JPH08224468A - Cylindrically pelletized carbon based adsorbent - Google Patents

Cylindrically pelletized carbon based adsorbent

Info

Publication number
JPH08224468A
JPH08224468A JP7109933A JP10993395A JPH08224468A JP H08224468 A JPH08224468 A JP H08224468A JP 7109933 A JP7109933 A JP 7109933A JP 10993395 A JP10993395 A JP 10993395A JP H08224468 A JPH08224468 A JP H08224468A
Authority
JP
Japan
Prior art keywords
adsorption
adsorbent
cylindrical
carbon
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7109933A
Other languages
Japanese (ja)
Inventor
Niro Shiomi
仁郎 塩見
Teruhisa Baba
輝久 馬場
Chiaki Marumo
千郷 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP7109933A priority Critical patent/JPH08224468A/en
Publication of JPH08224468A publication Critical patent/JPH08224468A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a carbon based adsorbing excellent in adsorbing performance by making a pellet cylindrical and forming a hollow in the center part to increase the outer surface area of a particle per unit volume packing bed and shortening diffusing distance from the outside to the inside. CONSTITUTION: In the cylindrical pellet shaped carbon based adsorbent, cylindrical pallets having outside diameter (d1 ) of 1.0-10mm, inside diameter of 0.1d1 -0.5d1 and length of 2.0-15mm account for >=80% the total pellets the volume of fine pore having fine pore diameter of 0.01-10μm is 0.10-1.0cc/g, the volume of fine pore having pore diameter of <=100Å fine is 0.20-1.2cc/g, the bulk density of particle is 0.4-1.2g/cc and carbon content is >=90wt.%. The cylindrical adsorbent has large outer surface area, the mass transfer of fluid from the outer periphery to the inside is cased and excellent adsorbing performance is secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相或いは液相中の特
定成分の分離濃縮、例えば、大気中の臭気成分、窒素酸
化物や硫黄酸化物の除去、廃液や排水、上水の浄化処理
などに使用される炭素系粒状吸着剤を対象にするもの
で、その形状を円筒状にし、単位充填層容積当たりの吸
着剤粒子の外表面積を増大させ、且つ、被吸着物質が粒
子外表面から内部吸着サイトに至る拡散距離を短縮し、
吸着性能を向上させた円筒ペレット状炭素系吸着剤に関
する。
FIELD OF THE INVENTION The present invention relates to separation and concentration of specific components in a gas phase or a liquid phase, for example, removal of odorous components, nitrogen oxides and sulfur oxides in the air, purification of waste liquids, waste water and tap water. It is intended for carbon-based granular adsorbents used for treatment, etc., and has a cylindrical shape to increase the outer surface area of adsorbent particles per unit packed bed volume, and the adsorbed substance is the outer surface of the particles. To reduce the diffusion distance from the
The present invention relates to a cylindrical pellet-shaped carbon-based adsorbent having improved adsorption performance.

【0002】[0002]

【従来の技術】近年、公害の発生防止や地球環境の保護
が世界的な関心を集めており、排水中のCOD、重金
属、リンの除去、ならびに排ガス中の硫黄酸化物、窒素
酸化物、ダイオキシン、水銀の除去など、あるいはフロ
ン、有機塩素ガス、二酸化炭素の回収などの問題の解決
に、種々の吸着剤が有効に利用されている。
2. Description of the Related Art In recent years, the prevention of pollution and the protection of the global environment have been attracting worldwide attention. The removal of COD, heavy metals, and phosphorus in wastewater, as well as sulfur oxides, nitrogen oxides, and dioxins in exhaust gas. Various adsorbents have been effectively used to solve problems such as removal of mercury, recovery of CFCs, organic chlorine gas, and carbon dioxide.

【0003】従来、これらの吸着剤としては、天然ゼオ
ライトや合成ゼオライト、酸性白土、シリカゲル、多孔
質ガラス等の無機系吸着剤、あるいは、ヤシ殻炭、石
炭、木炭等から得られる炭素質系吸着剤などが広く使用
されている。なかでも炭素系吸着剤は、炭素物質または
炭素を含有する物質を炭化及び賦活して得られる広大な
内部表面積を有し、優れた吸着能力を備えた吸着剤で、
今日広範な分野で活用されている。例えば、身近なとこ
ろではタバコフィルター、冷蔵庫脱臭剤、家庭用浄水器
等に、工業用途では食品や、医薬品、工業薬品等の液相
脱色、精製に、そして石油化学工業等各種工業のプロセ
スガスの分離、精製、回収に、さらには大気中の硫黄酸
化物や窒素酸化物の吸着除去、水質汚濁の防止にと、そ
の応用は、多岐に渡っている。これらの炭素系吸着剤
は、通常、粒状、粉末状、ハニカム状、あるいは繊維状
等、用途に合わせてさまざまな形態での利用が試みられ
ているが、粉末状のものは粉末の流出や圧力損失が大き
いなどの制約があり、ハニカム状のものは、装着される
箇所が制限されること、また、繊維状のものは、吸着速
度は速いが、充填密度を大きくできないなどの種々の取
扱い上の制約があることから取扱いの容易な粒状吸着剤
が広く使用されているのが現状である。
Conventionally, as these adsorbents, inorganic adsorbents such as natural zeolite, synthetic zeolite, acid clay, silica gel, porous glass, etc., or carbonaceous adsorbents obtained from coconut shell charcoal, coal, charcoal, etc. Agents are widely used. Among them, a carbon-based adsorbent has a vast internal surface area obtained by carbonizing and activating a carbon substance or a substance containing carbon, and is an adsorbent having an excellent adsorption ability,
It is used in a wide range of fields today. For example, tobacco filters, refrigerator deodorants, household water purifiers, etc. in familiar places, liquid phase decolorization and purification of foods, pharmaceuticals, industrial chemicals, etc. in industrial applications, and process gas of various industries such as petrochemical industry. Its applications are diverse, including separation, purification, and recovery, as well as adsorption and removal of atmospheric sulfur oxides and nitrogen oxides, and prevention of water pollution. These carbon-based adsorbents are usually tried to be used in various forms such as granular, powdery, honeycomb, or fibrous, depending on the application. There are restrictions such as large loss, and the honeycomb type has a limited number of places to be mounted. The fibrous type has a high adsorption rate, but the packing density cannot be increased. Under the present circumstances, the granular adsorbent, which is easy to handle, is widely used due to the above limitation.

【0004】ところで、現在利用されている粒状吸着剤
の形状を更に細かく分類すると、それらは、破砕状、円
柱ペレット状、或いは球状のいずれかであり、粉状及び
繊維状の吸着剤に比較し、単位充填層容積当たりの吸着
剤粒子の外表面積が小さく、かつ外表面から内部吸着サ
イトまでの距離が長いため、被吸着物質の吸脱着に時間
を要し、効果的な吸着操作が実施できないという問題点
がある。
By the way, when the shapes of the granular adsorbents currently used are further classified, they are either crushed, columnar pellets, or spherical, and are compared with powdery and fibrous adsorbents. Since the outer surface area of the adsorbent particles per unit packed bed volume is small and the distance from the outer surface to the inner adsorption site is long, it takes a long time to adsorb and desorb the substance to be adsorbed, and an effective adsorption operation cannot be performed. There is a problem.

【0005】また、炭素系成形体としては、特公昭62-3
0210号公報、特公昭62-30212号公報、特公昭62-30211号
公報、特公昭62-30213号公報にその製造法が開示されて
いる熱硬化性の粒状ないし粉末状フェノ−ル系樹脂をバ
インダ−として用いることにより、強度に優れた成形体
が得られることが、特公昭60-59167号公報、特公昭61-3
2247号公報などに示されている。しかしながら、これら
の成形法においては、吸着剤として必要な多孔度、比表
面積、細孔径分布等の特性を十分に制御する技術が確立
されていないのが現状である。また、これらの成形法に
おいては吸着剤特性への成形体の形状による影響の検討
もなされていない。その他の炭素系の粒状吸着剤に関し
ても、これまで、ペレット形状の最適化についての詳細
な検討はなされていないのが現状である。
Further, as a carbon-based molding, Japanese Patent Publication No. 62-3
No. 0210, Japanese Patent Publication No. 62-30212, Japanese Patent Publication No. 62-30211, Japanese Patent Publication No. 62-30213, the thermosetting granular or powdery phenolic resin whose production method is disclosed. When used as a binder, a molded product having excellent strength can be obtained, which is disclosed in JP-B-60-59167 and JP-B-61-3.
It is disclosed in Japanese Patent No. 2247 and the like. However, in these molding methods, at present, a technique for sufficiently controlling characteristics such as porosity, specific surface area, and pore size distribution required as an adsorbent has not been established. Further, in these molding methods, the influence of the shape of the molded body on the adsorbent characteristics has not been examined. With respect to other carbon-based granular adsorbents, no detailed study has been made so far on optimization of pellet shape.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、ペレ
ット形状を円筒状にし、吸着剤の中心部に空隙を作るこ
とにより、単位充填層容積当たりの吸着剤粒子の外表面
積を増大させるとともに、吸着剤外表面から内部吸着サ
イトに至る被吸着物質の拡散距離を短縮し、吸着性能を
向上させた炭素系吸着剤を提供することにある。
The object of the present invention is to increase the outer surface area of adsorbent particles per unit packed bed volume by making the pellet shape cylindrical and forming a void in the center of the adsorbent. Another object of the present invention is to provide a carbon-based adsorbent having improved adsorption performance by shortening the diffusion distance of the substance to be adsorbed from the outer surface of the adsorbent to the internal adsorption site.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上述の問
題点を解決すべく鋭意研究の結果、本発明を完成させた
ものであり、その特徴とするところは、外径d1が1.0 〜
10mm、内径d2が0.1d1〜0.5d1 、長さ2.0 〜15mmである
円筒ペレットが全体の80% 以上を占め、且つ、細孔直径
0.01〜10μm の範囲の細孔容積が0.10〜1.0cc/g 、細孔
直径100 Å以下の範囲の細孔容積が0.20〜1.2cc/g 、粒
子嵩密度が0.40〜1.2 g/ccの範囲であり、炭素含有量が
90重量% 以上の範囲である円筒ペレット状炭素系吸着剤
を製造することにある。
The inventors of the present invention have completed the present invention as a result of earnest research to solve the above-mentioned problems, and its characteristic is that the outer diameter d 1 is 1.0 ~
Cylindrical pellets with a diameter of 10 mm, an inner diameter d 2 of 0.1 d 1 to 0.5 d 1 and a length of 2.0 to 15 mm account for 80% or more of the whole, and the pore diameter.
Pore volume in the range of 0.01 to 10 μm is 0.10 to 1.0 cc / g, pore volume in the range of 100 Å or less is 0.20 to 1.2 cc / g, and particle bulk density is in the range of 0.40 to 1.2 g / cc. Yes, the carbon content is
It is to produce a carbonaceous adsorbent in the form of a cylindrical pellet in the range of 90% by weight or more.

