JP3628399B2 - Activated carbon for adsorption of organic chlorine compounds - Google Patents

Activated carbon for adsorption of organic chlorine compounds Download PDF

Info

Publication number
JP3628399B2
JP3628399B2 JP29625195A JP29625195A JP3628399B2 JP 3628399 B2 JP3628399 B2 JP 3628399B2 JP 29625195 A JP29625195 A JP 29625195A JP 29625195 A JP29625195 A JP 29625195A JP 3628399 B2 JP3628399 B2 JP 3628399B2
Authority
JP
Japan
Prior art keywords
activated carbon
adsorption
pore volume
present
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29625195A
Other languages
Japanese (ja)
Other versions
JPH09110409A (en
Inventor
敏 茨木
睦美 高内
千郷 丸茂
Original Assignee
カネボウ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネボウ株式会社 filed Critical カネボウ株式会社
Priority to JP29625195A priority Critical patent/JP3628399B2/en
Publication of JPH09110409A publication Critical patent/JPH09110409A/en
Application granted granted Critical
Publication of JP3628399B2 publication Critical patent/JP3628399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
水中に存在する低沸点有機塩素化合物を除去するのに優れた、浄水器等の水処理分野に於いて使用される活性炭に関する。
【0002】
【従来の技術】
従来から水道水中に存在する種々の有害物質、特に有機塩素化合物を除去する方法として活性炭が注目されていた。しかし水道中の有機塩素化合物は分子量が小さく、濃度が希薄である為に、充分にこれらを除去できる優れた吸着性を有する活性炭を得ることができなかった。
【0003】
しかし最近、低賦活度で比較的比表面積の小さい活性炭がこれら化合物に対し相対的に高い吸着性を示すことが知られ、例えば特開平6−106161号公報に開示される、ヤシ殻または木材の炭化物、及び石炭等を原料とした低賦活度活性炭を有機塩素化合物除去に利用できる旨が開示されている。しかしこれらの活性炭に於いても細孔径分布の厳密な制御は不十分であり、低沸点有機塩素化合物の効率的除去が困難なのが現状である。
【0004】
【発明が解決しようとする課題】
本発明者らは上記の課題を解決すべく鋭意研究した結果、本発明を完成したものであって、本発明の目的は様々な成分が共存する水溶液中で効率よく低沸点有機塩素化合物を吸着する活性炭を提供すること並びに、浄水器等に活性炭を充填した際の充填密度が高く、機械的強度も高い活性炭を提供することにある。
【0005】
【課題を解決するための手段】
上述の目的は、フェノール樹脂粉末の炭化、賦活粒子が結合してなる粒状炭素成形物で、その比表面積が856〜1248m2/g、細孔直径0.01〜10μmの細孔容積が0.273〜0.350cc/g、細孔直径100以下の細孔容積が0.322〜0.586cc/gであり、かつ細孔直径100以下の細孔容積に占める細孔直径6〜8の細孔容積の割合が70vol%以上、粒子嵩密度が0.62〜0.93g/cc、充填密度が0.45〜0.54g/ccであることを特徴とする低沸点有機塩素化合物吸着用活性炭によって達成される。
【0006】
以下、本発明の具体的な実施形態について説明する。
上述した本発明の炭素系吸着剤は、比表面積が856〜1248m2/g、細孔直径0.01〜10μmの細孔容積が0.273〜0.350cc/g、細孔直径100以下の細孔容積が0.322〜0.586cc/gであり、かつ細孔直径100以下の細孔容積に占める細孔直径6〜8の細孔容積の割合が70vol%以上、粒子嵩密度が0.62〜0.93g/cc、充填密度が0.45〜0.54g/ccであることを特徴とする。
【0007】
該吸着剤の比表面積は600〜1250m/g、好ましくは700〜1100m/g、最も好ましくは800〜1000m/gである。比表面積が600m/gより小さい場合では、低沸点有機塩素化合物の吸着サイトの量が少なすぎて吸着容量が低く好ましくない。また、比表面積が1250m/g以上では低沸点有機塩素化合物の吸着に有効に働くと考えられる6〜8Åの細孔の割合が小さくなり好ましくない。
【0008】
該吸着剤の細孔直径0.01〜10μmの細孔容積は0.1〜1.0cc/g、好ましくは0.2〜0.8cc/g、最も好ましくは0.3〜0.7cc/gである。この範囲の細孔容積が0.1cc/gより小さいと低沸点有機塩素化合物の細孔内の拡散速度が遅くなり、吸着能力が低下し好ましくない。また、この細孔直径0.01〜10μmの細孔容積が1.0cc/gより大きいと粒子嵩密度及び粒子の機械的強度が小さくなり好ましくない。
【0009】
また、該吸着剤は、細孔直径100Å以下の全細孔容積が0.20〜0.80cc/g、細孔直径6〜8Åの細孔容積はその全細孔容積の65vol%以上である。細孔直径100Å以下の全細孔容積は、好ましくは0.30〜0.70cc/g、最も好ましくは0.30〜0.60cc/gである。この細孔直径100Å以下の全細孔容積が小さすぎると細孔直径6〜8Åの細孔容積も低下するので低沸点有機塩素化合物の吸着容量が低下し、また全細孔容積が大きすぎると細孔直径6〜8Åの範囲の細孔の割合が減少して好ましくない。
【0010】
また、細孔直径6〜8Å以下の細孔容積は細孔直径100Å以下の全細孔容積の65vol%以上、好ましくは70vol%以上、最も好ましくは75vol%以上である。低沸点有機塩素化合物吸着で、実際に有効に作用するのは細孔直径6〜8Åの細孔と考えられるのでこの細孔容積が細孔直径100Å以下の全細孔容積の65vol%より小さくなると低沸点有機塩素化合物の吸着容量が低下し、活性炭の破過、分解が進行しやすくなり好ましくない。
【0011】
また、該吸着剤の粒子嵩密度は0.4〜1.2g/cc、好ましくは0.5〜1.0g/cc、最も好ましくは0.6〜0.8g/ccである。粒子嵩密度が小さすぎると充填した際の吸着塔体積当たりの吸着能力が低下し好ましくない。また、大きすぎると吸着剤の細孔の連通性が低下し吸着能力の低下を来すので好ましくない。
【0012】
また、該吸着剤を吸着塔等に充填した際の充填密度は0.3〜0.7g/cc、好ましくは0.4〜0.6g/ccである。充填密度が小さすぎると充填した際の吸着塔体積当たりの吸着能力が低下し好ましくない。また、大きすぎると通液時の圧力損失の上昇等を引き起こすので好ましくない。
本発明の吸着剤のペレット形状は円柱状、球状等の他、円筒状やその他の異形断面のものを用いることができる。
【0013】
以下に本発明の吸着剤の製造方法を詳述する。
一般に、フェノール樹脂は大別するとレゾール樹脂とノボラック樹脂およびその他の特殊フェノール樹脂や変性品等に分けられるが、本発明に用いられるフェノール樹脂粉末は特に限定するものではないが、例えば、特公昭62−30210号公報、特公昭62ー30212号公報等に開示された粒状ないし粉末状の特殊フェノール樹脂を用いることができる。その製造法の概要は以下の如くである。
【0014】
