JP5642991B2 - In-tire power generator - Google Patents

In-tire power generator Download PDF

Info

Publication number
JP5642991B2
JP5642991B2 JP2010097970A JP2010097970A JP5642991B2 JP 5642991 B2 JP5642991 B2 JP 5642991B2 JP 2010097970 A JP2010097970 A JP 2010097970A JP 2010097970 A JP2010097970 A JP 2010097970A JP 5642991 B2 JP5642991 B2 JP 5642991B2
Authority
JP
Japan
Prior art keywords
magnet
tire
coil
acceleration
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010097970A
Other languages
Japanese (ja)
Other versions
JP2011229309A (en
Inventor
彰 小早川
彰 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010097970A priority Critical patent/JP5642991B2/en
Publication of JP2011229309A publication Critical patent/JP2011229309A/en
Application granted granted Critical
Publication of JP5642991B2 publication Critical patent/JP5642991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

本発明は、高電力を得ることの可能なタイヤ内発電装置に関する。   The present invention relates to an in-tire power generator capable of obtaining high power.

タイヤ内の温度や圧力を検出するTPMS(タイヤ・プレッシャー・モニタリング・システム)等のセンサ+無線を有するデバイスをタイヤ気室内に設置してタイヤモニタリングを実施する場合に、そのデバイスに電力を供給するタイヤ内発電装置が知られている。
例えば、発電体を螺旋状に摺動させることで磁石とコイルで発電させる技術(特許文献1等参照)、回転錘を回転させて発電させる技術(特許文献2等参照)などが知られている。
しかしながら、特許文献1の技術では、発電体にかかる力の方向と発電体の螺旋摺動方向とが同一方向ではないため、発電体の摺動抵抗が大きく、発電効率が低いので、高電力を得ることができない。また、特許文献2の技術では、回転錘と発電ロータの回転力が歯車を介して伝達されるため、回転抵抗が高く、発電効率が低いので、高電力を得ることができない。
When a device with a sensor and radio such as TPMS (Tire Pressure Monitoring System) that detects the temperature and pressure in the tire is installed in the tire chamber and tire monitoring is performed, power is supplied to the device. An in-tire power generator is known.
For example, a technique for generating electricity with a magnet and a coil by sliding a power generation body in a spiral shape (see Patent Document 1, etc.), a technique for generating electricity by rotating a rotating weight (see Patent Document 2, etc.), and the like are known. .
However, in the technique of Patent Document 1, since the direction of the force applied to the power generation body and the spiral sliding direction of the power generation body are not the same direction, the sliding resistance of the power generation body is large and the power generation efficiency is low. Can't get. Moreover, in the technique of patent document 2, since the rotational force of a rotary weight and an electric power generation rotor is transmitted via a gearwheel, since rotational resistance is high and electric power generation efficiency is low, high electric power cannot be obtained.

特開2000−92784号公報JP 2000-92784 A 特開2000−278923号公報JP 2000-278923 A

本発明は、上記課題を解決するために、低速走行時から高電力を得ることができるタイヤ内発電装置を提供する。   In order to solve the above-described problems, the present invention provides an in-tire power generator that can obtain high power from low-speed traveling.

本発明の第1の構成として、タイヤのトレッド面の裏面に取り付けられるタイヤ内発電装置であって、タイヤの気室内で当該タイヤの幅方向に延長する回転軸と、回転軸に取付けられた状態で互いに対向し、回転中心と重心とが異なるように一部が磁石により形成され車両走行時のタイヤに加わる力の変化に応じて回転する回転体と、互いに対向する回転体間に位置し、当該回転体の磁石との電磁誘導作用により電圧を発生するコイル部と、回転体に加速度を付与する加速手段とを備え、コイル部は、互いに対向する回転体の磁石における異なる磁極間で発生する磁束が通る空間を取り囲むコイル巻体を有し、加速手段は、異なる磁極間で発生する磁束に斥力、又は、引力を作用させる磁束を放出する磁石である構成とした。
本発明によれば、回転体の回転に加速手段が加速度を付与することにより、回転体が回転し易くなり、2つの回転体の磁石間に位置するコイル部で高い電圧を発生させることができる
本発明の第の構成として、加速手段をネオジウム磁石で構成した。
本発明によれば、小さくても強力な磁束密度を有するネオジウム磁石を用いることにより、タイヤ内発電装置の重量を重くすること無く回転体を加速させることができる。
本発明の第の構成として、加速手段コイルの通電により磁束を発生する磁石で構成した。
本発明によれば、タイヤにより加わる力の変化に応じて、コイルに通電することで、コイルに生じる磁力を回転体に作用させて回転体の回転を加速させることができる。
本発明の第の構成として、加速手段の磁束の向きが回転体の磁石における異なる磁極間で発生する磁束と平行であるように構成した。
本発明によれば、加速手段の磁束の向きと、互いに対向する回転体の磁石における異なる磁極間で発生する磁束の向きとを平行にすることで、加速手段の磁石と互いに対向する回転体の磁石とに効率よく反発力を得られるので、加速手段の磁石を小さくすることができる。
本発明の第の構成として、加速手段が、互いに対向する回転体の磁石の中間に位置するように構成した。
本発明によれば、互いに対向する回転体の磁石の強い磁場に対して、加速手段の磁石の磁場を作用させることで、対向する回転体の磁石に効率良く反発力を作用させることができるので、加速手段の磁石を小さく設定することができる。また、回転体の磁石の中間距離に加速手段の磁石を配置することで、回転体の磁石に作用する反発力を対称にすることができ、装置の耐久性を向上させることができる。
本発明の第の構成として、加速手段、複数である構成とした。
本発明によれば、加速手段を複数設けることで、互いに対向する回転体の磁石に対して大きな加速力を付与することができる。
本発明の第の構成として、コイル部が、回転体に加速度を付与する加速手段であるように構成した。
本発明によれば、コイル部の通電を制御することで、コイル部を発電や磁石に用いることができ、コイル部を磁石にすることで、他の構成をタイヤ内発電装置に設けることなく、2つの回転体の磁石に対して反発力を生じさせて回転を加速させることができる。
本発明の第の構成として、加速手段が付与する加速力の方向は、タイヤの踏み込み時に回転体に作用する加速度と同一の方向であるように構成した。
本発明によれば、回転するタイヤの踏み込み時、即ち、タイヤが路面と接触したときに、回転体に作用する加速度と同一方向に加速することにより、低速走行時にタイヤが路面と接触したときに生じるような小さな加速力でも、加速手段により回転体が加速されるので、低速走行中でも発電することができる。
As a first configuration of the present invention, an in- tire power generation device attached to the back surface of a tread surface of a tire, a rotating shaft extending in the width direction of the tire in a tire chamber, and a state attached to the rotating shaft in facing each other, a portion as a rotation center of gravity is different is formed by the magnet, a rotating body that rotates in response to a change in force applied to the tire while the vehicle is running, located between the rotating body facing each other a coil unit for generating a voltage by electromagnetic induction action between the magnet of the rotating body, and a accelerating means for imparting acceleration to a rotating body, the coil portion between different magnetic poles in the magnet of the rotating body facing each other The coil winding body surrounding the space through which the generated magnetic flux passes is provided, and the accelerating means is a magnet that emits a magnetic flux that exerts a repulsive force or an attractive force on the magnetic flux generated between different magnetic poles .
According to the present invention, the acceleration means applies acceleration to the rotation of the rotating body, whereby the rotating body is easily rotated, and a high voltage can be generated at the coil portion located between the magnets of the two rotating bodies. .
As a second configuration of the present invention, the accelerating means is composed of a neodymium magnet.
According to the present invention, the rotating body can be accelerated without increasing the weight of the in-tire power generation device by using a neodymium magnet having a strong magnetic flux density even if it is small.
As a third configuration of the present invention, the accelerating means is composed of a magnet that generates a magnetic flux by energizing the coil.
According to the present invention, by energizing the coil in accordance with a change in the force applied by the tire, the magnetic force generated in the coil can be applied to the rotating body to accelerate the rotation of the rotating body.
As a fourth configuration of the present invention, the direction of the magnetic flux of the acceleration means is configured to be parallel to the magnetic flux generated between different magnetic poles in the magnet of the rotating body .
According to the present invention, the direction of the magnetic flux of the accelerating means, by parallel and orientation of the magnetic flux generated between the different poles in the magnet of the rotating body facing each other, the rotating body facing each other with the magnet of the acceleration means Since the repulsive force can be efficiently obtained with the magnet, the magnet of the acceleration means can be made small.
As a fifth configuration of the present invention, the acceleration means is configured to be positioned in the middle of the magnets between the rotating bodies facing each other.
According to the present invention, with respect to the rotating body strong magnetic field of magnets that face each other, by the action of the magnetic field of the magnet of the acceleration means it can act efficiently repulsion magnet of the rotating body facing Therefore, the magnet of the acceleration means can be set small. Further, by arranging the magnet of the acceleration means in the middle distance magnet of the rotating body, a repulsive force acting on the magnet of the rotating member can be symmetrical, thereby improving the durability of the apparatus.
As a sixth aspect of the present invention, the acceleration means, and a plurality der Ru configuration.
According to the present invention, by providing a plurality of acceleration means, a large acceleration force can be applied to the magnets of the rotating bodies facing each other .
As a seventh configuration of the present invention, the coil portion is configured to be acceleration means for applying acceleration to the rotating body.
According to the present invention, by controlling the energization of the coil portion, the coil portion can be used for power generation and a magnet, and by making the coil portion a magnet, without providing other configurations in the in-tire power generator, Rotation can be accelerated by generating a repulsive force against the magnets of the two rotating bodies.
As an eighth configuration of the present invention, the direction of the acceleration force applied by the acceleration means is configured to be the same direction as the acceleration acting on the rotating body when the tire is depressed.
According to the present invention, when the rotating tire is stepped on, that is, when the tire contacts the road surface, it accelerates in the same direction as the acceleration acting on the rotating body, so that the tire contacts the road surface during low speed running. Even with such a small acceleration force that occurs, the rotator is accelerated by the acceleration means, so that power can be generated even during low-speed traveling.