【0008】本発明者らは、バインダーの配合量、界面
活性剤の使用量、及び成形するに当たっての造粒設備の
仕様、例えばダイスノズルの形状、ダイスノズルの開孔
率等について種々の検討を行うことによって本発明の円
筒ペレット状炭素系吸着剤の製造を可能にしたものであ
る。
The present inventors have made various studies on the blending amount of the binder, the use amount of the surfactant, and the specifications of the granulation equipment for molding, such as the shape of the die nozzle and the aperture ratio of the die nozzle. By doing so, it is possible to manufacture the cylindrical pellet-shaped carbonaceous adsorbent of the present invention.

【0009】本発明における炭素系吸着剤を形成する炭
素物質は、その主原料として、木炭、竹炭、椰子柄炭等
のような植物系の多孔性炭素材料や、褐炭や歴青炭等の
ような石炭系の炭素材料あるいはフェノール樹脂やメラ
ミン樹脂、それらの変性物等の熱硬化性樹脂の如き合成
高分子材料を炭化させた炭素材料を用いることができ
る。これらの植物系、石炭系、樹脂系等の炭素材料は、
成形を容易にするために、通常、0.1 〜150 μm 、好ま
しくは0.5 〜50μm に、更に好ましくは1 〜20μm の粉
末状原料を使用するのがよい。上述の、熱硬化性樹脂と
しては、何ら制限されるものではないが、粒状ないし粉
末状フェノール系樹脂を用いるのが好ましく、例えば、
特公昭62−30211 または特公昭62−30213 によって得ら
れる (A) 粒径 0.1〜150 μmの球状一次粒子およびその
二次凝集物を含有し、そして(B) 少なくとも全体の
50重量%が 100タイラーメッシュの篩を通過しうる大き
さであり、(C) 明細書本文に定義したメタノール溶
解度が50重量%以下のものであって、しかも(D) 液
体クロマトグラフィーによる測定値として、遊離フェノ
ール含有量が100ppm以下である。 ことを特徴とする粒状フェノール樹脂が特に好ましい。
The carbon material forming the carbon-based adsorbent according to the present invention is mainly composed of a plant-based porous carbon material such as charcoal, bamboo charcoal, and coconut palm charcoal, brown coal, bituminous coal, etc. It is possible to use a coal-based carbon material or a carbon material obtained by carbonizing a synthetic polymer material such as a thermosetting resin such as a phenol resin, a melamine resin, or a modified product thereof. These plant-based, coal-based, resin-based carbon materials,
In order to facilitate the molding, it is usually preferable to use a powdery raw material of 0.1 to 150 μm, preferably 0.5 to 50 μm, and more preferably 1 to 20 μm. The above-mentioned thermosetting resin is not limited at all, but it is preferable to use a granular or powdery phenolic resin, for example,
(A) Spherical primary particles having a particle size of 0.1 to 150 μm and secondary agglomerates thereof, which are obtained by JP-B-62-30211 or JP-B-62-30213, and (B) at least whole particles.
50% by weight is such a size that it can pass through a 100 Tyler mesh sieve, (C) the methanol solubility defined in the text of the specification is 50% by weight or less, and (D) the value measured by liquid chromatography. The free phenol content is 100 ppm or less. Particular preference is given to granular phenolic resins characterized in that

【0010】本発明では、上記の炭素原料をバインダー
成分とともに均一に混合した後、円筒ペレット状に成形
するか、あるいは、炭化前のフェノール樹脂やメラミン
樹脂、それらの変性物などの熱硬化性樹脂原料をバイン
ダー成分とともに均一に混合した後、円筒ペレット状に
成形し、その後、炭化及び賦活して円筒ペレット状炭素
系吸着剤を得ることができる。
In the present invention, the above carbon raw material is uniformly mixed with a binder component and then molded into a cylindrical pellet, or a thermosetting resin such as a phenol resin, a melamine resin or a modified product thereof before carbonization. After uniformly mixing the raw material with the binder component, the raw material is shaped into a cylindrical pellet, and then carbonized and activated to obtain a cylindrical pellet-shaped carbon-based adsorbent.

【0011】本発明において円筒ペレット状成形体を製
造するにあたり、用いられるバインダーとしては、ター
ル、ピッチ、液状フェノール樹脂、液状メラミン樹脂、
ポリビニルアルコール等の粘結剤が挙げられる。また、
植物系、石炭系、樹脂系等の炭素材料の原料粉末または
炭化前のフェノール樹脂やメラミン樹脂、それらの変性
物などの熱硬化性樹脂の原料粉末とバインダーとの混合
量は、炭素材料の原料粉末または熱硬化性樹脂の原料粉
末100 重量部に対し、上記バインダーは、通常 5〜90重
量部を、好ましくは20〜85重量部、最も好ましくは30〜
80重量部用いることが好ましい。
In the present invention, the binder used in the production of the cylindrical pellet-shaped molded product is tar, pitch, liquid phenol resin, liquid melamine resin,
Examples include binders such as polyvinyl alcohol. Also,
The mixture amount of the raw material powder of the carbon material such as plant-based, coal-based, resin-based or the raw material powder of the thermosetting resin such as phenol resin or melamine resin before carbonization or their modified products and the binder is the raw material of the carbon material. With respect to 100 parts by weight of powder or raw powder of thermosetting resin, the binder is usually 5 to 90 parts by weight, preferably 20 to 85 parts by weight, most preferably 30 to
It is preferable to use 80 parts by weight.

【0012】上記炭素材料の原料粉末または樹脂材料の
原料粉末とバインダーは、そのまま混合してもよいし、
あるいは、水、有機溶媒などの溶媒の存在下で混合して
もよい。この際、水、有機溶媒などは、たとえば、炭素
材料の原料粉末または樹脂材料の原料粉末とバインダー
とを混合する前にバインダーに予め添加、混合した後、
炭素材料の原料粉末または樹脂材料の原料粉末を添加し
てもよい。水、有機溶媒などの溶媒は、炭素材料の原料
粉末または樹脂材料の原料粉末100 重量部に対して、好
ましくは5 〜50重量部、更に好ましくは8 〜30重量部添
加するのが良い。
The raw material powder of the carbon material or the raw material powder of the resin material and the binder may be mixed as they are,
Alternatively, they may be mixed in the presence of a solvent such as water or an organic solvent. At this time, water, the organic solvent, etc., for example, after the raw material powder of the carbon material or the raw material powder of the resin material and the binder are mixed in advance before being mixed with the binder,
Raw material powder of carbon material or raw material powder of resin material may be added. A solvent such as water or an organic solvent is preferably added in an amount of 5 to 50 parts by weight, more preferably 8 to 30 parts by weight, based on 100 parts by weight of the raw material powder of the carbon material or the raw material powder of the resin material.

【0013】また、炭素材料の原料粉末または樹脂材料
の原料粉末とバインダー成分を混合する際、これらの原
料の他に、例えば、澱粉またはその誘導体か変性体など
の添加物を、炭素材料の原料粉末または樹脂材料の原料
粉末100 重量部に対して、好ましくは5 〜50重量部、よ
り好ましくは10〜40重量部添加するとよい。この添加物
は、円筒ペレット状炭素系吸着剤中の気孔形成剤として
作用し、後述する非酸化性雰囲気下での炭化時の熱分解
により、気孔形成に寄与する。添加物の具体例として
は、例えば、馬鈴薯、とうもろこし等の澱粉、酢酸澱
粉、硫酸澱粉、燐酸澱粉等のエステル化澱粉類、ヒドロ
キシアルキル澱粉、カルボキシメチル澱粉等のエーテル
化澱粉、硫酸ジスターチ、グリセロールジスターチ等の
架橋澱粉類等の澱粉誘導体、或いは酵素変性デキストリ
ン等の澱粉変性体等が挙げられる。この添加物は、炭素
材料の原料粉末または樹脂材料の原料粉末とバインダー
成分を混合する際に、粉粒体状で同時に混合しても、ま
たは水に分散させた状態、もしくは温水でアルファー化
処理等をした状態で同時に混合してもよい。本発明で
は、上記添加物の他に、他の添加成分を加えることを何
ら制限するものではなく、例えば、結晶性セルロース粉
末、メチルセルロース等を加えることができる。
When the raw material powder of the carbon material or the raw material powder of the resin material and the binder component are mixed, in addition to these raw materials, for example, an additive such as starch or its derivative or modified product is added to the raw material of the carbon material. It is preferable to add 5 to 50 parts by weight, and more preferably 10 to 40 parts by weight to 100 parts by weight of the raw material powder of the powder or resin material. This additive acts as a pore-forming agent in the cylindrical pellet-shaped carbon-based adsorbent, and contributes to pore formation by thermal decomposition during carbonization in a non-oxidizing atmosphere described later. Specific examples of the additives include, for example, starch such as potato and corn, esterified starch such as acetic acid starch, starch sulfate, and phosphoric acid starch, etherified starch such as hydroxyalkyl starch and carboxymethyl starch, distarch sulfate, and glycerol diester. Examples thereof include starch derivatives such as crosslinked starches such as starch, and starch modified products such as enzyme-modified dextrin. This additive is used in the case of mixing the raw material powder of the carbon material or the raw material powder of the resin material with the binder component, even if they are simultaneously mixed in the form of powder or granules, or in a state of being dispersed in water, or pregelatinized with warm water You may mix at the same time in the state which carried out etc. In the present invention, in addition to the above additives, addition of other additive components is not limited at all, and for example, crystalline cellulose powder, methyl cellulose and the like can be added.

【0014】また、その特性を損なわない範囲で、作業
性向上のため、例えば、エチレングリコール、ポリオキ
シエチレンアルキルエーテル、ポリオキシエチレン脂肪
酸エステル、ポリカルボン酸アンモニウム塩等の界面活
性剤等を少量加えてもよい。
In order to improve workability, a small amount of a surfactant such as ethylene glycol, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polycarboxylic acid ammonium salt, etc. is added within a range that does not impair the characteristics. May be.

