WO2015029655A1 - Vibration-based electric power generator - Google Patents

Vibration-based electric power generator Download PDF

Info

Publication number
WO2015029655A1
WO2015029655A1 PCT/JP2014/069506 JP2014069506W WO2015029655A1 WO 2015029655 A1 WO2015029655 A1 WO 2015029655A1 JP 2014069506 W JP2014069506 W JP 2014069506W WO 2015029655 A1 WO2015029655 A1 WO 2015029655A1
Authority
WO
WIPO (PCT)
Prior art keywords
side unit
tire
vibration
movable
spring
Prior art date
Application number
PCT/JP2014/069506
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 学
Original Assignee
スター精密株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スター精密株式会社 filed Critical スター精密株式会社
Publication of WO2015029655A1 publication Critical patent/WO2015029655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/041Means for supplying power to the signal- transmitting means on the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0491Constructional details of means for attaching the control device
    • B60C23/0493Constructional details of means for attaching the control device for attachment on the tyre

Definitions

  • the present invention relates to a vibration power generation apparatus configured to generate an induced electromotive force using vibration, and particularly to a vibration power generation apparatus used in a state of being mounted on a tire of a vehicle or the like.
  • Patent Document 1 an induced electromotive force is generated by vibrating a movable-side unit supported by a fixed-side unit via a coil spring using the elastic force of the coil spring.
  • a vibration power generator configured as described above is described.
  • Patent Document 3 the movable side unit is supported by the frame member (that is, the movable structure 805a) via the first spring, and further this frame member is supported by the fixed side unit via the second spring. A vibration power generator is described.
  • vibration power generation device If such a vibration power generation device is used in a state where it is mounted on a tire of a vehicle or the like, it is possible to generate power using the rotation of the tire.
  • the movable unit vibrates in the radial direction of the tire against the elastic force of the coil spring by the impact force that the vibration power generation device receives from the road surface. By doing so, it is possible to generate an induced electromotive force.
  • the vibration power generation apparatus mounted on the tire has a limited mounting space, and therefore is required to be as small as possible.
  • the first and second springs are configured to be doubled inside and outside through the frame member. Therefore, there is a problem that it is difficult to reduce the size of the vibration power generator.
  • the present invention has been made in view of such circumstances, and in a vibration power generation apparatus used in a state of being mounted on a tire, it can generate power even when the rotation speed of the tire is low or high, And it aims at providing the vibration electric power generating apparatus which can be easily mounted
  • the present invention is intended to achieve the above object by adopting a configuration in which a predetermined secondary spring is additionally arranged with respect to the original main spring.
  • the vibration power generator according to the present invention is A vibration power generator used in a state of being mounted on a tire, A stationary side unit and a movable side unit supported by the stationary side unit via a main spring, and the movable side unit is guided by vibrating in a radial direction of the tire using the elastic force of the main spring.
  • a vibration power generator configured to generate an electromotive force
  • the fixed side unit When the movable side unit is displaced by a predetermined amount radially outward from the neutral position of the vibration, the fixed side unit abuts on the movable side unit and is compressed and elastically deformed when the movable side unit is further displaced radially outward.
  • a secondary spring is disposed.
  • the type of the “main spring” is not particularly limited, and for example, a coil spring or a leaf spring can be employed.
  • sub spring is not particularly limited as long as the movable side unit is configured to be elastically deformed by compression when the movable unit is displaced from the neutral position to the outside in the radial direction by a predetermined amount. It is not something.
  • the specific value of the “predetermined amount” is not particularly limited.
  • the vibration power generator according to the present invention has a configuration in which the movable side unit supported by the fixed side unit via the main spring vibrates in the radial direction of the tire using the elastic force of the main spring.
  • the fixed side unit is in contact with the movable side unit when the movable side unit is displaced by a predetermined amount radially outward from the neutral position of vibration, and the movable side unit is further displaced radially outward. Since the auxiliary spring which is sometimes compressed elastically deformed is arranged, the following effects can be obtained.
  • the secondary spring is arranged on the fixed side unit in such a manner that it comes into contact with the movable side unit when the movable side unit is displaced by a predetermined amount from the neutral position of the vibration to the radially outer side.
  • the vibration power generator can be easily reduced in size, and can be easily mounted on a tire having a limited mounting space.
  • the power generation in the vibration power generation apparatus used in a state where the tire is mounted, the power generation can be performed even when the rotation speed of the tire is low or high, and this can be easily performed on the tire. Can be installed.
  • the spring constant of the auxiliary spring is set to a value larger than the spring constant of the main spring, power can be generated even in a high-speed rotation region where the tire rotation speed is higher.
  • the spring constant of the secondary spring is set to a value that is five times or more than the spring constant of the main spring.
  • the spring constant of the auxiliary spring it is preferable to set the spring constant of the auxiliary spring to a value not more than 100 times the spring constant of the main spring.