本発明に係るタイヤ内発電装置を示す斜視図。The perspective view which shows the electric power generating apparatus in a tire which concerns on this invention. 本発明に係るタイヤ内発電装置を示す分解斜視図。The disassembled perspective view which shows the in-tire electric power generating apparatus which concerns on this invention. 本発明に係るタイヤ内発電装置を示す側面図及び正面図。The side view and front view which show the in-tire electric power generating apparatus which concerns on this invention. 本発明に係るコイル部と接続される電気部品群を示すブロック図。The block diagram which shows the electrical component group connected with the coil part which concerns on this invention. 本発明に係るコイル部と磁石との関係を示す斜視図。The perspective view which shows the relationship between the coil part which concerns on this invention, and a magnet. 本発明に係る反発磁石と回転体の磁石との距離と、回転トルクとの関係を示すグラフ。The graph which shows the relationship between the distance of the repulsion magnet which concerns on this invention, and the magnet of a rotary body, and rotational torque. 本発明に係る回転トルクと発電量との関係を示すグラフ。The graph which shows the relationship between the rotational torque which concerns on this invention, and electric power generation amount. 本発明に係る角柱形の反発磁石の長さと、回転トルク及び発電量との関係を示すグラフ。The graph which shows the relationship between the length of the prismatic repulsion magnet which concerns on this invention, rotational torque, and electric power generation amount.

以下、発明の実施形態を通じて本発明を詳説するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明される特徴の組合せのすべてが発明の解決手段に必須であるとは限らず、選択的に採用される構成を含むものである。   Hereinafter, the present invention will be described in detail through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are included in the invention. It is not necessarily essential to the solution, but includes a configuration that is selectively adopted.

実施形態
図1,2に示すように、本実施形態に係るタイヤ気室内に取付けられるタイヤ内発電装置1は、ベース2と、2つの回転軸支持部材3,3と、1本の真っ直ぐな回転軸4と、コイル部固定部材5と、コイル部6と、2つの回転体7,7と、加速手段8としての反発磁石8Aとを備える。
コイル部6の両端は電線23により整流回路18(図4参照)に接続される。ベース2、一対の回転軸支持部材3,3、回転軸4、コイル部固定部材5は、非磁性材料により形成される。ベース2、一対の回転軸支持部材3,3、コイル部固定部材5は、例えば、アクリル樹脂により形成され、回転軸4は、例えば、JIS規格のSUS304により形成される。なお、本実施形態において説明に用いる、上下、前後、左右の位置関係は、図1において矢印で示した。
Embodiment As shown in FIGS. 1 and 2, the in-tire power generator 1 attached to the tire chamber according to the present embodiment includes a base 2, two rotating shaft support members 3 and 3, and one straight rotation. A shaft 4, a coil part fixing member 5, a coil part 6, two rotating bodies 7 and 7, and a repulsive magnet 8 </ b> A as an acceleration means 8 are provided.
Both ends of the coil portion 6 are connected to a rectifier circuit 18 (see FIG. 4) by electric wires 23. The base 2, the pair of rotating shaft support members 3, 3, the rotating shaft 4, and the coil portion fixing member 5 are formed of a nonmagnetic material. The base 2, the pair of rotating shaft support members 3 and 3, and the coil portion fixing member 5 are made of, for example, acrylic resin, and the rotating shaft 4 is made of, for example, JIS 304 SUS304. In addition, the positional relationship of up and down, front and rear, and left and right used for description in the present embodiment is indicated by arrows in FIG.

ベース2は、例えば、矩形の平板により形成されたベース板11と、ベース板11上に設けられた固定台12とを備える。固定台12は、下板13と、左右一対の側壁14,14と、屋根板15と、左右の側設置台16,16と、収納設置空間17とを備える。下板13は、ベース板11より一回り小さい矩形の平板状であってベース板11上にベース板11と同心に設けられる。左右一対の側壁14,14は、下板13上に間隔を隔てて設けられ、上下方向及び前後方向に延長する。側壁14,14は、下板13上に左右の側縁からそれぞれ等間隔の位置に設けられる。屋根板15は、左右一対の側壁14,14の上端面を跨ぐように設けられる。左右の側設置台16,16は、下板13上の左右の側縁に近い左右の側壁14,14の外面と下板13の上面とから延長するように設けられる。収納設置空間17は、下板13と左右の側壁14,14と屋根板15とで囲まれて前後が開口した空間により形成される。収納設置空間17内には、図4の点線内に示す整流回路18、充電回路19、無線モジュールのようなデバイス20などの電気部品群22が収納設置される。尚、ベース2は、上述した各部材が組み立てられて形成したものでもよいし、上述した各部材を一体成型して形成したものでもよい。   The base 2 includes, for example, a base plate 11 formed of a rectangular flat plate and a fixed base 12 provided on the base plate 11. The fixed base 12 includes a lower plate 13, a pair of left and right side walls 14, 14, a roof plate 15, left and right side installation stands 16, 16, and a storage installation space 17. The lower plate 13 is a rectangular flat plate that is slightly smaller than the base plate 11 and is provided on the base plate 11 concentrically with the base plate 11. The pair of left and right side walls 14, 14 are provided on the lower plate 13 with a space therebetween, and extend in the vertical direction and the front-back direction. The side walls 14 are provided on the lower plate 13 at equal intervals from the left and right side edges. The roof plate 15 is provided so as to straddle the upper end surfaces of the pair of left and right side walls 14 and 14. The left and right side installation stands 16, 16 are provided so as to extend from the outer surfaces of the left and right side walls 14, 14 near the left and right side edges on the lower plate 13 and the upper surface of the lower plate 13. The storage installation space 17 is formed by a space that is surrounded by the lower plate 13, the left and right side walls 14, 14, and the roof plate 15 and is open at the front and rear. In the storage / installation space 17, an electrical component group 22 such as a rectifier circuit 18, a charging circuit 19, and a device 20 such as a wireless module shown within a dotted line in FIG. 4 is stored and installed. The base 2 may be formed by assembling the above-described members, or may be formed by integrally molding the above-described members.

屋根板15の上面、及び、側設置台16の上面は、ベース板11の上平面と平行な平面に形成される。回転軸支持部材3が側設置台16の上面より上方に延長するように側設置台16の上面に設けられ、コイル部固定部材5が屋根板15の上面より上方に延長するように屋根板15の上面に設けられる。   The upper surface of the roof plate 15 and the upper surface of the side installation table 16 are formed in a plane parallel to the upper plane of the base plate 11. The rotary shaft support member 3 is provided on the upper surface of the side installation table 16 so as to extend upward from the upper surface of the side installation table 16, and the roof plate 15 so that the coil portion fixing member 5 extends upward from the upper surface of the roof plate 15. Provided on the upper surface of the substrate.

コイル部固定部材5は、屋根板15と一体に形成されたものでもよいし、屋根板15と別個に形成されたものが接着剤などの固定手段で屋根板15の上面に固定されて形成されたものでもよい。コイル部固定部材5は、屋根板15の左右間の中央位置より上方向及び前後方向に延長して互いに対向する対向面5a,5aを有した平板により形成される。コイル部固定部材5の平板の対向面5a,5aは屋根板15の上面である平面に対して垂直な面である。コイル部固定部材5は、対向面5a,5aを貫通するコイル部収納貫通孔5bと、上縁面を円弧状に切り欠いて形成された軸避け部5cと、コイル部収納貫通孔5bの下側に位置し、対向面5a,5aを貫通する反発磁石収納孔5dとを備える。
コイル部6はコイル部収納貫通孔5bの孔内壁に接着剤などの固定手段で固定される。
反発磁石8Aは反発磁石収納孔5dの孔内壁に接着剤などの固定手段で固定される。
The coil portion fixing member 5 may be formed integrally with the roof plate 15 or may be formed separately from the roof plate 15 and fixed to the upper surface of the roof plate 15 by a fixing means such as an adhesive. May be good. The coil portion fixing member 5 is formed of a flat plate having opposing surfaces 5a and 5a that extend in the upward direction and the front-rear direction from the center position between the left and right sides of the roof plate 15 and face each other. The flat facing surfaces 5 a and 5 a of the coil portion fixing member 5 are surfaces perpendicular to the plane which is the upper surface of the roof plate 15. The coil portion fixing member 5 includes a coil portion accommodation through hole 5b that penetrates the opposing surfaces 5a and 5a, a shaft avoidance portion 5c formed by cutting out the upper edge surface in an arc shape, and a lower portion of the coil portion accommodation through hole 5b. And a repulsive magnet housing hole 5d penetrating the opposing surfaces 5a and 5a.
The coil part 6 is fixed to the hole inner wall of the coil part accommodation through hole 5b by a fixing means such as an adhesive.
The repulsive magnet 8A is fixed to the inner wall of the repulsive magnet housing hole 5d by a fixing means such as an adhesive.

回転軸支持部材3は、側設置台16と別個に形成されるものであり、例えば、平板状の壁体により形成され、接着剤などの固定手段で側設置台16の上面に固定される。回転軸支持部材3は、上部側面に回転軸4の端部41を回転可能に支持する軸受21を備える。軸受21は、回転軸支持部材3の上部側面に形成された孔に取付けられた軸受部材、あるいは、回転軸支持部材3の上部側面に形成された軸受孔により形成される。   The rotating shaft support member 3 is formed separately from the side installation table 16, and is formed of, for example, a flat wall and is fixed to the upper surface of the side installation table 16 by a fixing means such as an adhesive. The rotating shaft support member 3 includes a bearing 21 that rotatably supports the end portion 41 of the rotating shaft 4 on the upper side surface. The bearing 21 is formed by a bearing member attached to a hole formed on the upper side surface of the rotating shaft support member 3 or a bearing hole formed on the upper side surface of the rotating shaft support member 3.

回転軸4は、両端部41,41と、ヨーク体位置決め部42、磁石対応部43、軸補強部44とを備える。回転軸4の両端部41,41が各回転軸支持部材3,3の軸受21,21に回転可能に支持される。図2に示すように、回転軸4は、中央部に軸補強部44を備え、軸補強部44と端部41との間には、ヨーク体位置決め部42と磁石対応部43とを備える。軸補強部44と磁石対応部43と端部41とが断面円形状に形成され、ヨーク体位置決め部42が断面角形状に形成される。ヨーク体位置決め部42は、例えば断面正六角形状に形成される。軸補強部44と左右の磁石対応部43,43とが隣り合うように設けられ、磁石対応部43とヨーク体位置決め部42とが隣り合うように設けられ、ヨーク体位置決め部42と端部41とが隣り合うように設けられる。   The rotating shaft 4 includes both end portions 41, 41, a yoke body positioning portion 42, a magnet corresponding portion 43, and a shaft reinforcing portion 44. Both end portions 41, 41 of the rotary shaft 4 are rotatably supported by bearings 21, 21 of the rotary shaft support members 3, 3. As shown in FIG. 2, the rotating shaft 4 includes a shaft reinforcing portion 44 at the center, and includes a yoke body positioning portion 42 and a magnet corresponding portion 43 between the shaft reinforcing portion 44 and the end portion 41. The shaft reinforcing portion 44, the magnet corresponding portion 43, and the end portion 41 are formed in a circular cross section, and the yoke body positioning portion 42 is formed in a square cross section. The yoke body positioning portion 42 is formed, for example, in a regular hexagonal cross section. The shaft reinforcing portion 44 and the left and right magnet corresponding portions 43 and 43 are provided adjacent to each other, the magnet corresponding portion 43 and the yoke body positioning portion 42 are provided adjacent to each other, and the yoke body positioning portion 42 and the end portion 41 are provided. Are provided next to each other.

回転軸4の端部41の断面円径寸法は、ヨーク体位置決め部42の断面正六角形の内接円の円径寸法以下に形成される。磁石対応部43の断面円径寸法は、ヨーク体位置決め部42の断面正六角形の外接円の円径寸法以上に形成される。軸補強部44の断面円径寸法は、磁石対応部43の円径寸法よりも大きい寸法に形成される。   The cross-sectional diameter of the end 41 of the rotating shaft 4 is formed to be equal to or smaller than the diameter of the inscribed circle having a regular hexagonal cross section of the yoke body positioning portion 42. The cross-sectional diameter of the magnet corresponding portion 43 is formed to be equal to or larger than the diameter of the circumscribed circle having a regular hexagonal cross section of the yoke body positioning portion 42. The cross-sectional diameter of the shaft reinforcing portion 44 is formed to be larger than the diameter of the magnet corresponding portion 43.

回転体7は、ヨーク体71と磁石72とにより形成される。即ち、回転体7を、ヨーク体71と、扇形状の偏心錘を形成する磁石72とにより構成した。
ヨーク体71は、扇形状のヨーク面板73と、位置決め孔74と、磁石位置決め板75,75,76とを備える。ヨーク面板73は、扇部73aと扇の要部73bとを備える。ヨーク面板73の扇形状は、扇の2つの半径のなす角度が例えば120°になるように形成される。位置決め孔74は、ヨーク面板73の扇の要部73bに形成された孔であり、回転軸4のヨーク体位置決め部42の断面正六角形状に対応した正六角形状の孔に形成される。磁石位置決め板75,75は、ヨーク面板73の2つの半径線縁に沿って設けられる。磁石位置決め板76は、ヨーク面板73の円弧線縁に沿って設けられる。磁石位置決め板75,75,76は、ヨーク面板73の一方の面より一方向に突出して、かつ、ヨーク面板73と垂直に設けられる。
ヨーク体71は、鉄、ニッケル、パーマロイ、センダスト、アモルファス金属などの軟磁性体により形成される。
The rotating body 7 is formed by a yoke body 71 and a magnet 72. That is, the rotating body 7 is composed of a yoke body 71 and a magnet 72 that forms a fan-shaped eccentric weight.
The yoke body 71 includes a fan-shaped yoke face plate 73, a positioning hole 74, and magnet positioning plates 75, 75, and 76. The yoke face plate 73 includes a fan part 73a and a main part 73b of the fan. The sector shape of the yoke face plate 73 is formed such that the angle formed by the two radii of the sector is 120 °, for example. The positioning hole 74 is a hole formed in the main part 73 b of the fan of the yoke face plate 73, and is formed in a regular hexagonal hole corresponding to the regular hexagonal cross section of the yoke body positioning part 42 of the rotating shaft 4. The magnet positioning plates 75 and 75 are provided along two radial line edges of the yoke face plate 73. The magnet positioning plate 76 is provided along the arc edge of the yoke face plate 73. The magnet positioning plates 75, 75, and 76 protrude in one direction from one surface of the yoke face plate 73 and are provided perpendicular to the yoke face plate 73.
The yoke body 71 is formed of a soft magnetic material such as iron, nickel, permalloy, sendust, and amorphous metal.

磁石72は、円の中心に円孔を備えた所定厚さの円板を円の中心を要とした扇形状に分割した扇形状の磁石により形成される。磁石72の扇の要には回転軸4の外周面に対応する磁石対応部43に湾曲切欠部80を備える。例えば、2つの半径のなす角度が例えば60°の単位扇形状磁石77を2つ組み合わせて2つの半径のなす角度が120°の扇形状に形成された扇形状の磁石72を用いる。
このような2つの半径のなす角度が60°の単位扇形状磁石77を用いれば、安定的な磁力が得られ、また、コイル巻体61の筒内の空間60(図5参照)を通過する磁束φ1,φ2の向きが変化する速度を速くすることができる。
The magnet 72 is formed of a fan-shaped magnet obtained by dividing a circular plate having a predetermined thickness with a circular hole at the center of the circle into a fan shape that requires the center of the circle. The main part of the fan of the magnet 72 includes a curved notch 80 in the magnet corresponding portion 43 corresponding to the outer peripheral surface of the rotating shaft 4. For example, a fan-shaped magnet 72 formed by combining two unit fan-shaped magnets 77 having an angle between two radii of, for example, 60 ° and formed into a fan shape having an angle formed between the two radii of 120 ° is used.
If such a unit fan-shaped magnet 77 having an angle formed by two radii of 60 ° is used, a stable magnetic force can be obtained and the coil 60 passes through the space 60 (see FIG. 5) in the cylinder. The speed at which the directions of the magnetic fluxes φ1 and φ2 change can be increased.

図5に示すように、単位扇形状磁石77は、一方の扇面側がN極に着磁され、他方の扇面側がS極に着磁されて形成された磁石である。扇形状の磁石72は、異極同士が互いに隣り合うように2つの単位扇形状磁石77,77の端面78,78同士を接着して形成される。
よって、回転体7が、回転体7の回転方向に沿って配置された複数の異なる磁極の単位扇形状磁石77,77を備えるので、磁極変化点が多くなり、回転体7が回転することで、コイル巻体61の筒内の空間60を通過する磁束φ1,φ2の向きが変化する速度がより速くなるので、高電力を得ることができるようになる。
As shown in FIG. 5, the unit fan-shaped magnet 77 is a magnet formed by magnetizing one fan face side to the N pole and magnetizing the other fan face side to the S pole. The fan-shaped magnet 72 is formed by adhering end faces 78 and 78 of the two unit fan-shaped magnets 77 and 77 so that the different poles are adjacent to each other.
Therefore, since the rotator 7 includes the unit fan-shaped magnets 77 and 77 of different magnetic poles arranged along the rotation direction of the rotator 7, the number of magnetic pole change points increases and the rotator 7 rotates. Since the direction in which the directions of the magnetic fluxes φ1 and φ2 passing through the space 60 in the cylinder of the coil winding body 61 change is faster, high power can be obtained.

磁石72は、磁石位置決め板75,75,76で囲まれた磁石設置部79内に挿入可能な大きさに形成される。
例えば、磁石位置決め板75,75,76で囲まれた扇部73aの一方の扇面73uの面積と同じ面積の扇面を有した扇形状の磁石72を形成し、扇部73aの一方の扇面73uと磁石72の一方の扇面とが互いに接着剤などの固定手段で固定されて回転体7が形成される。
即ち、回転体7の磁石72は、コイル部6に対向する面とは反対側の面にヨーク面板73を備え、かつ、磁石72の扇の外周面にヨークとして機能する磁石位置決め板75,75,76を備える構成としたので、磁石72内で自己完結する磁界発生状態を抑制できてコイル巻体61の筒内の空間60を通過する磁束φ1,φ2の磁束密度を大きくできるので、高電力を得ることができるようになる。
また、ヨーク体71が磁石設置部79を備えるので、磁石72をヨーク体71の決まった位置である磁石設置部79に容易に設置できるので、回転体7の製作が容易となり、また、磁石72の位置ずれも防止できるので、コイル部6に安定な磁界を供給できる。
The magnet 72 is formed in a size that can be inserted into the magnet installation portion 79 surrounded by the magnet positioning plates 75, 75, 76.
For example, a fan-shaped magnet 72 having a fan surface having the same area as the one fan surface 73u of the fan portion 73a surrounded by the magnet positioning plates 75, 75, 76 is formed, and the one fan surface 73u of the fan portion 73a The rotating body 7 is formed by fixing one fan surface of the magnet 72 to each other by a fixing means such as an adhesive.
That is, the magnet 72 of the rotating body 7 includes a yoke surface plate 73 on the surface opposite to the surface facing the coil portion 6, and the magnet positioning plates 75 and 75 function as a yoke on the outer peripheral surface of the fan of the magnet 72. , 76, the self-complete magnetic field generation state in the magnet 72 can be suppressed, and the magnetic flux density of the magnetic fluxes φ1, φ2 passing through the space 60 in the cylinder of the coil winding body 61 can be increased. You will be able to get
Further, since the yoke body 71 includes the magnet installation portion 79, the magnet 72 can be easily installed on the magnet installation portion 79, which is a fixed position of the yoke body 71, so that the rotating body 7 can be easily manufactured. Therefore, a stable magnetic field can be supplied to the coil section 6.

また、回転体7は、ヨーク体71の扇の要部73bが回転軸4への取付孔としての位置決め孔74を備え、磁石72は、ヨーク面板73と磁石位置決め板75,75,76とで囲まれた扇形状の磁石設置部79に対応した扇形状に形成されて、扇の要には回転軸4の外周面に対応する磁石対応部43に湾曲切欠部80を備え、磁石設置部79に設置された構成とした。
即ち、磁石72に回転軸4への取付部を設けない構成としたので、回転体7がより回転しやすくなるので、コイル巻体61の筒内の空間60を通過する磁束φの向きが変化する速度がより速くなって、高電力を得ることができ、また、効率的に連続発電が可能となり、発電量を増加させることができる。
また、磁石72を偏心錘として利用したので、部品点数を削減できるとともに、磁石72が回転しやすくなるので、高電力を得ることができるとともに発電量を増加させることができるようになる。
Further, in the rotating body 7, the main part 73 b of the fan of the yoke body 71 has a positioning hole 74 as an attachment hole to the rotating shaft 4, and the magnet 72 includes a yoke face plate 73 and magnet positioning plates 75, 75, 76. It is formed in a fan shape corresponding to the enclosed fan-shaped magnet installation part 79, and the main part of the fan is provided with a curved notch 80 in the magnet corresponding part 43 corresponding to the outer peripheral surface of the rotating shaft 4, and the magnet installation part 79. It was set as the structure installed in.
That is, since the magnet 72 is not provided with the attachment portion to the rotating shaft 4, the rotating body 7 becomes easier to rotate, and the direction of the magnetic flux φ passing through the space 60 in the cylinder of the coil winding body 61 changes. The speed at which the power generation is performed becomes faster, high power can be obtained, and continuous power generation can be efficiently performed, so that the amount of power generation can be increased.
Further, since the magnet 72 is used as an eccentric weight, the number of parts can be reduced, and the magnet 72 can be easily rotated, so that high power can be obtained and the amount of power generation can be increased.

回転体7の磁石72が回転軸4の軸補強部44側に位置されるように、ヨーク体71の位置決め孔74内に回転軸4の端部41側から断面六角形のヨーク体位置決め部42を嵌め込んで、図2に示すように、ヨーク面板73の扇の要部73bにおける位置決め孔74の孔縁部面46と回転軸4の磁石対応部43の端面45とを接触させる。この際、ヨーク体71と回転軸4とを接着剤などの固定手段で固定すれば、ヨーク体71と回転軸4とをより確実に一体化させることができる。
そして、回転軸4の両端部41,41を回転軸支持部材3の軸受21内に回転可能に挿入した状態で、回転軸支持部材3を屋根板15の上面に接着剤などの固定手段で固定する。
回転軸4の各ヨーク体位置決め部42,42には、各回転体7,7の磁石72,72の扇面同士が向き合うように取付けられる。
本実施形態では、ヨーク体位置決め部42の断面形状及び位置決め孔74の孔形状を正六角形状としたので、磁石72,72の扇面の中心線が一致して磁石72,72の扇面同士が向き合うように磁石72,72を位置決めして回転軸4の各ヨーク体位置決め部42,42に回転体7を取付ける取付作業が容易となる。なお、位置決め孔74の孔形状を、三つ以上の角を備えた角孔とし、ヨーク体位置決め部42の断面形状は角孔に対応した角形状とすれば、当該取付作業が容易となる。
The yoke body positioning portion 42 having a hexagonal cross section from the end 41 side of the rotary shaft 4 in the positioning hole 74 of the yoke body 71 so that the magnet 72 of the rotary body 7 is positioned on the shaft reinforcing portion 44 side of the rotary shaft 4. 2, the hole edge surface 46 of the positioning hole 74 and the end surface 45 of the magnet corresponding portion 43 of the rotary shaft 4 are brought into contact with each other as shown in FIG. At this time, if the yoke body 71 and the rotating shaft 4 are fixed by a fixing means such as an adhesive, the yoke body 71 and the rotating shaft 4 can be more reliably integrated.
The rotary shaft support member 3 is fixed to the upper surface of the roof plate 15 with a fixing means such as an adhesive in a state where both end portions 41, 41 of the rotary shaft 4 are rotatably inserted into the bearing 21 of the rotary shaft support member 3. To do.
The yoke bodies positioning portions 42 and 42 of the rotating shaft 4 are attached so that the fan surfaces of the magnets 72 and 72 of the rotating bodies 7 and 7 face each other.
In the present embodiment, since the cross-sectional shape of the yoke body positioning portion 42 and the hole shape of the positioning hole 74 are regular hexagonal shapes, the center lines of the fan surfaces of the magnets 72 and 72 coincide with each other and the fan surfaces of the magnets 72 and 72 face each other. As described above, the magnets 72 and 72 are positioned so that the attaching work for attaching the rotating body 7 to the yoke body positioning portions 42 and 42 of the rotating shaft 4 is facilitated. In addition, if the hole shape of the positioning hole 74 is a square hole having three or more corners, and the cross-sectional shape of the yoke body positioning portion 42 is a square shape corresponding to the square hole, the mounting operation is facilitated.

軸受21に回転可能に支持された回転軸4と、回転軸4の中心線を回転中心として回転軸4と一緒に回転するように形成された回転体7とにより、回転構成部25が形成される。回転体7は、回転中心と重心とが異なるものであればよく、例えば、扇の2つの半径のなす角度が例えば180°以下の扇形状により形成されたものを用いればよい。   A rotating component 25 is formed by the rotating shaft 4 rotatably supported by the bearing 21 and the rotating body 7 formed so as to rotate together with the rotating shaft 4 about the center line of the rotating shaft 4 as a rotation center. The The rotating body 7 only needs to have a rotation center and a center of gravity different from each other. For example, a rotating body formed in a fan shape in which an angle between two radii of a fan is 180 ° or less may be used.

図5に示すように、コイル部6は、回転軸4と一緒に回転して互いに向き合う2つの回転体7,7における磁石72,72の互いに異なる磁極間で発生する磁束φ1,φ2が通る空間60を取り囲む筒形状にコイル62が巻回された2つのコイル巻体61,61により形成される。例えば、コイル巻体61は、回転する2つの回転体7,7の磁石72,72間で発生する磁束φ1,φ2が通る扇形の筒形状を形成するようにコイル62が巻かれた構成である。好ましくは、コイル62として、断面矩形状の平角線を用いる。これにより、巻線抵抗減少と巻数増加が図れ、巻線密度を向上できるので、発電効率が高まる。   As shown in FIG. 5, the coil section 6 is a space through which magnetic fluxes φ1 and φ2 generated between different magnetic poles of the magnets 72 and 72 in the two rotating bodies 7 and 7 that rotate together with the rotating shaft 4 and face each other. It is formed by two coil winding bodies 61 and 61 in which a coil 62 is wound in a cylindrical shape surrounding 60. For example, the coil wound body 61 has a configuration in which the coil 62 is wound so as to form a fan-shaped cylindrical shape through which the magnetic fluxes φ1 and φ2 generated between the magnets 72 and 72 of the two rotating bodies 7 and 7 that rotate. . Preferably, a rectangular wire having a rectangular cross section is used as the coil 62. As a result, the winding resistance can be reduced and the number of turns can be increased, and the winding density can be improved, thus increasing the power generation efficiency.

例えば、図1,図5に示すように、コイル巻体61は、回転体7の磁石72の回転軌跡の投影部分に設けられたので、コイル巻体61の筒内の空間60を通過する磁束φ1,φ2の磁束密度を大きくでき、高電力を得ることができる。
また、コイル部6の外周を磁石72の外周より大きくした場合、コイル巻体61の巻長さが長くなりコイル巻体61の抵抗が大きくなって発電効率が低下するため、コイル巻体61の筒の断面の外周形状と磁石72の断面の外周形状とが同じ形状に形成される。回転体7の回転により、磁石72の断面の中心線とコイル巻体61の筒の断面の中心線とが一致した場合に、コイル巻体61の断面の外周の長さが磁石72の断面の外周の長さよりも小さくなるように形成することで、2つの回転体7の磁石72,72間により供給される磁界により覆われるとともに、コイル巻体61の抵抗を小さくして、発電効率を向上させることができる。
回転体7が回転した場合において、回転軸4に沿った方向で単位扇形状磁石77の扇面とコイル巻体61の扇形状の端部とが対向するように構成され、コイル部6を中心として回転体7,7の磁石72,72が左右対称に位置されるようになるので、コイル部6に対して安定的な磁界を供給でき、発電効率を高めることができる。
For example, as shown in FIGS. 1 and 5, the coil winding body 61 is provided on the projected portion of the rotation locus of the magnet 72 of the rotating body 7, so that the magnetic flux passing through the space 60 in the cylinder of the coil winding body 61. The magnetic flux density of φ1 and φ2 can be increased, and high power can be obtained.
Moreover, when the outer periphery of the coil part 6 is made larger than the outer periphery of the magnet 72, the winding length of the coil winding body 61 becomes longer, the resistance of the coil winding body 61 becomes larger, and the power generation efficiency decreases. The outer peripheral shape of the cross section of the cylinder and the outer peripheral shape of the cross section of the magnet 72 are formed in the same shape. When the center line of the cross section of the magnet 72 coincides with the center line of the cross section of the cylinder of the coil winding body 61 due to the rotation of the rotating body 7, the length of the outer periphery of the cross section of the coil winding body 61 is By forming it to be smaller than the length of the outer circumference, it is covered by the magnetic field supplied between the magnets 72, 72 of the two rotating bodies 7, and the resistance of the coil winding body 61 is reduced to improve the power generation efficiency. Can be made.
When the rotating body 7 is rotated, the fan surface of the unit fan-shaped magnet 77 and the fan-shaped end of the coil winding body 61 are configured to face each other in the direction along the rotation axis 4. Since the magnets 72 and 72 of the rotators 7 and 7 are positioned symmetrically, a stable magnetic field can be supplied to the coil unit 6 and power generation efficiency can be increased.

加速手段8としての反発磁石8Aは、円柱形の2極のネオジウム磁石により構成され、反発磁石8Aの長さ方向が回転軸4と平行、かつ、互いに対向する回転体7,7の磁石間の中間に位置するコイル部収納貫通孔5bに設けられる。また、反発磁石8Aの磁極の向きは、タイヤの踏み込み時に回転体7,7に作用する加速度と同一方向に設定される。例えば、反発磁石8Aは、直径が1mm、厚さが2mmの円柱形のネオジウム磁石によって構成される。よって、図5に示すように、反発磁石8Aの放出する磁束φ3は、回転体7の磁石72,72間で放出される磁束φ1,φ2と平行となる。
これにより、反発磁石8Aの放出する磁束φ3と、一方の単位扇形状磁石77,77間の磁束φ1との間で斥力が作用し、反発磁石8Aの放出する磁束φ3と、他方の単位扇形状磁石77,77間の磁束φ2との間で引力が作用して、図中に示す矢印方向の回転トルクTmが生じる。つまり、図3(b)に示すように、タイヤ内発電装置1を水平面上に置いたときに、回転体7は、磁石72の断面の中心線C1とコイル巻体61の筒の断面の中心線C2とが一致せず、一方に回転した状態で静止する。この場合のタイヤの回転方向は、回転トルクTmの作用する方向と同一に設定される。
即ち、反発磁石8Aは、回転体7,7の放出する磁束φ1,φ2に対して磁束φ3が作用することで回転体7,7に加速度を付与する加速手段8であり、当該加速度により、回転体7,7の回転方向に加速度を付与する。
反発磁石8Aをタイヤ内発電装置1に設けない場合には、回転体7,7は、遠心力により磁石72の断面の中心線C1がタイヤ外周面の法線となるようにタイヤ内周面側に押し付けられるため、タイヤの低速走行時には、回転体7,7は回転することができなかった。
そこで、反発磁石8Aを設けることにより、磁石72,72の磁束φ1,φ2に反発磁石8Aの放出する磁束φ3を作用させることで、磁石72,72と反発磁石8A間に斥力及び引力を生じさせ、回転体7,7に回転トルクTmを付与する。
回転トルクTmは、タイヤの回転により回転体7,7に作用する遠心力によって打ち消されるが、タイヤが路面と接触するタイヤ踏み込み時には、遠心力が瞬間的に開放されるため、打ち消されていた回転トルクTmは、加速度となって回転体7,7を加速するので、低速走行時にも回転体7,7を回転させることが可能となる。
さらに、回転中の回転体7,7にも、反発磁石8Aの磁束φ3による加速力が作用し、回転体7,7の回転を加速させることができるので、低速走行時にも高電力を得ることができる。
なお、反発磁石8Aの寸法,形状及び配置する位置の設定については、後述の実験例において説明する。
The repulsive magnet 8A as the accelerating means 8 is constituted by a cylindrical dipole neodymium magnet, and the length direction of the repulsive magnet 8A is parallel to the rotating shaft 4 and between the magnets of the rotating bodies 7 and 7 facing each other. It is provided in the coil part accommodation through hole 5b located in the middle. The direction of the magnetic pole of the repulsive magnet 8A is set in the same direction as the acceleration acting on the rotating bodies 7 and 7 when the tire is depressed. For example, the repulsive magnet 8A is constituted by a cylindrical neodymium magnet having a diameter of 1 mm and a thickness of 2 mm. Therefore, as shown in FIG. 5, the magnetic flux φ <b> 3 emitted by the repulsive magnet 8 </ b> A is parallel to the magnetic fluxes φ <b> 1 and φ <b> 2 emitted between the magnets 72 and 72 of the rotating body 7.
As a result, a repulsive force acts between the magnetic flux φ3 emitted from the repulsive magnet 8A and the magnetic flux φ1 between the unit fan-shaped magnets 77 and 77, and the magnetic flux φ3 emitted from the repulsive magnet 8A and the other unit fan-shaped. An attractive force acts between the magnet 77 and the magnetic flux φ2 between the magnets 77, and a rotational torque Tm in the direction of the arrow shown in the figure is generated. That is, as shown in FIG. 3B, when the in-tire power generation device 1 is placed on a horizontal plane, the rotating body 7 has the center line C <b> 1 of the cross section of the magnet 72 and the center of the cross section of the cylinder of the coil winding body 61. The line C2 does not coincide with the line C2 and is stationary while rotating to one side. In this case, the rotational direction of the tire is set to be the same as the direction in which the rotational torque Tm acts.
That is, the repulsive magnet 8A is an acceleration means 8 that gives acceleration to the rotating bodies 7 and 7 by the magnetic flux φ3 acting on the magnetic fluxes φ1 and φ2 emitted by the rotating bodies 7 and 7, and is rotated by the acceleration. An acceleration is given to the rotation direction of the bodies 7 and 7.
When the repulsive magnet 8A is not provided in the in-tire power generator 1, the rotating bodies 7 and 7 are arranged on the tire inner peripheral surface side so that the center line C1 of the cross section of the magnet 72 becomes a normal to the tire outer peripheral surface by centrifugal force. Therefore, the rotating bodies 7 and 7 could not rotate when the tire traveled at a low speed.
Therefore, by providing the repulsive magnet 8A, the magnetic fluxes φ1 and φ2 of the magnets 72 and 72 are caused to act on the magnetic flux φ3 emitted from the repulsive magnet 8A, thereby generating repulsive force and attractive force between the magnets 72 and 72 and the repelling magnet 8A. The rotational torque Tm is applied to the rotators 7 and 7.
The rotational torque Tm is canceled by the centrifugal force acting on the rotating bodies 7 and 7 due to the rotation of the tire, but the centrifugal force is momentarily released when the tire is stepped on when the tire contacts the road surface. Since the torque Tm is accelerated to accelerate the rotating bodies 7 and 7, the rotating bodies 7 and 7 can be rotated even during low-speed traveling.
Furthermore, since the accelerating force by the magnetic flux φ3 of the repulsive magnet 8A acts on the rotating rotating bodies 7 and 7 and the rotation of the rotating bodies 7 and 7 can be accelerated, high power can be obtained even during low-speed traveling. Can do.
In addition, the setting of the dimension, shape, and arrangement position of the repulsive magnet 8A will be described in an experimental example described later.

図3(a)に示すように、回転軸支持部材3,3間の間隔cは、回転軸4の全長よりも短く、かつ、回転軸4の両端部41,41を除いた部分の長さdよりも長く形成される。これにより、回転軸支持部材3とヨーク体位置決め部42との接触干渉を低減させることができる。また、回転軸4の回転をスムーズにできるので、磁石72が回転しやすくなり、高電力を得ることができるとともに発電量を増加させることができるようになり、回転軸4が軸受21よりはずれてしまうことを防止できる。
さらに、ヨーク面板73の扇の要部73bにおける位置決め孔74の孔縁部面46と回転軸4の磁石対応部43の端面45とが接触するように、ヨーク体位置決め部42と位置決め孔74とが嵌め合わされる構成としたので、回転体7の磁石72とコイル部6との間の距離がほぼ一定に保たれ、効率良く、安定して電圧を発生できる。
As shown in FIG. 3 (a), the distance c between the rotary shaft support members 3 and 3 is shorter than the entire length of the rotary shaft 4, and the length of the portion excluding both ends 41 and 41 of the rotary shaft 4. It is formed longer than d. Thereby, the contact interference of the rotating shaft support member 3 and the yoke body positioning part 42 can be reduced. In addition, since the rotation of the rotating shaft 4 can be performed smoothly, the magnet 72 can be easily rotated, high power can be obtained and the amount of power generation can be increased, and the rotating shaft 4 is disengaged from the bearing 21. Can be prevented.
Further, the yoke body positioning portion 42 and the positioning hole 74 are arranged so that the hole edge surface 46 of the positioning hole 74 and the end surface 45 of the magnet corresponding portion 43 of the rotating shaft 4 in the main portion 73b of the yoke surface plate 73 are in contact with each other. Therefore, the distance between the magnet 72 of the rotating body 7 and the coil portion 6 is kept substantially constant, and a voltage can be generated efficiently and stably.

以上のように構成されたタイヤ内発電装置1は、ベース2の裏面11aが、タイヤ気室内であって例えばトレッド面の裏面に相当する位置に固定される。そして、車を走行させると、タイヤ内振動でもっともエネルギーの高い遠心力の変動により、回転体7,7が回転し、互いに対向する2つの磁石72,72も回転する。この2つの磁石72,72の回転によって、各コイル巻体61の筒内の空間60を通過する磁束φ1,φ2の向きが変化するので、コイル62に電圧が発生する。この電圧が整流回路18を通して充電回路19に充電され、デバイス20に供給される。   In the in-tire power generator 1 configured as described above, the back surface 11a of the base 2 is fixed at a position corresponding to the back surface of the tread surface, for example, in the tire chamber. When the vehicle is driven, the rotating bodies 7 and 7 are rotated by the fluctuation of the centrifugal force having the highest energy due to the vibration in the tire, and the two magnets 72 and 72 facing each other are also rotated. Due to the rotation of the two magnets 72 and 72, the directions of the magnetic fluxes φ1 and φ2 passing through the space 60 in the cylinder of each coil winding body 61 change, so that a voltage is generated in the coil 62. This voltage is charged into the charging circuit 19 through the rectifying circuit 18 and supplied to the device 20.

コイル部6の全体に対して1対の整流回路18と充電回路19とを設けるようにしても良いが、コイル部6のコイル巻体61毎に1対の整流回路18と充電回路19とを設けるようにすれば、充電量を多くできて好ましい。   A pair of rectifier circuit 18 and charging circuit 19 may be provided for the entire coil unit 6, but a pair of rectifier circuit 18 and charging circuit 19 are provided for each coil winding body 61 of the coil unit 6. If provided, the amount of charge can be increased, which is preferable.

なお、タイヤの回転による振動は、タイヤのベルトの曲げによるヨー変化が引き起こしている。特にタイヤが接地する瞬間、又は、タイヤが接地から離れる瞬間に、タイヤ振動として現れる。この振動は、ベルトからタイヤの中心に近づくほど大きくなる。従って、トレッド面の裏面にベース2を固定し、回転体7を回転可能に支持する回転軸4をトレッド面の裏面よりタイヤの中心側に離れた位置に位置させることにより、回転体7により大きな加速度が働き、回転体7に大きなエネルギーを与えることができる。そこで、トレッド面の裏面よりタイヤの中心方向への距離10mm以上40mm以下の間に回転軸4を位置させた。
このように、コイル部6が、タイヤの内面にベース2を介して固定されたコイル部固定部材5に固定された構成としたので、互いに対向して回転する2つの回転体7,7に対するコイル部6の位置を正確に維持でき、磁束φ1,φ2の乱れを防止できて、発電効率が高くなる。
The vibration caused by the rotation of the tire is caused by a yaw change caused by bending of the tire belt. In particular, it appears as tire vibration at the moment when the tire contacts the ground or the moment when the tire leaves the ground. This vibration increases as the distance from the belt approaches the center of the tire. Therefore, the base 2 is fixed to the back surface of the tread surface, and the rotating shaft 4 that rotatably supports the rotating body 7 is positioned at a position away from the back surface of the tread surface toward the center of the tire, thereby making the rotating body 7 larger. Acceleration works, and large energy can be given to the rotating body 7. Therefore, the rotating shaft 4 was positioned between a distance of 10 mm or more and 40 mm or less from the back surface of the tread surface toward the center of the tire.
Thus, since the coil part 6 was set as the structure fixed to the coil part fixing member 5 fixed to the inner surface of the tire via the base 2, it is a coil with respect to the two rotary bodies 7 and 7 which rotate facing each other. The position of the part 6 can be accurately maintained, the disturbance of the magnetic fluxes φ1 and φ2 can be prevented, and the power generation efficiency is increased.

以上説明したように、回転軸4を、タイヤの幅方向に延長するようにトレッド面の裏面に取付けることにより、車両走行時のタイヤに加わる遠心力の変化に応じて回転体7が回転しやすくなり、高電力を得ることができるとともに発電量を増加させることができるようになる。
また、回転体7の磁石72,72の磁束φ1,φ2に作用する磁束φ3を放出するネオジウム磁石からなる反発磁石8Aを設けたことにより、反発磁石8Aが回転体7に加速力を与えるので、車両の速度が低いときでも、回転体7,7が容易に回転を開始するので、車両が低速走行している時でも安定的に発電できるようになる。
As described above, by attaching the rotating shaft 4 to the back surface of the tread surface so as to extend in the width direction of the tire, the rotating body 7 can be easily rotated according to the change in centrifugal force applied to the tire during vehicle travel. Thus, high power can be obtained and the amount of power generation can be increased.
Further, by providing the repulsion magnet 8A made of a neodymium magnet that releases the magnetic flux φ3 acting on the magnetic fluxes φ1 and φ2 of the magnets 72 and 72 of the rotator 7, the repulsion magnet 8A gives the rotator 7 acceleration force. Even when the speed of the vehicle is low, the rotating bodies 7 and 7 start to rotate easily, so that power can be stably generated even when the vehicle is traveling at a low speed.

[実験例]
本発明のタイヤ発電装置1に設ける反発磁石8Aを設定するために行った実験について以下に説明する。
・タイヤサイズ;225/55R17を用いた。
・トレッド面の裏面における幅方向中央部にベース2の裏面11aを接着してタイヤ内発電装置1をタイヤ気室内に取付けた。回転軸4がタイヤの幅方向に延長するように取付けた。トレッド面の裏面から回転軸4までの距離は20mmとした。
・回転軸4は、全長の寸法が22.5mm、軸補強部44の長さ寸法が3mm、磁石対応部43の長さ寸法が4mm、ヨーク体位置決め部42の長さ寸法が3.25mm、端部41の長さ寸法が2.5mm、軸補強部44の径寸法が3.5mm、磁石対応部43の径寸法が2.5mm、ヨーク体位置決め部42の最大径寸法が2.5mm、端部41の径寸法が2mmのものを用いた。
・ヨーク体71は、回転体7の回転中心からヨーク面板73の円弧線縁に沿って設けられた磁石位置決め板76の内面76aまでの距離である扇の内寸法が9mm、回転体7の回転中心から磁石位置決め板76の外面76bまでの距離である扇の外寸法が9.5mm、ヨーク面板73の2つの半径線縁に沿って設けられた2つの磁石位置決め板75,75の内面75aと内面75aとのなす角度が120°のものを用いた。また、図3(a),(b)に示すように、磁石位置決め板75,75,76の幅寸法aを3mm、ヨーク面板73の幅寸法bを1mmとした。
・単位扇形状磁石77は、扇の要の円弧の内径が4mm、扇の外径が18mm、厚さ4mm、重さ2.35gのネオジウム磁石を用いた。
・コイル巻体61は、扇の要の円弧の内径が内径5mm、扇の外径が18mm、筒の全長が2mm、コイルの線径が0.08mm、巻数が500回のものを用いた。
・タイヤ内発電装置1は、電気部品群22を含めて全体で13gのものを用いた。
・車速30km/hの速度で、蓄電圧が0Vから電圧が安定するまで走行させた。
・安定した電圧とデバイスの負荷(R=200Ω)とにより、発電量(W=V2/R)を算出した。
・反発磁石8Aには、直径が1mm、長さが2mmの円柱型のネオジウム磁石を回転体7の磁石72の直下に配置し、磁石72と反発磁石8Aとの距離を変化させ発電量を計測した。
低速走行中の発電量を最大にする条件は、時速30km/hで走行中の車輪の遠心力によって回転体7が周方向の最外位置に位置しないようにする接線方向の力、即ち、回転トルクTmの発生が必要となる。この回転トルクTmは、回転体7の磁石72,72と反発磁石8Aとによる斥力及び引力により得られる。よって、時速30km/hで走行中の遠心力の作用により回転体に生じる回転トルクに等しい回転トルクTmが少なくとも得られる距離に反発磁石8Aを配置すれば良い。
そこで、円柱形の磁石を磁石72,72の最下端位置よりも下側に配置し、磁石72,72から下側に距離を変えて、反発磁石8Aによる回転体7の磁石72への反発力を変化させて、発電量を測定する。具体的には、回転体7の回転中心から磁石の中心までの距離を0.1mm刻みで、8.6mm〜9.5mmの間で変化させ、最大の回転トルクTmが得られる距離について調べた。
なお、時速30km/hで走行中のタイヤの遠心力により回転体7に作用する回転トルクは、予め測定され、その回転トルクは0.008Nmである。タイヤの遠心力により回転体7に作用する回転トルクは、回転体7をタイヤの内面側に押し付けようと回転軸4周りに作用する力である。
まず、円柱形の磁石を磁石72,72の最下端位置よりも下側に、磁石72,72から遠ざかるように真下向きに位置を変えて配置し、反発磁石8Aによる回転体7の磁石72への斥力及び引力を変化させたときの、回転中心から反発磁石8Aまでの距離と、反発磁石8Aにより回転体7に作用する回転トルクTmとの関係を調べた。
その結果を図6に示す。図6から分かるように、回転中心から反発磁石8Aまでの距離が近いほど、回転体7に作用する回転トルクTmが大きくなることが分かる。
[Experimental example]
An experiment conducted for setting the repelling magnet 8A provided in the tire power generation device 1 of the present invention will be described below.
Tire size: 225 / 55R17 was used.
-The back surface 11a of the base 2 was bonded to the central portion in the width direction on the back surface of the tread surface, and the in-tire power generator 1 was attached to the tire chamber. The rotating shaft 4 was attached so as to extend in the width direction of the tire. The distance from the back surface of the tread surface to the rotating shaft 4 was 20 mm.
The rotary shaft 4 has a total length of 22.5 mm, a length of the shaft reinforcing portion 44 of 3 mm, a length of the magnet corresponding portion 43 of 4 mm, a length of the yoke body positioning portion 42 of 3.25 mm, The length of the end portion 41 is 2.5 mm, the diameter of the shaft reinforcing portion 44 is 3.5 mm, the diameter of the magnet corresponding portion 43 is 2.5 mm, the maximum diameter of the yoke body positioning portion 42 is 2.5 mm, The end 41 has a diameter of 2 mm.
The yoke body 71 has a fan internal dimension of 9 mm, which is the distance from the rotation center of the rotating body 7 to the inner surface 76a of the magnet positioning plate 76 provided along the arc line edge of the yoke face plate 73, and the rotation of the rotating body 7 The outer dimension of the fan, which is the distance from the center to the outer surface 76b of the magnet positioning plate 76, is 9.5 mm, and the inner surfaces 75a of the two magnet positioning plates 75, 75 provided along the two radial edges of the yoke surface plate 73; The one having an angle of 120 ° with the inner surface 75a was used. Further, as shown in FIGS. 3A and 3B, the width dimension a of the magnet positioning plates 75, 75, 76 is 3 mm, and the width dimension b of the yoke face plate 73 is 1 mm.
As the unit fan-shaped magnet 77, a neodymium magnet having an inner diameter of a main arc of 4 mm, an outer diameter of 18 mm, a thickness of 4 mm, and a weight of 2.35 g was used.
The coil wound body 61 used had an inner diameter of the main arc of the fan of 5 mm, an outer diameter of the fan of 18 mm, a total length of the cylinder of 2 mm, a coil wire diameter of 0.08 mm, and 500 turns.
-The in-tire power generator 1 including the electrical component group 22 as a whole was 13 g.
-The vehicle was run at a vehicle speed of 30 km / h until the voltage was stabilized from 0V.
The amount of power generation (W = V2 / R) was calculated from the stable voltage and the device load (R = 200Ω).
・ In the repulsive magnet 8A, a cylindrical neodymium magnet having a diameter of 1 mm and a length of 2 mm is arranged immediately below the magnet 72 of the rotating body 7, and the power generation amount is measured by changing the distance between the magnet 72 and the repelling magnet 8A. did.
The condition for maximizing the power generation amount during low-speed traveling is a tangential force that prevents the rotating body 7 from being positioned at the outermost position in the circumferential direction by the centrifugal force of the wheel that is traveling at a speed of 30 km / h, that is, rotation. Generation of torque Tm is required. This rotational torque Tm is obtained by repulsive force and attractive force by the magnets 72, 72 of the rotating body 7 and the repulsive magnet 8A. Therefore, the repulsive magnet 8A may be arranged at a distance at least that provides a rotational torque Tm equal to the rotational torque generated in the rotating body by the action of centrifugal force during traveling at a speed of 30 km / h.
Therefore, the repulsive force of the repulsive magnet 8A to the magnet 72 of the rotating body 7 is arranged by disposing the cylindrical magnet below the lowermost position of the magnets 72, 72 and changing the distance from the magnets 72, 72 to the lower side. , And measure the amount of power generation. Specifically, the distance from the rotation center of the rotating body 7 to the center of the magnet was changed between 8.6 mm and 9.5 mm in steps of 0.1 mm, and the distance at which the maximum rotation torque Tm was obtained was examined. .
In addition, the rotational torque which acts on the rotary body 7 by the centrifugal force of the tire that is traveling at a speed of 30 km / h is measured in advance, and the rotational torque is 0.008 Nm. The rotational torque that acts on the rotating body 7 by the centrifugal force of the tire is a force that acts around the rotating shaft 4 so as to press the rotating body 7 against the inner surface side of the tire.
First, a columnar magnet is arranged at a position lower than the lowermost position of the magnets 72, 72 so as to be far from the magnets 72, 72, and is moved to the magnet 72 of the rotating body 7 by the repulsive magnet 8A. The relationship between the distance from the center of rotation to the repulsive magnet 8A and the rotational torque Tm acting on the rotating body 7 by the repulsive magnet 8A when the repulsive force and the attractive force were changed was investigated.
The result is shown in FIG. As can be seen from FIG. 6, it can be seen that the shorter the distance from the center of rotation to the repulsive magnet 8 </ b> A, the greater the rotational torque Tm acting on the rotating body 7.

次に、コイル下端位置から0.2mmの位置に直径1mm、長さ2mmの反発磁石8Aを配置して、反発磁石8Aが回転体7,7に作用する回転トルクTmと発電量との関係を調べた。
図7(a)は、回転体7,7の磁石72,72と反発磁石8Aとの配置の概念図を示し、図7(b)は、回転体7,7に作用する回転トルクTmと発電量との関係を示すグラフである。
図7(b)から分かるように、発電量は、回転トルクTmの増加に比例して増加せず、回転トルクTmが0.008Nm近傍で発電量が最大となり、その前後においては発電量が減少している。
これは、回転トルクTmが0.008Nm近傍よりも大きいときには、遠心力により生じる回転トルクよりも、反発磁石8Aが磁石72,72に作用する反発による回転トルクTmの方が大きいため、回転体7の回転方向が一方に抑制された状態となり、反発磁石8Aによる反発力の回転トルクTmよりも遠心力による大きな回転トルクが必要になるからである。
よって、タイヤの遠心力により回転体7に作用する回転トルクと等しい回転トルクTmが得られる位置に反発磁石8Aを配置することで、時速30km/hの速度で走行中の最大の発電量が得られる。つまり、コイル下端位置から0.2mmの位置に直径1mm、長さ2mmの反発磁石8Aを位置することで、最大の発電量が得られるようになる。
Next, a repulsive magnet 8A having a diameter of 1 mm and a length of 2 mm is arranged at a position 0.2 mm from the lower end position of the coil, and the relationship between the rotational torque Tm that the repulsive magnet 8A acts on the rotating bodies 7 and 7 and the amount of power generation. Examined.
FIG. 7A shows a conceptual diagram of the arrangement of the magnets 72 and 72 of the rotating bodies 7 and 7 and the repulsive magnet 8A, and FIG. 7B shows the rotational torque Tm acting on the rotating bodies 7 and 7 and the power generation. It is a graph which shows the relationship with quantity.
As can be seen from FIG. 7B, the power generation amount does not increase in proportion to the increase in the rotational torque Tm, and the power generation amount becomes maximum when the rotational torque Tm is around 0.008 Nm, and the power generation amount decreases before and after that. doing.
This is because when the rotational torque Tm is larger than the vicinity of 0.008 Nm, the rotational torque Tm caused by the repulsion of the repulsive magnet 8A acting on the magnets 72, 72 is larger than the rotational torque generated by the centrifugal force. This is because the rotational direction of is reduced to one side, and a rotational torque larger than the rotational torque Tm of the repulsive force by the repulsive magnet 8A is required.
Therefore, by arranging the repulsive magnet 8A at a position where the rotational torque Tm equal to the rotational torque acting on the rotating body 7 can be obtained by the centrifugal force of the tire, the maximum power generation amount during traveling can be obtained at a speed of 30 km / h. It is done. That is, the maximum power generation amount can be obtained by positioning the repulsive magnet 8A having a diameter of 1 mm and a length of 2 mm at a position 0.2 mm from the lower end position of the coil.

次に、反発磁石の形状を変えたときの効果について調べる。幅が1mm、厚さが2mm、長さが1mm〜9mmの角柱形を用い、角柱形からなる反発磁石8Bの延長する方向が、コイル下端位置の接線方向と平行になるようにコイル下端位置から下側に配置した。
図8(a)は、回転体7,7の磁石72,72と反発磁石8Bとの配置の概念図を示し、図8(b)は、角柱形の長さと、回転体7,7に作用する回転トルクTm及び発電量との関係を示すグラフである。
図8(b)に示すように、反発磁石8Bの長さが5mm以上で、得られる回転トルクTmが平衡状態となり、長さが約6mmで回転トルクTmが最大となる。一方発電量は、長さが4mmと9mmのときにピークとなり、その発電量は、約19mWとなる。
よって、タイヤ内発電装置1の重量を増加させないことと、大きい回転トルクTmが必要であることから、反発磁石8Bの長さが4mmのときの発電量に次いで発電量が大きく、かつ、長さが4mmのときよりも回転トルクTmの大きい、5mmに設定すれば良い。
Next, the effect of changing the shape of the repelling magnet will be examined. Using a prismatic shape with a width of 1 mm, a thickness of 2 mm, and a length of 1 mm to 9 mm, the extending direction of the repulsive magnet 8B made of a prismatic shape is parallel to the tangential direction of the coil lower end position. Arranged on the lower side.
FIG. 8A shows a conceptual diagram of the arrangement of the magnets 72 and 72 and the repulsion magnet 8B of the rotating bodies 7 and 7, and FIG. 8B shows the length of the prism and the action on the rotating bodies 7 and 7. It is a graph which shows the relationship between rotational torque Tm to perform and electric power generation amount.
As shown in FIG. 8B, when the length of the repulsive magnet 8B is 5 mm or more, the obtained rotational torque Tm is in an equilibrium state, and when the length is about 6 mm, the rotational torque Tm is maximized. On the other hand, the power generation amount peaks when the length is 4 mm and 9 mm, and the power generation amount is about 19 mW.
Therefore, since the weight of the in-tire power generation device 1 is not increased and a large rotational torque Tm is required, the power generation amount is large next to the power generation amount when the length of the repulsion magnet 8B is 4 mm, and the length is long. The rotational torque Tm may be set to 5 mm, which is larger than when 4 mm.

以上の結果から、直径が1mm、長さが2mm、体積が1.57mmの円柱形の反発磁石8Aをコイル下端位置から0.2mmの位置に配置することで、発電量22mWを得ることができる。
また、幅が1mm、厚さが2mm、長さが5mm、体積が10mmの角柱形の反発磁石8Bをコイル下端位置から0.2mmの位置に配置することで、発電量19mWを得ることができる。
よって、タイヤ発電装置1の重量をほとんど増加させることなく、低速走行時でも安定的に電圧を発生することができるのは、最大の発電量22mWの電力が得られる直径が1mm、厚さが2mm、体積が1.57mmの円柱形の反発磁石8Aをコイル下端位置から0.2mmの位置に配置すると良い。
From the above results, it is possible to obtain a power generation amount of 22 mW by arranging a cylindrical repulsive magnet 8A having a diameter of 1 mm, a length of 2 mm, and a volume of 1.57 mm 3 at a position 0.2 mm from the coil lower end position. it can.
Further, by arranging a prismatic repulsive magnet 8B having a width of 1 mm, a thickness of 2 mm, a length of 5 mm, and a volume of 10 mm 3 at a position 0.2 mm from the coil lower end position, a power generation amount of 19 mW can be obtained. it can.
Therefore, a voltage that can stably generate a voltage even when traveling at a low speed without increasing the weight of the tire power generator 1 is 1 mm in diameter and 2 mm in thickness to obtain a maximum power generation amount of 22 mW. A cylindrical repulsive magnet 8A having a volume of 1.57 mm 3 may be disposed at a position 0.2 mm from the lower end position of the coil.

よって、本発明のタイヤ内発電装置1によれば、タイヤ内の温度や圧力タイヤ情報、例えば、タイヤにかかる圧力、路面の滑りやすさを検出し、これらタイヤの動的な状態を連続送信するために高電力を必要とするデバイスに安定して電力を供給できるようになる。   Therefore, according to the in-tire power generator 1 of the present invention, the temperature in the tire and the pressure tire information, for example, the pressure applied to the tire and the slipperiness of the road surface are detected, and the dynamic state of these tires is continuously transmitted. Therefore, power can be stably supplied to a device that requires high power.

なお、タイヤの内面に対するタイヤ内発電装置1の取付位置は特に限定されない。例えば、回転軸4がトレッド面の裏面と直交するようにタイヤ内発電装置1をトレッド面の裏面に取付けても良いし、回転軸4が回転方向に沿った方向に延長するようにタイヤ内発電装置1をトレッド面の裏面に取付けても良い。   In addition, the attachment position of the in-tire power generation device 1 with respect to the inner surface of the tire is not particularly limited. For example, the in-tire power generator 1 may be attached to the back surface of the tread surface so that the rotation shaft 4 is orthogonal to the back surface of the tread surface, or the in-tire power generation is performed so that the rotation shaft 4 extends in the direction along the rotation direction. You may attach the apparatus 1 to the back surface of a tread surface.

回転体7の加速手段8としての反発磁石8Aを永久磁石の1つのネオジウム磁石により構成したが、複数のネオジウム磁石により構成しても良い。
また、加速手段8をコイルの通電により磁力を発生する磁石、所謂電磁石により構成し、当該電磁石を1つ又は複数設けるようにしても良い。このとき電磁石により発生する磁束が、実験例で示したタイヤの回転により生じる回転トルクと略等しい回転トルクTmが回転体7,7に作用するように、電磁石を構成し、互いに対向する回転体の磁石間の中間に位置するように配置すれば良い。
また、加速手段8を電磁石により構成する場合、コイル巻体を電磁石として用い、コイル巻体から生じる磁束を、回転体7,7間に生じる磁束に作用させて回転トルクTmが生じるようにしても良い。この場合、コイル巻体と接続する充電回路19から電力を供給するようにすれば良く、コイル巻体に対する回転体7,7の位置をセンサ等により検出して、コイル巻体が電圧を発生させる場合と、電磁石となる場合とを切り替えるようにすれば良い。このように構成することで、別途加速手段8を設ける必要がないので、タイヤ内発電装置の重量を増加させることなく効率よく高電力を得ることができるようになる。
Although the repulsive magnet 8A as the acceleration means 8 of the rotating body 7 is constituted by one neodymium magnet as a permanent magnet, it may be constituted by a plurality of neodymium magnets.
Further, the accelerating means 8 may be constituted by a magnet that generates a magnetic force by energizing a coil, a so-called electromagnet, and one or a plurality of the electromagnets may be provided. At this time, the electromagnet is configured so that the magnetic flux generated by the electromagnet acts on the rotating bodies 7 and 7 so that the rotating torque Tm substantially equal to the rotating torque generated by the rotation of the tire shown in the experimental example is applied to the rotating bodies facing each other. What is necessary is just to arrange | position so that it may be located in the middle between magnets.
When the accelerating means 8 is constituted by an electromagnet, the coil winding body is used as an electromagnet, and the magnetic flux generated from the coil winding body is caused to act on the magnetic flux generated between the rotating bodies 7 and 7 so that the rotational torque Tm is generated. good. In this case, electric power may be supplied from the charging circuit 19 connected to the coil winding body, and the position of the rotating bodies 7 and 7 with respect to the coil winding body is detected by a sensor or the like, and the coil winding body generates a voltage. It suffices to switch between a case and an electromagnet. With this configuration, it is not necessary to provide the acceleration means 8 separately, so that high power can be obtained efficiently without increasing the weight of the in-tire power generator.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能である。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various modifications or improvements can be added to the above embodiment.

1 タイヤ内発電装置、2 ベース、3 回転軸支持部材、4 回転軸、
5 コイル部固定部材、5a 対向面、5b コイル部収納貫通孔、5c 軸避け部、
6 コイル部、7 回転体、8 加速手段、8A,8B 反発磁石、
11 ベース板、11a 裏面、12 固定台、13 下板、14 側壁、
15 屋根板、16 側設置台、17 収納設置空間、18 整流回路、
19 充電回路、20 デバイス、21 軸受、22 電気部品群、23 電線、
41 端部、42 ヨーク体位置決め部、43 磁石対応部、44 軸補強部、
45 端面、46 孔縁部面、
60 空間、61 コイル巻体、62 コイル、71 ヨーク体、72 磁石、
73 ヨーク面板、73a 扇部、73b 扇の要部、73u 扇面、
74 位置決め孔、75,76 磁石位置決め板、77 単位扇形状磁石、
78 端面、79 磁石設置部、80 湾曲切欠部、c 間隔、d 長さ、
φ1,φ2,φ3 磁束。
1 In-tire power generator, 2 base, 3 rotating shaft support member, 4 rotating shaft,
5 Coil part fixing member, 5a Opposing surface, 5b Coil part storing through-hole, 5c Shaft avoiding part,
6 coil part, 7 rotating body, 8 acceleration means, 8A, 8B repulsion magnet,
11 Base plate, 11a Back surface, 12 Fixing base, 13 Lower plate, 14 Side wall,
15 roof plate, 16 side installation stand, 17 storage installation space, 18 rectifier circuit,
19 charging circuit, 20 device, 21 bearing, 22 electrical component group, 23 electric wire,
41 end portion, 42 yoke body positioning portion, 43 magnet corresponding portion, 44 shaft reinforcing portion,
45 end face, 46 hole edge face,
60 spaces, 61 coil windings, 62 coils, 71 yoke bodies, 72 magnets,
73 yoke face plate, 73a fan part, 73b main part of fan, 73u fan face,
74 positioning holes, 75, 76 magnet positioning plates, 77 unit fan-shaped magnets,
78 end face, 79 magnet installation part, 80 curved notch part, c interval, d length,
φ1, φ2, φ3 Magnetic flux.

Claims (8)

タイヤのトレッド面の裏面に取り付けられるタイヤ内発電装置であって、
前記タイヤの気室内で当該タイヤの幅方向に延長する回転軸と、
前記回転軸に取付けられた状態で互いに対向し、回転中心と重心とが異なるように一部が磁石により形成され車両走行時の前記タイヤに加わる力の変化に応じて回転する回転体と、
前記互いに対向する回転体間に位置し、当該回転体の磁石との電磁誘導作用により電圧を発生するコイル部と
前記回転体に加速度を付与する加速手段とを備え
前記コイル部は、互いに対向する回転体の磁石における異なる磁極間で発生する磁束が通る空間を取り囲むコイル巻体を有し、
前記加速手段は、前記異なる磁極間で発生する磁束に斥力、又は、引力を作用させる磁束を放出する磁石であることを特徴とするタイヤ内発電装置。
An in-tire power generation device attached to the back side of a tread surface of a tire,
A rotating shaft extending in the width direction of the tire in the tire chamber;
Face each other in a state of being attached to the rotating shaft, a portion as a rotation center of gravity is different is formed by the magnet, a rotating body that rotates in response to a change in force applied to the tire while the vehicle is running,
A coil unit that is positioned between the rotating members facing each other and generates a voltage by electromagnetic induction with the magnet of the rotating member ;
Accelerating means for applying acceleration to the rotating body ,
The coil portion has a coil winding body that surrounds a space through which a magnetic flux generated between different magnetic poles in a magnet of a rotating body facing each other passes.
The accelerating means may repulsion magnetic fluxes generated between the different poles, or, the tire in the power generation apparatus, wherein a magnet der Rukoto that emits a magnetic flux exerting an attractive force.
前記加速手段は、ネオジウム磁石であることを特徴とする請求項1に記載のタイヤ内発電装置 The in-tire power generator according to claim 1, wherein the acceleration means is a neodymium magnet . 前記加速手段は、コイルの通電により磁束を発生する磁石であることを特徴とする請求項1又は請求項2に記載のタイヤ内発電装置。 The in-tire power generation device according to claim 1 or 2, wherein the acceleration means is a magnet that generates magnetic flux when a coil is energized. 前記加速手段の磁束の向きが前記回転体の磁石における異なる磁極間で発生する磁束と平行であることを特徴とする請求項1乃至請求項いずれかに記載のタイヤ内発電装置。 The in-tire power generator according to any one of claims 1 to 3, wherein a direction of a magnetic flux of the acceleration means is parallel to a magnetic flux generated between different magnetic poles in the magnet of the rotating body . 前記加速手段は、前記互いに対向する回転体の磁石間の中間に位置することを特徴とする請求項乃至請求項いずれかに記載のタイヤ内発電装置。 It said accelerating means the tire in the power generation apparatus according to any one of claims 1 to 4, characterized in that located in the middle between the rotating body of the magnet, wherein the mutually opposing. 前記加速手段は、複数であることを特徴とする請求項乃至請求項いずれかに記載のタイヤ内発電装置。 It said accelerating means the tire in the power generation apparatus according to any one of claims 1 to 5, characterized in that a plurality. 前記コイル部が、前記回転体に加速度を付与する加速手段であることを特徴とする請求項1に記載のタイヤ内発電装置。   The in-tire power generator according to claim 1, wherein the coil unit is an acceleration unit that applies acceleration to the rotating body. 前記加速手段が付与する加速力の方向は、タイヤの踏み込み時に回転体に作用する加速度と同一方向であることを特徴とする請求項1乃至請求項いずれかに記載のタイヤ内発電装置。 The in-tire power generator according to any one of claims 1 to 7, wherein the direction of the acceleration force applied by the acceleration means is the same direction as the acceleration acting on the rotating body when the tire is stepped on.
JP2010097970A 2010-04-21 2010-04-21 In-tire power generator Expired - Fee Related JP5642991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097970A JP5642991B2 (en) 2010-04-21 2010-04-21 In-tire power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097970A JP5642991B2 (en) 2010-04-21 2010-04-21 In-tire power generator

Publications (2)

Publication Number Publication Date
JP2011229309A JP2011229309A (en) 2011-11-10
JP5642991B2 true JP5642991B2 (en) 2014-12-17

Family

ID=45044046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097970A Expired - Fee Related JP5642991B2 (en) 2010-04-21 2010-04-21 In-tire power generator

Country Status (1)

Country Link
JP (1) JP5642991B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074939B2 (en) * 2012-07-27 2017-02-08 ソニー株式会社 Generator
JP5571206B1 (en) * 2013-02-05 2014-08-13 株式会社ブリヂストン Mounting method of electromagnetic generator and tire with built-in electromagnetic generator
KR101440798B1 (en) * 2013-07-18 2014-09-18 중원대학교 산학협력단 Rotational vibration energy harvester
US9837196B2 (en) * 2015-09-15 2017-12-05 Hamilton Sundstrand Corporation Pendulum-type electromagnetic actuator
CN110203023B (en) * 2019-06-12 2024-01-05 广东工贸职业技术学院 Self-generating motor car wheel state monitoring system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255563A (en) * 1988-08-22 1990-02-23 Shicoh Eng Co Ltd Single phase brushless vibrating motor
JP4863148B2 (en) * 2003-04-15 2012-01-25 京次郎 黒木 In-tire power generator
JP4704093B2 (en) * 2005-04-14 2011-06-15 スミダコーポレーション株式会社 Vibration generator
JP2007028719A (en) * 2005-07-13 2007-02-01 Tokai Rika Co Ltd Generator
JP2007300758A (en) * 2006-05-02 2007-11-15 Seiko Instruments Inc Power generating unit and sensor module using same

Also Published As

Publication number Publication date
JP2011229309A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5878582B2 (en) In-tire power generator
JP5508124B2 (en) In-tire power generator
JP4728639B2 (en) Electric wheel
JP5642991B2 (en) In-tire power generator
DK2403117T3 (en) TURNING TABLE FOR PERMANENT MAGNET TURNING MACHINE AND PROCEDURE FOR MANUFACTURING PERMANENT MAGNET TURNING MACHINE
US8018111B2 (en) Hybrid-type synchronous machine
EP2690754B1 (en) Electric motor
JP2006529081A (en) Generator having axially aligned stator and / or rotor poles
JP2005506023A (en) Rotating electric motor with axially aligned stator and / or rotor poles
US20110291532A1 (en) Coreless electromechanical device
CN105846567B (en) Outer-rotor type variable excitation formula motor
CN111446791A (en) Permanent magnet excited electromechanical machine
WO2010077181A1 (en) Electric machine
US6844645B2 (en) Permanent magnet motor rotor having magnetic permeable material for enhanced flux distribution
JP5856039B2 (en) Flywheel power storage device
JP2015033287A (en) Axial gap motor
KR102087430B1 (en) A Rotor for a Bicycle Generator and a Generator Using the Same
JP5646871B2 (en) In-tire power generator
CN202798174U (en) Novel permanent magnet motor of discrete electromagnet stator structure
KR20140084494A (en) Cooling Apparatus for Axial Flux Permanent Magnet Motor
KR101422933B1 (en) Flat type rotating apparatus
KR100946649B1 (en) Motor having rotors arranged concentrically and driving apparatus having the motor
RU84639U1 (en) ELECTRIC MACHINE
JPWO2012131994A1 (en) Magnetic drive bicycle
CN103545988A (en) Resolver mounting structure for motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141030

R150 Certificate of patent or registration of utility model

Ref document number: 5642991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees