JP5362398B2 - In-tire power generator - Google Patents

In-tire power generator Download PDF

Info

Publication number
JP5362398B2
JP5362398B2 JP2009059416A JP2009059416A JP5362398B2 JP 5362398 B2 JP5362398 B2 JP 5362398B2 JP 2009059416 A JP2009059416 A JP 2009059416A JP 2009059416 A JP2009059416 A JP 2009059416A JP 5362398 B2 JP5362398 B2 JP 5362398B2
Authority
JP
Japan
Prior art keywords
magnet
power generation
magnetic flux
tire
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009059416A
Other languages
Japanese (ja)
Other versions
JP2010213531A (en
Inventor
彰 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009059416A priority Critical patent/JP5362398B2/en
Publication of JP2010213531A publication Critical patent/JP2010213531A/en
Application granted granted Critical
Publication of JP5362398B2 publication Critical patent/JP5362398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a generation device in a tire, capable of obtaining a high electric power. <P>SOLUTION: The generation device includes a power generation magnet 6 so provided as to reciprocate linearly according to change in the centrifugal force applied to a tire during vehicle travel, a yoke 7 which allows a magnetic flux generated by the power generation magnet to pass, and a coil 8 wound on the yoke. One side of the power generation magnet in the direction across the direction of linear reciprocation is magnetized to be one pole while the other side in the direction across the direction of linear reciprocation is magnetized to be the other pole. The yoke includes a magnetic flux inlet 7b for taking in the magnetic flux from one pole of the power generation magnet and a magnetic flux outlet part 7c for sending the magnetic flux to the other pole of the power generation magnet. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、高電力を得ることの可能なタイヤ内発電装置に関する。   The present invention relates to an in-tire power generator capable of obtaining high power.

タイヤ内の温度や圧力を検出するTPMS(タイヤ・プレッシャー・モニタリング・システム)等のセンサ+無線を有するデバイスをタイヤ気室内に設置してタイヤモニタリングを実施する場合に、そのデバイスに電力を供給するタイヤ内発電装置が知られている(特許文献1等参照)。   When a device with a sensor and radio such as a TPMS (tire pressure monitoring system) that detects the temperature and pressure in the tire is installed in the tire chamber and tire monitoring is performed, power is supplied to the device. An in-tire power generation device is known (see Patent Document 1).

特開2000−278923号公報JP 2000-278923 A

しかしながら、従来のタイヤ内発電装置では、高電力を得ることができないという課題があった。
本発明は、上記問題点に鑑みてなされたもので、高電力を得ることができるタイヤ内発電装置を提供する。
However, the conventional in-tire power generator has a problem that high power cannot be obtained.
The present invention has been made in view of the above problems, and provides an in-tire power generator that can obtain high power.

本発明に係るタイヤ内発電装置によれば、タイヤの気室内に取付けられる発電装置において、車両走行時のタイヤに加わる遠心力の変化に応じて直線往復移動可能に設けられた発電用磁石と、当該発電用磁石が発生する磁束を通すヨークと、ヨークに巻かれたコイルとを備え、発電用磁石は、直線往復移動方向と交差する方向における一方側が一方の極に着磁されたとともに直線往復移動方向と交差する方向における他方側が他方の極に着磁され、ヨークは、発電用磁石の一方の極から磁束を取り込む磁束入口部と発電用磁石の他方の極に磁束を送る磁束出口部とを備えたので、磁束密度が上がり、高電圧を発生して、高電力を得ることができるタイヤ内発電装置となる。
発電用磁石が、直線往復移動方向に沿った方向に複数の単位磁石同士を接着して構成され、単位磁石同士は、互いに異極に着磁された部分同士が接着されたので、1つ1つの単位磁石がヨークの横を直線往復移動方向に通過する毎に、ヨーク中を通過する磁束の向きが反転するので、磁束の反転速度が速くなり、高電圧を発生できる。
ヨークの磁束入口部及び磁束出口部は、発電用磁石の直線往復移動方向に沿った周面と対向する対向面を備え、対向面は、発電用磁石の周面の周方向に沿った方向の長さが発電用磁石の直線往復移動方向に沿った方向の長さよりも長い構成としたので、発電用磁石からの磁束をヨークに効率良く取り込むことができて、高電圧を発生できる。
ヨークのコイルの巻かれたコイル巻部の断面積Sは、以下の条件を満たすようにした。
φ<S×Bm<1.2×φ
但し、Bm;ヨークの最大飽和磁束密度、φ;発電用磁石の全磁束。
つまり、φ<S×Bmとしたことで、発電用磁石により発生する磁束を全てヨークに通すことができるようになり、S×Bm<1.2×φとしたことで、コイルの全長を短くできるようになる。
コイルの巻線として、断面矩形状の平角線を用いたので、巻線抵抗減少と巻数増加が図れ、巻線密度を向上できるので、発電効率が高まる。
発電用磁石の直線往復移動方向と直交するベース面を備えたベースと、ベース面より設けられて発電用磁石の直線往復移動を案内するガイド棒と、一端がベース面に固定されて他端がベース面と対向する発電用磁石の下面に固定された反発手段としてのコイルばねとを備え、コイルばねが、発電用磁石に所定の直線往復移動範囲内で直線往復移動を行わせるとともに、発電用磁石とベース面との衝突を防止したので、ガイド棒により発電用磁石が精度よく直線往復移動を行い、また、コイルばねを備えたので、タイヤの遠心力のON/OFFにより発電用磁石を直線往復移動させることができるので、効率的に高電圧を発生できる。
ヨークの対向面は、車が時速30kmでコイルばねが吊り合ったときの発電用磁石の直線往復移動方向の長さの中心位置と一致する位置に設けられたので、発電用磁石が、低速時においてヨークの弧状面を中心として直線往復移動方向に単振動を繰り返し、低速時においても効率的に発電できるようになる。
発電用磁石の直線往復移動方向と直交するベース面を備えたベースと、ベース面より設けられて発電用磁石の直線往復移動を案内するガイド棒と、ガイド棒のベース面とは反対側の端部に設けられて発電用磁石のガイド棒からの抜けを防止する抜け防止部と、ベース面に固定されて発電用磁石を反発させる反発用磁石とを備え、発電用磁石と反発用磁石との互いに向き合う面が同極に維持されるように、発電用磁石がガイド棒を回転中心として回転不能にガイド棒に取付けられたので、ガイド棒により発電用磁石が精度よく直線往復移動を行い、また、反発用磁石を備えたので、タイヤの遠心力のON/OFFにより発電用磁石を直線往復移動させることができるので、効率的に高電圧を発生できる。
According to the in-tire power generation device according to the present invention, in the power generation device mounted in the tire chamber, a power generation magnet provided so as to be capable of linear reciprocation according to a change in centrifugal force applied to the tire during vehicle travel, The power generation magnet includes a yoke through which the magnetic flux generated by the power generation magnet passes and a coil wound around the yoke. The power generation magnet is magnetized on one side in a direction intersecting the linear reciprocation direction and linearly reciprocated. The other side in the direction crossing the moving direction is magnetized to the other pole, and the yoke has a magnetic flux inlet part that takes in the magnetic flux from one pole of the power generating magnet and a magnetic flux outlet part that sends the magnetic flux to the other pole of the power generating magnet. Since the magnetic flux density is increased, a high voltage can be generated and high power can be obtained.
The power generating magnet is configured by adhering a plurality of unit magnets in a direction along the linear reciprocating direction, and the unit magnets are bonded to each other with the portions magnetized to have different polarities. Every time one unit magnet passes the side of the yoke in the direction of linear reciprocation, the direction of the magnetic flux passing through the yoke is reversed, so the reversal speed of the magnetic flux is increased and a high voltage can be generated.
The magnetic flux inlet portion and the magnetic flux outlet portion of the yoke include a facing surface that faces the circumferential surface along the linear reciprocating movement direction of the power generating magnet, and the facing surface is in a direction along the circumferential direction of the circumferential surface of the power generating magnet. Since the length is longer than the length in the direction along the linear reciprocating direction of the power generation magnet, the magnetic flux from the power generation magnet can be efficiently taken into the yoke, and a high voltage can be generated.
The cross-sectional area S of the coil winding portion around which the coil of the yoke was wound was made to satisfy the following conditions.
φ <S × Bm <1.2 × φ
Where Bm is the maximum saturation magnetic flux density of the yoke, φ is the total magnetic flux of the power generating magnet.
That is, by setting φ <S × Bm, all the magnetic flux generated by the power generation magnet can be passed through the yoke, and by setting S × Bm <1.2 × φ, the overall length of the coil is shortened. become able to.
Since a rectangular wire having a rectangular cross section is used as the winding of the coil, the winding resistance can be reduced and the number of turns can be increased, and the winding density can be improved, thereby increasing the power generation efficiency.
A base having a base surface orthogonal to the linear reciprocation direction of the power generation magnet, a guide rod provided from the base surface for guiding the linear reciprocation of the power generation magnet, one end fixed to the base surface and the other end A coil spring as a repelling means fixed to the lower surface of the power generation magnet facing the base surface, and the coil spring causes the power generation magnet to perform linear reciprocation within a predetermined linear reciprocation range, and for power generation Since the collision between the magnet and the base surface was prevented, the power generating magnet reciprocated linearly with high accuracy by the guide rod, and since the coil spring was provided, the power generating magnet was straightened by turning ON / OFF the centrifugal force of the tire. Since it can be reciprocated, a high voltage can be generated efficiently.
Since the opposing surface of the yoke is provided at a position that coincides with the center position of the length of the power generation magnet in the linear reciprocation direction when the car is suspended at 30 km / h and the coil spring is suspended, the power generation magnet is In this case, simple vibration is repeated in the direction of linear reciprocation around the arcuate surface of the yoke, and power can be generated efficiently even at low speeds.
A base having a base surface orthogonal to the linear reciprocating direction of the power generating magnet, a guide bar provided from the base surface for guiding the linear reciprocating movement of the power generating magnet, and an end opposite to the base surface of the guide bar And a rebounding magnet that is fixed to the base surface and repels the power generation magnet, and is provided between the power generation magnet and the repulsion magnet. The power generating magnets are attached to the guide rods so as to be non-rotatable around the guide rods so that the surfaces facing each other are maintained at the same polarity. Since the repulsion magnet is provided, the power generation magnet can be linearly reciprocated by turning on / off the centrifugal force of the tire, so that a high voltage can be generated efficiently.