  • the conductive coil is arranged in the fixed side unit and the magnetic circuit unit is arranged in the movable unit, and the conductive coil is arranged radially outside the neutral position of the vibration.
  • FIG. 1 is a front view showing a vibration power generation apparatus 10 according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • the vibration power generation apparatus 10 includes a fixed side unit 20 having a conductive coil 22 and a movable side unit 40 having a magnet 42.
  • the movable side unit 40 is supported by the fixed side unit 20 via the four main springs 12, and can vibrate in the direction indicated by the arrow in FIG. ing.
  • FIG. 3 is a diagram illustrating a usage state of the vibration power generation apparatus 10.
  • the vibration power generation apparatus 10 is mounted on a tire 2 such as a vehicle or an aircraft, and other devices (for example, the air pressure of the tire 2 and the road surface state) are used to detect the usage environment of the tire 2 ( (Not shown) as a power source.
  • a tire 2 such as a vehicle or an aircraft
  • other devices for example, the air pressure of the tire 2 and the road surface state
  • the vibration power generation apparatus 10 is mounted on the inner peripheral wall 2 a of the tire 2 in the internal space of the tire 2 in a state in which the vibration direction coincides with the radial direction of the tire 2.
  • the vibration power generation device 10 when the tire 2 rotates in the direction indicated by the arrow, the vibration power generation device 10 is connected to the road surface when the portion of the tire 2 on which the vibration power generation device 10 is mounted is grounded. 4, the movable side unit 40 vibrates in the radial direction of the tire 2 against the elastic force of the main spring 12, thereby generating an induced electromotive force in the conductive coil 22 (which will be described later). It is like that.
  • the fixed-side unit 20 includes a case 30 and a coil holder 24 and a circuit board 32 arranged in the case 30.
  • the case 30 includes a pair of front and rear resin half members 30A and 30B.
  • the case 30 has a rectangular outer shape close to a square when viewed from the front, and is formed with a constant front-rear width.
  • the coil holder 24 is a plate-like member having a rectangular outer shape close to a square when viewed from the front, and is arranged in a state extending in the vertical direction.
  • the coil holder 24 has a structure in which a friction reducing film is attached to both front and rear surfaces of a resin holder body in which a coil housing portion 24a for housing the conductive coil 22 is formed.
  • An inverted U-shaped positioning recess 24b is formed at the left and right center position of the lower end surface of the coil holder 24, and large rectangular cutouts 24c are formed on the left and right sides thereof.
  • the case 30 is configured such that the upper and lower ends thereof are sandwiched from both the front and rear sides in a state where the coil holder 24 is positioned in the vertical and horizontal directions by the pair of half members 30A and 30B. At this time, a movable space C for vibrating the movable side unit 40 in the vertical direction is formed between the upper and lower ends of the coil holder 24 in the case 30.
  • a cushion material 26 extending in a strip shape in the left-right direction is attached to the upper end wall 30a of the movable space C in the case 30.
  • the cushion material 26 abuts on the elastic member and elastically deforms.
  • the movable side unit 40 vibrates with an excessive amplitude.
  • the impact force at the time of contact is relieved.
  • the lower end wall 30b of the movable space C in the case 30 is formed at a position where it comes into contact with the lower end surface of the movable side unit 40 when the movable side unit 40 vibrates with the maximum allowable amplitude.
  • a pair of main spring accommodating portions 30c for accommodating the main springs 12 are formed on the left and right sides of the case 30, and the main springs 12 are provided on the upper and lower sides of the main spring accommodating portions 30c.
  • a locking pin 30d for locking is formed.
  • a circuit board housing part 30e for housing the circuit board 32 is formed in the upper part of the case 30.
  • a pair of left and right auxiliary spring accommodating portions 30f for accommodating a pair of left and right auxiliary springs 14 are formed in the lower part of the case 30.
  • the conductive coil 22 has a horizontally long oval winding shape.
  • the conductive coil 22 has a pair of coil terminals (not shown) electrically connected to the circuit board 32.
  • the electricity generated by the vibration power generator 10 is supplied from the circuit board 32 to the other devices via the cord 34.
  • the movable unit 40 is configured as a magnetic circuit unit formed so as to surround the coil holder 24 with a space therebetween.
  • the movable side unit 40 has a configuration in which a yoke 44 and a pair of upper and lower magnets 42 are attached to each of a pair of magnet holders 46 disposed on both front and rear sides of the coil holder 24.
  • Each magnet holder 46 is made of a resin member having a laterally long rectangular outer shape when viewed from the front.
  • Each magnet 42 is a neodymium magnet, for example, and has a horizontally long rectangular parallelepiped shape.
  • Each yoke 44 is made of a soft iron plate and has the same outer shape as each magnet holder 46 in a front view.
  • each yoke 44 is attracted by a magnetic force, and at that time, positioning and fixing to each yoke 44 is surely performed by using an adhesive.
