JP4704093B2 - Vibration generator - Google Patents

Vibration generator Download PDF

Info

Publication number
JP4704093B2
JP4704093B2 JP2005116520A JP2005116520A JP4704093B2 JP 4704093 B2 JP4704093 B2 JP 4704093B2 JP 2005116520 A JP2005116520 A JP 2005116520A JP 2005116520 A JP2005116520 A JP 2005116520A JP 4704093 B2 JP4704093 B2 JP 4704093B2
Authority
JP
Japan
Prior art keywords
magnet
magnets
length
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005116520A
Other languages
Japanese (ja)
Other versions
JP2006296144A5 (en
JP2006296144A (en
Inventor
義朗 富川
伸一 林崎
Original Assignee
スミダコーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スミダコーポレーション株式会社 filed Critical スミダコーポレーション株式会社
Priority to JP2005116520A priority Critical patent/JP4704093B2/en
Publication of JP2006296144A publication Critical patent/JP2006296144A/en
Publication of JP2006296144A5 publication Critical patent/JP2006296144A5/ja
Application granted granted Critical
Publication of JP4704093B2 publication Critical patent/JP4704093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、移動する一体化した複数の永久磁石を複数のコイルの中で振動または移動することにより、発電電圧、発電効率を高めた小型携帯、移動型の電子機器用の振動発電機に関するものである。   The present invention relates to a vibration generator for small portable and mobile electronic devices in which a plurality of moving and integrated permanent magnets are vibrated or moved in a plurality of coils to increase a power generation voltage and power generation efficiency. It is.
非常用の携帯ラジオ等においては、充電可能なバッテリーと手回し式の発電機を内蔵した携帯ラジオが一般に市販されている。また、非常用の懐中電灯等では永久磁石をコイル内で振動させて誘導電流を発生させ、コンデンサーに充電する振動発電機が利用されている。また、前記永久磁石をコイル内で振動させて発電する別の例として、複数の永久磁石を直列に配列した構造からなり、前記直列に配列された個々の永久磁石は、同極同士が対向するように配置した振動発電機がある。   In the case of an emergency portable radio or the like, a portable radio that incorporates a rechargeable battery and a hand-driven generator is generally commercially available. In addition, an emergency flashlight or the like uses a vibration generator that charges a capacitor by generating an induced current by vibrating a permanent magnet in a coil. Further, as another example of generating power by vibrating the permanent magnet in a coil, the permanent magnet has a structure in which a plurality of permanent magnets are arranged in series, and the individual magnets arranged in series face each other with the same polarity. There is a vibration generator arranged as follows.
前記のような手回し式の発電機おいては、発電機本体の回転部の軸受けや本体以外では発電機を回すためのハンドルや歯車等の部材も必要となり、大型化したり、部品が多くなり、手回しの負荷が大きいという課題が生じるものであった。   In the hand-driven generator as described above, a member such as a handle and a gear for turning the generator other than the bearing of the rotating part of the generator main body and the main body is also required, and the size is increased and the number of parts is increased. There was a problem that the load of turning was large.
この改善策として、人が持ち歩くことによる振動や衝撃等を用いて発電を行なう携帯発電機が従来から開発されている。その一例として、永久磁石をコイル内で振動させて誘導電流を発生させ、コンデンサーに充電し、LEDを点灯させる非常用の懐中電灯等に利用される振動発電機がある(例えば、特許文献1)。
特許文献1の図1に示されている振動発電機の断面図を書き写した図を図8に示す。
このような従来の振動発電機は、図8に示すように、固定磁石15、16と互いに同極性となるように配置された1個の可動磁石10を一種の磁気バネと、前記可動磁石10の外周に配置した1個のコイル20の中で振動させて発電している。しかし、発電に寄与する磁石、コイルともに1個の構成のため、発電効率が悪いことと、発生電圧が低いために小型化が困難なだけでなく、磁力を確保するために、体積の大きな希土類磁石を使用する必要があり、コスト的にも、重量的にも問題があった。
As an improvement measure, portable generators that generate power using vibrations or shocks caused by carrying around have been developed. As an example, there is a vibration generator used for an emergency flashlight or the like that vibrates a permanent magnet in a coil to generate an induced current, charges a capacitor, and turns on an LED (for example, Patent Document 1). .
FIG. 8 shows a copy of the cross-sectional view of the vibration generator shown in FIG.
As shown in FIG. 8, such a conventional vibration power generator includes a single movable magnet 10 disposed so as to have the same polarity as the fixed magnets 15 and 16, and a kind of magnetic spring, and the movable magnet 10. The electric power is generated by vibrating in one coil 20 arranged on the outer periphery. However, since both the magnet and the coil that contribute to power generation are composed of one piece, the power generation efficiency is low, and the generated voltage is low, so it is difficult to reduce the size. It was necessary to use a magnet, and there were problems in terms of cost and weight.
従来の振動発電機の別の例として、複数の永久磁石を直列に配列し、前記直列に配列した複数の永久磁石の外周に複数のコイルを配置した構造からなり、前記直列に配列された個々の永久磁石は、同極同士が対向している振動発電機がある(例えば、特許文献2)。
特許文献2の図2、図6および段落0007によれば、直列に配列した複数の永久磁石は、機械的に拘束して一体化したものではなく、反発によって相互の距離を保つ構成となっている。
特許文献2の発明は一見本発明と類似の構成であるが、磁束分布が本発明とはまったく異なる。実際の磁石の磁気分布には不均一性があり、同極同士を対向させると磁気的に非常に不安定である。従って、特許文献2の発明は機械的に拘束して一体化していないため、反発力が不均一となり、個々の磁石の中心軸が一致することはなく、現実的には磁気バネの中で自由に振動するのは困難である。
特開2002−281727号公報 特開2005−033917号公報
As another example of a conventional vibration generator, a plurality of permanent magnets are arranged in series, and a plurality of coils are arranged on the outer periphery of the plurality of permanent magnets arranged in series. There is a vibration generator in which the same poles face each other (for example, Patent Document 2).
According to FIG. 2, FIG. 6, and paragraph 0007 of Patent Document 2, the plurality of permanent magnets arranged in series are not mechanically constrained and integrated, and are configured to maintain a mutual distance by repulsion. Yes.
The invention of Patent Document 2 has a configuration similar to the present invention at first glance, but the magnetic flux distribution is completely different from the present invention. There is non-uniformity in the magnetic distribution of an actual magnet, and it is very unstable magnetically when the same poles are opposed to each other. Therefore, since the invention of Patent Document 2 is not mechanically constrained and integrated, the repulsive force is non-uniform and the central axes of the individual magnets do not coincide with each other. It is difficult to vibrate.
JP 2002-281727 A JP 2005-033917 A
解決しようとする問題点は発電のための負荷が少なく、発生電圧が高い高出力、高効率の小型携帯発電機の構成が困難であるという点である。   The problem to be solved is that it is difficult to construct a high-power, high-efficiency small portable generator with a low load for power generation and a high generated voltage.