室温下、15〜22重量%の塩酸と7〜15重量%のホルムアルデヒドとからなる混合水溶液を攪拌しながら、フェノールまたはフェノールと尿素、メラミン、アニリン等の含窒素化合物とからなる混合物を該混合水溶液に対して15分の1以下の割合で加え、反応系内に白濁が生成する前に攪拌を停止し静置する。静置している間に反応系内にはピンク色の粒状フェノール樹脂が生成・沈降する。次に反応系全体を再度攪拌しながら40〜90℃の温度にまで加熱・昇温して反応を完了せしめた後水洗し、引き続きアンモニア水溶液で中和処理後、水洗、脱水、乾燥する。こうして得られた粒状フェノール樹脂は、その殆どが粒径0.1〜150μmの一次粒子、またはその二次凝集物からなる。
【0015】
このフェノール樹脂はレゾール樹脂、ノボラック樹脂と性状を異にする特殊フェノール樹脂粉末であり、本発明の活性炭を製造するのに用いられるフェノール樹脂粉末として好適に用いることができる。また、このフェノール樹脂は、実質的に無水のメタノール500ml中で加熱還流した場合に、下記式
S={(W−W)/W}×100
ここで、W:使用した該樹脂の重量(g)
:加熱還流後に残存した該樹脂の重量(g)
S :該樹脂のメタノール溶解度(重量%)
で表されるメタノール溶解度を反応性を表す指標として用いることができる。即ち、メタノール溶解度の大きいものは反応性も高くなる。本発明では、通常メタノール溶解度が70重量%以下、好ましくは30重量以下%、最も好ましくは10重量%以下のフェノール樹脂粉末を用いる。
【0016】
その理由は、該メタノール溶解度が70重量%以上では、熱融着性が高く、炭化途中の加熱過程において、熱融解のために、フェノール樹脂粒子間の連通空隙が埋められてしまい、炭化物の気孔の連通性が低下し吸着能力の低下を来すことになるからである。充分な吸着能力を有する炭素系吸着剤を得るには、上述の範囲のメタノール溶解度を有するフェノール樹脂粉末を用いるとよい。
【0017】
また、本発明の活性炭を製造するのに用いる他のフェノール樹脂粉末を製造する方法としては、フェノール類とアルデヒドを少なくとも含窒素化合物の存在下で反応させて得られる縮合物に親水性高分子化合物を添加し反応させる方法(特公昭53−12958号公報)、フェノールとホルムアルデヒドを塩基性水溶液中で反応させて得られるプレポリマーを保護コロイドと混合し、酸性下で不活性固形ビーズ状に凝固させる方法(特公昭51−13491号公報)等がある。その他にも例えば、特開昭61−51019号公報、特開昭61−127719号公報、特開昭61−258819号公報、特開昭62−272260号公報、特開昭62−1748号公報等に記載の方法により製造したフェノール樹脂粉末を用いることもできる。
【0018】
レゾール樹脂は、通常、例えば水酸化ナトリウム、アンモニア又は有機アミンの如き塩基性触媒の存在下でフェノール対ホルムアルデヒドのモル比が1:1〜2の如きホルムアルデヒド過剰の条件下で反応することによって製造される。かくして得られるレゾール樹脂は、比較的多量の遊離メチロール基を有するフェノールの1〜3量体が主成分をなし、反応性が大きい。
【0019】
また、ノボラック樹脂は、通常、例えばシュウ酸の如き酸触媒の存在下でフェノール対ホルムアルデヒドのモル比が1:0.7〜0.9となるようなフェノール過剰の条件下で反応させることによって製造される。かかる方法で得られるノボラック樹脂は、フェノールが主としてメチレン基によって結合された3〜5量体が主成分をなし、遊離メチロール基を殆ど含有せず、従ってそれ自体では自己架橋性を有せず、熱可塑性を有する。そこでノボラック樹脂は、例えばヘキサメチレンテトラミンの如き、それ自体ホルムアルデヒド発生剤であると共に有機塩基触媒発生剤でもある架橋剤を加えるか、あるいは、例えば固体酸触媒とパラホルムアルデヒド等を混合し、加熱下で反応させることによって硬化物を得ることができる。
【0020】
これらのレゾール樹脂、ノボラック樹脂等は一度硬化された後、粉砕することにより本発明の原料樹脂粉末として用いることができる。
本発明の活性炭を製造するのに用いるフェノール樹脂粉末の粒径は通常0.1〜150μm、好ましくは0.5〜50μm、最も好ましくは1〜20μmである。フェノール樹脂粉末の粒径が0.1μmより小さいと、他成分との混合時において、飛散が生じるなどにより作業性が低下して好ましくない。また150μmより大きくなると、他成分との混合時における均一性確保が困難になること、及び賦活後に十分な比表面積が得にくくなること等により好ましくない。
本発明の活性炭を製造するのに用いられるところのバインダーとしては、特にその種類を限定するものではないが、液状熱硬化性樹脂やポリビニルアルコール(PVA)、コールタール、ピッチ、クレオソート油などが好ましく用いられる。
【0021】
液状熱硬化性樹脂としては、液状レゾール樹脂、液状メラミン樹脂、またはこれらの変性樹脂などが挙げられる。
液状レゾール樹脂は、先述したように塩基性触媒の存在下でフェノールを過剰のアルデヒドと反応させることによって製造され、比較的多量の遊離メチロール基を有するフェノールの1〜3量体が主成分を成す。
【0022】
液状メラミン樹脂はいわゆる熱硬化性樹脂であり、加熱により化学反応が促進され親水性の初期重合物の形態、ないしは、やや縮合の進んだ疎水性縮合物の状態を経て最終的には不溶不融の硬化物になる。
【0023】
液状メラミン樹脂は、メラミンにアルデヒド、通常はホルムアルデヒドを付加させて製造される。また、種々のアルコールが同時に使用されることもある。メラミン樹脂の生成は、先ずメラミンにホルムアルデヒドがメチロール基として付加し、ついでメチロール基が他の分子のアミノ基やイミノ基との間で脱水縮合してメチレン基となる反応や、メチロール基同士で脱水縮合してジメチレンエーテル結合となる反応、あるいはメチロール基とアルコールとの間で脱水してエーテル化する反応により進行する。
【0024】
液状メラミン樹脂は、水溶性樹脂と油溶性樹脂とに分けることができ、一般に水溶性樹脂はアルコールとしてメタノールを使用して製造される。一方油溶性樹脂は、ブチル化メラミン樹脂ともいわれ、通常アルコールとしてブタノールを使用する。
本発明の活性炭を製造するのに用いられるバインダーとして使用される液状メラミン樹脂は、水溶性、油溶性いずれでもよく、既知の方法にて製造されたものでよい。
【0025】
本発明の活性炭を製造するのに用いられるポリビニルアルコールは、好ましくは重合度100〜5000、けん化度70%以上のものであり、カルボキシル基等で一部変性されたものも好適に用いられる。
【0026】
コールタールは石炭の乾留によって得られる炭化水素を主とした化合物の混合体であり、少量の水分と微量の灰分を含んでいる。これら組成の割合や物理化学的な性質は原料石炭の種類、乾留炉の型式、乾留条件等により差があるが、現在既知の成分としては、400種以上の成分があり、このうち最も多いのが、ベンゼン、トルエン、アントラセン等の中性成分であり、次いで、ピリジン、アニリン、キノリン等の塩基性成分、更にフェノール、クレゾール、ナフトール、アントラノール等の酸性成分、ベンゾフラン、ジフェニレンオキシド、p−メトキシベンジフェノン等の含酸素成分、ベンゾチオフェン、ジフェニレンスルフィド、ナフトチオフェン等の含硫黄成分である。本発明で用いるコールタールは、上記成分等に於いて特に制限されるものではないが、縮合環芳香族化合物が多いものの方がより適している。
【0027】
ピッチは、化学的には主に縮合環芳香族化合物の混合物であり、粘性があり、通常、室温では固体に近い形、あるいは固形物の形をとっている。原料によって分類すれば、石炭系ピッチ、石油系ピッチ、また木材乾留時に得られるピッチやオイルサンド、オイルシュール等から得られるピッチ等多種多様のものがある。石炭系ピッチは、石炭の乾留によって生じたコールタールの蒸留によって油分を留出させて、残留物として得られるもので、沸点約350℃以上の多くの高沸点物質や遊離炭素の混合物である。石油系ピッチは、原油の減圧蒸留残渣油、原油の熱分解残渣、ガソリン製造を目的とした流動接触分解装置からの分解残渣油等の石油重質油を熱処理することによって、熱分解ガス及び留出油等の分解生成物と共に熱重縮合した成分として得られる。
【0028】
また、ピッチは軟らかさまたは硬さの程度によって、軟ピッチ、中ピッチ、硬ピッチの3種類に区分される。通常、軟化点(環球法)により、約70℃以下が軟ピッチ、約75℃〜85℃が中ピッチ、約85℃以上が硬ピッチと区分されている。
本発明の活性炭を製造するのに用いられるピッチは、石炭系ピッチ、石油系ピッチ等いずれのピッチでもよく、軟化点等の諸特性も特に制限するものではない。
【0029】
クレオソート油は、コールタールの各分留油から成分を分離回収した残油を規格に応じて調合して製造される。JIS規格によれば、比重、水分含有率、蒸留試験結果等により1号〜3号に区分されている。クレオソート油は、通常化学的には、主に縮合環芳香族化合物の数十種類以上の混合物であり、主な成分は、ナフタリン、アントラセン、フェナントレン、ピレン、ビフェニル、フルオレン、クレゾール、1メチルナフタリン、2メチルナフタリン、ジメチルフルオレンや、これらの化合物の各種誘導体等であり、沸点が200℃以上の化合物が大部分を占める。
【0030】
本発明の活性炭を製造するのに用いられるクレオソート油は、JIS規格による1,2,3号いずれでもよく、特に制限するものではない。
【0031】
本発明の活性炭を製造するに於いては、上記フェノール樹脂粉末とバインダー成分を混合した後造粒することによって粒状成形物を得るが、本発明に規定するバインダーの含有量は、フェノール樹脂粉末100重量部に対し5〜90重量部である。
【0032】
バインダーの含有量は、好ましくは10〜60重量部、最も好ましくは20〜40重量部である。
バインダーの含有量が5重量部より少ないと造粒時の作業性が低下してダイスよりの押出しが困難になり、造粒物の形状が不揃いで強度が低く、粉が発生しやすくなる等の問題が生じる。また、90重量部より多くなると、やはり造粒時の作業性が低下するとともに炭化賦活後のペレット内の細孔の連通性が低下し、吸着剤としての性能が悪くなり好ましくない。
【0033】
このフェノール樹脂粉末とバインダー成分の混合は、室温あるいは加熱下で、リボンミキサー、V型ミキサー、コーンミキサー、ニーダー等の市販の混合攪拌機で行えばよい。バインダー成分として、コールタールまたはピッチを用いる場合にはその作業性を考慮し、十分に流動性が生じる温度まで加熱しながら混合する。また、作業性改善のため、適量の水あるいはメタノール、アセトン等の有機溶媒を加えてもよい。クレオソート油の場合には、通常室温において液状であり、室温下でも、混合の作業性は良好である。
【0034】
本発明の活性炭を製造するに於いては、上記フェノール樹脂とバインダー成分の他に、他の添加成分を加えることを何ら制限するものでなく、例えば、澱粉、結晶性セルロース粉末、メチルセルロース、水、溶媒等を適量加えることができる。また、少量のコークス、ヤシ殻炭等を添加することも何ら制限されるものではない。
【0035】
更に本発明の活性炭を製造するに於いては、その特性を損なわない範囲で混合および造粒時の作業性の向上のため、例えばエチレングリコール、ポリオキシエチレン、アルキルエーテル、ポリオキシエチレン脂肪酸エステル、ポリカルボン酸アンモニウム塩等の界面活性剤、ポリビニルアルコールの架橋剤、押出造粒用の可塑剤等を少量加えることができる。
【0036】
本発明の活性炭を製造するに於いては、上記の如く混合装置により均一に混合された後、次いで粒状物に成形される。粒状物への成形は、例えば単軸あるいは二軸の湿式押出造粒機、バスケットリューザーの如き竪型造粒機、半乾式ディスクペレッター等により行うことができる。この成形は通常室温で行われるが、場合によっては加熱下で実施してもよい。こうして得られた造粒物を通常50〜400℃程度の温度範囲で乾燥処理を行って、本発明の粒状成形物を得る。
【0037】
粒状成形物の形状は、通常、円柱状あるいは球状ペレットであり、炭化賦活後のペレット形状が所定の形状となるよう造粒時に調整する。
【0038】
本発明の活性炭を製造するには、上述の如くして得られた粒状成型物、またはそれを非酸化性雰囲気下500〜900℃で熱処理した炭化物を、700〜950℃の温度範囲で炭化物を基準とした重量減少率が5〜40%となる範囲で賦活処理を行うことにより目的の吸着剤を得る。
【0039】
本発明の活性炭を製造するにおいて、賦活処理を行う前の粒状成形物の炭化は、電気炉、外熱式ガス炉などの熱処理装置を用いて非酸化性雰囲気下500〜900℃で行われる。この場合の非酸化性雰囲気とは、例えば、窒素、アルゴン、ヘリウム等の雰囲気である。
また、この炭化温度は通常500〜900℃であるが、好ましくは550〜850℃、最も好ましくは600〜800℃である。炭化温度が900℃より高いと次の賦活処理工程での賦活速度が遅くなり、賦活を効率的に進めることができなくなるので好ましくない。また炭化温度が500℃以下の場合には温度が低過ぎて炭化があまり進まず好ましくない。
【0040】
本発明の活性炭を製造するには、上記粒状成形物、またはそれを非酸化性雰囲気下500〜900℃で熱処理した炭化物の賦活処理の温度領域は700〜950℃、好ましくは800〜950℃、最も好ましくは850〜950℃である。
賦活処理の温度が1100℃より高い場合には、細孔容積が熱収縮により減少してしまったり、活性炭表面が酸化し低沸点有機塩素化合物に対する吸着力が低下してしまうため好ましくない。また600℃より低い場合には賦活が十分に行われず、吸着能力が低く好ましくない。
【0041】
また、本発明の活性炭を製造するにおいては、賦活処理には、酸素、二酸化炭素、水蒸気もしくはこれらの二種類以上の混合ガス、あるいはこれらのガスを含んだ窒素、アルゴン、ヘリウム等の雰囲気ガス、メタン、プロパン、ブタン等の燃焼排ガスなどを用いることができ、炭化物を基準とした重量減少率が5〜40%となる範囲で賦活を行う。
重量減少率が5%より小さい場合には細孔の発達が不十分であり、細孔容積が小さすぎて十分な性能を確保できず好ましくない。また、重量減少率が40%より大きい場合には低沸点有機塩素化合物の吸着に有効に働く6〜8Åの細孔の割合が小さくなり、また粒子嵩密度が小さくなり、吸着剤を充填した際、有効に作用する吸着サイトの単位体積当たりの量が減少して好ましくない。
【0042】
本発明の吸着剤はこれを低沸点有機塩素化合物、及びその他の成分を含有する水溶液に接触させることにより低沸点有機塩素化合物を効率的に除去することができる。その接触の方法は回分式、または該活性炭をカラム等に充填した連続流通方式等一般の活性炭による水処理分野で行われる方法により行うことができる。
本発明の活性炭による吸着の対象となる低沸点有機塩素化合物とはトリハロメタン類(トリクロロメタン、ブロモジクロロメタン、ジブロモクロロメタン、トリブロモメタン)、トリクロロエタン、トリクロロエチレン等水道水中、工場排水中等において極微量に検出される物質である。
【0043】
本発明の活性炭の特性を評価する方法は、低沸点有機塩素化合物としてはトリハロメタンに対する吸着性能を測定し、それ以外の物質としては、遊離塩素、メチレンブルー等、ごく一般的に活性炭の吸着性能を評価する方法により行うことができる。
【0044】
【実施例】
次に本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例により限定されるものではない。
(実施例1)
フェノール樹脂粉末(鐘紡株式会社製、ベルパール(「ベルパール」は鐘紡株式会社所有の登録商標である。)R800:平均粒子径20μm)100重量部に対し、バインダーとしてメラミン樹脂水溶液(住友化学工業株式会社製、スミテックスレジンM−3、固形分濃度80重量%)、重合度1700、けん化度99%のポリビニルアルコール( 以下PVAと略す。)およびコールタール(JIS規格、K2439−1979、精製2号)を、そして添加物として馬鈴薯澱粉、界面活性剤(花王株式会社製、レオドールSP−L10)および水を所定量計量した。
【0045】
上記原料のうちまず、フェノール樹脂粉末と馬鈴薯澱粉をニーダーで15分間乾式混合した。一方、上記ポリビニルアルコールを温水で15重量%の水溶液となるように溶解し、このポリビニルアルコール水溶液とメラミン樹脂水溶液、コールタール、界面活性剤および水をニーダーに加えて更に15分間混合した。
この混合組成物を2軸押出造粒機(不二パウダル株式会社製、ペレッタダブルEXDF−100型)で押出し、外径が約1.0mmのバインダー含有量の異なるペレット状成形体の造粒を行った。各原料成分の組成比を表1に示す。
【0046】
【表1】

Figure 0003628399
【0047】
こうして得た試料について、内径70mmφの円筒型電気炉を用いて窒素雰囲気下、昇温速度50℃/Hで650℃まで昇温し1時間保持して炭化させた。次いでこの炭化物20gを異なる条件で水蒸気賦活して、5つの試料を得た。すなわち、試料1は750℃、1.5時間、試料2は900℃、1.5時間、試料3は950℃、1.5時間、試料4は1000℃,1.5時間、試料5は1000℃,2.0時間、水蒸気を含んだ窒素ガス(賦活ガス組成モル比:N/HO=1/1流量1.5Nl/min)を用いて賦活処理を行った。得られた炭化賦活品の賦活条件および特性値を表2に示す。またこれら活性炭の吸着特性を表3に示す。
【0048】
【表2】
Figure 0003628399
【0049】
【表3】
Figure 0003628399
【0050】
尚、各評価における測定方法は以下の通りである。
(低沸点有機塩素化合物吸着性能測定法)
トリハロメタン(tTHM) 類であるCHCl、CHBrCl、CHBrCl、CHBrのそれぞれが400、200、800、4000(ppb) の水溶液40(ml) に活性炭添加量を変化して加え25(℃) 、1時間振とうした後、ECDガスクロを用いたヘッドスペース法で溶液中の残留濃度、吸着量を求め吸着等温線を作成し、残留総トリハロメタン濃度1000(ppb)に於ける吸着量を求め吸着性能とした。
【0051】
(メチレンブルー吸着性能測定方法)
活性炭試験方法(JISK1474)に従って測定を行う。すなわち試料にメチレンブルー溶液を加え、吸着させた後ろ過し、ろ液の吸光度を測定し残留濃度からメチレンブルー吸着量を求め、吸着等温線を作成し、その吸着等温線からメチレンブルーの残留濃度0.24(mg/l) の時の吸着量を求めてメチレンブルー吸着性能とする。
【0052】
(ペレット強度測定法)
炭化賦活品ペレットの強度は木屋式硬度計にて測定した。強度測定で評価する引張強度は、ペレットが破砕時の荷重値とペレット直径、ペレット長より、次式で計算した。
引張強度:σ[:g/cm]=2P/πdl
P:荷重[kg]、d:ペレット直径[cm]、l:ペレット長[cm]
【0053】
(活性炭の比表面積の測定法)
被測定活性炭0.1g程度を正確に秤量した後、高精度全自動ガス吸着装置BELS0RP28(日本ベル株式会社製)の専用セルに入れ、該装置を用いて窒素を吸着させB.E.T法により求めた。
【0054】
(細孔容積の測定法)
本発明の吸着剤の細孔容積の測定は、細孔直径0.01〜10μmの範囲についてはポロシメーターによる水銀圧入法(島津製作所製、ポアサイザー9310)により測定し、細孔直径100Å以下の細孔容積は全自動ガス吸着測定装置(日本ベル株式会社製、ベルソープ28)で窒素吸着測定を行った。具体的には、細孔直径20〜100Åの範囲の細孔容積は77Kに於ける窒素ガスの吸着等温線をD−H解析することにより求め、細孔直径20Å以下の細孔容積は77Kに於ける窒素ガスの吸着等温線のt−plotからMP法を用いて解析することにより求めた。
【0055】
試料1〜3はいずれの特性値も本発明の規定する範囲内であり、トリハロメタン吸着性能も良好であり、メチレンブルー吸着性能は比較的低くなっている。
試料4,5は比表面積、100Å以下の細孔容積、6〜8Åの割合が本発明の規定する範囲内に入っていないが、トリハロメタン吸着性能が低下しており、逆にメチレンブルー吸着性能が高くなっている。
【0056】
【発明の効果】
本発明の活性炭は上記の如き物性上の特徴を有し、工場排水中及び水道水中の高濃度から低濃度に至るまでの低沸点有機塩素化合物吸着用活性炭として用いることができる。特に水道水中の極微量含まれる低沸点有機塩素化合物を除去する浄水器内には好適に用いられ大きな効果を発揮することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to activated carbon used in the field of water treatment such as a water purifier, which is excellent in removing low-boiling organic chlorine compounds present in water.
[0002]
[Prior art]
Conventionally, activated carbon has attracted attention as a method for removing various harmful substances, particularly organochlorine compounds, present in tap water. However, since the organic chlorine compound in the water supply has a low molecular weight and a low concentration, it has not been possible to obtain activated carbon having excellent adsorptivity capable of sufficiently removing them.
[0003]
Recently, however, it has been known that activated carbon with a low activation degree and a relatively small specific surface area exhibits a relatively high adsorptivity to these compounds. For example, disclosed in JP-A-6-106161, a coconut shell or wood It is disclosed that low activation activated carbon made from carbide, coal, or the like can be used for removing organic chlorine compounds. However, in these activated carbons, the strict control of the pore size distribution is insufficient, and it is difficult to efficiently remove the low boiling point organic chlorine compounds.
[0004]
[Problems to be solved by the invention]
As a result of diligent research to solve the above problems, the present inventors have completed the present invention, and the object of the present invention is to efficiently adsorb low-boiling organochlorine compounds in an aqueous solution in which various components coexist. Another object is to provide activated carbon that has high packing density and high mechanical strength when the activated carbon is filled in a water purifier or the like.
[0005]
[Means for Solving the Problems]
The above-mentioned object is a granular carbon molded product formed by combining carbonized and activated particles of phenol resin powder, and the specific surface area is 856 to 1248 m. 2 / G, pore volume of 0.01 to 10 μm pore diameter is 0.273 to 0.350 cc / g, pore diameter of 100 Å The following pore volume is 0.322 to 0.586 cc / g and the pore diameter is 100 Å Pore diameter 6-8 occupying the following pore volume Å Low-boiling organochlorine compound adsorption characterized by a pore volume ratio of 70 vol% or more, a particle bulk density of 0.62 to 0.93 g / cc, and a packing density of 0.45 to 0.54 g / cc Achieved by activated carbon.
[0006]
Hereinafter, specific embodiments of the present invention will be described.
The carbon-based adsorbent of the present invention described above has a specific surface area of 856 to 1248 m. 2 / G, pore volume of 0.01 to 10 μm pore diameter is 0.273 to 0.350 cc / g, pore diameter of 100 Å The following pore volume is 0.322 to 0.586 cc / g and the pore diameter is 100 Å Pore diameter 6-8 occupying the following pore volume Å The pore volume ratio is 70 vol% or more, the particle bulk density is 0.62 to 0.93 g / cc, and the packing density is 0.45 to 0.54 g / cc.
[0007]
The specific surface area of the adsorbent is 600 to 1250 m. 2 / G, preferably 700-1100 m 2 / G, most preferably 800-1000 m 2 / G. Specific surface area is 600m 2 If it is smaller than / g, the amount of the adsorption site of the low-boiling organochlorine compound is too small, which is not preferable because the adsorption capacity is low. The specific surface area is 1250m 2 / G or more is not preferable because the ratio of 6 to 8 pores considered to work effectively for the adsorption of low boiling point organic chlorine compounds becomes small.
[0008]
The pore volume of the adsorbent having a pore diameter of 0.01 to 10 μm is 0.1 to 1.0 cc / g, preferably 0.2 to 0.8 cc / g, most preferably 0.3 to 0.7 cc / g. g. When the pore volume in this range is smaller than 0.1 cc / g, the diffusion rate of the low boiling point organochlorine compound in the pores becomes slow, and the adsorption capacity is lowered, which is not preferable. On the other hand, if the pore volume having a pore diameter of 0.01 to 10 μm is larger than 1.0 cc / g, the particle bulk density and the mechanical strength of the particles are undesirably reduced.
[0009]
The adsorbent has a total pore volume of 0.20 to 0.80 cc / g with a pore diameter of 100 mm or less, and a pore volume with a pore diameter of 6 to 8 mm is 65 vol% or more of the total pore volume. . The total pore volume with a pore diameter of 100 mm or less is preferably 0.30 to 0.70 cc / g, most preferably 0.30 to 0.60 cc / g. If the total pore volume with a pore diameter of 100 mm or less is too small, the pore volume with a pore diameter of 6 to 8 mm also decreases, so the adsorption capacity of the low boiling point organic chlorine compound decreases, and if the total pore volume is too large. The proportion of pores having a pore diameter in the range of 6 to 8 mm is unfavorably reduced.
[0010]
The pore volume having a pore diameter of 6 to 8 mm or less is 65 vol% or more, preferably 70 vol% or more, most preferably 75 vol% or more of the total pore volume having a pore diameter of 100 mm or less. It is considered that the low-boiling organochlorine compound adsorption actually works effectively with pores having a pore diameter of 6 to 8 mm. Therefore, when this pore volume is smaller than 65 vol% of the total pore volume with a pore diameter of 100 mm or less, The adsorption capacity of the low-boiling organochlorine compound is lowered, and breakthrough and decomposition of the activated carbon tend to proceed, which is not preferable.
[0011]
The particle bulk density of the adsorbent is 0.4 to 1.2 g / cc, preferably 0.5 to 1.0 g / cc, and most preferably 0.6 to 0.8 g / cc. If the particle bulk density is too small, the adsorption capacity per adsorption tower volume when packed is lowered, which is not preferable. On the other hand, if the size is too large, the pore connectivity of the adsorbent is lowered and the adsorption capacity is lowered.
[0012]
The packing density when the adsorbent is packed in an adsorption tower or the like is 0.3 to 0.7 g / cc, preferably 0.4 to 0.6 g / cc. If the packing density is too small, the adsorption capacity per volume of the adsorption tower when packed is undesirably lowered. On the other hand, if it is too large, it causes an increase in pressure loss during liquid passage, etc., which is not preferable.
As the pellet shape of the adsorbent of the present invention, a cylindrical shape, a spherical shape, or a cylindrical shape or other irregular cross-sections can be used.
[0013]
Below, the manufacturing method of the adsorption agent of this invention is explained in full detail.
In general, phenol resins are roughly classified into resol resins, novolak resins, other special phenol resins, modified products, and the like, but the phenol resin powder used in the present invention is not particularly limited. Granular or powdery special phenol resins disclosed in Japanese Patent Publication No. -30210 and Japanese Patent Publication No. Sho 62-30212 can be used. The outline of the manufacturing method is as follows.
[0014]
While stirring a mixed aqueous solution of 15 to 22% by weight of hydrochloric acid and 7 to 15% by weight of formaldehyde at room temperature, the mixed aqueous solution of phenol or a mixture of phenol and nitrogen-containing compounds such as urea, melamine, and aniline is mixed. The mixture is added at a ratio of 1/15 or less, and stirring is stopped and the mixture is allowed to stand before clouding is generated in the reaction system. While standing, pink granular phenolic resin is generated and settled in the reaction system. Next, the whole reaction system is heated and heated to a temperature of 40 to 90 ° C. while stirring again to complete the reaction, followed by washing with water, followed by neutralization with an aqueous ammonia solution, followed by washing, dehydration and drying. Most of the granular phenol resin thus obtained is composed of primary particles having a particle size of 0.1 to 150 μm or secondary aggregates thereof.
[0015]
This phenol resin is a special phenol resin powder having properties different from those of a resole resin and a novolac resin, and can be suitably used as a phenol resin powder used for producing the activated carbon of the present invention. In addition, when this phenolic resin is heated and refluxed in 500 ml of substantially anhydrous methanol, the following formula
S = {(W 0 -W 1 ) / W 0 } × 100
Where W 0 : Weight of the resin used (g)
W 1 : Weight of the resin remaining after heating to reflux (g)
S: Methanol solubility (% by weight) of the resin
Can be used as an index representing reactivity. That is, those having high methanol solubility have high reactivity. In the present invention, a phenol resin powder having a methanol solubility of usually 70% by weight or less, preferably 30% by weight or less, and most preferably 10% by weight or less is used.
[0016]
The reason is that when the methanol solubility is 70% by weight or more, the heat-fusibility is high, and in the heating process during carbonization, the communication voids between the phenol resin particles are filled due to thermal melting, and the pores of the carbide This is because the continuity of the water is lowered and the adsorption capacity is lowered. In order to obtain a carbon-based adsorbent having sufficient adsorption capacity, it is preferable to use a phenol resin powder having methanol solubility in the above range.
[0017]
In addition, as a method for producing another phenol resin powder used for producing the activated carbon of the present invention, a hydrophilic polymer compound is obtained by condensate obtained by reacting phenols and aldehyde in the presence of at least a nitrogen-containing compound. A prepolymer obtained by reacting phenol and formaldehyde in a basic aqueous solution is mixed with a protective colloid and coagulated into inert solid beads under acidic conditions. There is a method (Japanese Patent Publication No. 51-13491). In addition, for example, JP-A 61-51019, JP-A 61-127719, JP-A 61-258819, JP-A 62-272260, JP-A 62-1748, etc. It is also possible to use a phenol resin powder produced by the method described in 1. above.
[0018]
Resole resins are usually prepared by reacting in the presence of a basic catalyst such as sodium hydroxide, ammonia or organic amines under formaldehyde-excess conditions such as a phenol to formaldehyde molar ratio of 1: 1 to 2. The The resole resin thus obtained has a high reactivity due to a main component of a phenol trimer having a relatively large amount of free methylol groups.
[0019]
In addition, the novolak resin is usually produced by reacting in the presence of an acid catalyst such as oxalic acid under an excess of phenol such that the molar ratio of phenol to formaldehyde is 1: 0.7 to 0.9. Is done. The novolak resin obtained by such a method is mainly composed of a 3-5 mer in which phenol is bonded mainly by a methylene group, contains almost no free methylol group, and thus has no self-crosslinking property by itself, Has thermoplasticity. Therefore, the novolac resin is added with a crosslinking agent which is a formaldehyde generator and an organic base catalyst generator, such as hexamethylenetetramine, or a solid acid catalyst and paraformaldehyde are mixed and heated. A cured product can be obtained by reaction.
[0020]
These resol resins, novolak resins and the like can be used as the raw material resin powder of the present invention by being once cured and then pulverized.
The particle size of the phenol resin powder used to produce the activated carbon of the present invention is usually 0.1 to 150 μm, preferably 0.5 to 50 μm, and most preferably 1 to 20 μm. When the particle size of the phenol resin powder is smaller than 0.1 μm, the workability deteriorates due to the occurrence of scattering during mixing with other components, which is not preferable. On the other hand, if it exceeds 150 μm, it is not preferable because it is difficult to ensure uniformity during mixing with other components, and it becomes difficult to obtain a sufficient specific surface area after activation.
The type of binder used to produce the activated carbon of the present invention is not particularly limited, but liquid thermosetting resins, polyvinyl alcohol (PVA), coal tar, pitch, creosote oil, etc. Preferably used.
[0021]
Examples of the liquid thermosetting resin include liquid resol resin, liquid melamine resin, and modified resins thereof.
The liquid resol resin is produced by reacting phenol with an excess of aldehyde in the presence of a basic catalyst as described above, and the main component is a 1-3 trimer of phenol having a relatively large amount of free methylol groups. .
[0022]
The liquid melamine resin is a so-called thermosetting resin, and the chemical reaction is accelerated by heating, and it is finally insoluble and infusible after being in the form of a hydrophilic initial polymer or a slightly condensing hydrophobic condensate. It becomes a cured product.
[0023]
The liquid melamine resin is produced by adding aldehyde, usually formaldehyde, to melamine. Various alcohols may be used simultaneously. The melamine resin is produced by first adding formaldehyde to the melamine as a methylol group, then dehydrating and condensing the methylol group with the amino group or imino group of another molecule to form a methylene group, or dehydrating between the methylol groups. The reaction proceeds by a reaction to form a dimethylene ether bond by condensation or a reaction to dehydrate and etherify between a methylol group and an alcohol.
[0024]
Liquid melamine resins can be divided into water-soluble resins and oil-soluble resins, and water-soluble resins are generally produced using methanol as an alcohol. On the other hand, the oil-soluble resin is also called butylated melamine resin, and usually uses butanol as alcohol.
The liquid melamine resin used as the binder used for producing the activated carbon of the present invention may be either water-soluble or oil-soluble, and may be produced by a known method.
[0025]
The polyvinyl alcohol used for producing the activated carbon of the present invention preferably has a polymerization degree of 100 to 5000 and a saponification degree of 70% or more, and those partially modified with a carboxyl group or the like are also suitably used.
[0026]
Coal tar is a mixture of hydrocarbon-based compounds obtained by coal carbonization, and contains a small amount of water and a small amount of ash. These composition ratios and physicochemical properties vary depending on the type of raw coal, type of carbonization furnace, carbonization conditions, etc., but currently known components include more than 400 types, of which the most are the most. Are neutral components such as benzene, toluene and anthracene, then basic components such as pyridine, aniline and quinoline, further acidic components such as phenol, cresol, naphthol and anthranol, benzofuran, diphenylene oxide, p- Oxygen-containing components such as methoxybenzidiphenone, and sulfur-containing components such as benzothiophene, diphenylene sulfide, and naphthothiophene. The coal tar used in the present invention is not particularly limited in the above components and the like, but those having more condensed ring aromatic compounds are more suitable.
[0027]
Pitch is chemically a mixture of condensed ring aromatic compounds, is viscous, and usually takes a form close to a solid or a solid at room temperature. If classified according to the raw material, there are various types such as coal pitch, petroleum pitch, pitch obtained at the time of dry distillation of wood, pitch obtained from oil sand, oil surreal, etc. Coal pitch is obtained as a residue by distilling oil by distillation of coal tar produced by coal dry distillation, and is a mixture of many high-boiling substances having a boiling point of about 350 ° C. or more and free carbon. Petroleum pitch is produced by heat treatment of heavy petroleum oils such as crude oil vacuum distillation residue, crude oil pyrolysis residue, and cracked residue oil from fluid catalytic cracking equipment for the production of gasoline. It is obtained as a component that has been subjected to thermal polycondensation along with decomposition products such as oil discharge.
[0028]
The pitch is classified into three types according to the degree of softness or hardness: soft pitch, medium pitch, and hard pitch. Usually, about 70 ° C. or less is classified as a soft pitch, about 75 ° C. to 85 ° C. as a medium pitch, and about 85 ° C. or more as a hard pitch according to a softening point (ring and ball method).
The pitch used for producing the activated carbon of the present invention may be any pitch such as coal pitch and petroleum pitch, and various characteristics such as softening point are not particularly limited.
[0029]
Creosote oil is produced by blending residual oil obtained by separating and recovering components from each fractional oil of coal tar according to specifications. According to JIS standards, it is classified into No. 1 to No. 3 according to specific gravity, moisture content, distillation test results, and the like. Creosote oil is usually chemically a mixture of dozens or more of condensed ring aromatic compounds, and the main components are naphthalene, anthracene, phenanthrene, pyrene, biphenyl, fluorene, cresol, 1-methylnaphthalene. Most of them are 2-methylnaphthalene, dimethylfluorene, various derivatives of these compounds, and the like, and compounds having a boiling point of 200 ° C. or higher.
[0030]
The creosote oil used for producing the activated carbon of the present invention may be any of Nos. 1, 2, and 3 according to JIS standards, and is not particularly limited.
[0031]
In the production of the activated carbon of the present invention, the above-mentioned phenol resin powder and a binder component are mixed and then granulated to obtain a granular molded product. The content of the binder specified in the present invention is the phenol resin powder 100 It is 5-90 weight part with respect to a weight part.
[0032]
The content of the binder is preferably 10 to 60 parts by weight, and most preferably 20 to 40 parts by weight.
When the content of the binder is less than 5 parts by weight, the workability during granulation is reduced, making it difficult to extrude from the die, the shape of the granulated material is uneven, the strength is low, and powder is likely to be generated. Problems arise. On the other hand, if it exceeds 90 parts by weight, the workability at the time of granulation is also lowered, and the connectivity of the pores in the pellet after carbonization activation is lowered, so that the performance as an adsorbent is deteriorated.
[0033]
The mixing of the phenol resin powder and the binder component may be performed with a commercially available mixing stirrer such as a ribbon mixer, a V-type mixer, a cone mixer, or a kneader at room temperature or under heating. When coal tar or pitch is used as the binder component, the workability is taken into consideration, and mixing is performed while heating to a temperature at which sufficient fluidity occurs. In order to improve workability, an appropriate amount of water or an organic solvent such as methanol or acetone may be added. In the case of creosote oil, it is usually liquid at room temperature, and mixing workability is good even at room temperature.
[0034]
In the production of the activated carbon of the present invention, in addition to the phenol resin and the binder component, addition of other additive components is not limited, for example, starch, crystalline cellulose powder, methyl cellulose, water, An appropriate amount of a solvent or the like can be added. Further, there is no limitation to adding a small amount of coke, coconut shell charcoal or the like.
[0035]
Furthermore, in the production of the activated carbon of the present invention, for example, ethylene glycol, polyoxyethylene, alkyl ether, polyoxyethylene fatty acid ester, A small amount of a surfactant such as ammonium polycarboxylate, a crosslinking agent for polyvinyl alcohol, and a plasticizer for extrusion granulation can be added.
[0036]
In the production of the activated carbon of the present invention, it is uniformly mixed by the mixing apparatus as described above, and then formed into a granular material. The granulation can be performed by, for example, a single or biaxial wet extrusion granulator, a vertical granulator such as a basket ruser, a semi-dry disc pelleter, or the like. This molding is usually performed at room temperature, but may be performed under heating in some cases. The granulated product thus obtained is usually dried in a temperature range of about 50 to 400 ° C. to obtain the granular molded product of the present invention.
[0037]
The shape of the granular molded product is usually a columnar shape or a spherical pellet, and is adjusted at the time of granulation so that the pellet shape after the carbonization activation becomes a predetermined shape.
[0038]
In order to produce the activated carbon of the present invention, a granular molded product obtained as described above, or a carbide obtained by heat-treating it in a non-oxidizing atmosphere at 500 to 900 ° C, 700-950 ° C temperature range The target adsorbent is obtained by performing the activation treatment in a range where the weight reduction rate based on carbides is 5 to 40%.
[0039]
In the production of the activated carbon of the present invention, carbonization of the granular molded product before the activation treatment is performed at 500 to 900 ° C. in a non-oxidizing atmosphere using a heat treatment apparatus such as an electric furnace or an external heating gas furnace. In this case, the non-oxidizing atmosphere is, for example, an atmosphere of nitrogen, argon, helium, or the like.
Moreover, although this carbonization temperature is 500-900 degreeC normally, Preferably it is 550-850 degreeC, Most preferably, it is 600-800 degreeC. If the carbonization temperature is higher than 900 ° C., the activation rate in the next activation treatment step becomes slow, and the activation cannot be promoted efficiently. Further, when the carbonization temperature is 500 ° C. or lower, the temperature is too low, and carbonization is not so progressing, which is not preferable.
[0040]
In order to produce the activated carbon of the present invention, the temperature range of the activation treatment of the above-mentioned granular molded product or a carbide obtained by heat-treating it in a non-oxidizing atmosphere at 500 to 900 ° C. is 700-950 ° C ,Preferably 800-950 ° C Most preferably 850-950 ° C It is.
When the temperature of the activation treatment is higher than 1100 ° C., the pore volume decreases due to heat shrinkage, or the activated carbon surface is oxidized and the adsorptive power to the low boiling point organic chlorine compound is decreased. On the other hand, when the temperature is lower than 600 ° C., activation is not sufficiently performed and the adsorption capacity is low, which is not preferable.
[0041]
In the production of the activated carbon of the present invention, the activation treatment includes oxygen, carbon dioxide, water vapor, or a mixed gas of two or more of these, or an atmospheric gas containing these gases, such as nitrogen, argon, helium, Combustion exhaust gas such as methane, propane, or butane can be used, and activation is performed in a range where the weight reduction rate based on carbide is 5 to 40%.
When the weight reduction rate is less than 5%, the pores are not sufficiently developed, and the pore volume is too small to ensure sufficient performance, which is not preferable. In addition, when the weight reduction rate is larger than 40%, the ratio of 6 to 8 pores that work effectively for adsorption of the low boiling point organic chlorine compound is reduced, the particle bulk density is reduced, and the adsorbent is filled. The amount per unit volume of the adsorption site that acts effectively is not preferable.
[0042]
The adsorbent of the present invention can efficiently remove the low boiling point organic chlorine compound by bringing it into contact with an aqueous solution containing the low boiling point organic chlorine compound and other components. The contact method can be carried out by a method carried out in the field of water treatment using general activated carbon such as a batch system or a continuous flow system in which the activated carbon is packed in a column or the like.
Low-boiling organochlorine compounds subject to adsorption by the activated carbon of the present invention are detected in trace amounts in tap water such as trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane, tribromomethane), trichloroethane, trichloroethylene, and industrial wastewater. It is a substance to be used.
[0043]
The method for evaluating the characteristics of the activated carbon of the present invention is to measure the adsorption performance for trihalomethane as a low boiling point organic chlorine compound, and for other substances, such as free chlorine, methylene blue, etc. It can be done by the method of
[0044]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by this Example.
(Example 1)
Phenol resin powder (manufactured by Kanebo Co., Ltd., Bell Pearl ("Bell Pearl" is a registered trademark owned by Kanebo Co., Ltd.) R800: average particle size 20 μm) 100 parts by weight of melamine resin aqueous solution (Sumitomo Chemical Co., Ltd.) as a binder Manufactured by Sumitex Resin M-3, solid content concentration 80% by weight), polymerization degree 1700, saponification degree 99% polyvinyl alcohol (hereinafter abbreviated as PVA) and coal tar (JIS standard, K2439-1979, purification No. 2) And potato starch, a surfactant (manufactured by Kao Corp., Rheodor SP-L10) and water were weighed in predetermined amounts.
[0045]
First of all, the phenol resin powder and potato starch were dry mixed for 15 minutes with a kneader. On the other hand, the polyvinyl alcohol was dissolved in warm water so as to be a 15% by weight aqueous solution, and this polyvinyl alcohol aqueous solution, melamine resin aqueous solution, coal tar, surfactant and water were added to a kneader and further mixed for 15 minutes.
This mixed composition was extruded with a twin-screw extrusion granulator (Fuji Paudal Co., Ltd., Pelletta Double EXDF-100 type), and pelletized compacts having an outer diameter of about 1.0 mm and different binder contents were granulated. It was. Table 1 shows the composition ratio of each raw material component.
[0046]
[Table 1]
Figure 0003628399
[0047]
The sample thus obtained was carbonized using a cylindrical electric furnace with an inner diameter of 70 mmφ in a nitrogen atmosphere at a temperature rising rate of 50 ° C./H up to 650 ° C. and held for 1 hour. Subsequently, 20 g of this carbide was activated with water vapor under different conditions to obtain five samples. That is, sample 1 is 750 ° C., 1.5 hours, sample 2 is 900 ° C., 1.5 hours, sample 3 is 950 ° C., 1.5 hours, sample 4 is 1000 ° C., 1.5 hours, and sample 5 is 1000 hours. C., 2.0 hours, nitrogen gas containing water vapor (activation gas composition molar ratio: N 2 / H 2 The activation treatment was performed using O = 1/1 flow rate of 1.5 Nl / min. Table 2 shows activation conditions and characteristic values of the obtained carbonized activation product. Table 3 shows the adsorption characteristics of these activated carbons.
[0048]
[Table 2]
Figure 0003628399
[0049]
[Table 3]
Figure 0003628399
[0050]
In addition, the measuring method in each evaluation is as follows.
(Measurement method for adsorption performance of low boiling point organic chlorine compounds)
CHCl, a trihalomethane (tTHM) 3 , CHBrCl 3 , CHBr 2 Cl 3 , CHBr 3 Each was added to an aqueous solution 40 (ml) of 400, 200, 800, 4000 (ppb) 3 by changing the amount of activated carbon added, and after shaking for 1 hour at 25 (° C.), the solution was prepared by a headspace method using ECD gas chromatography. An adsorption isotherm was prepared by determining the residual concentration and the adsorption amount in the interior, and the adsorption amount at a residual total trihalomethane concentration of 1000 (ppb) was determined as the adsorption performance.
[0051]
(Methylene blue adsorption performance measurement method)
The measurement is performed according to the activated carbon test method (JIS K1474). That is, a methylene blue solution was added to the sample, adsorbed and then filtered, the absorbance of the filtrate was measured, the amount of methylene blue adsorbed was determined from the residual concentration, an adsorption isotherm was created, and the residual concentration of methylene blue was 0.24 from the adsorption isotherm. The adsorption amount at the time of (mg / l) is calculated | required and it is set as a methylene blue adsorption | suction performance.
[0052]
(Pellet strength measurement method)
The strength of the carbonized activated product pellets was measured with a Kiyama hardness tester. The tensile strength evaluated by the strength measurement was calculated by the following equation from the load value, pellet diameter, and pellet length when the pellet was crushed.
Tensile strength: σ [: g / cm 2 ] = 2P / πdl
P: load [kg], d: pellet diameter [cm], l: pellet length [cm]
[0053]
(Measurement method of specific surface area of activated carbon)
About 0.1 g of the activated carbon to be measured is accurately weighed and then placed in a dedicated cell of a high-precision fully automatic gas adsorption device BELS0RP28 (made by Nippon Bell Co., Ltd.). E. Determined by T method.
[0054]
(Measurement method of pore volume)
The pore volume of the adsorbent of the present invention is measured by a mercury intrusion method using a porosimeter (Pore Sizer 9310, manufactured by Shimadzu Corp.) in the pore diameter range of 0.01 to 10 μm. The volume was measured by nitrogen adsorption using a fully automatic gas adsorption measuring device (Bell Soap 28, manufactured by Bell Japan Co., Ltd.). Specifically, the pore volume in the range of pore diameter of 20 to 100 mm is obtained by DH analysis of the adsorption isotherm of nitrogen gas at 77K, and the pore volume of pore diameter of 20 mm or less is 77K. It was calculated | required by analyzing using the MP method from t-plot of the adsorption isotherm of nitrogen gas in this.
[0055]
Samples 1 to 3 have all the characteristic values within the range defined by the present invention, the trihalomethane adsorption performance is good, and the methylene blue adsorption performance is relatively low.
In Samples 4 and 5, the specific surface area, the pore volume of 100 mm or less, and the ratio of 6 to 8 mm are not within the range defined by the present invention, but the trihalomethane adsorption performance is lowered, and conversely the methylene blue adsorption performance is high. It has become.
[0056]
【The invention's effect】
The activated carbon of the present invention has the above-described physical characteristics, and can be used as activated carbon for adsorbing low boiling point organochlorine compounds from high to low concentrations in factory effluent and tap water. In particular, it is suitably used in a water purifier for removing low-boiling organic chlorine compounds contained in trace amounts in tap water, and can exert a great effect.

Claims (1)

フェノール樹脂粉末の炭化、賦活粒子が結合してなる粒状炭素成形物で、その比表面積が856〜1248m2/g、細孔直径0.01〜10μmの細孔容積が0.273〜0.350cc/g、細孔直径100以下の細孔容積が0.322〜0.586cc/gであり、かつ細孔直径100以下の細孔容積に占める細孔直径6〜8の細孔容積の割合が70vol%以上、粒子嵩密度が0.62〜0.93g/cc、充填密度が0.45〜0.54g/ccであることを特徴とする低沸点有機塩素化合物吸着用活性炭。This is a granular carbon molded product formed by combining carbonized and activated particles of phenol resin powder, with a specific surface area of 856 to 1248 m 2 / g, a pore volume of 0.01 to 10 μm and a pore volume of 0.273 to 0.350 cc. / g, the following pore volume of pores having a pore diameter 100 Å is 0.322~0.586cc / g, and a pore volume of pores having a pore diameter of 6-8 Å occupying the following pore volume of pores having a pore diameter 100 Å The low-boiling organochlorine compound-adsorbing activated carbon is characterized by having a ratio of 70 vol% or more, a particle bulk density of 0.62 to 0.93 g / cc, and a packing density of 0.45 to 0.54 g / cc.
JP29625195A 1995-10-18 1995-10-18 Activated carbon for adsorption of organic chlorine compounds Expired - Fee Related JP3628399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29625195A JP3628399B2 (en) 1995-10-18 1995-10-18 Activated carbon for adsorption of organic chlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29625195A JP3628399B2 (en) 1995-10-18 1995-10-18 Activated carbon for adsorption of organic chlorine compounds