タイヤ内発電装置を示す図(形態1)。The figure which shows the electric power generation apparatus in a tire (form 1). 発電用磁石の断面図(形態1)。Sectional drawing (form 1) of the magnet for electric power generation. 発電用磁石と弧状面との関係を示す平面図(形態1)。The top view which shows the relationship between the magnet for an electric power generation and an arcuate surface (form 1). 発電用磁石と弧状面との関係を示す断面図(形態1)。Sectional drawing which shows the relationship between the magnet for electric power generation and an arcuate surface (form 1). タイヤ内発電装置を示す図(形態2)。The figure which shows the electric power generation apparatus in a tire (form 2). タイヤ内発電装置による発電状況を示すグラフ(実施例)。The graph which shows the electric power generation condition by the electric power generation apparatus in a tire (Example). 時速30km走行時における蓄電量の変化を示すグラフ(実施例)。The graph which shows the change of the electrical storage amount at the time of driving | running | working 30 km / h (Example).

形態1
図1に示すように、本形態1に係るタイヤ気室内に取付けられるタイヤ内発電装置1は、ベース2と、ガイド棒3と、リニアベアリング4と、反発手段5と、車両走行時のタイヤに加わる遠心力の変化に応じて直線往復移動可能に設けられた発電用磁石6と、当該発電用磁石6が発生する磁束を通すヨーク(軟磁性体)7と、ヨーク7に巻かれたコイル8とを備える。コイル8の両端は整流回路25に接続される。
Form 1
As shown in FIG. 1, the in-tire power generation device 1 attached to the tire chamber according to the first embodiment includes a base 2, a guide rod 3, a linear bearing 4, a repulsive means 5, and a tire during vehicle travel. A power generation magnet 6 provided so as to be capable of linear reciprocation according to a change in applied centrifugal force, a yoke (soft magnetic material) 7 through which a magnetic flux generated by the power generation magnet 6 passes, and a coil 8 wound around the yoke 7 With. Both ends of the coil 8 are connected to the rectifier circuit 25.

ベース2は、円板により形成される。発電用磁石6の移動を案内するガイド棒3は、丸棒により形成される。ガイド棒3は、ベース2を形成する円板の一方の円面により形成されたベース面18の円中心よりベース面18と直交する方向に延長するように設けられる。即ち、発電用磁石6の直線往復移動方向と直交するベース面18を備えたベース2と、一端がベース面18に固定され他端が発電用磁石6を貫通して発電用磁石6の直線往復移動を案内するガイド棒3とを備える。
このベース2及びガイド棒3は、一体に形成されたものでもよいし、個々の別体に形成されたものが互いに結合されて形成されたものでもよい。
The base 2 is formed by a disc. The guide bar 3 that guides the movement of the power generation magnet 6 is formed of a round bar. The guide bar 3 is provided so as to extend in a direction orthogonal to the base surface 18 from the center of the base surface 18 formed by one of the circular surfaces of the disk forming the base 2. That is, the base 2 having the base surface 18 orthogonal to the linear reciprocating direction of the power generation magnet 6 and one end fixed to the base surface 18 and the other end penetrating the power generation magnet 6 to linearly reciprocate the power generation magnet 6. And a guide bar 3 for guiding the movement.
The base 2 and the guide bar 3 may be integrally formed, or may be formed by connecting individual members formed separately from each other.

リニアベアリング4は、図示しないが、外筒と、外筒の内側に設けられた保持筒と、保持筒の内部に設けられた多数のボールとにより形成される。保持筒の内面には、筒の中心軸に沿った方向に延長する複数の溝が周方向に所定の間隔を隔てて形成されており、複数のボールが当該溝に沿って極めて円滑に無限循環運動を行う構造になっている。即ち、ガイド棒3が保持筒の筒孔を貫通するように、リニアベアリング4がガイド棒3に取付けられ、リニアベアリング4の保持筒の溝より露出するボールとガイド棒3の外周面とが摺動することで、ガイド棒3の外周面とボールとが転がり接触しながら低い転がり摩擦で相対移動を行うことができる。この転がり摩擦係数μは0.005である。   Although not shown, the linear bearing 4 is formed by an outer cylinder, a holding cylinder provided inside the outer cylinder, and a large number of balls provided inside the holding cylinder. A plurality of grooves extending in the direction along the central axis of the cylinder are formed on the inner surface of the holding cylinder at predetermined intervals in the circumferential direction, and the plurality of balls are circulated infinitely along the groove. It is structured to exercise. That is, the linear bearing 4 is attached to the guide rod 3 so that the guide rod 3 penetrates the cylindrical hole of the holding cylinder, and the ball exposed from the groove of the holding cylinder of the linear bearing 4 and the outer peripheral surface of the guide rod 3 slide. By moving, the outer peripheral surface of the guide bar 3 and the ball can make a relative movement with low rolling friction while rolling. This rolling friction coefficient μ is 0.005.

発電用磁石6は、円の中心にリニアベアリング4の筒の外周面23に嵌め込まれる中心孔11を備えた円板形状の磁石である。発電用磁石6の中心孔11がリニアベアリング4の筒の外周面23に嵌め込まれて、発電用磁石6がリニアベアリング4と同心となるようにリニアベアリング4に固定される。これにより、車両走行時のタイヤに加わる遠心力の変化に応じて発電用磁石6がリニアベアリング4を介してガイド棒3上をガイド棒3の延長方向に直線往復移動可能に構成される。この場合、リニアベアリング4を備えているので、ガイド棒3との摩擦抵抗が少なくでき、発電用磁石6が精度良く直線往復移動を行う。   The power generation magnet 6 is a disc-shaped magnet having a center hole 11 fitted into the outer peripheral surface 23 of the cylinder of the linear bearing 4 at the center of a circle. The center hole 11 of the power generation magnet 6 is fitted into the outer peripheral surface 23 of the cylinder of the linear bearing 4, and the power generation magnet 6 is fixed to the linear bearing 4 so as to be concentric with the linear bearing 4. Thus, the power generation magnet 6 is configured to be capable of linear reciprocation on the guide rod 3 via the linear bearing 4 in the extending direction of the guide rod 3 in accordance with a change in centrifugal force applied to the tire during vehicle travel. In this case, since the linear bearing 4 is provided, the frictional resistance with the guide rod 3 can be reduced, and the power generating magnet 6 performs linear reciprocation with high accuracy.

発電用磁石6は、円の中心にリニアベアリング4の筒の外周面23に嵌め込まれる中心孔11を備えた複数個の円板形状の単位磁石15が直線往復移動方向に沿った方向(ガイド棒3に沿った方向)に積層された構成である。発電用磁石6は、図1に示すように、例えば、4枚の単位磁石15の円面同士が接着されて形成される4枚積層構造である。
単位磁石15は、発電用磁石6の直線往復移動方向と交差する方向における一方側が一方の極に着磁されたとともに直線往復移動方向と交差する方向における他方側が他方の極に着磁された構成である。具体的には、単位磁石15は、発電用磁石6の直線往復移動方向と直交する方向における一方側である円板の一方の半円部分15aが「N」極に着磁され、発電用磁石6の直線往復移動方向と直交する方向における他方側である円板の他方の半円部分15bが「S」極に着磁されたものである。
図2に示すように、単位磁石15同士は、互いに異極に着磁された半円部分の半円面15x;15y同士が接着される。
In the magnet 6 for power generation, a plurality of disk-shaped unit magnets 15 having a center hole 11 fitted into the outer peripheral surface 23 of the cylinder of the linear bearing 4 at the center of a circle are in a direction along a linear reciprocation direction (guide rod). 3 (direction along 3). As shown in FIG. 1, the power generation magnet 6 has a four-layer structure in which, for example, the circular surfaces of four unit magnets 15 are bonded to each other.
The unit magnet 15 is configured such that one side in the direction intersecting the linear reciprocating direction of the power generation magnet 6 is magnetized to one pole and the other side in the direction intersecting the linear reciprocating direction is magnetized to the other pole. It is. Specifically, in the unit magnet 15, one semicircular portion 15a of the disk on one side in the direction orthogonal to the linear reciprocating direction of the power generation magnet 6 is magnetized to the “N” pole, and the power generation magnet The other semicircular portion 15b of the disc on the other side in the direction orthogonal to the linear reciprocating movement direction 6 is magnetized to the “S” pole.
As shown in FIG. 2, the semicircular surfaces 15x; 15y of the semicircular portions magnetized with different polarities are bonded to each other between the unit magnets 15.

反発手段5は、例えば、コイルばね5Aのような弾性体によって形成される。コイルばね5Aの一端がベース面18と連結され、コイルばね5Aの他端が発電用磁石6の下面6xと連結されることによって、発電用磁石6とベース2とがコイルばね5Aを介して連結される。よって、車の走行時の遠心力によってコイルばね5Aが伸縮することで、発電用磁石6がガイド棒3に沿って直線往復移動可能に構成される。即ち、このコイルばね5Aは、発電用磁石6に所定の直線往復移動範囲内で直線往復移動を行わせるとともに、発電用磁石6に遠心力が加わった際に発電用磁石6の下面6xとベース面18との衝突を防止するものである。   The repulsion means 5 is formed of an elastic body such as a coil spring 5A, for example. One end of the coil spring 5A is connected to the base surface 18, and the other end of the coil spring 5A is connected to the lower surface 6x of the power generation magnet 6, whereby the power generation magnet 6 and the base 2 are connected via the coil spring 5A. Is done. Therefore, the coil spring 5 </ b> A expands and contracts due to the centrifugal force when the vehicle travels, so that the power generation magnet 6 can be linearly reciprocated along the guide rod 3. That is, the coil spring 5A causes the power generation magnet 6 to perform linear reciprocation within a predetermined linear reciprocation range, and when the centrifugal force is applied to the power generation magnet 6, the lower surface 6x of the power generation magnet 6 and the base The collision with the surface 18 is prevented.

ヨーク7は、コイルが巻かれるコイル巻部7aと、発電用磁石6の各単位磁石15の一方の極から磁束を取り込む磁束入口部7bと、発電用磁石6の各単位磁石15の他方の極に磁束を送る磁束出口部7cとを備え、発電用磁石6を構成する各単位磁石15の一方の極から磁束を取り込んで各単位磁石15の他方の極に磁束を送る磁束通路を形成する。
コイル巻部7aは、リングの孔の中心線に沿ってリングを半分に切ったような半円弧形状に形成される。磁束入口部7bはコイル巻部7aの一端に設けられ、磁束出口部7cはコイル巻部7aの他端に設けられる。ヨーク7は、下端がベースに固定された支柱71;72の上端に固定される。
図2に示すように、一方の支柱71は、発電用磁石6の一方の半円部分の半周面61の周方向中央と対向するように設けられ、他方の支柱72は、発電用磁石6の他方の半円部分の半周面62の周方向中央と対向するように設けられる。コイル巻部7aは、半円弧が発電用磁石6の円周面と対向し、一端の下部と一方の支柱71の上端とが接着剤などで固定され、他端の下部と他方の支柱72の上端とが接着剤などで固定される。
磁束入口部7b及び磁束出口部7cは、発電用磁石6の直線往復移動方向に沿った周面と対向する対向面を備え、対向面は、発電用磁石6の周面の周方向に沿った方向の長さが発電用磁石6の直線往復移動方向に沿った方向の長さよりも長い。具体的には、図3に示すように、磁束入口部7bは、一方の支柱71の上端に固定されたコイル巻部7aの一端より突出し、単位磁石15の一方の半円部分15aの半周面15dの周方向に沿って延長して当該半周面15dと対向する対向面としての弧状面75を備える。磁束出口部7cは、他方の支柱72の上端に固定されたコイル巻部7aの他端より突出し、単位磁石15の他方の半円部分15bの半周面15eの周方向に沿って延長して当該半周面15eと対向する対向面としての弧状面76を備える。
The yoke 7 includes a coil winding portion 7 a around which a coil is wound, a magnetic flux inlet portion 7 b that takes in a magnetic flux from one pole of each unit magnet 15 of the power generation magnet 6, and the other pole of each unit magnet 15 of the power generation magnet 6. And a magnetic flux outlet 7c that sends the magnetic flux to the unit magnet 15, and forms a magnetic flux passage that takes in the magnetic flux from one pole of each unit magnet 15 constituting the power generation magnet 6 and sends the magnetic flux to the other pole of each unit magnet 15.
The coil winding portion 7a is formed in a semicircular arc shape in which the ring is cut in half along the center line of the hole of the ring. The magnetic flux inlet portion 7b is provided at one end of the coil winding portion 7a, and the magnetic flux outlet portion 7c is provided at the other end of the coil winding portion 7a. The yoke 7 is fixed to the upper ends of the columns 71; 72 whose lower ends are fixed to the base.
As shown in FIG. 2, one support column 71 is provided so as to face the center in the circumferential direction of the semicircular surface 61 of one semicircular portion of the power generation magnet 6, and the other support column 72 is formed of the power generation magnet 6. It is provided so as to face the center in the circumferential direction of the semicircular surface 62 of the other semicircular portion. The coil winding portion 7 a has a semicircular arc facing the circumferential surface of the power generation magnet 6, the lower end of one end and the upper end of one strut 71 are fixed with an adhesive or the like, and the lower end of the other end and the other strut 72 The upper end is fixed with an adhesive or the like.
The magnetic flux inlet portion 7 b and the magnetic flux outlet portion 7 c include a facing surface that faces the circumferential surface along the linear reciprocating movement direction of the power generation magnet 6, and the facing surface is along the circumferential direction of the circumferential surface of the power generation magnet 6. The length in the direction is longer than the length in the direction along the linear reciprocating direction of the power generation magnet 6. Specifically, as shown in FIG. 3, the magnetic flux inlet portion 7 b protrudes from one end of the coil winding portion 7 a fixed to the upper end of one support 71, and is a half circumferential surface of one semicircular portion 15 a of the unit magnet 15. An arcuate surface 75 is provided as an opposing surface that extends along the circumferential direction of 15d and faces the half circumferential surface 15d. The magnetic flux outlet portion 7c protrudes from the other end of the coil winding portion 7a fixed to the upper end of the other support column 72 and extends along the circumferential direction of the semicircular surface 15e of the other semicircular portion 15b of the unit magnet 15. An arcuate surface 76 is provided as an opposing surface facing the half circumferential surface 15e.

コイル8は、ヨーク7のコイル巻部7aの外周面にコイル巻部7aの一端側から他端側に向けて螺旋状にN回(例えば1000回)巻き回された構成である。   The coil 8 is configured to be wound N times (for example, 1000 times) spirally around the outer peripheral surface of the coil winding portion 7a of the yoke 7 from one end side to the other end side of the coil winding portion 7a.

以上のように構成されたタイヤ内発電装置1は、ベース2の他方の円面が、タイヤ気室内であって例えばトレッド面の裏面に相当する位置に固定される。そして、車を走行させると、タイヤ内振動でもっともエネルギーの高い遠心力の変動により、発電用磁石6がガイド棒3の延長方向に直線往復移動を行う。タイヤ内の遠心力F=m×V/r(mはタイヤ内発電装置1の質量、Vは車輪速度、rはタイヤ半径)は、接地時以外においては、V/rにより決まり、接地時には0になる。この遠心力により、コイルばね5Aが反発し、発電用磁石6がガイド棒3の延長方向に直線往復移動を行う。そして、発電用磁石6の単位磁石15がヨーク7の弧状面75;76の横を上下方向に通過する毎にヨーク7の中を通過する磁束の向きが反転し、磁束がコイル8を横切るたびに、電圧が発生する。この電圧が整流回路25を通して充電回路26に充電され、デバイス27に供給される。
尚、ヨーク7の両端の弧状面75;76の横を上下方向に通過する単位磁石15の磁極が変わる毎に、弧状面75;76が磁束入口部になったり磁束出口部になったりする。
In the in-tire power generator 1 configured as described above, the other circular surface of the base 2 is fixed at a position corresponding to the back surface of the tread surface, for example, in the tire chamber. Then, when the vehicle is driven, the power generating magnet 6 reciprocates linearly in the extending direction of the guide rod 3 due to the fluctuation of the centrifugal force having the highest energy due to the vibration in the tire. The centrifugal force F in the tire F = m × V 2 / r (where m is the mass of the power generator 1 in the tire, V is the wheel speed, and r is the tire radius) is determined by V 2 / r except at the time of ground contact. Sometimes 0. Due to this centrifugal force, the coil spring 5 </ b> A repels, and the power generation magnet 6 reciprocates linearly in the extending direction of the guide rod 3. Each time the unit magnet 15 of the power generating magnet 6 passes the arcuate surfaces 75; 76 of the yoke 7 in the vertical direction, the direction of the magnetic flux passing through the yoke 7 is reversed, and the magnetic flux crosses the coil 8 every time. A voltage is generated. This voltage is charged into the charging circuit 26 through the rectifying circuit 25 and supplied to the device 27.
In addition, whenever the magnetic pole of the unit magnet 15 which passes the side of the arcuate surface 75; 76 of the both ends of the yoke 7 in the up-down direction changes, the arcuate surface 75; 76 becomes a magnetic flux entrance part or a magnetic flux exit part.

形態1によれば、発電用磁石6が、異極同士を接着してガイド棒3の棒に沿った方向に積層された複数個の単位磁石15により構成されたので、1つ1つの単位磁石15がヨーク7の弧状面75;76の横を直線往復移動方向に通過する毎に、ヨーク7の中を通過する磁束の向きが反転するので、磁束の反転速度が速くなる。磁束の反転する速度とコイル8の両端に発生する電圧の大きさとが比例するので、高電圧を発生するタイヤ内発電装置1を提供できる。   According to the first aspect, the power generation magnet 6 is composed of the plurality of unit magnets 15 that are laminated in the direction along the bar of the guide bar 3 by bonding the different poles to each other. Since the direction of the magnetic flux passing through the yoke 7 is reversed every time 15 passes the arcuate surfaces 75; 76 of the yoke 7 in the linear reciprocating direction, the reversal speed of the magnetic flux is increased. Since the speed at which the magnetic flux is reversed is proportional to the magnitude of the voltage generated at both ends of the coil 8, the in-tire power generator 1 that generates a high voltage can be provided.

尚、磁束の反転する速度は、ガイド棒3の延長方向に沿った方向の単位磁石15の厚さaと弧状面75;76の厚さbとが薄いほど早くなるので、形態1においては、図2に示すように、単位磁石15の厚さaとヨーク7の弧状面75;76の厚さbとを薄くすることが望ましい。   The speed at which the magnetic flux is reversed becomes faster as the thickness a of the unit magnet 15 and the thickness b of the arcuate surfaces 75; 76 in the direction along the extending direction of the guide rod 3 are smaller. As shown in FIG. 2, it is desirable to reduce the thickness a of the unit magnet 15 and the thickness b of the arcuate surfaces 75 and 76 of the yoke 7.

ヨーク7は、磁束入口部7b及び磁束出口部7cとして機能する弧状面75;76を有したので、単位磁石15からの磁束をヨーク7に効率良く取り込むことができて、高電圧を発生できる。   Since the yoke 7 has the arcuate surfaces 75 and 76 that function as the magnetic flux inlet portion 7b and the magnetic flux outlet portion 7c, the magnetic flux from the unit magnet 15 can be efficiently taken into the yoke 7 and a high voltage can be generated.

形態1によれば、発電用磁石6が、リニアベアリング4に保持され、ガイド棒3に沿って直線往復移動可能に構成されたので、リニアベアリング4により発電用磁石6が移動する際の摩擦抵抗を少なくでき、かつ、ガイド棒3により発電用磁石6が精度よく直線往復移動を行うので、発電用磁石6がスムーズに直線往復移動し、効率的に高電圧を発生できる高品質のタイヤ内発電装置1を提供できる。   According to the first aspect, since the power generation magnet 6 is held by the linear bearing 4 and configured to be linearly reciprocable along the guide rod 3, the frictional resistance when the power generation magnet 6 is moved by the linear bearing 4. Since the power generation magnet 6 reciprocates linearly with high accuracy by the guide rod 3, the power generation magnet 6 smoothly reciprocates linearly and can generate high voltage efficiently. The apparatus 1 can be provided.

形態1によれば、反発手段5としてのコイルばね5Aを備えたので、タイヤの遠心力のON/OFFにより発電用磁石6を直線往復移動させることができ、効率的に高電圧を発生できる。   According to the first aspect, since the coil spring 5A as the repulsion means 5 is provided, the power generation magnet 6 can be linearly reciprocated by ON / OFF of the centrifugal force of the tire, and a high voltage can be generated efficiently.

形態1において、好ましくは、ヨーク7の弧状面75;76のベース面18からの位置は、車が時速30kmでコイルばね5Aが吊り合ったときの発電用磁石6の直線往復移動方向の長さの中心位置と一致する位置に設ける。これにより、発電用磁石6が、低速時においてヨーク7の弧状面75;76を中心として直線往復移動方向に単振動を繰り返すので、低速時においても効率的に発電できるようになる。   In the first aspect, the position of the arcuate surfaces 75; 76 of the yoke 7 from the base surface 18 is preferably the length of the generator magnet 6 in the linear reciprocating direction when the vehicle is suspended at 30 km / h and the coil spring 5A is suspended. It is provided at a position that coincides with the center position. As a result, the power generation magnet 6 repeats simple vibrations in the direction of linear reciprocation around the arcuate surfaces 75; 76 of the yoke 7 at low speed, so that power can be generated efficiently even at low speed.

形態1において、好ましくは、図4に示すように、単位磁石15(発電用磁石6)の円の半周面15d;15eとヨーク7の弧状面75;76との間の最短距離Xを、単位磁石15(発電用磁石6)の円の外径寸法の10%以下程度に形成する。これにより、漏洩磁束を少なくできて、高電圧を発生できるようになる。   In the first embodiment, preferably, as shown in FIG. 4, the shortest distance X between the half circumferential surface 15d; 15e of the circle of the unit magnet 15 (power generation magnet 6) and the arcuate surface 75; The magnet 15 (power generation magnet 6) is formed to have a diameter of about 10% or less of the outer diameter of the circle. Thereby, leakage magnetic flux can be reduced and a high voltage can be generated.

形態1において、好ましくは、ヨーク7のコイル8の巻かれたコイル巻部7aの断面積Sが、以下の条件を満たすようにした。
φ<S×Bm<1.2×φ
但し、Bm;ヨークの最大飽和磁束密度、φ;発電用磁石の全磁束。
このように、φ<S×Bmとしたことで、発電用磁石により発生する磁束を全てヨークに通すことができるようになり、S×Bm<1.2×φとしたことで、コイルの全長を短くできるようになる。よって、装置の小型化が図れ、発電効率が高まる。
In the form 1, it is preferable that the cross-sectional area S of the coil winding portion 7a around which the coil 8 of the yoke 7 is wound satisfies the following condition.
φ <S × Bm <1.2 × φ
Where Bm is the maximum saturation magnetic flux density of the yoke, φ is the total magnetic flux of the power generating magnet.
Thus, by setting φ <S × Bm, all the magnetic flux generated by the power generation magnet can be passed through the yoke. By setting S × Bm <1.2 × φ, the total length of the coil Can be shortened. Therefore, the apparatus can be miniaturized and the power generation efficiency is increased.

形態1において、好ましくは、コイル8の巻線として、断面矩形状の平角線を用いる。これにより、巻線抵抗減少と巻数増加が図れ、巻線密度を向上できるので、発電効率が高まる。   In the first embodiment, a rectangular wire having a rectangular cross section is preferably used as the winding of the coil 8. As a result, the winding resistance can be reduced and the number of turns can be increased, and the winding density can be improved, thus increasing the power generation efficiency.

形態1において、好ましくは、リニアベアリング4のボールを、非磁性体、例えば、セラミックや樹脂により形成する。これにより、ボールの動きが発電用磁石6の磁力によって妨げられることを防止でき、発電用磁石6をスムーズに直線往復移動させることができるようになる。   In the first embodiment, the ball of the linear bearing 4 is preferably formed of a non-magnetic material such as ceramic or resin. As a result, the movement of the ball can be prevented from being hindered by the magnetic force of the power generation magnet 6, and the power generation magnet 6 can be smoothly reciprocated linearly.

形態1において、好ましくは、ガイド棒3を、非磁性の材料により形成する。これにより、ガイド棒3と発電用磁石6とが引き合うのを防止できて、発電用磁石6をスムーズに直線往復移動させることができるようになる。   In the first embodiment, the guide rod 3 is preferably made of a nonmagnetic material. Accordingly, the guide rod 3 and the power generation magnet 6 can be prevented from attracting each other, and the power generation magnet 6 can be smoothly reciprocated linearly.

形態1において、好ましくは、ガイド棒3を、非導電性の材料により形成する。これにより、ガイド棒3に発生する渦電流をなくすことができ、ガイド棒3による力学的損失をなくすことができる。   In the first embodiment, the guide rod 3 is preferably made of a nonconductive material. Thereby, the eddy current which generate | occur | produces in the guide rod 3 can be eliminated, and the mechanical loss by the guide rod 3 can be eliminated.

形態1において、好ましくは、発電用磁石6を、残留磁束密度の高いネオジウム磁石により形成する。これにより、大きい反発力、安定した高電圧を得ることができる。   In the first embodiment, the power generating magnet 6 is preferably formed of a neodymium magnet having a high residual magnetic flux density. Thereby, a large repulsive force and a stable high voltage can be obtained.

形態1の実施例
・タイヤサイズ:225/55R17を用いた。
・発電用磁石6は、厚さaが1.25mm、φ10mmの円板形状のネオジウム磁石により形成された単位磁石15を4個積層して作成したものを用いた。
・単位磁石15(発電用磁石6)の円の半周面15d;15eとヨーク7の弧状面75;76との間の最短距離Xは、0.2mmとした。
・コイル8は、線径φ0.2mm、全長11.7m、抵抗5Ω、1000回巻した。
・非磁性のセラミック製のボールを備えたリニアベアリングを用いた。
・走行速度を30km/hとして、蓄電圧が0Vから安定するまで走行させた。
・安定した電圧とデバイスの負荷(R=500Ω)とにより、発電量(W=V/R)を算出した。
・実施例により発生した電圧のグラフを図6に示した。走行中の蓄電圧の状況を図7に示した。
・図7からわかるように、30km/h走行において、23mWが得られた。
Example of Form 1 Tire size: 225 / 55R17 was used.
The magnet 6 for power generation was prepared by laminating four unit magnets 15 formed of a disc-shaped neodymium magnet having a thickness a of 1.25 mm and φ10 mm.
The shortest distance X between the half circumferential surface 15d; 15e of the circle of the unit magnet 15 (the power generation magnet 6) and the arcuate surface 75; 76 of the yoke 7 was 0.2 mm.
The coil 8 was wound with a wire diameter of 0.2 mm, a total length of 11.7 m, a resistance of 5Ω, and 1000 turns.
• Linear bearings with non-magnetic ceramic balls were used.
-The running speed was set to 30 km / h, and the vehicle was run until the stored voltage stabilized from 0V.
-The power generation amount (W = V 2 / R) was calculated from the stable voltage and the load of the device (R = 500Ω).
A graph of the voltage generated by the example is shown in FIG. FIG. 7 shows the state of stored voltage during traveling.
As can be seen from FIG. 7, 23 mW was obtained at 30 km / h.

形態2
コイルばね5Aの代わりに、磁気ばねとして作用して発電用磁石6を反発させる反発手段5としての反発用磁石5Bを用いた。
図5に示すように、ガイド棒3の他端に設けられて発電用磁石6のガイド棒3からの抜けを防止する抜け防止部80と、ベース面18に固定されて発電用磁石6を反発させる反発用磁石5Bとを備えた。
反発用磁石5Bは、ガイド棒3が貫通する中心孔81を備えた円板形状に形成され、中心孔81にガイド棒3を通して円板面82とベース面18とが接着される。反発用磁石5Bの円板の外周径はベース2の円板の外周径よりも小さい。発電用磁石6と反発用磁石5Bとの互いに向かい合う半円部分の半円面同士は同極に形成され、これにより、発電用磁石6が反発用磁石5Bに近づいた場合に発電用磁石6が反発用磁石5Bにより反発して反発用磁石5Bより離れる方向に移動するので、発電用磁石6に遠心力が加わった際に発電用磁石6と反発用磁石5Bとの衝突は防止される。
反発用磁石5Bを用いる場合には、発電用磁石6と反発用磁石5Bとがくっついてしまうことを防止するため、発電用磁石6と反発用磁石5Bとの互いに向き合う面が同極に維持されるように、発電用磁石6がガイド棒3を回転中心として回転不能にガイド棒3に取付けられた回り止め構造を設ける。回り止め構造は、例えば、図5に示すように、ガイド棒3にガイド棒3の軸方向に沿って延長する回り止め溝90を形成し、発電用磁石6の中心孔11にはこの回り止め溝90内に嵌り込む係合片91を設ければよい。
Form 2
Instead of the coil spring 5A, a repulsion magnet 5B serving as a repulsion means 5 acting as a magnetic spring and repelling the power generation magnet 6 was used.
As shown in FIG. 5, a preventing portion 80 provided at the other end of the guide rod 3 to prevent the generator magnet 6 from coming off from the guide rod 3, and the generator magnet 6 repelled by being fixed to the base surface 18. And a repulsion magnet 5B.
The repulsion magnet 5 </ b> B is formed in a disc shape having a center hole 81 through which the guide rod 3 passes, and the disc surface 82 and the base surface 18 are bonded to the center hole 81 through the guide rod 3. The outer diameter of the disk of the repulsion magnet 5B is smaller than the outer diameter of the disk of the base 2. The semicircular surfaces of the semicircular portions of the power generation magnet 6 and the repulsion magnet 5B that face each other are formed to have the same polarity, so that when the power generation magnet 6 approaches the repulsion magnet 5B, the power generation magnet 6 Since the repulsion magnet 5B repels and moves away from the repulsion magnet 5B, collision between the power generation magnet 6 and the repulsion magnet 5B is prevented when a centrifugal force is applied to the power generation magnet 6.
When the repulsion magnet 5B is used, in order to prevent the power generation magnet 6 and the repulsion magnet 5B from sticking to each other, the mutually facing surfaces of the power generation magnet 6 and the repulsion magnet 5B are maintained in the same polarity. Thus, a rotation preventing structure is provided in which the power generating magnet 6 is attached to the guide rod 3 so as not to rotate about the guide rod 3. For example, as shown in FIG. 5, the anti-rotation structure is formed with a non-rotation groove 90 extending along the axial direction of the guide rod 3 in the guide rod 3, and the anti-rotation structure is formed in the center hole 11 of the power generation magnet 6. An engagement piece 91 that fits into the groove 90 may be provided.

尚、図示しないが、発電用磁石6をリニアベアリング4により保持すれば、互いに向かい合う反発用磁石5Bと発電用磁石6との面をより正確に平行に保てるため、最大の反発力を得ることができる。この場合、リニアベアリング4を非磁性の材料により形成することにより、反発用磁石5Bと発電用磁石6との間に引力が生じるのを防止でき、反発用磁石5Bによる反発力を最大にできるので、反発用磁石5Bと発電用磁石6とが接触して発電用磁石6がヨーク7の弧状面75;76を横切らなくなって発電されない状態となることを防止できる。   Although not shown, if the power generation magnet 6 is held by the linear bearing 4, the surfaces of the repulsion magnet 5B and the power generation magnet 6 facing each other can be more accurately kept parallel to each other, so that the maximum repulsive force can be obtained. it can. In this case, by forming the linear bearing 4 from a non-magnetic material, it is possible to prevent attraction between the repulsion magnet 5B and the power generation magnet 6, and the repulsion force by the repulsion magnet 5B can be maximized. Thus, it can be prevented that the repulsion magnet 5B and the power generation magnet 6 come into contact with each other and the power generation magnet 6 does not cross the arcuate surfaces 75; 76 of the yoke 7 and no power is generated.

形態3
形態2の場合において、発電用磁石6は、反発用磁石5Bに近い側に位置される単位磁石15の円板の厚さが、反発用磁石5Bに遠い側に位置される単位磁石15の円板の厚さよりも厚いもの、例えば、5/3程度のものを用いる。これにより、発電用磁石6と反発用磁石5Bとの間に作用する反発力が大きくなるので、タイヤ内発電装置1が取付けられているタイヤの内面の裏側に位置するトレッド面が接地しているとき(遠心力OFF時)の位置エネルギーを最大限に稼ぐことができ、遠心力発生時に発電用磁石6がヨーク7の弧状面75;76を横切る速度を速くできるので、高い電圧を発生できるようになる。
Form 3
In the case of the form 2, the power generation magnet 6 is a circle of the unit magnet 15 positioned on the side farther from the repulsion magnet 5B in the thickness of the disk of the unit magnet 15 positioned closer to the repulsion magnet 5B. A thing thicker than the thickness of the plate, for example, about 5/3 is used. Thereby, since the repulsive force which acts between the magnet 6 for electric power generation and the magnet 5B for repulsion becomes large, the tread surface located in the back side of the inner surface of the tire in which the in-tire electric power generating apparatus 1 is attached is earth | grounded. Time (when the centrifugal force is OFF), the potential energy can be maximized, and when the centrifugal force is generated, the power generation magnet 6 can increase the speed of crossing the arcuate surfaces 75; 76 of the yoke 7, so that a high voltage can be generated. become.

本発明のタイヤ内発電装置1によれば、タイヤ内の温度や圧力タイヤ情報、例えば、タイヤにかかる圧力、路面の滑りやすさを検出し、これらタイヤの動的な状態を連続送信するために高電力を必要とするデバイスに安定して電力を供給できるようになる。   According to the in-tire power generation device 1 of the present invention, in order to detect the temperature and pressure tire information in the tire, for example, the pressure applied to the tire, the slipperiness of the road surface, and continuously transmit the dynamic state of these tires. Power can be stably supplied to devices that require high power.

尚、発電用磁石6を1つの単位磁石15により形成してもよい。   The power generation magnet 6 may be formed by one unit magnet 15.

1 タイヤ内発電装置、2 ベース、3 ガイド棒、5A コイルばね(反発手段)、5B 反発用磁石(反発手段)、6 発電用磁石、7 ヨーク、8 コイル、
15 単位磁石、75;76 弧状面(対向面)、80 抜け防止部。
DESCRIPTION OF SYMBOLS 1 Power generator in tire, 2 base, 3 guide rod, 5A coil spring (repulsion means), 5B repulsion magnet (repulsion means), 6 power generation magnet, 7 yoke, 8 coil,
15 unit magnets, 75; 76 arcuate surface (opposite surface), 80 omission prevention part.

Claims (8)

タイヤの気室内に取付けられる発電装置において、車両走行時のタイヤに加わる遠心力の変化に応じて直線往復移動可能に設けられた発電用磁石と、当該発電用磁石が発生する磁束を通すヨークと、ヨークに巻かれたコイルとを備え、発電用磁石は、直線往復移動方向と交差する方向における一方側が一方の極に着磁されたとともに直線往復移動方向と交差する方向における他方側が他方の極に着磁され、ヨークは、発電用磁石の一方の極から磁束を取り込む磁束入口部と発電用磁石の他方の極に磁束を送る磁束出口部とを備えたことを特徴とするタイヤ内発電装置。   In a power generation device attached to a tire chamber, a power generation magnet provided so as to be linearly reciprocable in accordance with a change in centrifugal force applied to the tire when the vehicle is traveling, and a yoke through which a magnetic flux generated by the power generation magnet passes A coil wound around a yoke, and the power generation magnet is magnetized on one pole in the direction intersecting the linear reciprocating direction and the other side in the direction intersecting the linear reciprocating direction is the other pole. And the yoke includes a magnetic flux inlet portion that takes in the magnetic flux from one pole of the power generating magnet and a magnetic flux outlet portion that sends the magnetic flux to the other pole of the power generating magnet. . 発電用磁石が、直線往復移動方向に沿った方向に複数の単位磁石同士を接着して構成され、単位磁石同士は、互いに異極に着磁された部分同士が接着されたことを特徴とする請求項1に記載のタイヤ内発電装置。   The power generation magnet is configured by adhering a plurality of unit magnets in a direction along the linear reciprocating direction, and the unit magnets are bonded to each other with magnetized portions having different polarities. The in-tire power generation device according to claim 1. ヨークの磁束入口部及び磁束出口部は、発電用磁石の直線往復移動方向に沿った周面と対向する対向面を備え、対向面は、発電用磁石の周面の周方向に沿った方向の長さが発電用磁石の直線往復移動方向に沿った方向の長さよりも長いことを特徴とする請求項1又は請求項2に記載のタイヤ内発電装置。   The magnetic flux inlet portion and the magnetic flux outlet portion of the yoke include a facing surface that faces the circumferential surface along the linear reciprocating movement direction of the power generating magnet, and the facing surface is in a direction along the circumferential direction of the circumferential surface of the power generating magnet. The in-tire power generator according to claim 1 or 2, wherein the length is longer than a length in a direction along a linear reciprocating direction of the power generating magnet. ヨークのコイルの巻かれたコイル巻部の断面積Sは、以下の条件を満たすことを特徴とする請求項1乃至請求項3のいずれかに記載のタイヤ内発電装置。
φ<S×Bm<1.2×φ
但し、
Bm;ヨークの最大飽和磁束密度
φ;発電用磁石の全磁束
The in-tire power generator according to any one of claims 1 to 3, wherein the cross-sectional area S of the coil winding portion around which the coil of the yoke is wound satisfies the following condition.
φ <S × Bm <1.2 × φ
However,
Bm: Maximum saturation magnetic flux density of the yoke φ: Total magnetic flux of the magnet for power generation
コイルの巻線として、断面矩形状の平角線を用いたことを特徴とする請求項1乃至請求項4のいずれかに記載のタイヤ内発電装置。   The in-tire power generator according to any one of claims 1 to 4, wherein a rectangular wire having a rectangular cross section is used as a coil winding. 発電用磁石の直線往復移動方向と直交するベース面を備えたベースと、ベース面より設けられて発電用磁石の直線往復移動を案内するガイド棒と、一端がベース面に固定されて他端がベース面と対向する発電用磁石の下面に固定された反発手段としてのコイルばねとを備え、コイルばねが、発電用磁石に所定の直線往復移動範囲内で直線往復移動を行わせるとともに、発電用磁石とベース面との衝突を防止したことを特徴とする請求項1乃至請求項5のいずれかに記載のタイヤ内発電装置。   A base having a base surface orthogonal to the linear reciprocation direction of the power generation magnet, a guide rod provided from the base surface for guiding the linear reciprocation of the power generation magnet, one end fixed to the base surface and the other end A coil spring as a repelling means fixed to the lower surface of the power generation magnet facing the base surface, and the coil spring causes the power generation magnet to perform linear reciprocation within a predetermined linear reciprocation range, and for power generation The in-tire power generator according to any one of claims 1 to 5, wherein a collision between the magnet and the base surface is prevented. ヨークの対向面は、車が時速30kmでコイルばねが吊り合ったときの発電用磁石の直線往復移動方向の長さの中心位置と一致する位置に設けられたことを特徴とする請求項6に記載のタイヤ内発電装置。   The opposing surface of the yoke is provided at a position coinciding with the center position of the length of the power generation magnet in the linear reciprocating direction when the coil spring is suspended at a speed of 30 km / h. The in-tire power generation device described. 発電用磁石の直線往復移動方向と直交するベース面を備えたベースと、ベース面より設けられて発電用磁石の直線往復移動を案内するガイド棒と、ガイド棒のベース面とは反対側の端部に設けられて発電用磁石のガイド棒からの抜けを防止する抜け防止部と、ベース面に固定されて発電用磁石を反発させる反発用磁石とを備え、発電用磁石と反発用磁石との互いに向き合う面が同極に維持されるように、発電用磁石がガイド棒を回転中心として回転不能にガイド棒に取付けられたことを特徴とする請求項1乃至請求項5のいずれかに記載のタイヤ内発電装置。   A base having a base surface orthogonal to the linear reciprocating direction of the power generating magnet, a guide bar provided from the base surface for guiding the linear reciprocating movement of the power generating magnet, and an end opposite to the base surface of the guide bar And a rebounding magnet that is fixed to the base surface and repels the power generation magnet, and is provided between the power generation magnet and the repulsion magnet. 6. The generator magnet according to claim 1, wherein the power generating magnets are attached to the guide rod so as to be non-rotatable around the guide rod so that the surfaces facing each other are maintained in the same polarity. In-tire power generator.
JP2009059416A 2009-03-12 2009-03-12 In-tire power generator Expired - Fee Related JP5362398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059416A JP5362398B2 (en) 2009-03-12 2009-03-12 In-tire power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059416A JP5362398B2 (en) 2009-03-12 2009-03-12 In-tire power generator

Publications (2)

Publication Number Publication Date
JP2010213531A JP2010213531A (en) 2010-09-24
JP5362398B2 true JP5362398B2 (en) 2013-12-11

Family

ID=42973096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059416A Expired - Fee Related JP5362398B2 (en) 2009-03-12 2009-03-12 In-tire power generator

Country Status (1)

Country Link
JP (1) JP5362398B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635691B1 (en) * 2011-11-11 2016-07-01 미쓰비시덴키 가부시키가이샤 Cylindrical linear motor
JP7054508B2 (en) * 2017-12-01 2022-04-14 国立大学法人九州工業大学 Gripping mechanism and gripping device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164256A (en) * 1987-12-18 1989-06-28 Aisin Seiki Co Ltd Linear generator
JP2004187429A (en) * 2002-12-04 2004-07-02 Tokai Rika Co Ltd Generator and tire inner pressure detection device
JP4975687B2 (en) * 2008-07-03 2012-07-11 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ Tire characteristic parameter monitoring system
JP2010200479A (en) * 2009-02-25 2010-09-09 Bridgestone Corp Power generator inside tire

Also Published As

Publication number Publication date
JP2010213531A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP2010200479A (en) Power generator inside tire
CN105264756A (en) Linear actuator
JP6556829B2 (en) Vibration absorber
JP5878582B2 (en) In-tire power generator
AU2017354953B2 (en) Magnet motor with electromagnetic drive
JP2016144265A (en) Outer rotor type variable magnetic field motor
JPH0274633A (en) Bearing apparatus of rotary ring for spinning
JP5362398B2 (en) In-tire power generator
KR102023268B1 (en) Semi-active eddy current damper for automobile
JPH07274468A (en) Movable magnet type actuator
JPH08130862A (en) Moving magnet linear actuator
JP5642991B2 (en) In-tire power generator
WO2018193640A1 (en) Damper
US6538349B1 (en) Linear reciprocating flux reversal permanent magnetic machine
US10715022B2 (en) Actuator and electric beauty device
JP2012151982A (en) Vibration power generator
KR101552573B1 (en) High speed solenoid
US20200044542A1 (en) Linear vibration motor and electronic device
JP2013055717A (en) Oscillating generator
US7280020B2 (en) Magnetic inertial force generator
JP2013055715A (en) Oscillating generator
JP2018191417A (en) Vibration dynamo power generator
JP2011172391A (en) Vibration generator
CN112211939A (en) Damping device
JP2014057502A (en) Power generating device suppressing cogging force

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Ref document number: 5362398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees