JP2010200479A - Power generator inside tire - Google Patents

Power generator inside tire Download PDF

Info

Publication number
JP2010200479A
JP2010200479A JP2009042152A JP2009042152A JP2010200479A JP 2010200479 A JP2010200479 A JP 2010200479A JP 2009042152 A JP2009042152 A JP 2009042152A JP 2009042152 A JP2009042152 A JP 2009042152A JP 2010200479 A JP2010200479 A JP 2010200479A
Authority
JP
Japan
Prior art keywords
magnet
power generation
tire
coil
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009042152A
Other languages
Japanese (ja)
Inventor
Akira Kobayakawa
彰 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009042152A priority Critical patent/JP2010200479A/en
Publication of JP2010200479A publication Critical patent/JP2010200479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generator inside a tire that generates high power. <P>SOLUTION: A power generator mounted inside a tire air-chamber includes a power-generating magnet 6 provided so as to be linearly and reciprocatingly movable according to changes in a centrifugal force applied to a tire during vehicle traveling, a guide 3 for guiding the movement of the power-generating magnet 6, a coil 8 for generating a current by an electromagnetic induction action with the power-generating magnet 6, and a repulsion magnet 5 for repulsing the power-generating magnet 6. The power-generating magnet 6 is configured such that a plurality of unit magnets 15 are laminated in a direction along the guide 3. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、高電力を得ることの可能なタイヤ内発電装置に関する。   The present invention relates to an in-tire power generator capable of obtaining high power.

タイヤ内の温度や圧力を検出するTPMS(タイヤ・プレッシャー・モニタリング・システム)等のセンサ+無線を有するデバイスをタイヤ気室内に設置してタイヤモニタリングを実施する場合に、そのデバイスに電力を供給するタイヤ内発電装置が知られている(特許文献1等参照)。   When a device with a sensor and radio such as a TPMS (tire pressure monitoring system) that detects the temperature and pressure in the tire is installed in the tire chamber and tire monitoring is performed, power is supplied to the device. An in-tire power generation device is known (see Patent Document 1).

特開2000−278923号公報JP 2000-278923 A

しかしながら、従来のタイヤ内発電装置では、高電力を得ることができないという課題があった。
本発明は、上記問題点に鑑みてなされたもので、高電力を得ることができるタイヤ内発電装置を提供する。
However, the conventional in-tire power generator has a problem that high power cannot be obtained.
The present invention has been made in view of the above problems, and provides an in-tire power generator that can obtain high power.

本発明に係るタイヤ内発電装置によれば、タイヤの気室内に取付けられる発電装置において、車両走行時のタイヤに加わる遠心力の変化に応じて直線往復移動可能に設けられた発電用磁石と、発電用磁石の移動を案内するガイドと、発電用磁石との電磁誘導作用により電流を発生するコイルと、発電用磁石を反発させる反発手段とを備え、発電用磁石は、ガイドに沿った方向に複数の単位磁石が積層された構成としたので、磁束密度が上がり、高電圧を発生して、高電力を得ることができるタイヤ内発電装置となる。
反発手段が反発用磁石であるので、タイヤの遠心力のON/OFFにより発電用磁石を直線往復移動させることができるので、効率的に高電圧を発生できる。
反発用磁石に近い側に位置する単位磁石のガイドに沿った方向の厚さを他の単位磁石よりも厚くしたので、発電用磁石と反発用磁石との間に作用する反発力を大きくでき、タイヤ内発電装置が取付けられているタイヤの内面の裏側に位置するトレッド面が接地している時の位置エネルギーを最大限に稼ぐことができるので、遠心力発生時に発電用磁石がコイルを横切る速度を速くでき、高い電圧を発生できるようになる。
反発用磁石の発電用磁石側の面とガイドに沿った方向でのコイルの反発用磁石側の一端との間の最短距離を、単位磁石のうちのガイドに沿った方向の厚さの最小値に相当する長さに設定したので、発電用磁石の直線往復移動位置とコイルの位置とを一致させることができ、漏洩磁束を少なくできて、高電圧を発生できるようになる。
発電用磁石と、ガイドと、コイルと、反発手段とを収納する閉空間が、ガイドとしてのガイド棒の一端及び反発手段の一端が取付けられたベースと、発電用磁石の外周面と対向する筒内周面を備えた一端開放他端閉塞の有底の筒状に形成されたケースとが組み合わされて形成され、コイルがケースの内周面に固定されたので、発電用磁石とコイルとの距離を近くでき、漏洩磁束を少なくできて、高電圧を発生できるようになる。
ケースが空気逃がし孔を備えたので、ケースの内周面と発電用磁石の外周面との間の距離を小さくしても、タイヤの遠心力によって発電用磁石が直線往復移動する際の空気抵抗が少なくなり、発電用磁石をスムーズに直線往復移動させることができるようになり、効率的な発電作用を実現できる。
コイルの内周面と発電用磁石の外周面との間の距離を、発電用磁石の径寸法の1/10にしたので、漏洩磁束を少なくできて、高電圧を発生できるようになる。
コイルの巻線として、断面矩形状の平角線を用いたので、巻線抵抗減少と巻数増加が図れ、巻線密度を向上できるので、発電効率が高まる。
According to the in-tire power generation device according to the present invention, in the power generation device mounted in the tire chamber, a power generation magnet provided so as to be capable of linear reciprocation according to a change in centrifugal force applied to the tire during vehicle travel, A guide that guides the movement of the power generation magnet, a coil that generates a current by electromagnetic induction with the power generation magnet, and a repelling means that repels the power generation magnet, the power generation magnet in a direction along the guide Since a plurality of unit magnets are stacked, the magnetic flux density is increased, a high voltage is generated, and the in-tire power generator can obtain high power.
Since the repulsion means is a repulsion magnet, the power generation magnet can be linearly reciprocated by turning on / off the centrifugal force of the tire, so that a high voltage can be generated efficiently.
Since the thickness in the direction along the guide of the unit magnet located on the side closer to the repulsion magnet is made thicker than other unit magnets, the repulsive force acting between the power generation magnet and the repulsion magnet can be increased, Since the potential energy when the tread surface located behind the inner surface of the tire to which the in-tire power generator is attached is grounded can be maximized, the speed at which the generating magnet crosses the coil when centrifugal force is generated And a high voltage can be generated.
The shortest distance between the surface on the magnet side for power generation of the magnet for repulsion and one end on the magnet side for repulsion of the coil in the direction along the guide is the minimum thickness of the unit magnet in the direction along the guide Therefore, the position of the linear reciprocating movement of the power generating magnet and the position of the coil can be matched, the leakage magnetic flux can be reduced, and a high voltage can be generated.
A cylinder in which a closed space for housing a power generating magnet, a guide, a coil, and a repelling means is opposed to a base on which one end of a guide rod and one end of a repelling means are attached as a guide, and an outer peripheral surface of the power generating magnet Since the case formed in a cylindrical shape with a closed end with one end open and the other end closed with an inner peripheral surface is formed and the coil is fixed to the inner peripheral surface of the case, the power generation magnet and the coil The distance can be reduced, the leakage magnetic flux can be reduced, and a high voltage can be generated.
Since the case has an air escape hole, even if the distance between the inner peripheral surface of the case and the outer peripheral surface of the power generation magnet is reduced, the air resistance when the power generation magnet reciprocates linearly due to the centrifugal force of the tire. And the power generation magnet can be smoothly reciprocated linearly, and an efficient power generation operation can be realized.
Since the distance between the inner peripheral surface of the coil and the outer peripheral surface of the power generation magnet is set to 1/10 of the diameter of the power generation magnet, the leakage magnetic flux can be reduced and a high voltage can be generated.
Since a rectangular wire having a rectangular cross section is used as the winding of the coil, the winding resistance can be reduced and the number of turns can be increased, and the winding density can be improved, thereby increasing the power generation efficiency.