Publications (2)

Publication Number Publication Date
JPH09110409A JPH09110409A (en) 1997-04-28
JP3628399B2 true JP3628399B2 (en) 2005-03-09

Family

ID=17831156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29625195A Expired - Fee Related JP3628399B2 (en) 1995-10-18 1995-10-18 Activated carbon for adsorption of organic chlorine compounds

Country Status (1)

Country Link
JP (1) JP3628399B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309446B1 (en) 1997-02-17 2001-10-30 Kanebo, Ltd. Activated carbon for adsorptive storage of gaseous compound
WO2000009257A1 (en) * 1998-02-17 2000-02-24 Takachiho Chemical Industrial Co., Ltd. Method and apparatus for storing and feeding gaseous compound
JP3273796B2 (en) * 1998-01-23 2002-04-15 三浦工業株式会社 Chlorinated organic compound collector
EP1064996A4 (en) * 1998-02-17 2006-05-10 Air Water Inc Activated carbon for adsorption and storage of gaseous compound
JP4876307B2 (en) * 2000-10-31 2012-02-15 パナソニック電工株式会社 Method for producing activated carbon
JP3585043B2 (en) * 2003-01-22 2004-11-04 メルク・ホエイ株式会社 Pharmaceutical adsorbent and its production method
KR100474854B1 (en) * 2003-02-13 2005-03-10 삼성에스디아이 주식회사 Carbon molecular sieve and preparation method thereof
EP1757362A4 (en) * 2004-05-31 2007-08-22 Teikoku Medix Co Ltd Adsorbent and process for producing the same
JP2006247527A (en) * 2005-03-10 2006-09-21 Kansai Coke & Chem Co Ltd Adsorbent
JP4718303B2 (en) * 2005-11-08 2011-07-06 Jfeケミカル株式会社 Method for producing activated carbon
JP5599999B2 (en) * 2006-03-22 2014-10-01 スリーエム イノベイティブ プロパティズ カンパニー Filter media
JP4920007B2 (en) * 2008-05-16 2012-04-18 地方独立行政法人 東京都立産業技術研究センター Method for producing glass foam, glass foam and method for regenerating glass foam
US8114510B2 (en) * 2009-05-20 2012-02-14 The United States Of America As Represented By The United States Department Of Energy Mesoporous carbon materials
JP5376592B2 (en) * 2009-10-15 2013-12-25 産協企業有限股▲ふん▼公司 Spherical activated carbon and manufacturing method thereof
JP2013017930A (en) * 2011-07-08 2013-01-31 Kyuchaku Gijutsu Kogyo Kk Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent
CN105555714B (en) 2014-04-03 2020-01-14 关西热化学株式会社 Activated carbon for water purifier
JP7300640B2 (en) * 2019-03-27 2023-06-30 株式会社Lixil water purification cartridge
KR20210153643A (en) * 2019-04-16 2021-12-17 후타무라 가가쿠 가부시키가이샤 Method for manufacturing activated carbon adsorbent
WO2022071019A1 (en) * 2020-10-01 2022-04-07 株式会社クラレ Adsorption filter

Also Published As

Publication number Publication date
JPH09110409A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP3628399B2 (en) Activated carbon for adsorption of organic chlorine compounds
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
EP1370605B1 (en) Porous carbons
US9975778B2 (en) Method of making chemically activated carbon
US4933314A (en) Molecular sieving carbon
JP5950491B2 (en) Composition and method for sealing flue gas mercury in concrete
US6787029B2 (en) Material for chromatography
CA1188845A (en) Process for producing carbon articles
US3917806A (en) Method for the preparation of carbon moldings and activated carbon molding therefrom
US8591855B2 (en) Porous carbons
JP2013521218A (en) Method for producing base activated carbon
Liang et al. Activation of mixed sawdust and spirulina with or without a pre‑carbonization step: Probing roles of volatile-char interaction on evolution of pyrolytic products
CN101323794B (en) Spherical active carbon fuel oil adsorption desulfurizing agent and preparation thereof
JPH111316A (en) Active carbon molded form and its production
Pourjavadi et al. Improvement in oil absorbency by using modified carbon nanotubes in preparation of oil sorbents
JPH05285379A (en) Production of carbon as molecular sieve
JP2020090417A (en) Carbon material, carbon material precursor, resin composition for carbon material, carbon molecular sieve, adsorbent, conductive filler, electrode material for capacitor, and catalyst carrier
JP2019002096A (en) Manufacturing method of phenol resin fiber-derived active charcoal
JP2546793B2 (en) Method for producing granular or powdery carbon fine particles
AU2021309823A1 (en) Sorbents having high volumetric iodine and molasses values for removal of PFAS from fluids and methods of making and using the same
JPH08224439A (en) Adsorbent for removing nox and nox removing method thereof
JP2510183B2 (en) Method for producing molecular sieving carbon
JPH07187635A (en) Production of molecular sieving carbon
JPH04280810A (en) Production of molecular sieve carbon
CA1036771A (en) Method for the preparation of carbon moldings and activated carbon moldings therefrom

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees