ltd.) 110 parts by weight are placed in a 1000 ml glass flask. The mixture was stirred at 30 ° C. with a stirrer at 150 rpm until the monomer was dissolved. Thereafter, 2 parts by weight of sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirring was continued. After 1 hour, stirring was stopped and the reaction solution was transferred to a 1000 ml plastic bottle and placed in a thermostatic bath at 30 ° C. A solution in which 300 parts by weight of cyclohexane (manufactured by Wako Pure Chemical Industries, Ltd.) and 30 parts by weight of sorbitan monooleate (SPAN80, manufactured by Aldrich) was separately prepared in a 2000 ml glass flask, and 12 hours passed. 30 parts by weight of the reaction solution in the thermostat was added dropwise, and the polymerization reaction was carried out at 25 ° C. for 3 days while stirring at 800 rpm. After completion of the reaction, the reaction solution was filtered and vacuum-dried to obtain 5 parts by weight of organic polymer gel spherical particles.

実施例1〜4で得られたフェノール樹脂微小球の高次凝集体粒子、比較例1〜4で得られたゲル塊状物または球粒子について、以下の項目について評価を行い結果を表1に示す。
(灰分含有量)
灰分含有量の測定は、サンプル30gを300ml/分酸素気流下、800℃で3時間焼成し、灰化した後の残渣重量を測り、焼成前のサンプルの重量に対する比(重量%)として算出した。
For the high-order aggregate particles of the phenol resin microspheres obtained in Examples 1 to 4 and the gel block or spherical particles obtained in Comparative Examples 1 to 4, the following items were evaluated and the results are shown in Table 1. .
(Ash content)
The ash content was measured by calcining 30 g of a sample in an air stream of 300 ml / min at 800 ° C. for 3 hours, measuring the weight of the residue after ashing, and calculating the ratio (% by weight) with respect to the weight of the sample before firing. .

(平均粒径)
レーザー光散乱粒度分布測定装置(株式会社島津製作所製、SALD-3000J)を用いて測定した粒度分布の50%Dとして算出した。
(Average particle size)
The particle size distribution was calculated as 50% D of the particle size distribution measured using a laser light scattering particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation).

(R(ave)値)
無作為に試料を抽出し、電子顕微鏡により一粒子全体の投影写真を撮り、投影写真の粒子の最長直径R1と、最長直径R1の中点を通る最短直径R2の長さをそれぞれ測定し、その比R2/R1を算出した。このR2/R1をR値と定義し、100個の試料について平均値を算出することでR(ave)値を求めた。
(R (ave) value)
Randomly extract a sample, take a projection photograph of the whole particle with an electron microscope, measure the length of the longest diameter R1 and the shortest diameter R2 passing through the midpoint of the longest diameter R1, respectively. The ratio R2 / R1 was calculated. This R2 / R1 was defined as an R value, and an R (ave) value was obtained by calculating an average value for 100 samples.

(平均微小球径)
無作為に試料を抽出し、電子顕微鏡により一粒子全体の投影写真を撮る。投影写真の粒子を構成する微小球の端部2箇所を結んだ直線のうち最長のものを直径とみなし、投影写真に写るすべての微小球の直径を測定し、その平均値を平均微小球径として算出した。
(Average microsphere diameter)
Samples are extracted at random, and a projection photograph of the whole particle is taken with an electron microscope. The longest straight line connecting the two ends of the microspheres constituting the particles of the projected photograph is regarded as the diameter, and the diameters of all the microspheres appearing in the projected photograph are measured, and the average value is the average microsphere diameter. Calculated as

[実施例5]
実施例1で得られたフェノール樹脂微小球の高次凝集体粒子50重量部を、真空焼却炉(島津メクテム製VHL−gr20/20/20)に設置した管内に入れて窒素ガスを流速300ml/分で流通させながら、700℃で2時間焼成し、炭素微小球の高次凝集体粒子29重量部を得た。
[Example 5]
50 parts by weight of the high-order aggregate particles of the phenol resin microspheres obtained in Example 1 were placed in a tube installed in a vacuum incinerator (VHL-gr 20/20/20 manufactured by Shimadzu Mectem), and nitrogen gas was supplied at a flow rate of 300 ml / The mixture was calcined at 700 ° C. for 2 hours while being circulated for minutes to obtain 29 parts by weight of high-order aggregate particles of carbon microspheres.

[実施例6]
焼成温度を2000℃としたこと以外は実施例5と同様の方法で操作を行い、炭素微小球の高次凝集体粒子20重量部を得た。
[Example 6]
The operation was performed in the same manner as in Example 5 except that the firing temperature was 2000 ° C., and 20 parts by weight of high-order aggregate particles of carbon microspheres were obtained.

[比較例5]
比較例1で得られた塊状物50重量部をカッターミルで粉砕し、真空焼却炉(島津メクテム製VHL−gr20/20/20)に設置した管内に入れて窒素ガスを流速300ml/分で流通させながら、700℃で2時間焼成し、カーボンゲル23重量部を得た。
[Comparative Example 5]
50 parts by weight of the lump obtained in Comparative Example 1 was pulverized with a cutter mill and placed in a tube installed in a vacuum incinerator (VHL-gr 20/20/20 manufactured by Shimadzu Mectem), and nitrogen gas was circulated at a flow rate of 300 ml / min. Then, the mixture was baked at 700 ° C. for 2 hours to obtain 23 parts by weight of a carbon gel.

実施例5〜6で得られた炭素微小球の高次凝集体粒子、比較例5で得られたカーボンゲルについて、上記と同様の項目について評価を行い、結果を表2に示す。
For the high-order aggregate particles of carbon microspheres obtained in Examples 5 to 6 and the carbon gel obtained in Comparative Example 5, the same items as above were evaluated, and the results are shown in Table 2.

実施例1〜4では、灰分含有量の少ないフェノール樹脂微小球の高次凝集体粒子が得られた。また、実施例5〜6では灰分含有量の少ない炭素微小球の高次凝集体粒子が得られた。   In Examples 1 to 4, high-order aggregate particles of phenol resin microspheres with low ash content were obtained. In Examples 5 to 6, high-order aggregate particles of carbon microspheres having a low ash content were obtained.

本発明の実施例1で得られたフェノール樹脂微小球の高次凝集体粒子の電子顕微鏡写真である。It is an electron micrograph of the higher order aggregate particle of the phenol resin microsphere obtained in Example 1 of this invention. 本発明の実施例1で得られたフェノール樹脂微小球の高次凝集体粒子の電子顕微鏡写真である。It is an electron micrograph of the higher order aggregate particle of the phenol resin microsphere obtained in Example 1 of this invention. 本発明の実施例3で得られたフェノール樹脂微小球の高次凝集体粒子の電子顕微鏡写真である。It is an electron micrograph of the higher order aggregate particle | grains of the phenol resin microsphere obtained in Example 3 of this invention. 本発明の実施例3で得られたフェノール樹脂微小球の高次凝集体粒子の電子顕微鏡写真である。It is an electron micrograph of the higher order aggregate particle | grains of the phenol resin microsphere obtained in Example 3 of this invention.

Claims (10)

フェノール樹脂微小球が三次元構造を形成してなることを特徴とするフェノール樹脂微小球の高次凝集体粒子。   High-order aggregate particles of phenol resin microspheres, wherein the phenol resin microspheres form a three-dimensional structure. 前記高次凝集体粒子の最長直径R1と、前記最長直径R1の中点を通る最短直径R2との比をR2/R1とした場合、R2/R1の平均値R(ave)が0.95以下であることを特徴とする請求項1記載のフェノール樹脂微小球の高次凝集体粒子。   When the ratio of the longest diameter R1 of the higher-order aggregate particles to the shortest diameter R2 passing through the midpoint of the longest diameter R1 is R2 / R1, the average value R (ave) of R2 / R1 is 0.95 or less. The higher-order aggregate particles of phenol resin microspheres according to claim 1, wherein: 前記フェノール樹脂微小球の平均微小球径が0.1〜10μmの範囲であることを特徴とする請求項1又は2記載のフェノール樹脂微小球の高次凝集体粒子。   3. The high-order aggregate particles of phenol resin microspheres according to claim 1, wherein an average microsphere diameter of the phenol resin microspheres is in a range of 0.1 to 10 μm. 前記高次凝集体粒子の平均粒径が0.1〜1000μmであることを特徴とする請求項1〜3のいずれか1項に記載のフェノール樹脂微小球の高次凝集体粒子。   The high-order aggregate particle of the phenol resin microsphere according to any one of claims 1 to 3, wherein an average particle size of the high-order aggregate particle is 0.1 to 1000 µm. 灰分含有量が1重量%以下であることを特徴とする請求項1〜4のいずれか1項に記載のフェノール樹脂微小球の高次凝集体粒子。   The high-order aggregate particle of the phenol resin microsphere according to any one of claims 1 to 4, wherein the ash content is 1% by weight or less. 水性媒体中、フェノール類とアルデヒド類をアンモニウム塩の存在下に重合反応させることを特徴とするフェノール樹脂微小球の高次凝集体粒子の製造方法。   A method for producing high-order aggregate particles of phenol resin microspheres, wherein a phenol and an aldehyde are polymerized in an aqueous medium in the presence of an ammonium salt. 前記1〜5記載のフェノール樹脂微小球の高次凝集体粒子または前記6記載の製造方法によって得られるフェノール樹脂微小球の高次凝集体粒子を500〜3000℃で焼成することにより得られる炭素微小球の高次凝集体粒子。   The fine carbon particles obtained by firing the high-order aggregate particles of the phenol resin microspheres according to 1 to 5 above or the high-order aggregate particles of the phenol resin microspheres obtained by the production method according to 6 above at 500 to 3000 ° C. High-order aggregate particles of spheres. 前記高次凝集体粒子の平均粒径が0.1〜1000μmであることを特徴とする請求項7記載の炭素微小球の高次凝集体粒子。   The high-order aggregate particles of carbon microspheres according to claim 7, wherein an average particle diameter of the high-order aggregate particles is 0.1 to 1000 μm. 前記炭素微小球の平均微小球径が0.1〜10μmの範囲であることを特徴とする請求項7又は8記載の炭素微小球の高次凝集体粒子。   9. The high-order aggregate particles of carbon microspheres according to claim 7 or 8, wherein an average microsphere diameter of the carbon microspheres is in a range of 0.1 to 10 [mu] m. 灰分含有量が2重量%以下であることを特徴とする請求項7〜9のいずれか1項に記載の炭素微小球の高次凝集体粒子。   The high-order aggregate particles of carbon microspheres according to any one of claims 7 to 9, wherein the ash content is 2% by weight or less.
JP2007002204A 2007-01-10 2007-01-10 Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres Pending JP2008169269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002204A JP2008169269A (en) 2007-01-10 2007-01-10 Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002204A JP2008169269A (en) 2007-01-10 2007-01-10 Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres

Publications (1)

Publication Number Publication Date
JP2008169269A true JP2008169269A (en) 2008-07-24

Family

ID=39697674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002204A Pending JP2008169269A (en) 2007-01-10 2007-01-10 Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres

Country Status (1)

Country Link
JP (1) JP2008169269A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180088A (en) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp Molding material, molded product and method of producing molded product
KR20150012236A (en) * 2012-02-09 2015-02-03 조지아-퍼시픽 케미칼즈 엘엘씨 Preparation of polymeric resins and carbon materials
JP2015507064A (en) * 2012-02-09 2015-03-05 ジョージア − パシフィック ケミカルズ エルエルシー Method for producing polymer particles in gel form
JP7415421B2 (en) 2019-10-11 2024-01-17 株式会社アイシン Parking assistance device, parking assistance method and program
CN115820064B (en) * 2022-01-27 2024-03-22 宁德时代新能源科技股份有限公司 Coating composition, separator, secondary battery, battery module, battery pack, and electric device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180088A (en) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp Molding material, molded product and method of producing molded product
KR20150012236A (en) * 2012-02-09 2015-02-03 조지아-퍼시픽 케미칼즈 엘엘씨 Preparation of polymeric resins and carbon materials
JP2015507064A (en) * 2012-02-09 2015-03-05 ジョージア − パシフィック ケミカルズ エルエルシー Method for producing polymer particles in gel form
JP2015513570A (en) * 2012-02-09 2015-05-14 ジョージア − パシフィック ケミカルズ エルエルシー Preparation of polymer resins and carbon materials
JP2018059127A (en) * 2012-02-09 2018-04-12 ジョージア − パシフィック ケミカルズ エルエルシー Methods for making polymer particulates in gel form
US10173900B2 (en) 2012-02-09 2019-01-08 Georgia-Pacific Chemicals Llc Preparation of polymeric resins and carbon materials
KR101998848B1 (en) * 2012-02-09 2019-07-10 조지아-퍼시픽 케미칼즈 엘엘씨 Preparation of polymeric resins and carbon materials
JP7415421B2 (en) 2019-10-11 2024-01-17 株式会社アイシン Parking assistance device, parking assistance method and program
CN115820064B (en) * 2022-01-27 2024-03-22 宁德时代新能源科技股份有限公司 Coating composition, separator, secondary battery, battery module, battery pack, and electric device

Similar Documents

Publication Publication Date Title
KR101342773B1 (en) Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
JP5622745B2 (en) Porous molded body and method for producing the same
KR101426965B1 (en) Resol beads, methods of making them, and methods of using them
JP5947585B2 (en) Method for producing spherical phenol resin granulated product, method for producing carbon material, and method for producing activated carbon material
JP2008169269A (en) Higher order aggregate particles of phenolic resin fine spheres, method for producing the same, higher order aggregate particles of carbon fine spheres
JP2017193474A (en) Manufacturing method of porous carbon
WO2007116815A1 (en) Dialkoxymagnesium granular material and method for synthesis of the same
WO2013169705A1 (en) Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom
KR20200135772A (en) Silica particle dispersion, polishing composition, and method for preparing silica particle dispersion
JP2007297371A (en) Dialkoxymagnesium granular material and synthesis and use thereof
JP5988075B2 (en) Carbon material manufacturing method
JP2024037965A (en) Tailored porosity material and methods of making and using same
JP6731934B2 (en) Adsorbent dispersion and adsorption method
JP6835319B2 (en) Adsorbent carrier
JP2015182902A (en) Method for producing porous carbon material, porous carbon material obtained thereby, and porous active carbon material
EP3872100A1 (en) Polyolefin catalyst component containing mesoporous material, preparation method therefor and use thereof
JP2011084703A (en) Cured globular particle of phenol resin containing bubble, and manufacturing method thereof
JPH111314A (en) Spherical active carbonaceous material and its production
JP2007091567A (en) Porous carbon material and its production method
JP4173061B2 (en) Method for producing organic polymer gel
Huang et al. Porous BMTTPA–CS–GO nanocomposite for the efficient removal of heavy metal ions from aqueous solutions
JP5496448B2 (en) Molecular sieve carbon, method for producing the same, and nitrogen generator
JP5062591B2 (en) Honeycomb structure
JP2015196130A (en) Carbon material, production method thereof and adsorbent and adsorption heat pump using such carbon material
García‐Martínez et al. Synthesis and Catalytic Applications of Self‐Assembled Carbon Nanofoams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A072 Dismissal of procedure

Effective date: 20110512

Free format text: JAPANESE INTERMEDIATE CODE: A073