タイヤ内発電装置を示す図(形態1)。The figure which shows the electric power generation apparatus in a tire (form 1). タイヤ内発電装置の断面図(形態1)。Sectional drawing of the in-tire electric power generating apparatus (form 1). タイヤ内発電装置の断面図(形態2)。Sectional drawing of the in-tire electric power generating apparatus (form 2). タイヤ内発電装置の断面図(形態2)。Sectional drawing of the in-tire electric power generating apparatus (form 2). 発電量と車両速度との関係を示す図(形態2)。The figure which shows the relationship between electric power generation amount and vehicle speed (form 2). タイヤ内発電装置を示す図(形態4)。The figure which shows the electric power generating apparatus in a tire (form 4).

形態1
図1,2に示すように、本形態1に係るタイヤ内発電装置1は、ベース2と、発電用磁石の移動を案内するガイド棒3と、リニアベアリング4と、磁気ばねとして作用して発電用磁石を反発させる反発手段としての磁石(以下、反発用磁石5という)と、車両走行時のタイヤに加わる遠心力の変化に応じて直線往復移動可能に設けられた磁石(以下、発電用磁石6)と、ケース7と、発電用磁石6との電磁誘導作用により電流を発生するコイル8とを備える。
ベース2は、円板により形成される。ガイド棒3は、丸棒により形成される。
ガイド棒3は、ベース2を形成する円板の一方の円面18の円中心より円面と直交する方向に延長するように設けられる。このベース2及びガイド棒3は、一体に形成されたものでもよいし、個々の別体に形成されたものが互いに結合されて形成されたものでもよい。
反発用磁石5は、ガイド棒3が貫通する中心孔9を備えた円板形状に形成され、中心孔9にガイド棒3を通して円板面10とベース2とが接着される。反発用磁石5の円板の外周径はベース2の円板の外周径よりも小さい。
リニアベアリング4は、図示しないが、外筒と、外筒の内側に設けられた保持筒と、保持筒の内部に設けられた多数のボールとにより形成される。保持筒の内面には、筒の中心軸に沿った方向に延長する複数の溝が周方向に所定の間隔を隔てて形成されており、複数のボールが当該溝に沿って極めて円滑に無限循環運動を行う構造になっている。即ち、ガイド棒3が保持筒の筒孔を貫通するように、リニアベアリング4がガイド棒3に取付けられ、リニアベアリング4の保持筒の溝より露出するボールとガイド棒3の外周面とが摺動することで、ガイド棒3の外周面とボールとが転がり接触しながら低い転がり摩擦で相対移動を行うことができる。転がり摩擦係数μが0.005である。
発電用磁石6は、円の中心にリニアベアリング4の筒の外周面に嵌め込まれる中心孔11を備えた円板形状の磁石である。発電用磁石6の中心孔11がリニアベアリング4の筒の外周面に嵌め込まれて、発電用磁石6がリニアベアリング4と同心となるようにリニアベアリング4に固定される。これにより、車両走行時のタイヤに加わる遠心力の変化に応じて発電用磁石6がリニアベアリング4を介してガイド棒3上をガイド棒3の延長方向に直線往復移動可能に構成される。この場合、リニアベアリング4を備えているので、ガイド棒3との摩擦抵抗を少なくでき、発電用磁石6が精度良く直進往復運動を行う。発電用磁石6は、円の中心にリニアベアリング4の筒の外周面に嵌め込まれる中心孔11を備えた複数個の円板形状の単位磁石15がガイド棒3に沿った方向に積層された構成である。単位磁石15は、円板の一方の円面16側が「N」極に着磁され、円板の他方の円面側が「S」極に着磁されたものである。発電用磁石6は、図1に示すように、例えば、2枚の単位磁石15の一方の円面16同士、又は、他方の円面同士が接着されて形成される。即ち、単位磁石15同士は、同極に着磁された面同士が接着されて発電用磁石6を構成する。発電用磁石6と反発用磁石5との互いに向かい合う円面同士は同極に形成され、これにより、発電用磁石6が反発用磁石5に近づいた場合に発電用磁石6が反発用磁石5により反発して反発用磁石5より離れる方向に移動する。
ケース7は、一端開放他端閉塞の有底の同径筒状に形成される。ケース7の筒の内周径は、発電用磁石6の外周径及び反発用磁石5の外周径よりも大きく、ケース7の筒の外周径は、ベース2の外周径よりも小さい。
コイル8は、ケース7の筒の内周面14に固定される。コイル8は、ケース7の内周面14の周方向にN回(例えば100回)巻き回された構成である。ケース7に固定されたコイル8の内周径は、発電用磁石6の外周径よりも大きい。
ケース7の一端開放端面とベースの一方の円面18とを接触させ、ケース7の他端閉塞蓋19の内面に形成されたガイド棒支持孔20にガイド棒3の他端を嵌め込むことによって、ケース7とベース2とで形成された閉空間21内に、ガイド棒3、発電用磁石6、反発用磁石5、コイル8が収納されたタイヤ内発電装置1が構成される。
Form 1
As shown in FIGS. 1 and 2, the in-tire power generation device 1 according to the present embodiment 1 generates power by acting as a base 2, a guide rod 3 that guides the movement of a power generation magnet, a linear bearing 4, and a magnetic spring. A magnet as a repelling means for repelling a motor magnet (hereinafter referred to as a repulsion magnet 5), and a magnet (hereinafter referred to as a power generation magnet) provided so as to be capable of linear reciprocation in accordance with a change in centrifugal force applied to a tire during vehicle travel 6), a case 7, and a coil 8 for generating a current by electromagnetic induction action of the power generation magnet 6.
The base 2 is formed by a disc. The guide bar 3 is formed by a round bar.
The guide bar 3 is provided so as to extend from the center of one of the circular surfaces 18 of the disk forming the base 2 in a direction perpendicular to the circular surface. The base 2 and the guide bar 3 may be integrally formed, or may be formed by connecting individual members formed separately from each other.
The repulsion magnet 5 is formed in a disk shape having a center hole 9 through which the guide bar 3 passes, and the disk surface 10 and the base 2 are bonded to the center hole 9 through the guide bar 3. The outer diameter of the disk of the repulsion magnet 5 is smaller than the outer diameter of the disk of the base 2.
Although not shown, the linear bearing 4 is formed by an outer cylinder, a holding cylinder provided inside the outer cylinder, and a large number of balls provided inside the holding cylinder. A plurality of grooves extending in the direction along the central axis of the cylinder are formed on the inner surface of the holding cylinder at predetermined intervals in the circumferential direction, and the plurality of balls are circulated infinitely along the groove. It is structured to exercise. That is, the linear bearing 4 is attached to the guide rod 3 so that the guide rod 3 penetrates the cylindrical hole of the holding cylinder, and the ball exposed from the groove of the holding cylinder of the linear bearing 4 and the outer peripheral surface of the guide rod 3 slide. By moving, the outer peripheral surface of the guide bar 3 and the ball can make a relative movement with low rolling friction while rolling. The rolling friction coefficient μ is 0.005.