本発明は、同極同士を微小な距離を有して対向させ、長さ方向に着磁した複数の永久磁石を一体化し、磁束分布の変化を急峻にするとともに、磁束の方向をコイルの巻き方向に概略直角になるようにし、磁束を局所的に高密度にし、前記一体化した複数の永久磁石の外周に複数のコイルを直列に配置し、前記コイルは適宜の間隔を有し、交互に巻き方向が逆になるように構成し、前記一体化した永久磁石を移動させることにより発電する振動発電機を構成することを特徴としている。   In the present invention, a plurality of permanent magnets magnetized in the length direction are integrated with the same poles facing each other with a minute distance, the change in magnetic flux distribution is made steep, and the direction of the magnetic flux is wound around the coil. The magnetic flux is locally high density, and a plurality of coils are arranged in series on the outer periphery of the integrated plurality of permanent magnets, and the coils have appropriate intervals and are alternately arranged. The structure is such that the winding direction is reversed, and a vibration generator that generates power by moving the integrated permanent magnet is configured.
この構成を採用することによって、複数個の急峻な磁束密度の変化の磁場を発生させ、複数のコイルに磁場の変化を繰り返し与えることにより、あたかも高効率の複数の発電機を直列接続したような効果を発揮するために、磁石の移動に大きな力を必要としないので、携帯可能な小型で、短い移動距離で高電圧、高効率の発電が可能である。   By adopting this configuration, a plurality of steep magnetic flux density change magnetic fields are generated, and the magnetic field change is repeatedly applied to a plurality of coils, as if multiple high-efficiency generators are connected in series. Since a large force is not required for moving the magnet in order to exert the effect, it is portable and compact, and high voltage and high efficiency power generation is possible with a short moving distance.
各々のコイルの長さは図4、図7に示す同極対向磁石の磁場解析による磁束密度計算結果のグラフより、逆極性の磁束密度分布領域の大きな部分が同一コイル内に入らないような位置関係にするために、各々のコイルの長さは磁石単体の長さ以下にする必要があり、さらに、実施例1で詳述する図9に示すコイル幅/磁石長さと充電電圧の実験結果のグラフより、各々のコイルの長さは個別磁石の長さの70%〜90%にすることを特徴としている。このため、発電効率(充電電圧)が高くなる。最適値は約80%である。   The length of each coil is a position where a large part of the magnetic flux density distribution region of opposite polarity does not enter the same coil from the graph of the magnetic flux density calculation result by the magnetic field analysis of the same-pole opposed magnet shown in FIGS. In order to make the relationship, the length of each coil needs to be equal to or less than the length of a single magnet. Further, the experimental results of the coil width / magnet length and charging voltage shown in FIG. From the graph, the length of each coil is 70% to 90% of the length of the individual magnet. For this reason, power generation efficiency (charging voltage) becomes high. The optimum value is about 80%.
図4、図7に示す同極対向磁石の磁場解析による磁束密度計算結果のグラフより、同極同士の磁石間距離を短くすると磁束密度のピーク値は高くなるが磁石間の領域が狭くなるので、総磁束が減少し、逆に磁石間距離を十分に長くすると磁石間の領域が広くなるがピーク値が低くなり、中央部がへこむ状態になり、やはり総磁束が減少する。従って、同極同士の磁石間距離にも適値が存在することがわかる。   From the graph of the magnetic flux density calculation result by the magnetic field analysis of the same-pole opposed magnets shown in FIG. 4 and FIG. When the distance between the magnets is sufficiently long, the area between the magnets is widened, but the peak value is lowered and the central part is depressed, and the total magnetic flux is also reduced. Therefore, it can be seen that there is an appropriate value for the distance between magnets of the same polarity.
前記同極同士の磁石間距離の適値を実施例1で詳述する図10磁石間距離/磁石長さと充電電圧の実験結果を示すグラフより、対向する永久磁石間の距離は磁石単体の長さの10%〜40%にすることを特徴としている。このため、発電効率(充電電圧)が高くなる。最適値は約25%である。   The appropriate value of the distance between the magnets of the same polarity is described in detail in Example 1. FIG. 10 is a graph showing experimental results of distance between magnets / magnet length and charging voltage. It is characterized by 10% to 40%. For this reason, power generation efficiency (charging voltage) becomes high. The optimum value is about 25%.
図7に示す同極対向磁石の磁石、コイルの位置関係と磁場解析による磁束密度計算結果のグラフより明らかなように、磁石の長さ、磁石間距離、コイル長さの関係からコイル間距離は計算されるが、コイル間距離にも適値が存在し、実施例1で詳述する図11磁石間距離/磁石長さと充電電圧の実験結果を示すグラフより、各々のコイル間の距離は個別磁石の長さの10%〜30%にすることを特徴としている。このため、発電効率(充電電圧)が高くなる。最適値は約20%である。   As apparent from the graph of the magnetic pole density calculation result by magnetic field analysis and the positional relationship of the magnets and coils of the same-pole opposed magnet shown in FIG. 7, the inter-coil distance is determined from the relationship between the magnet length, the inter-magnet distance, and the coil length. Although calculated, there is an appropriate value for the distance between the coils. From the graph showing the experimental results of the distance between the magnets / the magnet length and the charging voltage shown in FIG. It is characterized by being 10% to 30% of the length of the magnet. For this reason, power generation efficiency (charging voltage) becomes high. The optimum value is about 20%.
前述のように磁石の長さと磁石間距離とコイル長さが決まるとコイル間距離は計算されるが、計算された結果が最適値近傍よりずれた場合は、磁石の長さと磁石間距離とコイル長さとコイル間距離が最適値近傍になるように再設計する必要がある。   As described above, when the length of the magnet, the distance between the magnets and the coil length are determined, the distance between the coils is calculated. However, if the calculated result deviates from the vicinity of the optimum value, the length of the magnet, the distance between the magnets and the coil are calculated. It is necessary to redesign the length and the distance between the coils so that they are close to the optimum values.
図2に示す本発明の実用構成図より明らかなように、可動磁石ユニット10が移動可能範囲で少なくとも1個以上の可動磁石の外周にコイルがあれば発電するので、コイルの個数は可動磁石の個数より多いほうが良い。また、製品コストと出力から見れば、磁石はコイルに比して高価であり、さらに小型化する場合は希土類磁石を使用することになるため、磁石の個数を少なくし、コイルの個数を多くするほうが経済的な構成で出力電圧が高くなる。   As is apparent from the practical configuration diagram of the present invention shown in FIG. 2, power is generated if there is a coil on the outer periphery of at least one movable magnet within a movable range of the movable magnet unit 10, so the number of coils is the number of movable magnets. More than the number is better. Also, from the viewpoint of product cost and output, magnets are more expensive than coils, and rare earth magnets are used for further miniaturization, so the number of magnets is reduced and the number of coils is increased. This is a more economical configuration and the output voltage is higher.
従って、コイルの個数は磁石数と同じか磁石数+1個以上にすることを特徴としている。このような構成にすることにより出力電圧が高く、経済的効果が得られるというメリットがある。   Therefore, the number of coils is the same as the number of magnets or the number of magnets + 1 or more. With such a configuration, there is an advantage that the output voltage is high and an economic effect can be obtained.
前記同極同士の磁石を微小距離まで接近させると大きな反発力が生じ、磁石間距離を一定に保持すること、および組み立てが難しい。従って、図2に示す本発明は、永久磁石が円筒状であり、円筒磁石と内外径同一寸度の薄い円筒状の非磁性磁石用スペーサーの穴部に非磁性の締結部材を挿入し、固定することにより複数の永久磁石と磁石用スペーサーを一体化することを特徴としている。このため、組み立てが容易で、高精度の可動磁石ユニットが量産できる。   When the magnets having the same polarity are brought close to a minute distance, a large repulsive force is generated, and it is difficult to keep the distance between the magnets constant and to assemble. Therefore, in the present invention shown in FIG. 2, the permanent magnet is cylindrical, and the nonmagnetic fastening member is inserted into the hole of the thin cylindrical nonmagnetic magnet spacer having the same inner and outer diameter as the cylindrical magnet and fixed. Thus, a plurality of permanent magnets and a magnet spacer are integrated. For this reason, assembly is easy and high-precision movable magnet units can be mass-produced.
図2に示す本発明では、非磁性筒状ケースと非磁性のコイル用スペーサーを一体化し、適宜の間隔を設けられるようにして前記非磁性筒状ケースの外周に複数のコイルが捲回され、前記非磁性筒状ケースの内側に一体化した永久磁石を収納して移動可能に配置したことを特徴とする。このため、部品点数が少なく、コイル間距離の精度が高い、組み立て容易で、高精度の振動発電機が安価に量産できる。   In the present invention shown in FIG. 2, a non-magnetic cylindrical case and a non-magnetic coil spacer are integrated, and a plurality of coils are wound on the outer periphery of the non-magnetic cylindrical case so as to have an appropriate interval. The permanent magnet integrated in the inside of the non-magnetic cylindrical case is housed and arranged to be movable. For this reason, it is possible to mass-produce a vibration generator with a small number of parts, a high accuracy of the distance between the coils, easy assembly, and high accuracy.
また、複数のコイルを直列に配置し、交互に巻き方向が逆になるように構成すると説明したが、実質的に交互に巻き方向が逆になるように構成すればよいので、コイルはすべて同方向に巻き線し、隣接するコイルの巻始め端と巻終わり端とを交互に入れ換えて直列に接続してもよい。   In addition, although it has been described that a plurality of coils are arranged in series so that the winding directions are alternately reversed, it is only necessary to configure the winding directions to be substantially alternately reversed. They may be wound in a direction and connected in series by alternately switching the winding start ends and winding end ends of adjacent coils.
本発明に使用するコイルはボビン巻きのコイル、空芯コイル、シートコイル等巻き線方法、形状に何ら制約を受けることなく使用可能である。   The coil used in the present invention can be used without any restrictions on the winding method and shape such as bobbin winding coil, air core coil, sheet coil and the like.
永久磁石についても、鋳造磁石、焼結磁石、ボンド磁石、プラスチック磁石等製法およびフェライト、アルニコ、SmCo,NdFeB、SmFeN等材質に何ら制約を受けることなく使用可能である。また、永久磁石の形状は棒状、円筒状、円板状等形状に何ら制約を受けることなく使用可能である。   Permanent magnets can also be used without any restrictions on the production methods such as cast magnets, sintered magnets, bonded magnets, plastic magnets, and materials such as ferrite, alnico, SmCo, NdFeB, and SmFeN. The shape of the permanent magnet can be used without any restrictions such as a rod shape, a cylindrical shape, or a disk shape.
緩衝部材60は可動磁石ユニット10がケース蓋部31に衝突する衝撃を緩和する目的で設けたものであり、多孔質のゴム、プラスチック、ウレタン等何ら制約を受けることなく使用可能であり、非磁性バネ等も使用できる。さらに、特許文献1に示される磁気バネ構成も利用できる。   The buffer member 60 is provided for the purpose of mitigating the impact of the movable magnet unit 10 colliding with the case lid 31 and can be used without any restrictions such as porous rubber, plastic, urethane, etc. A spring or the like can also be used. Furthermore, the magnetic spring configuration disclosed in Patent Document 1 can also be used.
締結部材40は同極同士を微小な距離を有して対向させた複数の磁石を機械的に一体化させる目的で使用されるので、非磁性の材質であれば樹脂だけでなく、磁石の反発力に抗して締結し、衝突の衝撃にも曝されることになるので、非磁性SUS等の金属も利用可能であり、さらに、W、Ni、FeまたはW、Ni、Cu、Feの焼結金属材料であるヘビーメタルで締結部材40を構成すれば、締結部材40の比重が20近くなり、移動時の運動エネルギーが大きいので発電量も多くなり、強度も改善される。   Since the fastening member 40 is used for the purpose of mechanically integrating a plurality of magnets having the same poles facing each other with a minute distance, if the material is non-magnetic, not only the resin but also the repulsion of the magnet Since it is fastened against the force and exposed to the impact of a collision, a metal such as non-magnetic SUS can also be used. Further, W, Ni, Fe or W, Ni, Cu, Fe can be sintered. If the fastening member 40 is made of heavy metal, which is a binding metal material, the fastening member 40 has a specific gravity close to 20, and the kinetic energy at the time of movement is large, so that the amount of power generation is increased and the strength is improved.
複数の磁石を同極同士微小な距離を有して対向させることにより、磁束の方向をコイル巻き線と概略直交させ、発電効率を向上させる。さらに、複数個の急峻な磁束密度の変化の磁場を発生させ、複数のコイルに磁場の変化を繰り返し与えることにより、あたかも複数の発電機を直列接続したような効果を発揮するために、小型で、短い移動距離でも高電圧、高効率の振動発電機を構成できるので、携帯可能な小型化が可能になるという利点がある。さらに、磁石の移動に大きな力を必要としないので、人が携帯した場合にわずかな力であっても発電可能である。   By causing a plurality of magnets to face each other with a minute distance between the same poles, the direction of magnetic flux is substantially orthogonal to the coil winding, and the power generation efficiency is improved. In addition, by generating multiple magnetic fields with steep changes in magnetic flux density and repeatedly applying magnetic field changes to multiple coils, it is as small as possible to demonstrate the effect of connecting multiple generators in series. Since a vibration generator with a high voltage and high efficiency can be configured even with a short moving distance, there is an advantage that it is possible to downsize the portable device. Furthermore, since a large force is not required for moving the magnet, power can be generated even with a slight force when carried by a person.
ハウジング外または可能な限りハウジング側端部に近い位置からイメージを入力するという目的を、最小の部品点数で、光学系構成部品の厚みを損なわずに実現した。   The objective of inputting an image from a position outside the housing or as close to the end of the housing as possible was realized with the minimum number of components and without sacrificing the thickness of the optical system components.
図1により全体構成を説明する。円筒形の可動磁石11、12は磁石と内外径同一寸度の薄い円筒状の非磁性磁石用スペーサー50により適宜な間隔で、同極同士対向するように可動磁石11、12、非磁性磁石用スペーサー50の穴部に非磁性の締結部材40を挿入し、固定することにより複数の可動磁石と磁石用スペーサー50を一体化した可動磁石ユニット10を構成する。   The overall configuration will be described with reference to FIG. The cylindrical movable magnets 11 and 12 are for the movable magnets 11 and 12 and nonmagnetic magnets so that the same poles face each other at appropriate intervals by a thin cylindrical nonmagnetic magnet spacer 50 having the same inner and outer diameters as the magnets. The non-magnetic fastening member 40 is inserted into the hole of the spacer 50 and fixed to constitute the movable magnet unit 10 in which a plurality of movable magnets and the magnet spacer 50 are integrated.
前記可動磁石ユニット10は非磁性のケース30の中を可動磁石ユニット10の軸方向に自在自在に移動できるようになっている。ケース30の外周にコイル21,22が適宜な間隔で配置され、直列に接続されている。前記コイル21,22はコイル断面21a、21bおよび22a、22bに示すとおり逆方向に巻き線されている。なお、21a、22aは紙面方向に巻き線されたコイルの断面であり、21b、22bは紙背方向に巻き線されたコイルの断面である。   The movable magnet unit 10 can freely move in a non-magnetic case 30 in the axial direction of the movable magnet unit 10. The coils 21 and 22 are arranged on the outer periphery of the case 30 at an appropriate interval and connected in series. The coils 21 and 22 are wound in opposite directions as shown in coil cross sections 21a and 21b and 22a and 22b. In addition, 21a and 22a are cross sections of the coil wound in the paper surface direction, and 21b and 22b are cross sections of the coil wound in the paper back direction.
ケース蓋部31には多孔質ゴム等の緩衝部材60が設けられ、ケース蓋部31はケース30に固着され、可動磁石ユニット10がケース蓋部31に衝突する衝撃を緩和している。   The case lid 31 is provided with a cushioning member 60 such as porous rubber, and the case lid 31 is fixed to the case 30 to mitigate the impact of the movable magnet unit 10 colliding with the case lid 31.
次に磁場解析について説明する。図5は単体磁石の磁場解析結果であり、発生磁束の方向と密度の様子を示したものである。磁石の両極の発生磁束は磁石の中心軸に対して直角の成分が少ないことがわかる。これに反して、本発明にかかる同極対向磁石の磁場解析結果を示す図3では、2個の同極対向磁石の対向部分では発生磁束の密度が高く、磁石の中心軸に対して直角の成分が多いことがわかる。さらに、磁石の中心軸から離れた外周部まで磁束の直角成分が達しているため、コイルの厚み(外周方向)が厚くても、磁束はコイルに鎖交するので、コイルの巻き数を多くしてコイル厚みが厚くなっても発生磁束を有効に利用でき、発電量の増加を図ることができる。   Next, magnetic field analysis will be described. FIG. 5 shows the magnetic field analysis results of a single magnet, showing the direction and density of the generated magnetic flux. It can be seen that the magnetic flux generated at both poles of the magnet has few components perpendicular to the central axis of the magnet. On the other hand, in FIG. 3 which shows the magnetic field analysis result of the homopolar counter magnet according to the present invention, the density of the generated magnetic flux is high at the opposed portion of the two homopolar counter magnets and is perpendicular to the central axis of the magnet. It turns out that there are many ingredients. Furthermore, since the right-angle component of the magnetic flux reaches the outer periphery away from the central axis of the magnet, the magnetic flux is linked to the coil even if the coil is thick (peripheral direction), so the number of turns of the coil is increased. Even if the coil thickness is increased, the generated magnetic flux can be used effectively, and the amount of power generation can be increased.
発電ではフレミングの右手の法則として知られているように、磁界の方向、運動の方向が互いに直角になったときに、直角方向に電流が流れる。従って、磁石の移動方向と磁束の方向、コイル巻き線方向が互いに直角になった場合には発電効率が最も良い。本発明では、磁石の移動方向と磁束の方向、コイル巻き線方向は互いにほぼ直角で、発電効率が最も良い構成となっている。   In power generation, as is known as Fleming's right-hand rule, when the direction of the magnetic field and the direction of motion are perpendicular to each other, current flows in a perpendicular direction. Therefore, the power generation efficiency is best when the moving direction of the magnet, the direction of the magnetic flux, and the coil winding direction are perpendicular to each other. In the present invention, the moving direction of the magnet, the direction of the magnetic flux, and the coil winding direction are substantially perpendicular to each other, and the power generation efficiency is the best.
次に磁場解析による磁束密度計算結果について説明する。図4は本発明にかかる同極対向した2個の永久磁石外周長さ方向の磁場解析による磁束密度計算結果のグラフであり、図6は本発明と比較するために、磁石単体の永久磁石の磁場解析結果による磁束密度計算結果のグラフである。なお、グラフの横軸は可動磁石1個の長さを1(基準)として示す。図4、図6ともに図3、図4で解析した磁場解析結果の磁石外周表面における磁束の磁石中心軸に直角な成分の磁束密度分布をグラフ化したものである。   Next, the magnetic flux density calculation result by magnetic field analysis will be described. FIG. 4 is a graph of magnetic flux density calculation results by magnetic field analysis in the outer peripheral length direction of two permanent magnets facing the same pole according to the present invention, and FIG. 6 is a graph of a permanent magnet of a single magnet for comparison with the present invention. It is a graph of the magnetic flux density calculation result by a magnetic field analysis result. The horizontal axis of the graph indicates the length of one movable magnet as 1 (reference). FIG. 4 and FIG. 6 are graphs showing the magnetic flux density distribution of the component perpendicular to the magnet central axis of the magnetic flux on the outer surface of the magnet in the magnetic field analysis results analyzed in FIG. 3 and FIG.
電磁誘導による発電では、ファラデーの法則によりコイル内の磁束変化による起電力は次式となる。
−e=N*dφ/dt
N:コイルの巻き数 φ:磁束(wb) t:時間(s)
起電力の式より、コイルの巻き数が一定の場合には、磁束の時間に対する変化量が大きいほど起電力は大きくなるので、磁束密度変化が急峻であるほど、同一の速度で磁石が移動した場合は、発電能力は高いということになる。
In power generation by electromagnetic induction, the electromotive force due to the change in magnetic flux in the coil is expressed by the following equation according to Faraday's law.
-E = N * dφ / dt
N: number of turns of coil φ: magnetic flux (wb) t: time (s)
From the electromotive force equation, when the number of turns of the coil is constant, the electromotive force increases as the amount of change of the magnetic flux with respect to time increases. Therefore, the steeper change in magnetic flux density causes the magnet to move at the same speed. In this case, the power generation capacity is high.
前記起電力の式に対する観点から図4、図6のグラフを比較すると、単体磁石に比して本発明による同極対向磁石の磁束密度のピーク値が格段に高くなること、磁束密度変化が急峻であること、磁束密度の高い範囲が広いことが明らかである。従って、総磁束は単体磁石に比して格段の差が生じるので、本発明の可動磁石ユニットを移動させた場合、dφ/dtが大きくなり、高出力の発電が可能となる。   Comparing the graphs of FIGS. 4 and 6 from the viewpoint of the formula of the electromotive force, the peak value of the magnetic flux density of the homopolar facing magnet according to the present invention is remarkably higher than that of the single magnet, and the change of the magnetic flux density is steep. It is clear that the range of high magnetic flux density is wide. Accordingly, since the total magnetic flux is significantly different from that of a single magnet, when the movable magnet unit of the present invention is moved, dφ / dt is increased, and high power generation is possible.
図7に本発明の実用的な構成に対する最適設計を行うために、同極対向磁石3個の場合の磁石、コイルの位置関係と磁場解析による磁束密度計算結果のグラフを示す。同極対向磁石3個による磁束密度分布を前述のように、横軸は可動磁石1個を基準にして示している。   FIG. 7 shows a graph of the magnetic flux density calculation result by magnetic field analysis and the positional relationship of magnets and coils in the case of three homopolar facing magnets in order to perform the optimum design for the practical configuration of the present invention. As described above, the horizontal axis shows the magnetic flux density distribution by three homopolar facing magnets with reference to one movable magnet.
図7からわかるようにコイル1個の長さは磁石1個の長さ+磁石間の距離より長くなると、逆極性の磁束分布の領域までコイル内に入るため、コイル内に極性の異なる起電力が発生し、実際の出力電圧は低下してしまうことは明らかであり、逆極性の磁束分布の領域が1個のコイル内に入らないようにするためには、コイル1個の長さは磁石1個の長さ+磁石間の距離より短くなければならない。実験結果は実施例で詳述するが、コイル1個の長さの最適値は磁石1個の長さの約80%である。   As can be seen from FIG. 7, when the length of one coil becomes longer than the length of one magnet + the distance between the magnets, it enters the coil up to the region of the magnetic flux distribution having the opposite polarity. It is clear that the actual output voltage will decrease, and in order to prevent the region of magnetic flux distribution of reverse polarity from entering one coil, the length of one coil is a magnet. Must be shorter than one length + distance between magnets. The experimental results will be described in detail in Examples, and the optimum value of the length of one coil is about 80% of the length of one magnet.
同様に、同極同士の磁石間距離の最適値は磁石長さの約25%であり、コイル間の距離の最適値は磁石長さの約20%である。しかし、磁石が3個以上の場合は、コイル1個の長さ、同極同士の磁石間距離、コイル間の距離を独立に決めると、各コイル間の発生電圧に位相差が生じ、逆位相の電圧が発生すると、出力電圧が減少するので、
(磁石1個の長さ)+(同極同士の磁石間距離)=(コイル1個の長さ)+(コイル間の距離)
にする必要がある。磁石2個でコイル3個以下の場合は、大きな位相差は生じないので、前記関係式によらなくても良く、コイル長、磁石間距離、コイル間距離の最適値に設定しても良い。磁石2個でコイル4個以上の場合は、位相差が大きくなるので前記関係式を満足する構成とする。
Similarly, the optimum value of the distance between the magnets of the same pole is about 25% of the magnet length, and the optimum value of the distance between the coils is about 20% of the magnet length. However, when there are three or more magnets, if the length of one coil, the distance between the magnets of the same polarity, and the distance between the coils are determined independently, a phase difference occurs in the generated voltage between the coils, and the opposite phase When this voltage is generated, the output voltage decreases.
(Length of one magnet) + (Distance between magnets of the same pole) = (Length of one coil) + (Distance between coils)
It is necessary to. In the case of two magnets and three or less coils, a large phase difference does not occur, so it is not necessary to use the relational expression, and the coil length, the distance between magnets, and the optimum distance between coils may be set. When the number of coils is four or more with two magnets, the phase difference increases, so that the above relational expression is satisfied.
ここまでは、本発明の原理を説明するための構成を示してきたが、図2に本発明にかかる製品としての振動発電機の実用的構成を示す。基本構成は図1と同様であるが、コイル長、磁石間距離、コイル間距離は最適設計条件に合う設計条件とし、比較的長さの短い長さ方向に着磁した円筒状の可動磁石を複数個同極同士、非磁性磁石用スペーサー50により最適な距離を有して対向させて一体化して可動磁石ユニット10とし、樹脂等の非磁性材で筒状ケースと最適値の間隔としたコイル用スペーサー70を一体成型し、コイル用スペーサー70をコイルボビンと兼用して、複数の隣接するコイルの巻き方向が逆方向になるように巻き線が捲回されたコイルよりなるケースと一体化したコイルユニット20の内側に可動磁石ユニット10を収納して移動可能に配置した。コイルの個数は多いほうが発電量を多くすることができるので、可動磁石ユニット10の移動範囲に配置できる可能な数を設置する。1個の可動磁石を短くすることにより、磁束変化のピッチを短くし、多段の発電機の縦続接続効果を狙い、高電圧発生可能な小型振動発電機とすることができる。   Up to this point, a configuration for explaining the principle of the present invention has been shown. FIG. 2 shows a practical configuration of a vibration generator as a product according to the present invention. The basic configuration is the same as in FIG. 1, but the coil length, the distance between the magnets, and the distance between the coils are designed to meet the optimum design conditions, and a cylindrical movable magnet magnetized in a relatively short length direction is used. A plurality of coils having the same poles and integrated with a nonmagnetic magnet spacer 50 facing each other at an optimum distance to form a movable magnet unit 10 and a nonmagnetic material such as a resin and a cylindrical case and an optimum value interval Coil integrally formed with a case made of a coil in which windings are wound so that the winding direction of a plurality of adjacent coils is opposite to each other. The movable magnet unit 10 is housed inside the unit 20 and arranged to be movable. Since the amount of power generation can be increased as the number of coils increases, the number of coils that can be arranged in the moving range of the movable magnet unit 10 is set. By shortening one movable magnet, the pitch of the magnetic flux change can be shortened, aiming at the cascade connection effect of the multi-stage generator, and a small vibration generator capable of generating a high voltage can be obtained.
図1は、本発明の振動発電機の原理的構成を示した断面図であり、この構成により試作、実験を行った。可動磁石はNdFeBの円筒形焼結磁石で長さ方向に着磁されている。磁石は外径φ8mm、内径φ2mm、長さ10mmである。また、可動磁石ユニット10の移動距離が100mmとなるようにケース30の長さを設定した。   FIG. 1 is a cross-sectional view showing the fundamental configuration of the vibration generator of the present invention, and a prototype and an experiment were conducted using this configuration. The movable magnet is a cylindrical sintered magnet of NdFeB and is magnetized in the length direction. The magnet has an outer diameter of 8 mm, an inner diameter of 2 mm, and a length of 10 mm. Further, the length of the case 30 was set so that the moving distance of the movable magnet unit 10 was 100 mm.
最初にコイル長さの最適値を調べるために前記可動磁石2個を厚み2.5mmの樹脂製磁石用スペーサー50により磁石間距離を設定して、可動磁石ユニット10とし、コイル長さを4〜13mmまで変化させた。なお、コイル21、22の巻き数はそれぞれ50巻きで、巻き方向は互いに逆とし、直列接続した。   First, in order to investigate the optimum value of the coil length, the distance between the magnets is set by the resin magnet spacer 50 having a thickness of 2.5 mm, and the movable magnet unit 10 is formed. It was changed to 13 mm. The number of turns of the coils 21 and 22 was 50, and the winding directions were opposite to each other and were connected in series.
前記の振動発電機の構成により試作した発電機01を30秒間振り、発生する起電力を図12に示す充電回路80により充電し、その充電電圧を測定することによりコイル長さによる発電量を評価した。   The generator 01 prototyped with the above-described vibration generator configuration is shaken for 30 seconds, the generated electromotive force is charged by the charging circuit 80 shown in FIG. 12, and the amount of power generated by the coil length is evaluated by measuring the charging voltage. did.
前記実験による結果を図9に示す。横軸は磁石の長さを基準にしたコイル長さの比である。図9に示すグラフにより、各々のコイルの長さは個別の可動磁石長さの70%〜90%の範囲がよい。最適値は約80%である。   The result of the experiment is shown in FIG. The horizontal axis represents the ratio of the coil length based on the length of the magnet. According to the graph shown in FIG. 9, the length of each coil is preferably in the range of 70% to 90% of the length of the individual movable magnet. The optimum value is about 80%.
次に前記と同様に、同極同士対向する永久磁石間の距離の最適値を調べるために、コイル長さ8mm, コイル間距離2mmとし、コイル21、22の巻き数はそれぞれ50巻きで、巻き方向は互いに逆とし、直列接続した。前記構成で、磁石間距離を0.5〜4.0mm間で変化せたときの充電電圧を測定することにより永久磁石間の距離による発電量の変化を評価した。前記同様充電実験は、試作した発電機01を30秒間振り、発生する起電力を図12に示す充電回路80により充電し、その充電電圧を測定した。   Next, in the same manner as described above, in order to investigate the optimum value of the distance between the permanent magnets facing each other with the same polarity, the coil length is 8 mm, the distance between the coils is 2 mm, and the number of turns of the coils 21 and 22 is 50. The directions were opposite to each other and connected in series. With the above configuration, the change in power generation amount due to the distance between the permanent magnets was evaluated by measuring the charging voltage when the distance between the magnets was varied between 0.5 and 4.0 mm. In the same charging experiment, the prototype generator 01 was shaken for 30 seconds, and the generated electromotive force was charged by the charging circuit 80 shown in FIG. 12, and the charging voltage was measured.
前記実験による結果を図10に示す。横軸は磁石の長さを基準にした。図10に示すグラフより、対向する永久磁石間の距離は磁石単体の長さの10%〜40%の範囲が良い。最適値は約25%である。   The result of the experiment is shown in FIG. The horizontal axis is based on the length of the magnet. From the graph shown in FIG. 10, the distance between the opposing permanent magnets is preferably in the range of 10% to 40% of the length of the single magnet. The optimum value is about 25%.
次に前記と同様, コイル間距離の最適値を調べるために、永久磁石間の距離を2.5mmとし、コイル長さ8mm, コイル21、22の巻き数はそれぞれ50巻きで、巻き方向は互いに逆とし、直列接続した。コイル間距離を1〜4mm間で変化させたときの充電電圧を測定することによりコイル間距離による発電量の変化を評価した。充電実験、充電回路は前記と同様である。   Next, in order to investigate the optimum value of the distance between the coils, the distance between the permanent magnets is set to 2.5 mm, the coil length is 8 mm, the number of turns of the coils 21 and 22 is 50, and the winding direction is the same as above. Reversed and connected in series. By measuring the charging voltage when the distance between the coils was changed between 1 mm and 4 mm, the change in the amount of power generation due to the distance between the coils was evaluated. The charging experiment and the charging circuit are the same as described above.
前記実験による結果を図11に示す。横軸は磁石の長さを基準にした。図11に示すグラフより、各々のコイル間距離は個別の磁石長さの10%〜30%の範囲が良い。最適値は約20%である。   The result of the experiment is shown in FIG. The horizontal axis is based on the length of the magnet. From the graph shown in FIG. 11, the distance between the coils is preferably in the range of 10% to 30% of the individual magnet length. The optimum value is about 20%.
以上、一連の実験より本発明の振動発電機について、可動磁石の長さを決めれば、コイル長さ、磁石間距離、コイル間距離を最適値に設定し、再度詳細実験により要求仕様にあった最適設計が可能となる。   As described above, when the length of the movable magnet is determined for the vibration generator of the present invention from a series of experiments, the coil length, the distance between the magnets, and the distance between the coils are set to optimum values, and the detailed specifications are followed to meet the required specifications. Optimal design is possible.
なお、図8に示す従来の振動発電機の構成(ただし、固定磁石15,16は使用せず、磁石の移動距離は100mmとした)で磁石を本発明の実施例と同じ外径φ8mm、内径φ2mmとし、長さを20mmとして、コイルは長さ20mm1個、巻き数100巻きとしたときの同様の充電実験では、本発明の充電電圧の40%以下であった。従って、本発明の効果が実証された。   In the configuration of the conventional vibration generator shown in FIG. 8 (however, the fixed magnets 15 and 16 are not used and the moving distance of the magnet is 100 mm), the magnet has the same outer diameter φ8 mm and inner diameter as the embodiment of the present invention. In a similar charging experiment when the diameter was 2 mm, the length was 20 mm, the length of the coil was 20 mm, and the number of turns was 100, the charging voltage was 40% or less of the present invention. Therefore, the effect of the present invention was demonstrated.
以上本発明に係る振動発電機によれば、簡単な構造であり、量産性に優れ、わずかな力、わずかな移動距離であっても発電可能であり、高電圧、高効率で、携帯用電子機器、通信機器の電源および充電器として利用可能である。   As described above, according to the vibration generator according to the present invention, it has a simple structure, is excellent in mass productivity, can generate power even with a small force and a small moving distance, and has a high voltage, high efficiency, and portable electronics. It can be used as a power source and a charger for devices and communication devices.
本発明にかかる振動発電機の原理的構成を示した断面図である。(実施例1)It is sectional drawing which showed the fundamental structure of the vibration generator concerning this invention. Example 1 本発明にかかる振動発電機の実用構成を示した断面図である。It is sectional drawing which showed the practical structure of the vibration generator concerning this invention. 本発明にかかる同極対向磁石の磁場解析結果である。It is a magnetic field analysis result of the same-pole opposing magnet concerning this invention. 本発明にかかる同極対向磁石の磁場解析による磁束密度計算結果のグラフである。It is a graph of the magnetic flux density calculation result by the magnetic field analysis of the same-pole opposing magnet concerning this invention. 単体磁石の磁場解析結果である。It is a magnetic field analysis result of a single magnet. 単体磁石の磁場解析による磁束密度計算結果のグラフである。It is a graph of the magnetic flux density calculation result by the magnetic field analysis of a single magnet. 本発明にかかる同極対向磁石3個の場合の磁石、コイルの位置関係と磁場解析による磁束密度計算結果のグラフである。It is a graph of the magnetic flux density calculation result by the positional relationship of a magnet and a coil in the case of three same-pole opposing magnets concerning this invention, and a magnetic field analysis. (特許文献1)図1を書き写した振動発電機の断面図である。(Patent document 1) It is sectional drawing of the vibration generator which copied FIG. 実施例1におけるコイル長さ/磁石長さと充電電圧の実験結果を示すグラフである。6 is a graph showing experimental results of coil length / magnet length and charging voltage in Example 1. 実施例1における磁石間距離/磁石長さと充電電圧の実験結果を示すグラフである。It is a graph which shows the experimental result of the distance between magnets / magnet length in Example 1, and a charging voltage. 実施例1におけるコイル間距離/磁石長さと充電電圧の実験結果を示すグラフである。It is a graph which shows the experimental result of the distance between coils / magnet length and charge voltage in Example 1. FIG. 実施例1における充電回路図である。FIG. 3 is a charging circuit diagram according to the first embodiment.
符号の説明Explanation of symbols
01 発電機
10 可動磁石ユニット
11,12,13 可動磁石
15,16 固定磁石
20 ケースと一体化したコイルユニット
21,22 コイル
21a、22a 紙面方向に巻き線されたコイルの断面
21b、22b 紙背方向に巻き線されたコイルの断面
30 ケース
31 ケース蓋部
40 締結部材
50 磁石用スペーサー
60 緩衝部材
70 コイル用スペーサー
80 充電回路
01 Generator 10 Movable magnet unit 11, 12, 13 Movable magnet 15, 16 Fixed magnet 20 Coil unit integrated with case 21, 22 Coil 21a, 22a Cross section of coil wound in paper direction 21b, 22b In paper back direction Winding coil cross section 30 Case 31 Case lid 40 Fastening member 50 Magnet spacer 60 Buffer member 70 Coil spacer 80 Charging circuit

Claims (6)

  1. 同極同士が対向した状態で一体化された複数の永久磁石と、
    上記複数の永久磁石の外周に間隔を有するように配置され、交互に巻き方向が逆となるように構成された複数のコイルと、からなり、
    上記複数の永久磁石を移動させることによって発電する振動発電機であって、
    上記コイルの長さは、上記永久磁石の長さの70%〜90%としたこと
    を特徴とする振動発電機。
    A plurality of permanent magnets integrated with the same poles facing each other;
    A plurality of coils arranged so as to have an interval on the outer periphery of the plurality of permanent magnets, and configured so that the winding direction is alternately reversed,
    A vibration generator that generates electricity by moving the plurality of permanent magnets,
    The vibration generator according to claim 1, wherein the length of the coil is 70% to 90% of the length of the permanent magnet.
  2. 上記複数の永久磁石の間には磁石用スペーサーが配置されていることA magnet spacer is disposed between the plurality of permanent magnets.
    を特徴とする請求項1に記載の振動発電機。The vibration generator according to claim 1.
  3. 上記磁石用スペーサーを介して隣り合う永久磁石の間隔は、上記永久磁石の長さの10%〜40%であること
    を特徴とする請求項に記載の振動発電機。
    The vibration generator according to claim 2 , wherein the interval between the permanent magnets adjacent via the magnet spacer is 10% to 40% of the length of the permanent magnet.
  4. 上記コイル間の距離は、上記永久磁石の長さの10%〜30%であること
    を特徴とする請求項1乃至3のいずれかに記載の振動発電機。
    The vibration generator according to any one of claims 1 to 3, wherein a distance between the coils is 10% to 30% of a length of the permanent magnet.
  5. 上記コイルの数は、上記永久磁石の数と同数、または永久磁石の数+1個以上としたこと
    を特徴とする請求項1乃至のいずれかに記載の振動発電機。
    The number of the coils, the vibration generator according to any one of claims 1 to 4, characterized in that a number plus one or more same number or a permanent magnet, the permanent magnet.
  6. 上記永久磁石の形状および上記磁石用スペーサーの形状は、同じ径を有する円筒状であること
    を特徴とする請求項2乃至5のいずれかに記載の振動発電機。
    6. The vibration generator according to claim 2 , wherein the shape of the permanent magnet and the shape of the magnet spacer are cylindrical shapes having the same diameter.
JP2005116520A 2005-04-14 2005-04-14 Vibration generator Active JP4704093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116520A JP4704093B2 (en) 2005-04-14 2005-04-14 Vibration generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116520A JP4704093B2 (en) 2005-04-14 2005-04-14 Vibration generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010273890A Division JP5418485B2 (en) 2010-12-08 2010-12-08 Vibration generator

Publications (3)

Publication Number Publication Date
JP2006296144A JP2006296144A (en) 2006-10-26
JP2006296144A5 JP2006296144A5 (en) 2008-04-10
JP4704093B2 true JP4704093B2 (en) 2011-06-15

Family

ID=37416100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116520A Active JP4704093B2 (en) 2005-04-14 2005-04-14 Vibration generator

Country Status (1)

Country Link
JP (1) JP4704093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013164892A1 (en) 2012-05-02 2013-11-07 三菱電機エンジニアリング株式会社 Vibration power generator
CN103460574A (en) * 2011-03-22 2013-12-18 胜美达集团株式会社 Vibration power generator

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US7498681B1 (en) * 2007-03-21 2009-03-03 Sandia Corporation Mechanical vibration to electrical energy converter
JP4964299B2 (en) * 2007-05-09 2012-06-27 スミダコーポレーション株式会社 Vibrating electromagnetic generator and manufacturing method of vibrating electromagnetic generator
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
CN101842963B (en) * 2007-10-11 2014-05-28 高通股份有限公司 Wireless power transfer using magneto mechanical systems
JP4649668B2 (en) * 2007-11-02 2011-03-16 スミダコーポレーション株式会社 Vibration type electromagnetic generator
TWI351158B (en) * 2007-12-11 2011-10-21 Ind Tech Res Inst Reciprocating power generating module
JP5417719B2 (en) * 2008-02-29 2014-02-19 スミダコーポレーション株式会社 Vibration type electromagnetic generator
JP5344386B2 (en) 2008-05-16 2013-11-20 株式会社キャットアイ Vibration generator
JP5251438B2 (en) * 2008-11-10 2013-07-31 ソニー株式会社 Power generator
JP5428297B2 (en) * 2008-11-10 2014-02-26 ソニー株式会社 Power generator
JP2010200479A (en) * 2009-02-25 2010-09-09 Bridgestone Corp Power generator inside tire
CN102414969B (en) * 2009-03-06 2015-08-12 鲁梅戴尼技术公司 For producing the device of electric power in response to mechanical oscillation
KR20120030999A (en) * 2009-04-22 2012-03-29 다이나믹 에너지 테크놀러지스, 엘엘씨 Energy conversion device
US9124154B2 (en) 2009-04-22 2015-09-01 Dynamic Energy Technologies, Llc Kinetic energy conversion device with variable output
WO2011040265A1 (en) * 2009-09-29 2011-04-07 ブラザー工業株式会社 Power generator using vibration
JP5758068B2 (en) * 2009-09-30 2015-08-05 ブラザー工業株式会社 electromagnetic induction generator
JP5760316B2 (en) * 2010-01-14 2015-08-05 スミダコーポレーション株式会社 Vibration type electromagnetic generator
EP2541743B1 (en) * 2010-02-22 2019-06-12 Brother Kogyo Kabushiki Kaisha Oscillating power generator
JP5375658B2 (en) * 2010-02-22 2013-12-25 ブラザー工業株式会社 Vibration generator
JP5428938B2 (en) * 2010-02-25 2014-02-26 ブラザー工業株式会社 Vibration generator
JP5327097B2 (en) * 2010-02-25 2013-10-30 ブラザー工業株式会社 Method for manufacturing same-pole opposed magnet and vibration generator
JP5327110B2 (en) * 2010-03-17 2013-10-30 ブラザー工業株式会社 Vibration generator
JP4680317B2 (en) * 2010-03-26 2011-05-11 スミダコーポレーション株式会社 Vibration type electromagnetic generator
JP5642991B2 (en) * 2010-04-21 2014-12-17 株式会社ブリヂストン In-tire power generator
BR112012031120A2 (en) 2010-06-07 2016-11-01 Dynamic Energy Technologies Llc rotational kinetic energy conversion system
WO2012073980A1 (en) * 2010-11-30 2012-06-07 セイコーインスツル株式会社 Electromagnetic generator
JP5418485B2 (en) * 2010-12-08 2014-02-19 スミダコーポレーション株式会社 Vibration generator
RU2450241C1 (en) * 2011-01-12 2012-05-10 Николай Евгеньевич Староверов Explosive magnetic generator
JP5447403B2 (en) * 2011-02-08 2014-03-19 ブラザー工業株式会社 Vibration generator and method of manufacturing vibration generator
US8736086B2 (en) * 2011-03-25 2014-05-27 Tai-Her Yang Reciprocal vibration type power generator equipped with inner columnar and outer annular magnetic members, a power storage device, a rectifying circuit, and a charging circuit
JP5811719B2 (en) 2011-09-14 2015-11-11 スミダコーポレーション株式会社 Vibration generator
JP5817648B2 (en) * 2012-05-31 2015-11-18 ブラザー工業株式会社 Vibration generator
KR101436311B1 (en) * 2012-09-28 2014-11-03 주식회사 파이노 Functional water manufacturing apparatus with self-generated electric power

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088884A (en) * 2002-08-26 2004-03-18 Denso Corp Linear vibration electric machine
WO2005031952A1 (en) * 2003-08-28 2005-04-07 Rockwell Scientific Licensing, Llc Electrical power generation by coupled magnets

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936937B2 (en) * 2002-06-14 2005-08-30 Sunyen Co., Ltd. Linear electric generator having an improved magnet and coil structure, and method of manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088884A (en) * 2002-08-26 2004-03-18 Denso Corp Linear vibration electric machine
WO2005031952A1 (en) * 2003-08-28 2005-04-07 Rockwell Scientific Licensing, Llc Electrical power generation by coupled magnets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460574A (en) * 2011-03-22 2013-12-18 胜美达集团株式会社 Vibration power generator
CN103460574B (en) * 2011-03-22 2016-06-08 胜美达集团株式会社 Vibrating electricity generator
WO2013164892A1 (en) 2012-05-02 2013-11-07 三菱電機エンジニアリング株式会社 Vibration power generator

Also Published As

Publication number Publication date
JP2006296144A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US9935535B2 (en) Flat linear vibration motor
JP5248598B2 (en) A permanent magnet generator for converting mechanical vibration energy into electrical energy.
US9815085B2 (en) Haptic actuator
US8018105B2 (en) Vibrator tube
EP2550724B1 (en) Electromechanical conversion system with moving magnets; acoustic diffuser comprising said system and a moving member that generates sound waves
US5175457A (en) Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets
JP4315811B2 (en) Dynamic magnet system
TWI400857B (en) Rotor-stator structure for electrodynamic machines
JP5869592B2 (en) Brushless permanent magnet electric machine capable of using low coercivity magnets
KR101583641B1 (en) Haptic actuator
US4827163A (en) Monocoil reciprocating permanent magnet electric machine with self-centering force
JP5760316B2 (en) Vibration type electromagnetic generator
US4937481A (en) Permanent magnet linear electromagnetic machine
US9619981B2 (en) Haptic actuator
US6914351B2 (en) Linear electrical machine for electric power generation or motive drive
US20080150482A1 (en) Magnetic holder for rechargeable devices
US7474019B2 (en) Permanent magnet excited transverse flux linear motor with normal force compensation structure
KR20140021625A (en) Vibration generating device
EP0237639B1 (en) Permanent magnet type linear electromagnetic actuator
US20060087186A1 (en) Rotor-stator structure for electrodynamic machines
US20030173836A1 (en) Linear motor and linear compressor
JP2009060785A (en) Electromagnetic actuator with two movable components in opposite phase
US7089043B2 (en) Self-rechargeable portable telephone
JP3818243B2 (en) Linear vibrator
US8115350B2 (en) Oscillation type electromagnetic power generator and method for manufacturing oscillation type electromagnetic power generator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531