【0015】上記炭素材料の原料粉末または樹脂材料の
原料粉末とバインダー成分は、通常、リボンミキサー、
V型ミキサー、コーンミキサー、ニーダー等で混合され
る。次いで、単軸或いは二軸の湿式押し出し造粒機、バ
スケット・リューザー等の竪型造粒機、半乾式のディス
クペレッター等により粒状物に成形される。これらの造
粒成形機のダイスノズルは、所定の内径、外径の円筒状
ペレットに成形するダイス孔形状を持つものを使用する
ことで、円筒ペレット状成形体を成形することができ
る。
The raw material powder of the carbon material or the raw material powder of the resin material and the binder component are usually a ribbon mixer,
It is mixed with a V-type mixer, a cone mixer, a kneader and the like. Then, it is formed into granules by a single-screw or twin-screw wet-extrusion granulator, a vertical granulator such as a basket and a riser, and a semi-dry disk pelleter. The die nozzles of these granulation molding machines can be used to mold cylindrical pellet-shaped molded bodies by using those having a die hole shape for molding into cylindrical pellets having a predetermined inner diameter and outer diameter.

【0016】上述のようにして得られた円筒ペレット状
成形体に、炭素系吸着剤としての吸着性能を付与するに
は、通常、これらをそのまま、あるいは、非酸化性雰囲
気下で炭化後、炭化物を基準として重量減少率が 5〜50
% 程度となる範囲で水蒸気または二酸化炭素で 600〜11
00℃で賦活処理を行うか、あるいは、上記の円筒ペレッ
ト状成形体に、塩化亜鉛、リン酸、水酸化カリウム、ま
たは硫化カリウム等を賦与後、非酸化性雰囲気中で 600
〜1100℃に加熱し炭化とともに賦活することによっても
この吸着剤を製造することができる。この場合の非酸化
性雰囲気とは、例えば、窒素、アルゴン、ヘリウム等の
不活性ガス雰囲気である。また、炭化工程での最高処理
温度に到達するまでの昇温速度は、好ましくは、5〜 30
0℃/hr、より好ましくは20〜100 ℃/hrである。ま
た、賦活時の雰囲気は、例えば、酸素、二酸化炭素、水
蒸気もしくはこれらの二種類以上の混合ガス、あるい
は、これらのガスを含んだ窒素、アルゴン、ヘリウム等
の雰囲気である。
In order to provide the cylindrical pellet-shaped molded body obtained as described above with the adsorption performance as a carbon-based adsorbent, these are usually used as they are, or after carbonization in a non-oxidizing atmosphere, a carbide is formed. The weight reduction rate is 5 to 50
600 to 11 with steam or carbon dioxide within the range of about 10%
Perform activation treatment at 00 ° C, or add zinc chloride, phosphoric acid, potassium hydroxide, potassium sulfide, etc. to the above-mentioned cylindrical pellet-shaped molded product, and then 600 ℃ in a non-oxidizing atmosphere.
This adsorbent can also be produced by heating to ˜1100 ° C. and activation along with carbonization. The non-oxidizing atmosphere in this case is, for example, an inert gas atmosphere such as nitrogen, argon or helium. Further, the temperature rising rate until reaching the maximum processing temperature in the carbonization step is preferably 5 to 30.
It is 0 ° C./hr, more preferably 20 to 100 ° C./hr. The atmosphere at the time of activation is, for example, oxygen, carbon dioxide, water vapor, or a mixed gas of two or more kinds of these, or an atmosphere containing nitrogen, argon, helium, or the like containing these gases.

【0017】炭化並びに賦活処理の温度は好ましくは 7
00〜 950℃、最も好ましくは 750〜900℃である。炭化
並びに賦活処理の温度が1100℃より高い場合には、炭化
ペレット内部の吸着に寄与する細孔が熱収縮して減少す
るため吸着能力が低下し好ましくない。また 600℃より
低い場合には炭化並びに賦活が十分ではなく、吸着に関
与する細孔が未発達のために、吸着能力が低く好ましく
ない。
The temperature of carbonization and activation treatment is preferably 7
The temperature is 00 to 950 ° C, most preferably 750 to 900 ° C. When the temperature of the carbonization and activation treatment is higher than 1100 ° C., the pores that contribute to the adsorption inside the carbonized pellets are thermally shrunk and reduced, so that the adsorption capacity decreases, which is not preferable. If the temperature is lower than 600 ° C, carbonization and activation are not sufficient, and the adsorption capacity is low because the pores involved in adsorption are undeveloped.

【0018】本発明により得られる円筒ペレット状炭素
系吸着剤の外径d1は、1.0 〜10mm、好ましくは2.0 〜8.
0mm である。外径d1が 1.0mmより小さいと円筒ペレット
の成形が困難になるとともに、ペレット外径が小さいの
で中空に成形して中心部を空隙にした効果の寄与が小さ
くなる。また、圧力損失が増大し、処理流体の流速を大
きく採ることができなくなり好ましくない。外径d1が10
mmより大きいとペレット間の空隙が増大し、充填密度が
減少して吸着効率が低下し好ましくない。また、本発明
により得られる円筒ペレット状炭素系吸着剤の内径d
2は、0.1d1 〜0.5d1 、好ましくは0.2d1 〜0.4d1 であ
る。内径d2が、0.1d1 より小さいと、円筒状に成形する
のが困難になるとともにペレット中央部での流体の流れ
が遅くなり好ましくない。内径d2が、0.5d1 より大きい
と、円筒部の肉厚が薄くなり強度が低下したり、充填密
度が減少し、充分な吸着容量が確保できなくなり好まし
くない。また、円筒ペレット状炭素系吸着剤の長さは、
2.0 〜15mm、好ましくは3.0 〜10mm、最も好ましくは3.
0 〜 8mmであり、長さが2.0mm より短いと充填時の圧力
損失が高くなり、また、使用中に粉化しやすくなり好ま
しくない。長さが15mmより長いと充填密度が減少し、吸
着効率が低下してしまい好ましくない。
The outer diameter d 1 of the cylindrical pellet-shaped carbonaceous adsorbent obtained by the present invention is 1.0 to 10 mm, preferably 2.0 to 8.
It is 0 mm. If the outer diameter d 1 is smaller than 1.0 mm, it becomes difficult to form a cylindrical pellet, and since the outer diameter of the pellet is small, the effect of forming the hollow portion at the center to form a void becomes small. In addition, the pressure loss increases, and the flow velocity of the processing fluid cannot be increased, which is not preferable. Outer diameter d 1 is 10
If it is larger than mm, the voids between pellets increase, the packing density decreases, and the adsorption efficiency decreases, which is not preferable. Further, the inner diameter d of the cylindrical pellet-shaped carbon-based adsorbent obtained by the present invention
2 is 0.1d 1 to 0.5d 1 , preferably 0.2d 1 to 0.4d 1 . If the inner diameter d 2 is smaller than 0.1 d 1 , it becomes difficult to form a cylindrical shape and the flow of fluid at the center of the pellet becomes slow, which is not preferable. If the inner diameter d 2 is larger than 0.5 d 1 , the wall thickness of the cylindrical portion is thin and the strength is reduced, and the packing density is reduced, which is not preferable because sufficient adsorption capacity cannot be secured. The length of the cylindrical pellet-shaped carbonaceous adsorbent is
2.0-15 mm, preferably 3.0-10 mm, most preferably 3.
It is 0 to 8 mm, and if the length is shorter than 2.0 mm, the pressure loss at the time of filling becomes high, and powdering easily occurs during use, which is not preferable. If the length is longer than 15 mm, the packing density decreases, and the adsorption efficiency decreases, which is not preferable.

【0019】本発明により得られる円筒ペレット状炭素
系吸着剤の粒子嵩密度は、0.40〜1.2 g/cc、好ましくは
0.60〜1.1 g/ccである。粒子嵩密度が0.40g/ccより小さ
い場合は、粒子内の空隙率が大きくなり、単位体積当た
りの吸着容量が低下し、また、ペレット強度も低下する
ため好ましくない。また、粒子嵩密度が1.2 g/ccより大
きい場合は、粒子内の連通気孔率が小さくなりすぎ、粒
子内部の被吸着物質の物質移動速度が遅くなり、吸着能
力が低下するので好ましくない。また水銀圧入法により
測定できる細孔径0.01〜10μm の範囲の細孔容積は0.10
〜1.0cc/g 、好ましくは0.20〜0.80cc/g、最も好ましく
は0.30〜0.60cc/gの範囲である。細孔径0.01〜10μm の
範囲の細孔容積が0.10cc/gより小さいと被吸着物質を含
む流体の粒子内部までの拡散速度が遅くなり、吸着能力
が低下するので好ましくない。また、細孔径0.01〜10μ
m の範囲の細孔容積が1.0cc/g より大きいと被吸着物質
を含む流体の粒子内部での滞留時間が短くなり吸着能力
の低下を来し、ペレットの嵩密度および強度も低下する
ので好ましくない。窒素吸着法により測定できる細孔直
径 100Å以下の範囲の細孔容積は0.20〜1.2cc/g 、好ま
しくは0.30〜1.2cc/g 、最も好ましくは0.40〜1.2cc/g
の範囲である。 100Å以下の細孔直径の細孔容積が0.20
cc/gより小さいと吸着容量が低く、また、1.2cc/g より
大きいと細孔直径の大きい細孔が増加し、ペレットの嵩
密度および強度が低下するので好ましくない。また、該
炭素系吸着剤の比表面積は通常 100〜1800m2/g、好まし
くは 500〜1800m2/gの範囲にある。
The particle bulk density of the cylindrical pellet-shaped carbon-based adsorbent obtained by the present invention is 0.40 to 1.2 g / cc, preferably
It is 0.60 to 1.1 g / cc. If the particle bulk density is less than 0.40 g / cc, the porosity in the particles increases, the adsorption capacity per unit volume decreases, and the pellet strength also decreases, which is not preferable. On the other hand, if the particle bulk density is larger than 1.2 g / cc, the open pore ratio in the particles becomes too small, the mass transfer rate of the substance to be adsorbed inside the particles becomes slow, and the adsorbing ability decreases, which is not preferable. The pore volume in the range of 0.01 to 10 μm, which can be measured by mercury porosimetry, is 0.10.
˜1.0 cc / g, preferably 0.20 to 0.80 cc / g, most preferably 0.30 to 0.60 cc / g. When the pore volume in the pore diameter range of 0.01 to 10 μm is smaller than 0.10 cc / g, the diffusion speed of the fluid containing the substance to be adsorbed into the particles becomes slow, and the adsorption capacity is lowered, which is not preferable. Also, the pore size is 0.01-10μ
When the pore volume in the range of m is larger than 1.0 cc / g, the residence time of the fluid containing the substance to be adsorbed inside the particles is shortened, the adsorption capacity is lowered, and the bulk density and strength of the pellet are also lowered, which is preferable. Absent. Pore diameter measurable by nitrogen adsorption method 100 Å or less pore volume in the range of 0.20 ~ 1.2cc / g, preferably 0.30 ~ 1.2cc / g, most preferably 0.40 ~ 1.2cc / g
Range. Pore volume of 100 Å or less is 0.20
If it is less than cc / g, the adsorption capacity is low, and if it is more than 1.2 cc / g, the number of pores having a large pore diameter increases, and the bulk density and strength of the pellet decrease, which is not preferable. The specific surface area of the carbon-based adsorbent is usually 100 to 1800 m 2 / g, preferably 500 to 1800 m 2 / g.

【0020】本発明の円筒ペレット状炭化系吸着剤は、
その粒子密度および外径、内径、長さ等の形状により吸
着装置の充填塔やカラムに充填した時の充填密度が変化
するが、充填密度の範囲は、好ましくは0.30〜0.70g/c
c、最も好ましくは0.40〜0.65g/ccである。充填密度が
0.30g/ccより小さい場合は、ペレット間の空隙が大きく
なり過ぎ、吸着効率が低下してしまうし、0.70g/ccより
大きい場合は、圧力損失の増大や被吸着物質の物質移動
速度の低下により吸脱着操作に時間を要するようになり
好ましくない。
The cylindrical pelletized carbonized adsorbent of the present invention comprises:
The packing density when packed in a packed column or column of the adsorption device changes depending on the particle density and outer diameter, inner diameter, shape such as length, but the packing density range is preferably 0.30 to 0.70 g / c.
c, most preferably 0.40 to 0.65 g / cc. Packing density
If it is less than 0.30 g / cc, the voids between the pellets will be too large and the adsorption efficiency will decrease.If it is greater than 0.70 g / cc, the pressure loss will increase and the mass transfer rate of the adsorbed substance will decrease. Therefore, the adsorption / desorption operation requires a long time, which is not preferable.

【0021】[0021]

【発明の効果】上記により製造された円筒ペレット状炭
素系吸着剤は、その形状が円筒であるため、単位充填層
容積当たりの吸着剤粒子の外表面積が大きくなり、ま
た、吸着剤外周および中心部の空隙の両方の吸着剤外表
面から吸着剤内部への被吸着物質を含んだ流体の物質移
動がおこるので、被吸着物質の吸着剤外表面から内部吸
着サイトに至る拡散距離が短くなり、従来の粒状炭素系
吸着剤に比較し、優れた吸着性能を発現することができ
る。
Since the cylindrical pellet-shaped carbonaceous adsorbent produced as described above has a cylindrical shape, the outer surface area of the adsorbent particles per unit packed bed volume becomes large, and the adsorbent outer periphery and center Since the mass transfer of the fluid containing the substance to be adsorbed from the outer surface of both adsorbents in the void of the part to the inside of the adsorbent occurs, the diffusion distance from the outer surface of the adsorbent of the substance to be adsorbed to the internal adsorption site becomes short, As compared with the conventional granular carbon-based adsorbent, it can exhibit excellent adsorption performance.

【0022】本発明の円筒ペレット状炭素系吸着剤は、
吸着剤外表面から内部吸着サイトに至る被吸着物質の拡
散距離を短縮し、通常の粒状ペレットに比較して吸脱着
操作を迅速に行えること、および、圧力損失などによる
装置の能力低下を来すことなく単位充填層容積当たりの
吸着剤粒子の外表面積を増大させることにより被吸着物
質との接触機会を増大させ吸着能力を高めるなどの優れ
た効果を発揮できるため、工場や発電所などで大流量で
処理される硫黄酸化物や窒素酸化物の吸着除去や、自動
車トンネル内や、地下駐車場などの局所的に窒素酸化物
が排出される場所での窒素酸化物の吸着除去等の大気浄
化システムに有効に使用できる。また、酸素と窒素の空
気分離のほか、ブタン異性体、ブテン異性体等の炭化水
素異性体混合物、エチレンとプロピレンの混合物から特
定ガス成分を分離するなどの、種々の混合ガスの分離、
回収にも使用することが出来る。また、本発明の円筒ペ
レット状炭素系吸着剤を液相吸着に用いると、その外表
面積が大きいために通水抵抗も小さく、外表面から内部
吸着サイトに至る被吸着物質の拡散距離の短縮により被
吸着物質の吸脱着速度が速いため、高速処理が可能とな
り、吸着装置のコンパクト化ができる。そのために、例
えば、上水中の残留塩素、トリハロメタンの除去、生活
排水や工場排水の浄化、化学物質の精製等に有効に利用
することができる。
The cylindrical pellet-shaped carbonaceous adsorbent of the present invention is
The diffusion distance of the adsorbed substance from the outer surface of the adsorbent to the internal adsorption site can be shortened, the adsorption / desorption operation can be performed more quickly than with ordinary granular pellets, and the equipment capacity will decrease due to pressure loss. Without increasing the outer surface area of the adsorbent particles per unit packed bed volume without increasing the chance of contact with the adsorbed substance and enhancing the adsorption capacity, it is possible to achieve great effects in factories and power plants. Atmospheric purification such as adsorption and removal of sulfur oxides and nitrogen oxides that are processed at a flow rate, and adsorption and removal of nitrogen oxides in automobile tunnels and places where nitrogen oxides are locally discharged such as underground parking lots. It can be used effectively in the system. Further, in addition to air separation of oxygen and nitrogen, butane isomers, hydrocarbon isomer mixtures such as butene isomers, separation of specific gas components from a mixture of ethylene and propylene, separation of various mixed gases,
It can also be used for recovery. Further, when the cylindrical pellet-like carbonaceous adsorbent of the present invention is used for liquid phase adsorption, the water resistance is small due to its large outer surface area, and the diffusion distance of the adsorbed substance from the outer surface to the inner adsorption site is shortened. Since the adsorption / desorption speed of the substance to be adsorbed is high, high-speed processing is possible and the adsorption device can be made compact. Therefore, for example, it can be effectively used for removal of residual chlorine and trihalomethane in tap water, purification of domestic wastewater and factory wastewater, purification of chemical substances, and the like.

【0023】(測定評価法)次に、本発明に用いた測定
評価方法について以下に示す。 (1) 細孔容積、細孔径分布の測定 本発明の炭素系吸着剤の細孔容積及び細孔径分布は、細
孔直径0.01〜1.0 μmの範囲の細孔については、ポロシ
メーターによる水銀圧入法(島津製作所製、ポアサイザ
ー9310)により測定した。また、細孔直径100 Å以下の
細孔については、全自動ガス吸着測定装置(日本ベル株
式会社、ベルソープ28)を用いて窒素吸着法により測定
を行い、細孔直径20〜 100Åの範囲の細孔は77K に於け
る窒素ガスの吸着等温線を D-H解析することにより求
め、細孔直径20Å以下の細孔容積は同様の吸着等温線の
t-plotからMP法を用いて解析することにより求めた。 (2) ペレット強度測定 造粒品および賦活品ペレットの強度は木屋式硬度計にて
測定した。強度測定では、ペレット破断時の荷重を測定
し、下式により引張強度を算出した。 引張強度:σ[kg/cm2]= 2P/πdl P:荷重 [kg] d:ペレット外径[cm] l:ペレット長 [cm] (3) 吸着速度測定 炭素系吸着剤のガス吸着特性を評価するため、図1に示
す吸着特性測定装置により各測定ガスの吸着速度を測定
した。
(Measurement and Evaluation Method) Next, the measurement and evaluation method used in the present invention will be described below. (1) Pore volume, measurement of pore size distribution Pore volume and pore size distribution of the carbon-based adsorbent of the present invention, for pores in the range of pore diameter 0.01 ~ 1.0 (mu) m, mercury porosimetry method by porosimeter ( It was measured by Shimadzu's Poisizer 9310). For pores with a diameter of 100 Å or less, a fully automatic gas adsorption measuring device (Bellsoap 28, Nippon Bell Co., Ltd.) was used to measure the nitrogen adsorption method. The pores were obtained by DH analysis of the adsorption isotherm of nitrogen gas at 77K, and the pore volume with a pore diameter of 20Å or less is similar to that of the adsorption isotherm.
It was obtained by analysis from t-plot using the MP method. (2) Pellet strength measurement The strength of granulated and activated pellets was measured with a Kiya hardness meter. In the strength measurement, the load when the pellet was broken was measured, and the tensile strength was calculated by the following formula. Tensile strength: σ [kg / cm 2 ] = 2P / πdl P: Load [kg] d: Pellet outer diameter [cm] l: Pellet length [cm] (3) Adsorption rate measurement Measure the gas adsorption characteristics of the carbon-based adsorbent. For evaluation, the adsorption rate of each measurement gas was measured by the adsorption characteristic measuring device shown in FIG.

【図1】同図において、試料室(4)(200ml)に3gの試料を
入れ、バルブ(11)、(8) を閉じ、バルブ(2) 、(3) を開
けて30分間脱気した後バルブ(2) 、(3) を閉じ、次いで
バルブ(11)を開け、調製室(5)(200ml)内に所定のガスを
導入し、設定圧(6.00kgf/cm2・G)になったところでバル
ブ(11)を閉じ、バルブ(3) を開け所定時間に於ける内部
圧力の経時変化を測定し、吸着量に換算して、該ガスの
吸着速度を求めた。 (4) 圧力スイング吸着(PSA )法による空気分離能測定 炭素系吸着剤のPSA 装置による空気中の酸素と窒素の分
離能を評価するため、図2に示すPSA 装置にて空気分離
特性を評価した。
[Fig. 1] In the figure, 3 g of sample was put into the sample chamber (4) (200 ml), valves (11) and (8) were closed, valves (2) and (3) were opened, and degassing was performed for 30 minutes. Close the rear valves (2) and (3), then open the valve (11), introduce a specified gas into the preparation chamber (5) (200 ml), and set the pressure (6.00 kgf / cm 2 G). By the way, the valve (11) was closed, the valve (3) was opened, and the change with time of the internal pressure for a predetermined time was measured, converted into an adsorption amount, and the adsorption rate of the gas was obtained. (4) Measurement of air separation ability by pressure swing adsorption (PSA) method In order to evaluate the separation ability of oxygen and nitrogen in the air by the PSA equipment of carbon-based adsorbent, the air separation characteristics are evaluated by the PSA equipment shown in Fig. 2. did.

【図2】空気圧縮機(1’)により供給された原料空気
は、除湿器(2’)で除湿された後、自動弁を通じて吸
着剤を充填した吸着塔(3’)( 内径50mmφ×800mmL)
又は(3a’)に交互に吸着塔圧力が7kgf/cm2・G とな
るように供給される。各吸着塔の吸着工程では、圧縮空
気中の酸素が吸着され、吸着塔出口からは窒素富化ガス
が得られる。一塔が吸着工程にあるとき他塔は再生工程
となる。再生工程の操作は、大気圧開放により行い、吸
着された酸素が脱着され、吸着剤は再生される。一塔の
吸着工程および他塔の再生工程終了後、直ちに均圧工程
にはいり、均圧工程終了後直ちに吸着工程だった吸着塔
は再生工程へ、再生工程だった吸着塔は吸着工程に自動
弁操作により切り替わる。このようにして、吸着−均圧
(減圧)−再生−均圧(昇圧)の工程を繰り返すことに
より連続的に窒素ガスを取り出すことが出来る。所定量
の空気を供給した時の吸着−均圧−再生−均圧の最適サ
イクルを選択し、所定の製品ガス濃度(N2濃度:99.9%)
における製品ガス取り出し量を測定し、以下に示す式に
より収率を計算し、空気分離能を評価した。 (5) NOX 吸着除去能測定 図3に示すNOx 吸着除去能力測定装置にて炭素系吸着剤
のNOX 吸着除去能を評価した。
[Fig. 2] The raw material air supplied by the air compressor (1 ') is dehumidified by the dehumidifier (2'), and then the adsorption tower (3 ') (inner diameter 50 mmφ x 800 mmL) filled with an adsorbent through an automatic valve. )
Alternatively, the adsorption tower pressure is alternately supplied to (3a ′) so that the adsorption tower pressure becomes 7 kgf / cm 2 · G. In the adsorption step of each adsorption tower, oxygen in compressed air is adsorbed, and a nitrogen-rich gas is obtained from the outlet of the adsorption tower. When one tower is in the adsorption process, the other tower is in the regeneration process. The operation of the regeneration step is performed by releasing the atmospheric pressure, the adsorbed oxygen is desorbed, and the adsorbent is regenerated. Immediately after the adsorption process of one tower and the regeneration process of the other tower, the pressure equalization process is entered immediately, and immediately after the pressure equalization process is completed, the adsorption tower that was the adsorption process is automatically valved to the regeneration process, and the adsorption tower that was the regeneration process is automatically valved to the adsorption process. Switch by operation. In this way, nitrogen gas can be continuously taken out by repeating the steps of adsorption-pressure equalization (decompression) -regeneration-pressure equalization (pressure increase). Adsorption when supplying a predetermined amount of air - pressure equalization - reproduction - selects the best cycle of pressure equalization, predetermined product gas concentration (N 2 concentration: 99.9%)
The amount of product gas taken out in was measured, the yield was calculated by the following formula, and the air separation ability was evaluated. (5) was evaluated NO X adsorbing capability of removing carbonaceous adsorbent at NO X adsorption removal ability Measurement Figure 3 NO x adsorption removal ability measurement apparatus shown in.

【図3】30ccの試料を充填した吸着塔(7’’)(200m
l) を、温度調節器(8’’)にて25℃に保持した状態
で、NO(10ppm)/N2ガス(1'')(1kgf/cm2) を空間速度:SV
=10000h-1で 2時間流通させて試料に吸着させ吸着工程
とする。その後、吸着塔(7’’)を温度調節器
(8’’)にて160 ℃に調節し、NOガス(2’’)をSV
=10000h-1で 1時間流通させ、試料を脱着再生し、再生
工程とする。この操作を1サイクルとして、供給ガスの
相対湿度を0%、30% 、60% と変化させ、各3サイクル合
計9サイクルの評価を行う。この吸着工程時における吸
着塔出口の取り出しガスのNOx 濃度をNOx 分析計(9'')
で測定する。供給ガスのNOx 濃度と取り出しガスのNOx
濃度からNOx 吸着除去能を算出し、9サイクルの平均値
を総合的なNOx 吸着除去能として評価した。 (6) 圧力損失測定法 圧力損失は、吸着剤を充填した吸着塔に空気を送り込ん
だ際に生じる塔上部、下部の圧力差を測定し、充填層単
位高さ当たりの圧力損失を計算した。具体的には、内径
50mmφ×800mmLの吸着塔に吸着剤を充填し、25℃、空塔
速度1m/sec(SV=4500h -1) 時の塔上部、下部( 間隔200m
m)の圧力差を測定することにより、圧力損失を求めた。 (7) トリハロメタン吸着能測定法 クロロホルム400ppb、ブロモジクロロメタン200ppb、ク
ロロジブロモメタン800ppb、ブロモホルム4000ppb のメ
タノール水標準液800mlを1000m lの三角フラスコに入
れ、試料を1.0g添加し密栓して、25℃の恒温振盪器中で
15分間振盪した後、三角フラスコ中で気−液平衡が成り
立っていると仮定して、30分間後における三角フラスコ
中の気相濃度をガスクロマトグラフィーで正確に測定
し、30分間後における吸着剤のトリハロメタン吸着能を
求めた。以下、実施例を挙げて具体的に説明する。
[Fig.3] Adsorption tower (7 '') (200m) filled with 30cc of sample
l () is kept at 25 ° C by the temperature controller (8 ''), NO (10ppm) / N 2 gas (1 '') (1kgf / cm 2 ) is added to the space velocity: SV
= 10000h -1 Flow for 2 hours to adsorb the sample to the adsorption process. After that, the adsorption tower (7 '') was adjusted to 160 ° C by the temperature controller (8 ''), and NO gas (2 '') was added to the SV.
= 10000h -1 for 1 hour, and then the sample is desorbed and regenerated for the regeneration process. With this operation as one cycle, the relative humidity of the supply gas is changed to 0%, 30%, and 60%, and each three cycles are evaluated for a total of 9 cycles. The NOx concentration of the gas taken out at the outlet of the adsorption tower during this adsorption step was measured by the NOx analyzer (9``).
To measure. NOx concentration in supply gas and NOx in extraction gas
The NOx adsorption / removal ability was calculated from the concentration, and the average value of 9 cycles was evaluated as the comprehensive NOx adsorption / removal ability. (6) Pressure loss measurement method For pressure loss, the pressure difference per unit height of the packed bed was calculated by measuring the pressure difference between the upper part and the lower part of the tower, which occurs when air is sent to the adsorption tower filled with the adsorbent. Specifically, inner diameter
A 50 mmφ × 800 mmL adsorption tower was filled with an adsorbent, and the tower top and bottom (space 200 m) at 25 ° C and a superficial velocity of 1 m / sec (SV = 4500h -1 ).
The pressure loss was obtained by measuring the pressure difference in m). (7) Method for measuring trihalomethane adsorption capacity Chloroform 400 ppb, bromodichloromethane 200 ppb, chlorodibromomethane 800 ppb, bromoform 4000 ppb methanol water standard solution 800 ml was placed in a 1000 ml Erlenmeyer flask, 1.0 g of the sample was added, and the sample was tightly capped, and then at 25 ° C. In a constant temperature shaker
After shaking for 15 minutes, assuming that gas-liquid equilibrium was established in the Erlenmeyer flask, the gas phase concentration in the Erlenmeyer flask after 30 minutes was accurately measured by gas chromatography, and the adsorbent after 30 minutes was measured. The trihalomethane adsorption capacity of was determined. Hereinafter, a specific description will be given with reference to examples.

【0024】[0024]

【実施例】【Example】

実施例1 ヤシ殻炭粉末(キャタラー工業株式会社製、キントール
FY−1)100 重量部とピッチ、重合度 500、けん化度
99% のポリビニルアルコール(以下PVA と略す。) を所
定量計量し、さらに水10重量部を加えて、ニーダー(不
二パウダル株式会社製、KDHJ-20 型)を用いて室温で15
分間混和し、その後、これらを横型押出し造粒機(不二
パウダル株式会社製、EXDF-100型)にて所定の孔形状を
持つダイスノズルを用い、造粒し、その後、90℃で16時
間乾燥し、表 1に示すような外径3.0mmφ、内径0.20、
1.0 、1.5 、 2.4mmφの 8種類の円筒ペレット状成形体
を得た。また、比較例として外径 3.0mmφの円柱ペレッ
ト粒状成形体 1種類を得た。
Example 1 100 parts by weight of coconut shell charcoal powder (Kintall FY-1 manufactured by Cataler Industry Co., Ltd.) and pitch, degree of polymerization 500, degree of saponification
Measure 99% polyvinyl alcohol (hereinafter abbreviated as PVA) in a specified amount, add 10 parts by weight of water, and use a kneader (KDHJ-20 type manufactured by Fuji Paudal Co., Ltd.) at room temperature for 15
Mix for minutes, then granulate them with a horizontal extrusion granulator (Fuji Paudal Co., Ltd., EXDF-100 type) using a die nozzle with a predetermined hole shape, then at 90 ° C for 16 hours Dried, outer diameter 3.0 mmφ, inner diameter 0.20, as shown in Table 1,
Eight types of cylindrical pellet-shaped compacts of 1.0, 1.5 and 2.4 mmφ were obtained. In addition, as a comparative example, one type of cylindrical pellet granular molding having an outer diameter of 3.0 mmφ was obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】試料1〜8は、所定のサイズの中空状とな
るように成形した円筒状ペレットであり、試料9は、比
較のため円柱状に成形したペレットである。但し、試料
1は、バインダー量が少なすぎるために造粒不能であ
り、試料2では、ダイスより混練物を押出すことは可能
であったが、バインダー不足のためペレットの形状はあ
まり良好ではなかった。試料8は、円筒ペレットの内径
が本発明で規定する範囲外の大きさであり、円筒部の肉
厚が薄く、ペレットの強度が極端に低く実用に耐えない
ものであった。造粒が可能であった円筒ペレット状成形
体試料2〜8と円柱ペレット状成形体試料9について、
内径70mmφの円筒型電気炉を用いて窒素雰囲気下、昇温
速度50℃/Hで 850℃まで昇温し、次いでこの温度で180
分間水蒸気賦活(賦活ガス組成:N2/H2O=1/1 流量:1.
5Nl/min )した。得られた炭化品の物性値および特性値
を表2に示す。
Samples 1 to 8 are cylindrical pellets molded to have a predetermined size of hollow shape, and sample 9 is a cylindrical pellet molded for comparison. However, sample 1 could not be granulated because the amount of binder was too small, and sample 2 was able to extrude the kneaded product from the die, but the pellet shape was not very good due to lack of binder. It was In sample 8, the inner diameter of the cylindrical pellet was out of the range specified by the present invention, the wall thickness of the cylindrical portion was thin, and the strength of the pellet was extremely low and it could not be put to practical use. Regarding the cylindrical pellet-shaped molded body samples 2 to 8 and the cylindrical pellet-shaped molded body sample 9 which were capable of granulation,
Using a cylindrical electric furnace with an inner diameter of 70 mmφ, raise the temperature to 850 ° C at a heating rate of 50 ° C / H in a nitrogen atmosphere and then 180
Minute steam activation (Activating gas composition: N 2 / H 2 O = 1/1 Flow rate: 1.
5 Nl / min). Table 2 shows the physical properties and characteristic values of the obtained carbonized product.

【0027】[0027]

【表2】 [Table 2]

【0028】表1および表2からわかるように、バイン
ダー成分含有量の少ない試料2においては、造粒品はP
VAのバインダ−効果で強度を有しているが、炭化品は
PVAが熱分解してしまい、バインダ−成分の大部分が
無くなるため強度が低下し実用に耐えないことが判明し
た。図1の吸着特性測定装置を用い、エタンガスを用い
て下記に示す式によって吸着速度指数を評価したとこ
ろ、円筒状の試料2〜6は、エタンガスの平衡吸着量が
円柱状の試料9に比較して、ほぼ同程度の値を示した
が、吸着速度指数は、円柱状の試料9に比較し大きな値
を示し、ペレットの中央部に空隙を設けることにより、
吸着特性が向上していることが判明した。しかし、内径
が本発明で規定する範囲より小さい試料7は、エタンガ
スの平衡吸着量、吸着速度指数共に円柱状の試料9と大
差はなかった。また、内径が本発明で規定する範囲より
大きい試料8は、円筒部の肉厚が薄くなり強度が低下
し、充填密度も減少し、エタンガスの吸着量も小さく吸
着性能が低く、好ましくないことがわかった。
As can be seen from Tables 1 and 2, in Sample 2 having a small binder component content, the granulated product was P
Although it has strength due to the binder effect of VA, it was found that PVA of the carbonized product was thermally decomposed and most of the binder component was lost, so that the strength decreased and it could not be put to practical use. When the adsorption rate index was evaluated by the following formula using ethane gas using the adsorption characteristic measuring apparatus of FIG. 1, cylindrical samples 2 to 6 were compared with sample 9 in which the equilibrium adsorption amount of ethane gas was columnar. Although the values were almost the same, the adsorption rate index was larger than that of the cylindrical sample 9, and by providing a void in the center of the pellet,
It was found that the adsorption characteristics were improved. However, the sample 7 having an inner diameter smaller than the range specified in the present invention was not much different from the columnar sample 9 in both the equilibrium adsorption amount of ethane gas and the adsorption rate index. Further, Sample 8 having an inner diameter larger than the range specified in the present invention is not preferable because the wall thickness of the cylindrical portion is reduced, the strength is reduced, the packing density is reduced, the adsorption amount of ethane gas is small, and the adsorption performance is low. all right.

【0029】実施例2 フェノ−ル系樹脂粉末(鐘紡株式会社製、ベルパ−ル:
平均粒子径20μm )100 重量部、コールタール(JIS
規格、K2439-1979、精製2号)20重量部、液状メラミン
樹脂( 住友化学製、スミテックスレジンM3、固形分60%
)10重量部、重合度1700、けん化度99% のPVA20重
量部、澱粉10重量部、および水10重量部とともにニ−ダ
−で混和し、その後にこれらを横型押出し造粒機にて所
定の孔形状を持つダイスノズルを用い、造粒し、その
後、90℃で16時間乾燥し、各種類の円筒ペレット状成形
体を得た。これらを実施例1と同様に窒素雰囲気下、昇
温速度50℃/Hで 850℃まで昇温し、次いでこの温度で18
0 分間水蒸気賦活(賦活ガス組成:N2/H2O=1/1 流量:
1.7Nl/min )し、12種類の円筒ペレット状炭素系吸着剤
を得た。得られた炭化品のペレットサイズと成形時の作
業性および特性値を表3に示す。尚本実施例の炭化品ペ
レットの平均長さは、いずれの試料においても6.0mm で
あった。
Example 2 Phenol-based resin powder (Kanebo Co., Ltd., Bellpar:
100 parts by weight of average particle diameter 20 μm, coal tar (JIS
Standard, K2439-1979, Purification No. 2) 20 parts by weight, liquid melamine resin (Sumitomo Chemical, Sumitex Resin M3, solid content 60%
) 10 parts by weight, 20 parts by weight of PVA having a degree of polymerization of 1700, a saponification degree of 99%, 10 parts by weight of starch, and 10 parts by weight of water are mixed in a kneader, and then these are mixed by a horizontal extrusion granulator at a predetermined rate. Granulation was performed using a die nozzle having a hole shape and then dried at 90 ° C for 16 hours to obtain various types of cylindrical pellet-shaped compacts. These were heated to 850 ° C. at a heating rate of 50 ° C./H in a nitrogen atmosphere in the same manner as in Example 1, and then at this temperature for 18
Steam activation for 0 minutes (Activating gas composition: N 2 / H 2 O = 1/1 Flow rate:
1.7 Nl / min) to obtain 12 kinds of cylindrical pellet-like carbonaceous adsorbent. Table 3 shows the pellet size of the obtained carbonized product, workability during molding, and characteristic values. The average length of the carbonized product pellets in this example was 6.0 mm in all the samples.

【0030】[0030]

【表3】 [Table 3]

【0031】表3において、外径d1が本発明の範囲より
小さい試料10および11は、造粒時の作業性が極端に悪
く、強度も小さく、また、圧力損失も大きく、実用的で
はない。外径d1が本発明の範囲より大きい試料20、21
は、造粒時の作業性は、比較的良好であるが、充填層内
では、ペレット間の空隙が大きくなり、充填密度が小さ
く、充填層の単位容積当たりの吸着効率が悪くなり NOx
除去率は低い値を示す。内径d2が本発明の範囲より小さ
い試料13および17は、ペレット中央部の空隙が狭いため
に、中空にした効果は少なく NOx除去率は低くなる。内
径d2が本発明の範囲より大きい試料15および19は、中央
部の空隙が大きいため、円筒部の肉厚が薄くなり、強度
が低下し、充填密度も低く、単位充填層容積当たりでの
吸着性能が劣る。
In Table 3, Samples 10 and 11 having an outer diameter d 1 smaller than the range of the present invention are not practical because they have extremely poor workability during granulation, low strength, and large pressure loss. . Samples 20 and 21 having an outer diameter d 1 larger than the range of the present invention
The workability during granulation is relatively good, but in the packed bed, the voids between the pellets are large, the packing density is small, and the adsorption efficiency per unit volume of the packed bed is poor and NOx
The removal rate shows a low value. Samples 13 and 17 having an inner diameter d 2 smaller than the range of the present invention have a small void in the central portion of the pellet, and therefore the effect of hollowing is small and the NOx removal rate is low. Samples 15 and 19 having an inner diameter d 2 larger than the range of the present invention have large voids in the central portion, so the wall thickness of the cylindrical portion becomes thin, the strength decreases, the packing density is low, and Poor adsorption performance.

【0032】実施例3 実施例2の試料14と同様の処方で、混和し、成形、乾燥
した後に、昇温速度50℃/Hで 500℃、 700℃、 850℃、
950℃、1200℃まで昇温し炭化させ、実施例2と同様に
して、各温度で 180分間水蒸気賦活した。得られた炭化
品の特性値を表4に示す。
Example 3 A mixture having the same formulation as the sample 14 of Example 2 was mixed, molded and dried, and then heated at a heating rate of 50 ° C./H to 500 ° C., 700 ° C., 850 ° C.
The temperature was raised to 950 ° C and 1200 ° C for carbonization, and steam activation was performed for 180 minutes at each temperature in the same manner as in Example 2. The characteristic values of the obtained carbonized product are shown in Table 4.

【0033】[0033]

【表4】 [Table 4]

【0034】炭化賦活温度が 500℃の試料22は、比表面
積も小さく細孔もほとんど発達していない。温度が高く
なるにつれて比表面積が大きくなり、炭化賦活温度950
℃の試料24で最大となった。しかし、炭化賦活温度が12
00℃である試料25は、温度が高すぎるため比表面積、細
孔容積ともに小さくなった。
The sample 22 having a carbonization activation temperature of 500 ° C. has a small specific surface area and almost no pores are developed. As the temperature increases, the specific surface area increases, and the carbonization activation temperature 950
It became the maximum in sample 24 at ℃. However, the carbonization activation temperature is 12
Since the temperature of Sample 25 at 00 ° C was too high, both the specific surface area and the pore volume became small.

【0035】実施例4 実施例2と同様にしてフェノ−ル系樹脂粉末(鐘紡株式
会社製、ベルパ−ルR800:平均粒子径20μm )100 重量
部、コールタール(JIS規格、K2439−197
9、精製2号)23重量部、液状メラミン樹脂( 住友化学
製、スミテックスレジンM3、固形分60% )10重量部、重
合度1700、けん化度99% のPVA20重量部、澱粉17重量
部、および水 8重量部とともにニ−ダ−で混和し、その
後、これらを横型押出し造粒機にて所定の孔形状を持つ
ダイスノズルを用いて造粒し、乾燥させ、外径の同じ円
筒ペレット状成形体および円柱ペレット状成形体を得
た。これらを実施例1と同様に電気炉を用いて窒素雰囲
気下、昇温速度30℃/Hで 800℃まで昇温し、該温度で 1
時間保持した後冷却し、外径3.0mm 、内径1.0mm の円筒
ペレット状炭素系吸着剤と外径3.0mm の円柱ペレット状
炭素系吸着剤を得た。得られた試料それぞれについて図
1に示す吸着特性測定装置を用い、酸素及び窒素の吸着
速度を測定した。酸素と窒素の吸着特性を示す指標とし
て、吸着開始1分後の吸着量を窒素分はQ1 、酸素分は
2 とし、吸着量差ΔQを下記の式 ΔQ=Q2 −Q1 により、また窒素吸着圧力をP1 (kgf/cm2) 、酸素吸着
圧力をP2 (kgf/cm2) として、選択係数αを下記の式 α= (Q2/P2)/ (Q1/P1) より求めた。また、図2に示すPSA 評価装置を用いて空
気分離実験を行った。炭化品の形状比較値および特性値
を表5に、PSA 操作条件を表6に示す。
Example 4 In the same manner as in Example 2, 100 parts by weight of phenolic resin powder (Kanebo Co., Ltd., Bellpar R800: average particle diameter 20 μm), coal tar (JIS standard, K2439-197).
9, purified 2) 23 parts by weight, liquid melamine resin (Sumitomo Chemical Co., Sumitex resin M3, solid content 60%) 10 parts by weight, polymerization degree 1700, saponification degree 99% PVA 20 parts by weight, starch 17 parts by weight, And 8 parts by weight of water and kneaded with a kneader, and then these are granulated by a horizontal extrusion granulator using a die nozzle having a predetermined hole shape, dried, and formed into a cylindrical pellet having the same outer diameter. A molded body and a cylindrical pellet-shaped molded body were obtained. These were heated to 800 ° C. at a heating rate of 30 ° C./H in a nitrogen atmosphere in an electric furnace in the same manner as in Example 1, and
After holding for a period of time, it was cooled to obtain a cylindrical pellet carbon adsorbent having an outer diameter of 3.0 mm and an inner diameter of 1.0 mm and a cylindrical pellet carbon adsorbent having an outer diameter of 3.0 mm. The adsorption rate of oxygen and nitrogen was measured for each of the obtained samples using the adsorption characteristic measuring apparatus shown in FIG. As an index showing the adsorption characteristics of oxygen and nitrogen, the adsorption amount 1 minute after the start of adsorption is Q 1 for nitrogen and Q 2 for oxygen, and the adsorption amount difference ΔQ is calculated by the following formula ΔQ = Q 2 −Q 1 . Also, assuming that the nitrogen adsorption pressure is P 1 (kgf / cm 2 ), and the oxygen adsorption pressure is P 2 (kgf / cm 2 ), the selection coefficient α is the following equation α = (Q 2 / P 2) / (Q 1 / P Calculated from 1) . Further, an air separation experiment was conducted using the PSA evaluation device shown in FIG. Table 5 shows the shape comparison values and characteristic values of the carbonized products, and Table 6 shows the PSA operating conditions.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】表5において、円筒ペレット試料26は、単
位充填容積当たりの吸着剤粒子の外表面積が、円柱ペレ
ット試料27より大きく、PSA 評価においても、最も良い
特性を示した。
In Table 5, the cylindrical pellet sample 26 has a larger outer surface area of the adsorbent particles per unit filling volume than the cylindrical pellet sample 27, and shows the best characteristics in PSA evaluation.

【0039】実施例5 実施例2と同様にしてフェノ−ル系樹脂粉末(鐘紡株式
会社製、ベルパ−ルR800:平均粒子径20μm )100 重量
部、液状メラミン樹脂( 住友化学製、スミテックスレジ
ンM3、固形分60% )36重量部、重合度500 、けん化度99
% のPVA34重量部、澱粉23重量部、および水 7重量部
とともにニ−ダ−で混和し、これらを横型押出し造粒機
にて異なるダイスノズルを用いて造粒した後、乾燥さ
せ、形状、サイズの異なる粒状ペレットを得た。これら
を実施例1と同様に窒素雰囲気下、昇温速度50℃/Hで 7
00℃まで昇温し、次いで昇温速度 100℃/Hで 900℃まで
昇温しこの温度で所定の時間水蒸気賦活(賦活ガス組
成:N2/H2O=1/1 流量:2.5Nl/min )し、円筒ペレット
状炭素系吸着剤 5種類と、外径 4mmの円柱ペレット状炭
素系吸着剤を得た。これらのトリハロメタン(THM) 吸着
能を先に述べた方法で評価した。炭素系吸着剤の物性値
および測定結果を表7に示す。
Example 5 In the same manner as in Example 2, 100 parts by weight of a phenolic resin powder (manufactured by Kanebo Co., Ltd., Belpar R800: average particle size 20 μm), liquid melamine resin (manufactured by Sumitomo Chemical, Sumitex Resin) M3, solid content 60%) 36 parts by weight, polymerization degree 500, saponification degree 99
% PVA (34 parts by weight), starch (23 parts by weight), and water (7 parts by weight) in a kneader, and these are granulated using a horizontal extrusion granulator using different die nozzles, and then dried to obtain a shape, Granular pellets of different sizes were obtained. In the same manner as in Example 1, these were heated at a heating rate of 50 ° C./H in a nitrogen atmosphere.
The temperature is raised to 00 ° C, then to 900 ° C at a heating rate of 100 ° C / H, and steam activation is performed at this temperature for a predetermined time (activating gas composition: N 2 / H 2 O = 1/1 flow rate: 2.5Nl / min) to obtain 5 types of cylindrical pellet-shaped carbon-based adsorbents and cylindrical pellet-shaped carbon-based adsorbents with an outer diameter of 4 mm. These trihalomethane (THM) adsorption capacities were evaluated by the method described above. Table 7 shows the physical property values and measurement results of the carbon-based adsorbent.

【0040】[0040]

【表7】 [Table 7]

【0041】表7において、賦活時間の短い試料28は、
重量減少率が12% と低く、比表面積の値も他の試料に比
較して小さく、また、細孔直径 100Å以下の細孔容積が
小さく、THM 吸着能も小さいことがわかる。また、賦活
時間の長かった試料30は、重量減少率が比較的大きく、
THM吸着能も大きい。特に、同じ外径を有する円柱ペレ
ット状の試料33と円筒ペレット状の試料29では、試料29
のほうが THM吸着能が大きい。試料29は、円筒ペレット
状であるため、限られた時間での吸着操作では、外表面
積が大きく、且つ、吸着サイトまでの拡散距離が短いた
めに円柱ペレットに対して、優位性を示したものと考え
られる。
In Table 7, the sample 28 having a short activation time is
It can be seen that the weight reduction rate is as low as 12%, the value of the specific surface area is smaller than that of the other samples, the volume of pores with a pore diameter of 100 Å or less is small, and the THM adsorption capacity is also small. Further, the sample 30 having a long activation time, the weight reduction rate is relatively large,
THM adsorption capacity is also large. Particularly, in the case of the cylindrical pellet-shaped sample 33 and the cylindrical pellet-shaped sample 29 having the same outer diameter, the sample 29
Has a higher THM adsorption capacity. Since Sample 29 is in the form of a cylindrical pellet, it has an advantage over a cylindrical pellet due to its large outer surface area and short diffusion distance to the adsorption site in adsorption operations for a limited time. it is conceivable that.

【0042】実施例6 実施例4と同じ配合量の原料をニ−ダ−で混和し、その
後、これらを横型押出し造粒機にて所定の孔形状を持つ
ダイスノズルを用い、造粒し、乾燥させ、外径の異なる
3種類の円筒ペレット状成形体と、外径の異なる 2種類
の円柱ペレット状成形体をを得た。これらを実施例1と
同様の電気炉を用い窒素雰囲気下、昇温速度50℃/Hで 7
00℃まで昇温し、次いで昇温速度 100℃/Hで 870℃まで
昇温しこの温度で 180分間水蒸気賦活(賦活ガス組成:
N2/H2O=1/1 流量:2.0Nl/min )し、円筒ペレット状炭
素系吸着剤 3種類と、円柱ペレット状炭素系吸着剤 2種
類を得た。これらを吸着塔に充填し、NOx 吸着除去能の
評価実験を行った。実験結果および炭素系吸着剤の物性
値を表8に示す。
Example 6 Raw materials having the same blending amount as in Example 4 were mixed with a kneader, and then these were granulated by a horizontal extrusion granulator using a die nozzle having a predetermined hole shape, Dried, different outer diameter
We obtained three types of cylindrical pellet-shaped compacts and two types of cylindrical pellet-shaped compacts with different outer diameters. Using an electric furnace similar to that used in Example 1, these were heated at a heating rate of 50 ° C./H in a nitrogen atmosphere.
The temperature is raised to 00 ° C and then to 870 ° C at a heating rate of 100 ° C / H and steam activation (activating gas composition:
N 2 / H 2 O = 1/1 flow rate: 2.0 Nl / min) to obtain 3 types of cylindrical pellet-shaped carbon-based adsorbents and 2 types of cylindrical pellet-shaped carbon-based adsorbents. These were filled in an adsorption tower, and an evaluation experiment of NOx adsorption removal ability was conducted. Table 8 shows the experimental results and the physical properties of the carbon-based adsorbent.

【0043】[0043]

【表8】 [Table 8]

【0044】表8において、円筒ペレット状の試料36は
同じ外径を有する円柱ペレット状の試料37より高いNOx
除去率をしめした。
In Table 8, sample 36 in the form of a cylindrical pellet has higher NOx than sample 37 in the form of a cylindrical pellet having the same outer diameter.
The removal rate was shown.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において炭素系吸着剤の吸着特性を評価
するための吸着特性測定装置である。
FIG. 1 is an adsorption characteristic measuring device for evaluating the adsorption characteristic of a carbon-based adsorbent in the present invention.

【図2】本発明において炭素系吸着剤の空気分離特性を
評価するための圧力スイング吸着(PSA)装置であ
る。
FIG. 2 is a pressure swing adsorption (PSA) device for evaluating the air separation characteristics of a carbon-based adsorbent according to the present invention.

【図3】本発明において炭素系吸着剤のNOx 吸着除去能
力を評価するためのNOx 吸着除去能力測定装置である。
FIG. 3 is a NO x adsorption / removal capacity measuring device for evaluating the NO x adsorption / removal capacity of the carbon-based adsorbent in the present invention.

【符号の説明】[Explanation of symbols]

1 真空ポンプ 2、3、8、11、12、13 バルブ 4 試料室 5 調整室 6、7 圧力センサー 9 記録計 10 圧力計 14、15 ガスレギュレーター 1’ コンプレッサー 2’ エアードライヤー 3’、3a’ 吸着塔 4’、4a’、6’、7’、7a’、8’、10’、1
0a’、15’自動弁 5’、5a’、9’、9a’、11’、12’ 配管 13’ サージタンク 14’ 酸素センサー 1’’ 窒素ボンベ 2’’ NOボンベ 3’’、4’’ ガスレギュレーター 5’’ 湿度調節器 6’’ ガス混合塔 7’’ 吸着塔 8’’ 温度調節器 9’’ NOxセンサー 10’’ 湿度センサー 11’’、12’’、13’’、14’’ バルブ 15’’ 流量計
1 Vacuum pump 2, 3, 8, 11, 12, 13 Valve 4 Sample chamber 5 Adjustment chamber 6, 7 Pressure sensor 9 Recorder 10 Pressure gauge 14, 15 Gas regulator 1'Compressor 2'Air dryer 3 ', 3a' Adsorption Towers 4 ', 4a', 6 ', 7', 7a ', 8', 10 ', 1
0a ', 15' Automatic valve 5 ', 5a', 9 ', 9a', 11 ', 12' Piping 13 'Surge tank 14' Oxygen sensor 1 '' Nitrogen cylinder 2 '' NO cylinder 3 '', 4 '' Gas regulator 5 '' Humidity controller 6 '' Gas mixing tower 7 '' Adsorption tower 8 '' Temperature controller 9 '' NOx sensor 10 '' Humidity sensor 11 '', 12 '', 13 '', 14 '' Valve 15 '' flow meter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01B 31/02 101 B01J 2/20 31/10 B01D 53/34 129A // B01J 2/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C01B 31/02 101 B01J 2/20 31/10 B01D 53/34 129A // B01J 2/20

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外径d1が1.0 〜10mm 、内径d2が0.1d1
0.5d1 、長さ2.0 〜15mmである円筒ペレットが全体の80
% 以上を占め、且つ、細孔直径0.01〜10μmの範囲の細
孔容積が0.10〜1.0cc/g 、細孔直径100 Å以下の範囲の
細孔容積が0.20〜1.2cc/g 、粒子嵩密度が0.40〜1.2 g/
ccの範囲であり、炭素含有量が90重量% 以上である円筒
ペレット状炭素系吸着剤。
1. The outer diameter d 1 is 1.0 to 10 mm and the inner diameter d 2 is 0.1 d 1 to
A total of 80 cylindrical pellets with a diameter of 0.5d 1 and a length of 2.0 to 15 mm
%, And the pore volume in the pore diameter range of 0.01 to 10 μm is 0.10 to 1.0 cc / g, the pore volume in the pore diameter range of 100 Å or less is 0.20 to 1.2 cc / g, and the particle bulk density is Is 0.40 to 1.2 g /
A cylindrical pellet-shaped carbon-based adsorbent having a carbon content in the range of cc and 90% by weight or more.
JP7109933A 1995-02-20 1995-02-20 Cylindrically pelletized carbon based adsorbent Pending JPH08224468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7109933A JPH08224468A (en) 1995-02-20 1995-02-20 Cylindrically pelletized carbon based adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7109933A JPH08224468A (en) 1995-02-20 1995-02-20 Cylindrically pelletized carbon based adsorbent

Publications (1)

Publication Number Publication Date
JPH08224468A true JPH08224468A (en) 1996-09-03

Family

ID=14522796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7109933A Pending JPH08224468A (en) 1995-02-20 1995-02-20 Cylindrically pelletized carbon based adsorbent

Country Status (1)

Country Link
JP (1) JPH08224468A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041010A1 (en) * 1998-02-17 1999-08-19 Kanebo, Limited Activated carbon for adsorption and storage of gaseous compound
WO2000009257A1 (en) * 1998-02-17 2000-02-24 Takachiho Chemical Industrial Co., Ltd. Method and apparatus for storing and feeding gaseous compound
US6309446B1 (en) 1997-02-17 2001-10-30 Kanebo, Ltd. Activated carbon for adsorptive storage of gaseous compound
JP2006143494A (en) * 2004-11-17 2006-06-08 Kuraray Chem Corp Active carbon for treating organic halogen compound and method for treating organic halogen compound-containing exhaust gas using the same
JP2007131461A (en) * 2005-11-08 2007-05-31 Jfe Chemical Corp Method of manufacture activated carbon
JP2009023889A (en) * 2007-07-23 2009-02-05 Issin Co Ltd Hollow activated carbon and its production process
JP2009131837A (en) * 2007-11-02 2009-06-18 Osaka Gas Chem Kk Honeycomb adsorbing material and its producing method
JP2012180273A (en) * 2012-05-08 2012-09-20 Issin Co Ltd Hollow activated carbon
JP2013136518A (en) * 2013-04-05 2013-07-11 Issin Co Ltd Hollow activated carbon
JP2017075068A (en) * 2015-10-14 2017-04-20 大阪ガスケミカル株式会社 Active carbon
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof
WO2019131207A1 (en) * 2017-12-27 2019-07-04 株式会社クラレ Activated carbon molded article

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309446B1 (en) 1997-02-17 2001-10-30 Kanebo, Ltd. Activated carbon for adsorptive storage of gaseous compound
WO1999041010A1 (en) * 1998-02-17 1999-08-19 Kanebo, Limited Activated carbon for adsorption and storage of gaseous compound
WO2000009257A1 (en) * 1998-02-17 2000-02-24 Takachiho Chemical Industrial Co., Ltd. Method and apparatus for storing and feeding gaseous compound
JP3592636B2 (en) * 1998-02-17 2004-11-24 カネボウ株式会社 Activated carbon for adsorption and storage of gaseous compounds
JP2006143494A (en) * 2004-11-17 2006-06-08 Kuraray Chem Corp Active carbon for treating organic halogen compound and method for treating organic halogen compound-containing exhaust gas using the same
JP4628752B2 (en) * 2004-11-17 2011-02-09 クラレケミカル株式会社 Activated carbon for treating organic halogen compounds and method for treating exhaust gas containing organic halogen compounds using the same
JP2007131461A (en) * 2005-11-08 2007-05-31 Jfe Chemical Corp Method of manufacture activated carbon
JP2009023889A (en) * 2007-07-23 2009-02-05 Issin Co Ltd Hollow activated carbon and its production process
JP2009131837A (en) * 2007-11-02 2009-06-18 Osaka Gas Chem Kk Honeycomb adsorbing material and its producing method
JP2012180273A (en) * 2012-05-08 2012-09-20 Issin Co Ltd Hollow activated carbon
JP2013136518A (en) * 2013-04-05 2013-07-11 Issin Co Ltd Hollow activated carbon
JP2017075068A (en) * 2015-10-14 2017-04-20 大阪ガスケミカル株式会社 Active carbon
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof
CN108698833A (en) * 2016-02-23 2018-10-23 索尼公司 Solidified porous carbon materials and its manufacturing method
JPWO2017146044A1 (en) * 2016-02-23 2018-11-22 ソニー株式会社 Solidified porous carbon material, method for producing the same, and water purifier
JP2019131460A (en) * 2016-02-23 2019-08-08 ソニー株式会社 Solidified porous carbon material and method of manufacturing the same
JP2020124710A (en) * 2016-02-23 2020-08-20 ソニー株式会社 Material to which functional material is attached and its production method, water cleaner and its production method, water cleaner cartridge and its production method, air cleaner and its production method, filter member and its production method, support member and its production method, foamed polyurethane foam and its production method, bottle and its production method, container and its production method, cap or member made of lid and its production method, solidified porous carbon material or material made of pulverized product of the porous carbon material and binder and its production method, and porous carbon material and its production method
JP2022008312A (en) * 2016-02-23 2022-01-13 ソニーグループ株式会社 Material with functional material attached thereon and production method thereof, water purifying device and production method thereof, water purifying device cartridge and production method thereof, air purifier and production method thereof, filter member and production method thereof, support member and production method thereof, expanded polyurethane foam and production method thereof, bottle and production method thereof, container and production method thereof, member composed of cap or lid and production method thereof, material composed of solidified porous carbon material or ground product of porous carbon material and binder and production method thereof, and porous carbon material and production method thereof
US11707727B2 (en) 2016-02-23 2023-07-25 Sony Corporation Solidified porous carbon material and method of manufacturing the same
WO2019131207A1 (en) * 2017-12-27 2019-07-04 株式会社クラレ Activated carbon molded article
CN111511681A (en) * 2017-12-27 2020-08-07 株式会社可乐丽 Activated carbon molded body
JPWO2019131207A1 (en) * 2017-12-27 2021-01-21 株式会社クラレ Activated carbon molded body

Similar Documents

Publication Publication Date Title
Wang et al. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
Adelodun et al. Isotherm, thermodynamic and kinetic studies of selective CO2 adsorption on chemically modified carbon surfaces
JPH08224468A (en) Cylindrically pelletized carbon based adsorbent
Saeidi et al. A procedure to form powder activated carbon into activated carbon monolith
TWI774653B (en) Porous carbon material, method for producing the same, filter, sheet, and carrier for catalyst
JP2002177773A (en) Method of activating monolith adsorbent
BR112019012817B1 (en) MULTI-LAYER PSA ADSORPTION SYSTEM, CYCLIC ADSORPTION AND CYCLIC GAS ADSORPTION PROCESSES, AND ADSORBENT.
KR100879312B1 (en) A Manufacturing Method of the CO2 Gas Absorbent
Nandi et al. Carbon molecular sieves for the concentration of oxygen from air
Li et al. Zeolite monoliths for air separation: Part 1: Manufacture and characterization
US6551700B2 (en) Spherical high-performance adsorbents with microstructure
JP2007107518A (en) Pelletized activated carbon, method for manufacturing pelletized activated carbon, and canister
JP2007331986A (en) Activated carbon
Naksusuk et al. Carbon dioxide capture in a fixed bed of coconut shell activated carbon impregnated with sodium hydroxide: Effects of carbon pore texture and alkali loading
JP3781871B2 (en) Chloride absorber
Nuilerd et al. Pellet activated carbon production using parawood charcoal from gasifier by KOH activation for adsorption of iron in water.
JP2002102689A (en) Carbonaceous adsorbent
CN112867548A (en) Catalyst-sorbent filter for air purification
JP2008184512A (en) Method for removing chloride and chloride absorbent
JP2002012418A (en) Method of separation by absorbing molecules in gas phase using aggregated solid inorganic absorbent having calibrated narrow distribution of meso-pore
JP5117797B2 (en) Perfluorocarbon gas purification method and apparatus
Avishan et al. Experimental and Theoretical Investigation of CO2 Adsorption on Amine-Modified Pumice as an Affordable Adsorbent
JPH07277716A (en) Active carbon
US20190143294A1 (en) A process for preparing metal oxide-based chloride absorbent using natural binder and product obtained therefrom