The power generation magnet 6 is a disc-shaped magnet having a center hole 11 fitted into the outer peripheral surface of the cylinder of the linear bearing 4 at the center of the circle. The center hole 11 of the power generation magnet 6 is fitted into the outer peripheral surface of the cylinder of the linear bearing 4, and the power generation magnet 6 is fixed to the linear bearing 4 so as to be concentric with the linear bearing 4. Thus, the power generation magnet 6 is configured to be capable of linear reciprocation on the guide rod 3 via the linear bearing 4 in the extending direction of the guide rod 3 in accordance with a change in centrifugal force applied to the tire during vehicle travel. In this case, since the linear bearing 4 is provided, the frictional resistance with the guide rod 3 can be reduced, and the power generation magnet 6 performs linear reciprocation with high accuracy. The power generation magnet 6 has a configuration in which a plurality of disk-shaped unit magnets 15 each having a center hole 11 fitted into the outer peripheral surface of the cylinder of the linear bearing 4 are stacked in the direction along the guide rod 3 at the center of the circle. It is. The unit magnet 15 is one in which one circular surface 16 side of the disk is magnetized to the “N” pole and the other circular surface side of the disk is magnetized to the “S” pole. As shown in FIG. 1, the power generation magnet 6 is formed, for example, by bonding one circular surface 16 of the two unit magnets 15 or the other circular surface. That is, the unit magnets 15 form the power generation magnet 6 by bonding the surfaces magnetized to the same polarity. The mutually opposing circular surfaces of the power generation magnet 6 and the repulsion magnet 5 are formed to have the same polarity, so that when the power generation magnet 6 approaches the repulsion magnet 5, the power generation magnet 6 is moved by the repulsion magnet 5. It repels and moves away from the repulsion magnet 5.
The case 7 is formed in a cylindrical shape with a bottom having one end open and the other end closed. The inner peripheral diameter of the cylinder of the case 7 is larger than the outer peripheral diameter of the power generation magnet 6 and the outer peripheral diameter of the repulsion magnet 5, and the outer peripheral diameter of the cylinder of the case 7 is smaller than the outer peripheral diameter of the base 2.
The coil 8 is fixed to the inner peripheral surface 14 of the cylinder of the case 7. The coil 8 is configured to be wound N times (for example, 100 times) in the circumferential direction of the inner peripheral surface 14 of the case 7. The inner peripheral diameter of the coil 8 fixed to the case 7 is larger than the outer peripheral diameter of the power generation magnet 6.
By bringing one end open end surface of the case 7 into contact with one circular surface 18 of the base and fitting the other end of the guide rod 3 into the guide rod support hole 20 formed in the inner surface of the other end closing lid 19 of the case 7. The in-tire power generator 1 in which the guide rod 3, the power generation magnet 6, the repulsion magnet 5, and the coil 8 are housed in the closed space 21 formed by the case 7 and the base 2 is configured.

ケース7には、筒の内周面14と外周面とを貫通する空気逃がし孔22が形成される。空気逃がし孔22は、発電用磁石6の平衡位置よりもベース2側に少なくとも1つ、発電用磁石6の平衡位置よりも他端閉塞蓋19側に少なくとも1つ設けられる。これにより、ケース7の内周面14と発電用磁石6の外周面23との間の距離を小さくしても、タイヤの遠心力によって発電用磁石6が直線往復移動する際の空気抵抗が少なくなり、発電用磁石6をスムーズに直線往復移動させることができるようになり、効率的な発電作用を実現できる。   The case 7 is formed with an air escape hole 22 that penetrates the inner peripheral surface 14 and the outer peripheral surface of the cylinder. At least one air escape hole 22 is provided on the base 2 side from the equilibrium position of the power generation magnet 6, and at least one is provided on the other end closing lid 19 side from the equilibrium position of the power generation magnet 6. Thereby, even if the distance between the inner peripheral surface 14 of the case 7 and the outer peripheral surface 23 of the power generation magnet 6 is reduced, the air resistance when the power generation magnet 6 reciprocates linearly by the centrifugal force of the tire is small. Thus, the power generation magnet 6 can be smoothly reciprocated linearly, and an efficient power generation operation can be realized.

以上のように構成されたタイヤ内発電装置1は、ベース2の他方の円面がタイヤ気室内の例えばトレッド面裏面に相当する位置に固定される。そして、車を走行させると、タイヤ内振動でもっともエネルギーの高い遠心力の変動により、発電用磁石6がガイド棒3の延長方向に直線往復移動を行う。タイヤ内の遠心力F=m×V/r(mはタイヤ内発電装置1の質量、Vは車輪速度、rはタイヤ半径)は、接地時以外においては、V/rにより決まり、接地時には0になる。これにより、発電用磁石6がガイド棒3の延長方向に直線往復移動を行う。そして、発電用磁石6がコイル8を横切るたびに、電圧が発生する。この電圧が整流回路25を通して充電回路26に充電され、デバイス27に供給される。 In the in-tire power generation device 1 configured as described above, the other circular surface of the base 2 is fixed at a position corresponding to, for example, the back surface of the tread surface in the tire chamber. Then, when the vehicle is driven, the power generating magnet 6 reciprocates linearly in the extending direction of the guide rod 3 due to the fluctuation of the centrifugal force having the highest energy due to the vibration in the tire. The centrifugal force F in the tire F = m × V 2 / r (where m is the mass of the power generator 1 in the tire, V is the wheel speed, and r is the tire radius) is determined by V 2 / r except at the time of ground contact. Sometimes 0. As a result, the power generating magnet 6 reciprocates linearly in the extending direction of the guide rod 3. A voltage is generated every time the power generation magnet 6 crosses the coil 8. This voltage is charged into the charging circuit 26 through the rectifying circuit 25 and supplied to the device 27.

形態1によれば、発電用磁石6が、同極同士を接着してガイド棒3の棒に沿った方向に積層された複数個の単位磁石15により構成されたので、磁束密度が上がり、高電圧を発生するタイヤ内発電装置1を提供できる。   According to the first aspect, the power generation magnet 6 is composed of the plurality of unit magnets 15 that are laminated in the direction along the bar of the guide bar 3 by bonding the same poles. The in-tire power generator 1 that generates voltage can be provided.

形態1によれば、コイル8をケース7の内側に固定したので、発電用磁石6とコイル8との距離を近くでき、漏洩磁束を少なくできて、高電圧を発生できるようになる。   According to the first aspect, since the coil 8 is fixed inside the case 7, the distance between the power generation magnet 6 and the coil 8 can be reduced, the leakage magnetic flux can be reduced, and a high voltage can be generated.

形態1によれば、発電用磁石6が、リニアベアリング4に保持され、ガイド棒3に沿って直線往復移動可能に構成されたので、リニアベアリング4により発電用磁石6が移動する際の摩擦抵抗を少なくでき、かつ、ガイド棒3により発電用磁石6が精度よく直線往復移動を行うので、発電用磁石6がスムーズに直線往復移動し、効率的に高電圧を発生できる高品質のタイヤ内発電装置1を提供できる。   According to the first aspect, since the power generation magnet 6 is held by the linear bearing 4 and configured to be linearly reciprocable along the guide rod 3, the frictional resistance when the power generation magnet 6 is moved by the linear bearing 4. Since the power generation magnet 6 reciprocates linearly with high accuracy by the guide rod 3, the power generation magnet 6 smoothly reciprocates linearly and can generate high voltage efficiently. The apparatus 1 can be provided.

形態1によれば、反発用磁石5を備えたので、タイヤの遠心力のON/OFFにより発電用磁石6を直線往復移動させることができるので、効率的に高電圧を発生できる。また、発電用磁石6がリニアベアリング4により保持されているため、互いに向かい合う反発用磁石5と発電用磁石6との面を平行に保てるため、最大の反発力を得ることができる。   According to the first aspect, since the repulsion magnet 5 is provided, the power generation magnet 6 can be linearly reciprocated by turning ON / OFF the centrifugal force of the tire, so that a high voltage can be generated efficiently. Further, since the power generation magnet 6 is held by the linear bearing 4, the surfaces of the repulsion magnet 5 and the power generation magnet 6 facing each other can be maintained in parallel, so that the maximum repulsive force can be obtained.

形態1において、好ましくは、ガイド棒3の外周面、発電用磁石6の外周面23、コイル8の内周面24、ケース7の内周面14は、ガイド棒3の中心線と平行となるように構成する。これにより、発電用磁石6がスムーズに直線往復移動し、効率的な発電作用を実現できる。   In the first embodiment, preferably, the outer peripheral surface of the guide rod 3, the outer peripheral surface 23 of the power generation magnet 6, the inner peripheral surface 24 of the coil 8, and the inner peripheral surface 14 of the case 7 are parallel to the center line of the guide rod 3. Configure as follows. Thereby, the magnet 6 for electric power generation can carry out the linear reciprocation smoothly, and an efficient electric power generation effect | action is realizable.

形態1において、好ましくは、図2に示すように、発電用磁石6の外周面23とコイル8の内周面との最短距離aを、発電用磁石の円の外径寸法の10%以下程度に形成する。これにより、漏洩磁束を少なくできて、高電圧を発生できるようになる。   In the first embodiment, preferably, as shown in FIG. 2, the shortest distance a between the outer peripheral surface 23 of the power generation magnet 6 and the inner peripheral surface of the coil 8 is about 10% or less of the outer diameter of the circle of the power generation magnet. To form. Thereby, leakage magnetic flux can be reduced and a high voltage can be generated.

形態1において、好ましくは、コイルの巻線として、断面矩形状の平角線を用いる。これにより、巻線抵抗減少と巻数増加が図れ、巻線密度を向上できるので、発電効率が高まる。   In the first aspect, a rectangular wire having a rectangular cross section is preferably used as the coil winding. As a result, the winding resistance can be reduced and the number of turns can be increased, and the winding density can be improved, thus increasing the power generation efficiency.

形態1において、好ましくは、リニアベアリング4を非磁性の材料により形成する。これにより、反発用磁石5と発電用磁石6との間に引力が生じるのを防止でき、反発用磁石5による反発力を最大にできるので、反発用磁石5と発電用磁石6とが接触して発電用磁石6がコイル8を横切らなくなって発電されない状態となることを防止できる。   In the first embodiment, the linear bearing 4 is preferably made of a nonmagnetic material. Thereby, it is possible to prevent attraction between the repulsion magnet 5 and the power generation magnet 6 and to maximize the repulsion force by the repulsion magnet 5, so that the repulsion magnet 5 and the power generation magnet 6 come into contact with each other. Thus, it can be prevented that the power generation magnet 6 does not cross the coil 8 and no power is generated.

形態1において、好ましくは、リニアベアリング4のボールを、非磁性体、例えば、セラミックや樹脂により形成する。これにより、ボールの動きが磁石の磁力によって妨げられることを防止でき、発電用磁石6をスムーズに直線往復移動させることができるようになる。   In the first embodiment, the ball of the linear bearing 4 is preferably formed of a non-magnetic material such as ceramic or resin. As a result, the movement of the ball can be prevented from being disturbed by the magnetic force of the magnet, and the power generation magnet 6 can be smoothly reciprocated linearly.

形態1において、好ましくは、ガイド棒3を、非磁性の材料により形成する。これにより、ガイド棒3と磁石とが引き合うのを防止できて、発電用磁石6をスムーズに直線往復移動させることができるようになる。   In the first embodiment, the guide rod 3 is preferably made of a nonmagnetic material. As a result, the guide rod 3 and the magnet can be prevented from attracting each other, and the power generation magnet 6 can be smoothly reciprocated linearly.

形態1において、好ましくは、ガイド棒3を、非導電性の材料により形成する。これにより、ガイド棒3に発生する渦電流をなくすことができ、ガイド棒3による力学的損失をなくすことができる。   In the first embodiment, the guide rod 3 is preferably made of a nonconductive material. Thereby, the eddy current which generate | occur | produces in the guide rod 3 can be eliminated, and the mechanical loss by the guide rod 3 can be eliminated.

形態1において、好ましくは、ケースを、非磁性かつ非導電性の材料により形成する。例えば、PEEK、ABS等の樹脂により形成する。これによれば、ケース7と磁石とが引き合うのを防止できて、発電用磁石6をスムーズに直線往復移動させることができるようになり、また、ケース7に発生する渦電流をなくすことができて、ケースによる力学的損失をなくすことができる。   In form 1, preferably, the case is formed of a nonmagnetic and nonconductive material. For example, it is formed of a resin such as PEEK or ABS. According to this, it is possible to prevent the case 7 and the magnet from attracting each other, and the power generating magnet 6 can be smoothly reciprocated linearly, and the eddy current generated in the case 7 can be eliminated. The mechanical loss due to the case can be eliminated.

形態1において、好ましくは、反発用磁石5、発電用磁石6を、残留磁束密度の高いネオジウム磁石により形成する。これにより、大きい反発力、安定した高電圧を得ることができる。   In the first embodiment, the repulsion magnet 5 and the power generation magnet 6 are preferably formed of a neodymium magnet having a high residual magnetic flux density. Thereby, a large repulsive force and a stable high voltage can be obtained.

形態2
図3に示すように、発電用磁石6は、反発用磁石5に近い側に位置される単位磁石15の円板の厚さcが、反発用磁石5に遠い側に位置される単位磁石15の円板の厚さdよりも厚いもの、例えば、5/3程度のものを用いる。これにより、発電用磁石6と反発用磁石5との間に作用する反発力が大きくなるので、タイヤ内発電装置1が取付けられているタイヤの内面の裏側に位置するトレッド面が接地している時(遠心力OFF時)の位置エネルギーを最大限に稼ぐことができ、遠心力発生時に発電用磁石6がコイル8を横切る速度を速くできるので、高い電圧を発生できるようになる。
Form 2
As shown in FIG. 3, the power generation magnet 6 has a unit magnet 15 positioned on the side farther from the repulsion magnet 5 such that the disc thickness c of the unit magnet 15 positioned on the side closer to the repulsion magnet 5 is larger. A thicker one than the thickness d of the disk, for example, about 5/3 is used. Thereby, since the repulsive force which acts between the magnet 6 for electric power generation and the magnet 5 for repulsion becomes large, the tread surface located in the back side of the inner surface of the tire in which the in-tire electric power generating apparatus 1 is attached is earth | grounded. The potential energy at the time (when the centrifugal force is OFF) can be maximized, and the speed at which the power generation magnet 6 crosses the coil 8 can be increased when the centrifugal force is generated, so that a high voltage can be generated.

コイル8と対向する単位磁石15のガイド棒3に沿った方向の厚さがコイル8のガイド棒3に沿った方向の厚さよりも薄いと、他の単位磁石15の影響を受けて平均磁束が減少する。そこで、形態1又は形態2の反発用磁石5を形成する単位磁石のガイド棒3に沿った方向の厚さの最小値は、コイル8のガイド棒3に沿った方向の厚さよりも厚くする。これにより、磁束密度を大きくでき、高電圧を発生できる。   If the thickness of the unit magnet 15 facing the coil 8 in the direction along the guide bar 3 is smaller than the thickness of the coil 8 in the direction along the guide bar 3, the average magnetic flux is affected by the other unit magnets 15. Decrease. Therefore, the minimum thickness in the direction along the guide rod 3 of the unit magnet forming the repulsion magnet 5 in the form 1 or 2 is set to be larger than the thickness in the direction along the guide bar 3 of the coil 8. Thereby, magnetic flux density can be enlarged and a high voltage can be generated.

タイヤに遠心力が加わった状態においては、発電用磁石6は、反発用磁石5から数mm程度離れた位置を平衡位置として直線往復移動を繰り返す。そこで、形態1又は形態2において、好ましくは、図4に示すように、反発用磁石5の発電用磁石6側の円面とガイド棒3に沿った方向でのコイル8の反発用磁石5側の一端との間の最短距離bを、単位磁石15の円板の厚さの最小値に相当する長さに設定する。これにより、発電用磁石6の直線往復移動位置とコイル8の位置とを一致させることができるので、漏洩磁束を少なくできて、高電圧を発生できるようになる。   In a state where centrifugal force is applied to the tire, the power generation magnet 6 repeats linear reciprocating movement with the position away from the repulsion magnet 5 by about several mm as an equilibrium position. Therefore, in the first or second mode, preferably, as shown in FIG. 4, the repulsion magnet 5 side of the coil 8 in the direction along the circular surface of the repulsion magnet 5 on the power generation magnet 6 side and the guide rod 3. Is set to a length corresponding to the minimum value of the thickness of the disk of the unit magnet 15. As a result, the linear reciprocating position of the power generation magnet 6 and the position of the coil 8 can be matched, so that the leakage magnetic flux can be reduced and a high voltage can be generated.

実施例
・タイヤサイズ;225/55R17を用いた。
・反発用磁石5、発電用磁石6としてφ10mmの円板形状のネオジウム磁石を用いた。発電用磁石6は、2個の単位磁石15を積層したものを用い、反発用磁石5に近い側の単位磁石15として厚さ6mmのものを使用し、もう一方の単位磁石15として厚さ2mmのものを用いた。
・コイル8は内径10.5mm、外径12.5mmとした。巻線は平角線を用い、二層巻とした。
・非磁性のセラミック製のボールを備えたリニアベアリングを用いた。
・走行速度30km/h、40km/h、50km/h、60km/h、70km/hで定常走行して、充電回路に充電される電圧が安定するまで走行した。
・安定した電圧とデバイスの負荷(R=300Ω)とにより、発電量(W=V/R)を算出した。
・実施例による発電量と車両速度との関係を図5に示した。
・図5から、安定して連続的に数mW以上の充電を行えることがわかる。
Example and tire size: 225 / 55R17 was used.
A disc-shaped neodymium magnet having a diameter of 10 mm was used as the repulsion magnet 5 and the power generation magnet 6. The power generation magnet 6 is a laminate of two unit magnets 15. The unit magnet 15 on the side close to the repulsion magnet 5 has a thickness of 6 mm, and the other unit magnet 15 has a thickness of 2 mm. The thing of was used.
The coil 8 has an inner diameter of 10.5 mm and an outer diameter of 12.5 mm. The winding was a two-layer winding using a rectangular wire.
• Linear bearings with non-magnetic ceramic balls were used.
-The vehicle traveled at a traveling speed of 30 km / h, 40 km / h, 50 km / h, 60 km / h, and 70 km / h until the voltage charged in the charging circuit was stabilized.
The power generation amount (W = V 2 / R) was calculated from the stable voltage and the device load (R = 300Ω).
The relationship between the power generation amount and the vehicle speed according to the example is shown in FIG.
FIG. 5 shows that charging of several mW or more can be performed stably and continuously.

形態3
ケース7とベース2とで形成され、ガイド棒3、反発用磁石5、発電用磁石6、コイル8が収納される閉空間21内を真空に形成すれば、ケース7に空気逃がし孔22を形成することなく、発電用磁石6をスムーズに直線往復移動させることができるようになり、効率的な発電作用を実現できる。
Form 3
If the inside of the closed space 21 formed by the case 7 and the base 2 and containing the guide rod 3, the repulsion magnet 5, the power generation magnet 6 and the coil 8 is formed in a vacuum, an air escape hole 22 is formed in the case 7. Therefore, the power generation magnet 6 can be smoothly reciprocated linearly, and an efficient power generation operation can be realized.

形態4
図6に示すように、反発用磁石5の代わりに、コイルばねのような弾性体29によって発電用磁石6とベース2とを連結し、遠心力によって弾性体29が伸縮することで、発電用磁石6がガイド棒3に沿って直線往復移動可能なように構成されたタイヤ内発電装置1としてもよい。この場合において、ケース7を用いない場合は、図6に示すように、ベース2に取付けられた支持部材30でコイル8を支持するようにしてもよい。
尚、コイルばねのような弾性体29は、減衰の要因となるので、発電量の少ない40km/h以下走行時に反発用磁石5と発電用磁石6とが接触しないものを選定する。
Form 4
As shown in FIG. 6, instead of the repulsion magnet 5, the power generation magnet 6 and the base 2 are connected by an elastic body 29 such as a coil spring, and the elastic body 29 expands and contracts by centrifugal force. The in-tire power generator 1 may be configured such that the magnet 6 can linearly reciprocate along the guide rod 3. In this case, when the case 7 is not used, the coil 8 may be supported by a support member 30 attached to the base 2 as shown in FIG.
The elastic body 29 such as a coil spring is a factor of attenuation. Therefore, the elastic body 29 is selected so that the repulsion magnet 5 and the power generation magnet 6 are not in contact with each other when traveling at 40 km / h or less with a small amount of power generation.

形態5
発電用磁石6の移動をケース7の内周面14でガイドするように構成されたタイヤ内発電装置1としてもよい。
Form 5
The in-tire power generator 1 configured to guide the movement of the power generating magnet 6 by the inner peripheral surface 14 of the case 7 may be used.

形態6
異極に着磁された面同士が接着されて積層された複数の単位磁石15により発電用磁石6を構成してもよい。
Form 6
The power generation magnet 6 may be configured by a plurality of unit magnets 15 that are laminated by bonding the surfaces polarized with different polarities.

本発明のタイヤ内発電装置1によれば、タイヤ内の温度や圧力等のタイヤ情報、例えば、タイヤにかかる圧力、路面の滑りやすさを検出し、これらタイヤの動的な状態を連続送信するために高電力を必要とするデバイスに安定して電力を供給できるようになる。   According to the in-tire power generator 1 of the present invention, tire information such as temperature and pressure in the tire, for example, pressure applied to the tire and slipperiness of the road surface is detected, and the dynamic state of these tires is continuously transmitted. Therefore, power can be stably supplied to a device that requires high power.

1 タイヤ内発電装置、2 ベース、3 ガイド棒(ガイド)、
5 反発用磁石(反発手段)、6 発電用磁石、7 ケース、8 コイル、
14 内周面、15 単位磁石、21 閉空間、22 空気逃がし孔、
23 発電用磁石の外周面、24 コイルの内周面。
1 Power generator in tire, 2 base, 3 guide rod (guide),
5 Repulsion magnet (Repulsion means), 6 Power generation magnet, 7 Case, 8 Coil,
14 inner peripheral surface, 15 unit magnet, 21 closed space, 22 air escape hole,
23 The outer peripheral surface of the power generating magnet, 24 The inner peripheral surface of the coil.

Claims (8)

タイヤの気室内に取付けられるタイヤ内発電装置において、車両走行時のタイヤに加わる遠心力の変化に応じて直線往復移動可能に設けられた発電用磁石と、発電用磁石の移動を案内するガイドと、発電用磁石との電磁誘導作用により電流を発生するコイルと、発電用磁石を反発させる反発手段とを備え、発電用磁石は、ガイドに沿った方向に複数の単位磁石が積層された構成であることを特徴とするタイヤ内発電装置。   In a tire power generator installed in a tire chamber, a power generation magnet provided so as to be linearly reciprocable in accordance with a change in centrifugal force applied to the tire during vehicle travel, and a guide for guiding the movement of the power generation magnet A coil that generates a current by electromagnetic induction with the power generation magnet and a repulsion means that repels the power generation magnet, and the power generation magnet has a configuration in which a plurality of unit magnets are stacked in a direction along the guide. An in-tire power generator characterized by being. 反発手段が反発用磁石であることを特徴とする請求項1に記載のタイヤ内発電装置。   The in-tire power generator according to claim 1, wherein the repulsion means is a repulsion magnet. 反発用磁石に近い側に位置する単位磁石のガイドに沿った方向の厚さを他の単位磁石よりも厚くしたことを特徴とする請求項2に記載のタイヤ内発電装置。   The in-tire power generator according to claim 2, wherein a thickness of the unit magnet located on the side closer to the repulsion magnet along the guide is made thicker than other unit magnets. 反発用磁石の発電用磁石側の面とガイドに沿った方向でのコイルの反発用磁石側の一端との間の最短距離を、単位磁石のうちのガイドに沿った方向の厚さの最小値に相当する長さに設定したことを特徴とする請求項2又は請求項3に記載のタイヤ内発電装置。   The shortest distance between the surface on the magnet side for power generation of the magnet for repulsion and one end on the magnet side for repulsion of the coil in the direction along the guide is the minimum thickness of the unit magnet in the direction along the guide The in-tire power generator according to claim 2 or 3, wherein a length corresponding to is set. 発電用磁石と、ガイドと、コイルと、反発手段とを収納する閉空間が、ガイドとしてのガイド棒の一端及び反発手段の一端が取付けられたベースと、発電用磁石の外周面と対向する筒内周面を備えた一端開放他端閉塞の有底の筒状に形成されたケースとが組み合わされて形成され、コイルがケースの内周面に固定されたことを特徴とする請求項1乃至請求項4のいずれかに記載のタイヤ内発電装置。   A cylinder in which a closed space for housing a power generating magnet, a guide, a coil, and a repelling means is opposed to a base on which one end of a guide rod and one end of a repelling means are attached as a guide, and an outer peripheral surface of the power generating magnet The coil is fixed to the inner peripheral surface of the case, wherein the coil is fixed to the inner peripheral surface of the case. The in-tire power generation device according to claim 4. ケースが空気逃がし孔を備えたことを特徴とする請求項5に記載のタイヤ内発電装置。   The in-tire power generator according to claim 5, wherein the case has an air escape hole. コイルの内周面と発電用磁石の外周面との間の距離を、発電用磁石の径寸法の1/10にしたことを特徴とする請求項1乃至請求項6のいずれかに記載のタイヤ内発電装置。   The tire according to any one of claims 1 to 6, wherein a distance between an inner peripheral surface of the coil and an outer peripheral surface of the power generation magnet is set to 1/10 of a diameter of the power generation magnet. Internal power generator. コイルの巻線として、断面矩形状の平角線を用いたことを特徴とする請求項1乃至請求項7のいずれかに記載のタイヤ内発電装置。   The in-tire power generator according to any one of claims 1 to 7, wherein a rectangular wire having a rectangular cross section is used as a coil winding.
JP2009042152A 2009-02-25 2009-02-25 Power generator inside tire Pending JP2010200479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042152A JP2010200479A (en) 2009-02-25 2009-02-25 Power generator inside tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042152A JP2010200479A (en) 2009-02-25 2009-02-25 Power generator inside tire

Publications (1)

Publication Number Publication Date
JP2010200479A true JP2010200479A (en) 2010-09-09

Family

ID=42824596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042152A Pending JP2010200479A (en) 2009-02-25 2009-02-25 Power generator inside tire

Country Status (1)

Country Link
JP (1) JP2010200479A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213531A (en) * 2009-03-12 2010-09-24 Bridgestone Corp Generation device in tire
KR101113175B1 (en) * 2011-05-31 2012-02-15 이학균 Operating device for generator using current generation unit
ITTO20120527A1 (en) * 2012-06-18 2012-09-17 Torino Politecnico MAGNETIC-INDUCTIVE HARVESTER DEVICE WITH MAGNETIC SUSPENSION WITH INTERNAL GUIDE.
KR101246041B1 (en) * 2012-03-16 2013-03-26 연성흠 Current generation unit and operating device for generator using this
US8662221B2 (en) 2009-12-24 2014-03-04 Rusk Intellecutal Reserve AG Electric vehicle and electric supply arrangement for the same
CN104038017A (en) * 2014-06-27 2014-09-10 杜曦阳 Power generation mechanism and hollow coil winding method
CN104104205A (en) * 2014-07-01 2014-10-15 南京航空航天大学 Cantilever vibration energy acquirer for automobile tire pressure monitoring
WO2015029655A1 (en) * 2013-08-28 2015-03-05 スター精密株式会社 Vibration-based electric power generator
KR101553912B1 (en) * 2014-05-20 2015-09-17 한국철도기술연구원 Energy harvester
KR101553911B1 (en) * 2014-05-20 2015-09-17 한국철도기술연구원 Energy harvester
KR20150133604A (en) * 2014-05-20 2015-11-30 한국철도기술연구원 Cascade type energy harvester
KR20150133603A (en) * 2014-05-20 2015-11-30 한국철도기술연구원 Energy harvester
KR20150133602A (en) * 2014-05-20 2015-11-30 한국철도기술연구원 Energy harvester
JP2016059125A (en) * 2014-09-08 2016-04-21 ヒーハイスト精工株式会社 Electromagnetic generator
KR101660845B1 (en) * 2015-04-16 2016-09-28 중원대학교 산학협력단 vibration power generator
KR101692022B1 (en) * 2015-09-22 2017-01-03 한국기계연구원 Energy harvester for vehicle tire wheel
CN107294342A (en) * 2017-08-25 2017-10-24 广东工业大学 Vibration generating device
CN110017958A (en) * 2019-04-01 2019-07-16 苏州东菱振动试验仪器有限公司 A method of balance moves back and forth object centrifugal force
KR20200077640A (en) * 2018-12-20 2020-07-01 한국기계연구원 Vibration energy harvesting device for tires, sensor integrated system and smart tire system including the same, and acceleration signal transmission method using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119907A (en) * 1997-10-13 1999-04-30 Matsushita Electric Ind Co Ltd Mouse for input
JP2002281727A (en) * 2001-03-19 2002-09-27 Sugino Mach Ltd Vibration-operated generator and light emission device
JP2003284271A (en) * 2002-03-20 2003-10-03 Fumio Kaneda Generator
JP2004314728A (en) * 2003-04-15 2004-11-11 Kuroki Mineko Power generation device within tire
JP2005094832A (en) * 2003-09-12 2005-04-07 Sony Corp Generator
JP2006296144A (en) * 2005-04-14 2006-10-26 Shinichi Hayashizaki Oscillating generator
JP2008029178A (en) * 2006-07-25 2008-02-07 Mutsuo Hirano Reciprocating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119907A (en) * 1997-10-13 1999-04-30 Matsushita Electric Ind Co Ltd Mouse for input
JP2002281727A (en) * 2001-03-19 2002-09-27 Sugino Mach Ltd Vibration-operated generator and light emission device
JP2003284271A (en) * 2002-03-20 2003-10-03 Fumio Kaneda Generator
JP2004314728A (en) * 2003-04-15 2004-11-11 Kuroki Mineko Power generation device within tire
JP2005094832A (en) * 2003-09-12 2005-04-07 Sony Corp Generator
JP2006296144A (en) * 2005-04-14 2006-10-26 Shinichi Hayashizaki Oscillating generator
JP2008029178A (en) * 2006-07-25 2008-02-07 Mutsuo Hirano Reciprocating apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213531A (en) * 2009-03-12 2010-09-24 Bridgestone Corp Generation device in tire
US8662221B2 (en) 2009-12-24 2014-03-04 Rusk Intellecutal Reserve AG Electric vehicle and electric supply arrangement for the same
KR101113175B1 (en) * 2011-05-31 2012-02-15 이학균 Operating device for generator using current generation unit
KR101246041B1 (en) * 2012-03-16 2013-03-26 연성흠 Current generation unit and operating device for generator using this
ITTO20120527A1 (en) * 2012-06-18 2012-09-17 Torino Politecnico MAGNETIC-INDUCTIVE HARVESTER DEVICE WITH MAGNETIC SUSPENSION WITH INTERNAL GUIDE.
WO2013190585A1 (en) * 2012-06-18 2013-12-27 Politecnico Di Torino Magneto-inductive energy harvester device, having an internal guide magnetic suspension
WO2015029655A1 (en) * 2013-08-28 2015-03-05 スター精密株式会社 Vibration-based electric power generator
JP2015047003A (en) * 2013-08-28 2015-03-12 スター精密株式会社 Vibration power generator
KR101593951B1 (en) * 2014-05-20 2016-02-26 한국철도기술연구원 Energy harvester
KR101591444B1 (en) * 2014-05-20 2016-02-03 한국철도기술연구원 Energy harvester
KR101553912B1 (en) * 2014-05-20 2015-09-17 한국철도기술연구원 Energy harvester
KR101553911B1 (en) * 2014-05-20 2015-09-17 한국철도기술연구원 Energy harvester
KR20150133604A (en) * 2014-05-20 2015-11-30 한국철도기술연구원 Cascade type energy harvester
KR20150133603A (en) * 2014-05-20 2015-11-30 한국철도기술연구원 Energy harvester
KR20150133602A (en) * 2014-05-20 2015-11-30 한국철도기술연구원 Energy harvester
KR101591452B1 (en) 2014-05-20 2016-02-03 한국철도기술연구원 Cascade type energy harvester
CN104038017A (en) * 2014-06-27 2014-09-10 杜曦阳 Power generation mechanism and hollow coil winding method
CN104104205A (en) * 2014-07-01 2014-10-15 南京航空航天大学 Cantilever vibration energy acquirer for automobile tire pressure monitoring
JP2016059125A (en) * 2014-09-08 2016-04-21 ヒーハイスト精工株式会社 Electromagnetic generator
KR101660845B1 (en) * 2015-04-16 2016-09-28 중원대학교 산학협력단 vibration power generator
KR101692022B1 (en) * 2015-09-22 2017-01-03 한국기계연구원 Energy harvester for vehicle tire wheel
CN107294342A (en) * 2017-08-25 2017-10-24 广东工业大学 Vibration generating device
KR20200077640A (en) * 2018-12-20 2020-07-01 한국기계연구원 Vibration energy harvesting device for tires, sensor integrated system and smart tire system including the same, and acceleration signal transmission method using the same
KR102193891B1 (en) * 2018-12-20 2020-12-23 한국기계연구원 Vibration energy harvesting device for tires, sensor integrated system and smart tire system including the same, and acceleration signal transmission method using the same
CN110017958A (en) * 2019-04-01 2019-07-16 苏州东菱振动试验仪器有限公司 A method of balance moves back and forth object centrifugal force

Similar Documents

Publication Publication Date Title
JP2010200479A (en) Power generator inside tire
JP6085173B2 (en) Electromagnetic generator
JP4704093B2 (en) Vibration generator
KR102133697B1 (en) Linear drive and piston pump arrangement
KR20030068477A (en) Linear motor and linear compressor
JP5989867B1 (en) Vibration dynamo equipment
JP2007515916A (en) Travel mechanism components
EP2323242A1 (en) Generator for a bicycle wheel
CN107004490B (en) Device and method for magnetizing a permanent magnet
JP2011050245A (en) Oscillating generator
JP2013055714A (en) Vibration power generator
JP2016144265A (en) Outer rotor type variable magnetic field motor
JP2012249442A (en) Oscillating generator
JP2596857Y2 (en) Moving magnet type actuator
US9577500B2 (en) Rotary continuous permanent magnet motor
JP2012151982A (en) Vibration power generator
KR20220046250A (en) Hybrid Type Energy Harvester
JP2012151985A (en) Vibration power generator
JP5362398B2 (en) In-tire power generator
KR100582754B1 (en) Linera motor compressor
JP2011229309A (en) Power generator in tire
CN217159522U (en) Linear motor and linear compressor
JP2011166893A (en) Oscillating generator
RU2304342C1 (en) Reciprocate motion generator
KR100733043B1 (en) Linear motor and compressor having the linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Effective date: 20130305

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702