  • the pair of upper and lower magnets 42 are arranged with their polarities reversed, and the polarity is reversed between the pair of front and rear yokes 44 (that is, the polarity of the upper and lower two pairs of magnets 42 is reduced). In a state of matching in the positional relationship of cliffs).
  • a magnetic circuit that generates a magnetic flux across the space between each pair of magnets 42 is formed by the two pairs of upper and lower magnets 42 and a pair of front and rear yokes 44. ing.
  • the four main springs 12 are locked at both upper and lower ends of both sides of the pair of front and rear magnet holders 46.
  • the coil accommodating part 24a of the coil holder 24 is formed in a positional relationship overlapping with the movable unit 40 in a front view.
  • the coil housing portion 24a is movable on the movable side in a state where the movable side unit 40 is in a neutral position of vibration (that is, in a state where the vibration power generator 10 is upright with the tire 2 not rotating).
  • the unit 40 is formed at a position slightly displaced downward from the center position of the unit 40, whereby the conductive coil 22 is arranged on the radially outer side of the tire 2 with respect to the neutral position.
  • the four main springs 12 are arranged on both the upper and lower sides of the movable unit 40 on the left and right sides of the coil holder 24, respectively. These four main springs 12 are coil springs having the same configuration, and are arranged so as to extend in the vertical direction in the pair of left and right main spring accommodating portions 30c.
  • the pair of left and right main springs 12 positioned on the upper side of the movable side unit 40 has its upper end portion locked by a locking pin 30d formed on the upper portion of the case 30, and its lower end portion is movable. Locked to the unit 40.
  • the pair of left and right main springs 12 positioned on the lower side of the movable side unit 40 has its lower end engaged with an engagement pin 30d formed at the lower part of the case 30, and its upper end is movable. Locked to the unit 40.
  • the two auxiliary springs 14 are accommodated in a pair of left and right auxiliary spring accommodating portions 30f formed in the lower part of the case 30 below the movable unit 40. These two auxiliary springs 14 are coil springs having the same configuration, and are arranged to extend in the vertical direction. At this time, each of the secondary springs 14 has a spring constant of 10 to 200 times (for example, about 100 times) with respect to the spring constant of each main spring 12. Each of the auxiliary springs 14 is not formed with a spring locking portion like the main springs 12.
  • Each auxiliary spring accommodating portion 30f of the case 30 is formed as a cylindrical recess having an inner diameter slightly larger than the winding diameter of each auxiliary spring 14.
  • each subspring 12 is arrange
  • the notches 24c formed on the lower end surface of the coil holder 24 are engaged with the auxiliary springs 12 from above. As a result, the secondary springs 12 are prevented from being detached from the secondary spring accommodating portions 30f.
  • the distance from the lower end surface of the movable side unit 40 in the neutral position to the upper end edge of each auxiliary spring 12 is set to a value substantially equal to the distance from the upper end surface of the movable side unit 40 in the neutral position to the lower surface of the cushion material 26. Has been.
  • FIG. 4 is a front view of the vibration power generation apparatus 10 showing a state when the movable unit 40 vibrates in the vertical direction (that is, the radial direction of the tire 2).
  • the front half member 30B of the case 30 is removed and the coil holder 24 is omitted.
  • FIG. 4A is a view showing a state where the tire 2 is not rotating and the movable unit 40 is in a neutral position of vibration
  • FIG. 4B is a view when the rotation speed of the tire 2 is low. It is a figure which shows the vibration state of the movable side unit 40
  • the same figure (c) is a figure which shows the vibration state of the movable side unit 40 when the rotational speed of the tire 2 is high.
  • the elastic forces of the two upper and lower main springs 12 are balanced with each other, and the movable unit 40 is neutral in vibration. Held in position. However, in this neutral position, the pair of left and right main springs 12 located on the upper side of the movable unit 40 is slightly more than the pair of left and right main springs 12 located on the lower side by the weight of the movable unit 40. The spring length is large.
  • the conductive coil 22 is overlapped with the movable side unit 40 in the neutral position of the vibration when viewed from the front, but is located at a position displaced downward with respect to the center position of the movable side unit 40.
  • the vibration power generation apparatus 10 moves in the vertical direction against the elastic force of the main spring 12 from the neutral position due to the impact force from the road surface 4. Vibrate. At that time, if the movable unit 40 is largely displaced upward from the neutral position, the over-amplitude is restricted by contacting the cushion material 26, and if the movable unit 40 is largely displaced downward from the neutral position, the auxiliary spring 14 is moved. The over-amplitude is regulated by contact.
  • the centrifugal force F acting on the vibration power generation apparatus 10 is small, and therefore the vibration of the movable unit 40 is performed around a position slightly below the neutral position. .
  • the movable unit 40 resists the elastic force of the two upper and lower main springs 12. Then, it is displaced to a position where it comes into contact with the pair of auxiliary springs 14, or is further displaced to a position where the pair of auxiliary springs 14 is subjected to compression elastic deformation. In this state, when the vibration power generation apparatus 10 receives an impact force from the road surface 4, the movable side unit 40 vibrates in the vertical direction.
  • the conductive coil 22 is displaced downward from the neutral position of the vibration, but the downward displacement amount is when the rotational speed of the tire 2 is low as shown in FIGS. However, even when it is high, the value is set such that the movable side unit 40 vibrates around the position overlapping the conductive coil 22 in front view.
  • FIG. 5 is a graph showing the results of a simulation performed to verify the operation of this embodiment.
  • the induced electromotive force generated in the conductive coil 22 due to the vibration of the movable side unit 40 was measured as the charging voltage of the capacitor, and this was analyzed in relation to the vehicle speed.
  • each auxiliary spring 14 is 100 times the spring constant of each main spring 12 (that is, the spring constant of the two auxiliary springs 14 as a whole is two pairs of upper and lower main springs). The analysis was performed (assuming 50 times the spring constant of 12 as a whole).
  • a graph A indicated by a solid line in the drawing is a graph showing the power generation characteristics when the sub spring 14 is disposed together with the main spring 12 as in the vibration power generation apparatus 10 according to the present embodiment.
  • a graph B indicated by a two-dot chain line in the figure is a graph showing power generation characteristics when only the main spring 12 is arranged without the secondary spring 14.
  • the voltage increases in accordance with the increase in the vehicle speed in the low vehicle speed region (that is, when the rotation speed of the tire 2 is low).
  • the voltage does not increase, and when the vehicle speed increases in the high vehicle speed region, the voltage decreases.
  • the vibration power generation apparatus 10 is configured such that the movable side unit 40 supported by the fixed side unit 20 via the main spring 12 vibrates against the elastic force of the main spring 12.
  • the fixed side unit 20 abuts on the movable side unit 40 and further moves the movable side unit 40 in the radial direction. Since the secondary spring 14 that is compressed and elastically deformed when displaced outward is provided, the following operational effects can be obtained.
  • the movable unit 40 vibrates against the elastic force of the main spring 12 to generate power.
  • the rotational speed is increased and the movable side unit 40 is greatly displaced radially outward by the centrifugal force F
  • the movable side unit 40 vibrates by the centrifugal force F and the elastic force of the auxiliary spring 14, As a result, power generation is performed. Therefore, even when the rotation speed of the tire 2 is low or high, power can be generated by the vibration of the movable unit 40.
  • the secondary spring 14 is disposed on the fixed side unit 20 in such a manner that it comes into contact with the movable side unit 40 when the movable side unit 40 is displaced by a predetermined amount from the neutral position of the vibration to the outside in the radial direction. It is possible to eliminate the need for a configuration in which the first spring and the second spring are doubled inside and outside through the frame member as in the vibration power generator. Therefore, the vibration power generation apparatus 10 can be easily reduced in size and can be easily mounted on the tire 2 having a limited mounting space.
  • the vibration power generation apparatus 10 used in a state where the tire 2 is mounted the power generation can be performed even when the rotation speed of the tire 2 is low or high, and this is applied to the tire 2. Can be easily mounted.
  • the spring constant of the auxiliary spring 14 is set to a value larger than the spring constant of the main spring 12, power generation can be performed even in a high-speed rotation region where the rotation speed of the tire 2 is higher.
  • each secondary spring 14 has a spring constant of 10 to 200 times the spring constant of each main spring 12, whereby the two secondary springs 14 as a whole are used. Is set to a value 5 to 100 times larger than the spring constant of the two upper and lower main springs 12 as a whole. Therefore, the vibration of the movable unit 40 due to the compression elastic deformation of each auxiliary spring 14 is reduced. In addition, power generation in the high-speed rotation region can be performed efficiently.
  • the vibration of the movable side unit 40 in the high-speed rotation region is smoothly performed without the movable side unit 40 being inclined. be able to.
  • the spring constant of each auxiliary spring 14 is reduced, the spring constant of the plurality of auxiliary springs 14 as a whole is increased. Can do.
  • the conductive coil 22 is arranged in the fixed side unit 20 and the movable side unit 40 is configured as a magnetic circuit unit, on which the conductive coil 22 is radially outward from the neutral position of vibration. Therefore, even when the rotation speed of the tire 2 is low or high, the power generation efficiency can be sufficiently increased.
  • the movable unit 40 and the conductive coil 22 are viewed from the front when the displacement amount of the conductive coil 22 from the neutral position of vibration to the radially outer side is high or low when the rotation speed of the tire 2 is low or high. Since it is set to a value that vibrates around the overlapping position, the power generation efficiency can be maximized.
  • two auxiliary springs 14 are arranged in parallel.
  • a configuration in which three or more auxiliary springs are arranged is also possible, and a single auxiliary spring is also possible. It is also possible to adopt a configuration in which are arranged.
  • a main pair of left and right coil springs disposed on the upper side of the movable side unit 40 is used. It is also possible to adopt a configuration in which the movable side unit 40 is suspended and supported by the fixed side unit 20 by a spring.
  • the conductive coil 22 is disposed in the fixed unit 20 and the movable unit 40 is configured as a magnetic circuit unit.
  • the magnetic circuit unit is disposed in the fixed unit 20.
  • a configuration in which the conductive coil 22 is arranged in the movable unit 40 is also possible.
  • the present invention is not limited to the configuration described in the above embodiment, and a configuration with various other changes can be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Provided is a vibration-based electric power generator for use while installed in a tire, with which it is possible to generate electric power both when the rotation speed of the tire is low and when high, and which is readily installable in a tire. On a stationary-side unit (20), there are arranged sub-springs (14) which come into abutment against a movable-side unit (40) when the unit has experienced a prescribed level of displacement diametrically outward from a neutral position during vibration, and which undergo compressive elastic deformation when the movable-side unit (40) is displaced further diametrically outward. In so doing, when the rotation speed of the tire (2) is low, the movable-side unit (40) vibrates in opposition to the elastic force of main springs (12), generating electric power, whereas when the rotation speed of the tire (2) increases and the movable-side unit (40) experiences considerable displacement diametrically outward due to centrifugal force, the movable-side unit (40) is vibrated by the centrifugal force and the elastic force of the sub-springs (14), generating electric power. A vibration-based electric power generator (10) in which this arrangement has been realized in a compact form is easily installed within a limited installation space in the tire (2).

Description

振動発電装置Vibration power generator
 本願発明は、振動を利用して誘導起電力を生じさせるように構成された振動発電装置に関するものであり、特に、車両等のタイヤに装着された状態で用いられる振動発電装置に関するものである。 The present invention relates to a vibration power generation apparatus configured to generate an induced electromotive force using vibration, and particularly to a vibration power generation apparatus used in a state of being mounted on a tire of a vehicle or the like.
 従来より、人の歩行動作等により自動的に発電し得るように構成された携帯型の振動発電装置が知られている。 2. Description of the Related Art Conventionally, a portable vibration power generation apparatus configured to automatically generate power by a human walking motion or the like is known.
 例えば「特許文献1」や「特許文献2」には、固定側ユニットにコイルバネを介して支持された可動側ユニットを、コイルバネの弾性力を利用して振動させることにより、誘導起電力を生じさせるように構成された振動発電装置が記載されている。 For example, in “Patent Document 1” and “Patent Document 2”, an induced electromotive force is generated by vibrating a movable-side unit supported by a fixed-side unit via a coil spring using the elastic force of the coil spring. A vibration power generator configured as described above is described.
 一方「特許文献3」には、可動側ユニットが第1のバネを介してフレーム部材(すなわち可動構造体805a)に支持され、さらにこのフレーム部材が第2のバネを介して固定側ユニットに支持された振動発電装置が記載されている。 On the other hand, in “Patent Document 3”, the movable side unit is supported by the frame member (that is, the movable structure 805a) via the first spring, and further this frame member is supported by the fixed side unit via the second spring. A vibration power generator is described.
特表2008-543254号公報Special table 2008-543254 gazette 特開2004-159407号公報JP 2004-159407 A 特許第4663035号公報Japanese Patent No. 4663035
 このような振動発電装置を車両等のタイヤに装着された状態で用いるようにすれば、タイヤの回転を利用して発電することが可能となる。 If such a vibration power generation device is used in a state where it is mounted on a tire of a vehicle or the like, it is possible to generate power using the rotation of the tire.
 具体的には、タイヤにおいて振動発電装置が装着されている部分が接地する際に振動発電装置が路面から受ける衝撃力によって、可動側ユニットをコイルバネの弾性力に抗してタイヤの径方向に振動させることにより、誘導起電力を生じさせるようにすることが可能となる。 Specifically, when the portion of the tire where the vibration power generation device is mounted contacts the ground, the movable unit vibrates in the radial direction of the tire against the elastic force of the coil spring by the impact force that the vibration power generation device receives from the road surface. By doing so, it is possible to generate an induced electromotive force.
 しかしながら、従来の振動発電装置を単にタイヤに装着しただけでは、次のような問題がある。 However, simply attaching a conventional vibration power generator to a tire has the following problems.
 すなわち、タイヤの回転速度が低いときに発電が行われるようにするために、コイルバネのバネ定数を小さい値に設定してコイルバネを振動しやすくすると、タイヤの回転速度が上昇したときには可動側ユニットに作用する遠心力がコイルバネの弾性力よりも大きくなって可動側ユニットが振動しなくなってしまう。一方、タイヤの回転速度が高いときに発電が行われるようにするために、コイルバネのバネ定数を大きい値に設定すると、タイヤの回転速度が低くなったときにはコイルバネが弾性変形しなくなってしまう。 In other words, in order to generate power when the tire rotation speed is low, if the coil spring is set to a small value to make the coil spring easy to vibrate, when the tire rotation speed increases, The acting centrifugal force is larger than the elastic force of the coil spring, and the movable unit does not vibrate. On the other hand, if the spring constant of the coil spring is set to a large value in order to generate power when the tire rotational speed is high, the coil spring will not be elastically deformed when the tire rotational speed is low.
 これに対し、上記「特許文献3」に記載されているような振動発電装置をタイヤに装着すれば、2重に配置された第1および第2のバネにより、2種類の異なる共振周波数で可動側ユニットを振動させることが可能となる。そしてこれにより、タイヤの回転速度が低いときでも高いときでも可動側ユニットを振動させて発電を行うことが可能となる。 On the other hand, if a vibration power generation device as described in the above-mentioned “Patent Document 3” is mounted on a tire, it can be moved at two different resonance frequencies by the first and second springs arranged in a double manner. The side unit can be vibrated. As a result, it is possible to generate power by vibrating the movable side unit even when the rotational speed of the tire is low or high.
 しかしながら、このような構成を採用した場合には、次のような問題がある。 However, when such a configuration is adopted, there are the following problems.
 すなわち、タイヤに装着される振動発電装置は、その装着スペースが限られているので、できるだけ小型化することが要請される。ところが、上記「特許文献3」に記載された振動発電装置においては、第1および第2のバネがフレーム部材を介してその内外に2重に配置された構成となっているので、そのためのスペースが大きく必要となり、したがって振動発電装置を小型化することが困難である、という問題がある。 That is, the vibration power generation apparatus mounted on the tire has a limited mounting space, and therefore is required to be as small as possible. However, in the vibration power generation apparatus described in the above-mentioned “Patent Document 3”, the first and second springs are configured to be doubled inside and outside through the frame member. Therefore, there is a problem that it is difficult to reduce the size of the vibration power generator.
 本願発明は、このような事情に鑑みてなされたものであって、タイヤに装着された状態で用いられる振動発電装置において、タイヤの回転速度が低いときでも高いときでも発電を行うことができ、かつタイヤに対して容易に装着することができる振動発電装置を提供することを目的とするものである。 The present invention has been made in view of such circumstances, and in a vibration power generation apparatus used in a state of being mounted on a tire, it can generate power even when the rotation speed of the tire is low or high, And it aims at providing the vibration electric power generating apparatus which can be easily mounted | worn with respect to a tire.
 本願発明は、本来の主バネに対して所定の副バネが追加配置された構成とすることにより、上記目的達成を図るようにしたものである。 The present invention is intended to achieve the above object by adopting a configuration in which a predetermined secondary spring is additionally arranged with respect to the original main spring.
 すなわち、本願発明に係る振動発電装置は、
 タイヤに装着された状態で用いられる振動発電装置であって、
 固定側ユニットとこの固定側ユニットに主バネを介して支持された可動側ユニットとを備え、上記可動側ユニットが上記主バネの弾性力を利用して上記タイヤの径方向に振動することにより誘導起電力を生じさせるように構成された振動発電装置において、
 上記固定側ユニットに、上記可動側ユニットが上記振動の中立位置から径方向外側へ所定量変位したとき該可動側ユニットに当接するとともに該可動側ユニットがさらに径方向外側へ変位したとき圧縮弾性変形する副バネが配置されている、ことを特徴とするものである。
That is, the vibration power generator according to the present invention is
A vibration power generator used in a state of being mounted on a tire,
A stationary side unit and a movable side unit supported by the stationary side unit via a main spring, and the movable side unit is guided by vibrating in a radial direction of the tire using the elastic force of the main spring. In a vibration power generator configured to generate an electromotive force,
When the movable side unit is displaced by a predetermined amount radially outward from the neutral position of the vibration, the fixed side unit abuts on the movable side unit and is compressed and elastically deformed when the movable side unit is further displaced radially outward. A secondary spring is disposed.
 上記「主バネ」の種類は特に限定されるものではなく、例えば、コイルバネや板バネ等が採用可能である。 The type of the “main spring” is not particularly limited, and for example, a coil spring or a leaf spring can be employed.
 上記「副バネ」は、可動側ユニットが振動の中立位置から径方向外側へ所定量を超えて変位したときに圧縮弾性変形するように構成されていれば、その具体的な構成は特に限定されるものではない。 The above-mentioned “sub spring” is not particularly limited as long as the movable side unit is configured to be elastically deformed by compression when the movable unit is displaced from the neutral position to the outside in the radial direction by a predetermined amount. It is not something.
 上記「所定量」の具体的な値は特に限定されるものではない。 The specific value of the “predetermined amount” is not particularly limited.
 上記構成に示すように、本願発明に係る振動発電装置は、固定側ユニットに主バネを介して支持された可動側ユニットが主バネの弾性力を利用してタイヤの径方向に振動する構成となっているが、その固定側ユニットには、可動側ユニットが振動の中立位置から径方向外側へ所定量変位したとき該可動側ユニットに当接するとともに該可動側ユニットがさらに径方向外側へ変位したとき圧縮弾性変形する副バネが配置されているので、次のような作用効果を得ることができる。 As shown in the above configuration, the vibration power generator according to the present invention has a configuration in which the movable side unit supported by the fixed side unit via the main spring vibrates in the radial direction of the tire using the elastic force of the main spring. However, the fixed side unit is in contact with the movable side unit when the movable side unit is displaced by a predetermined amount radially outward from the neutral position of vibration, and the movable side unit is further displaced radially outward. Since the auxiliary spring which is sometimes compressed elastically deformed is arranged, the following effects can be obtained.
 すなわち、本願発明に係る振動発電装置が装着されたタイヤが回転すると、その回転速度が低いときには、可動側ユニットが主バネの弾性力を利用して振動することにより発電が行われ、また、回転速度が上昇して、可動側ユニットが遠心力によって径方向外側へ大きく変位したときには、その遠心力と副バネの弾性力とによって可動側ユニットが振動し、これにより発電が行われることとなる。したがって、タイヤの回転速度が低いときでも高いときでも可動側ユニットの振動により発電を行うことができる。 That is, when the tire equipped with the vibration power generation device according to the present invention rotates, when the rotational speed is low, the movable unit vibrates using the elastic force of the main spring to generate power, and the rotation When the speed increases and the movable side unit is greatly displaced radially outward by the centrifugal force, the movable side unit vibrates by the centrifugal force and the elastic force of the auxiliary spring, thereby generating electric power. Therefore, power generation can be performed by vibration of the movable side unit even when the rotational speed of the tire is low or high.
 その際、副バネは、可動側ユニットが振動の中立位置から径方向外側へ所定量変位したとき該可動側ユニットに当接する態様で固定側ユニットに配置されているので、従来の振動発電装置のように第1のバネと第2のバネとがフレーム部材を介してその内外に2重に配置された構成とする必要をなくすことができる。したがって、振動発電装置を容易に小型化することができ、これにより装着スペースが限られたタイヤへの装着も容易に行うことができる。 At that time, the secondary spring is arranged on the fixed side unit in such a manner that it comes into contact with the movable side unit when the movable side unit is displaced by a predetermined amount from the neutral position of the vibration to the radially outer side. In this way, it is possible to eliminate the need for a configuration in which the first spring and the second spring are disposed in duplicate inside and outside the frame member. Therefore, the vibration power generator can be easily reduced in size, and can be easily mounted on a tire having a limited mounting space.
 このように本願発明によれば、タイヤに装着された状態で用いられる振動発電装置において、タイヤの回転速度が低いときでも高いときでも発電を行うことができ、かつこれをタイヤに対して容易に装着することができる。 As described above, according to the present invention, in the vibration power generation apparatus used in a state where the tire is mounted, the power generation can be performed even when the rotation speed of the tire is low or high, and this can be easily performed on the tire. Can be installed.
 上記構成において、副バネのバネ定数が主バネのバネ定数よりも大きい値に設定された構成とすれば、タイヤの回転速度がより高い高速回転領域においても発電を行うことができる。 In the above configuration, if the spring constant of the auxiliary spring is set to a value larger than the spring constant of the main spring, power can be generated even in a high-speed rotation region where the tire rotation speed is higher.
 その際、高速回転領域における発電を効率的に行うためには、副バネのバネ定数を主バネのバネ定数に対して5倍以上の値に設定することが好ましく、一方、副バネの圧縮弾性変形による可動側ユニットの振動を維持するためには、副バネのバネ定数を主バネのバネ定数に対して100倍以下の値に設定することが好ましい。 At that time, in order to efficiently generate power in the high-speed rotation region, it is preferable to set the spring constant of the secondary spring to a value that is five times or more than the spring constant of the main spring. In order to maintain the vibration of the movable unit due to the deformation, it is preferable to set the spring constant of the auxiliary spring to a value not more than 100 times the spring constant of the main spring.
 上記構成において、副バネが並列に複数個配置された構成とすれば、個々の副バネのバネ定数を小さくした場合にも、複数個の副バネ全体としてのバネ定数を大きくすることができる。 In the above configuration, if a plurality of auxiliary springs are arranged in parallel, even if the spring constants of the individual auxiliary springs are reduced, the spring constants of the plurality of auxiliary springs as a whole can be increased.
 上記構成において、固定側ユニットに導電コイルが配置されるとともに可動側ユニットに磁気回路ユニットが配置された構成とした上で、導電コイルが振動の中立位置よりも径方向外側に配置された構成とすれば、タイヤの回転速度が低いときでも高いときでも発電効率を十分に高めることができる。 In the above configuration, the conductive coil is arranged in the fixed side unit and the magnetic circuit unit is arranged in the movable unit, and the conductive coil is arranged radially outside the neutral position of the vibration. As a result, the power generation efficiency can be sufficiently increased even when the rotational speed of the tire is low or high.
本願発明の一実施形態に係る振動発電装置を示す正面図The front view which shows the vibration electric power generating apparatus which concerns on one Embodiment of this invention. 図1のII-II線断面図II-II sectional view of FIG. 上記振動発電装置の使用状態を示す図The figure which shows the use condition of the said vibration power generator 上記可動側ユニットが振動したときの様子を示す、上記振動発電装置の要部正面図The principal part front view of the said vibration electric power generating apparatus which shows a mode when the said movable side unit vibrates. 上記実施形態の作用を検証するために行ったシミュレーションの結果を示すグラフThe graph which shows the result of the simulation performed in order to verify the effect | action of the said embodiment
 以下、図面を用いて、本願発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本願発明の一実施形態に係る振動発電装置10を示す正面図である。また、図2は、図1のII-II線断面図である。 FIG. 1 is a front view showing a vibration power generation apparatus 10 according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line II-II in FIG.
 これらの図に示すように、この振動発電装置10は、導電コイル22を備えた固定側ユニット20と、マグネット42を備えた可動側ユニット40とからなっている。 As shown in these drawings, the vibration power generation apparatus 10 includes a fixed side unit 20 having a conductive coil 22 and a movable side unit 40 having a magnet 42.
 可動側ユニット40は、固定側ユニット20に対して4つの主バネ12を介して支持されており、その弾性力により、図1において矢印で示す方向(すなわち上下方向)に振動し得るようになっている。 The movable side unit 40 is supported by the fixed side unit 20 via the four main springs 12, and can vibrate in the direction indicated by the arrow in FIG. ing.
 図3は、振動発電装置10の使用状態を示す図である。 FIG. 3 is a diagram illustrating a usage state of the vibration power generation apparatus 10.
 同図に示すように、振動発電装置10は、車両や航空機等のタイヤ2に装着された状態で、タイヤ2の使用環境(例えばタイヤ2の空気圧や路面状態等)を検出する他の機器(図示せず)の電源として用いられるようになっている。 As shown in the figure, the vibration power generation apparatus 10 is mounted on a tire 2 such as a vehicle or an aircraft, and other devices (for example, the air pressure of the tire 2 and the road surface state) are used to detect the usage environment of the tire 2 ( (Not shown) as a power source.
 その際、この振動発電装置10は、タイヤ2の内部空間において、その振動方向をタイヤ2の径方向に一致させた状態でタイヤ2の内周壁2aに装着されるようになっている。そして、この振動発電装置10においては、タイヤ2が同中矢印で示す方向に回転しているとき、タイヤ2において振動発電装置10が装着されている部分が接地する際に振動発電装置10が路面4から受ける衝撃力によって、可動側ユニット40が主バネ12の弾性力に抗してタイヤ2の径方向に振動し、これにより導電コイル22(これについては後述する)に誘導起電力を生じさせるようになっている。 At this time, the vibration power generation apparatus 10 is mounted on the inner peripheral wall 2 a of the tire 2 in the internal space of the tire 2 in a state in which the vibration direction coincides with the radial direction of the tire 2. In the vibration power generation device 10, when the tire 2 rotates in the direction indicated by the arrow, the vibration power generation device 10 is connected to the road surface when the portion of the tire 2 on which the vibration power generation device 10 is mounted is grounded. 4, the movable side unit 40 vibrates in the radial direction of the tire 2 against the elastic force of the main spring 12, thereby generating an induced electromotive force in the conductive coil 22 (which will be described later). It is like that.
 次に、振動発電装置10の具体的な構成について説明する。 Next, a specific configuration of the vibration power generator 10 will be described.
 まず、固定側ユニット20の構成について説明する。 First, the configuration of the fixed unit 20 will be described.
 固定側ユニット20は、ケース30と、このケース30内に配置されたコイルホルダ24および回路基板32とを備えた構成となっている。 The fixed-side unit 20 includes a case 30 and a coil holder 24 and a circuit board 32 arranged in the case 30.
 ケース30は、前後1対の樹脂製のハーフ部材30A、30Bからなっている。このケース30は、正面視において正方形に近い矩形状の外形形状を有しており、一定の前後幅で形成されている。 The case 30 includes a pair of front and rear resin half members 30A and 30B. The case 30 has a rectangular outer shape close to a square when viewed from the front, and is formed with a constant front-rear width.
 コイルホルダ24は、正面視において正方形に近い矩形状の外形形状を有する板状の部材であって、上下方向に延びた状態で配置されている。 The coil holder 24 is a plate-like member having a rectangular outer shape close to a square when viewed from the front, and is arranged in a state extending in the vertical direction.
 このコイルホルダ24は、導電コイル22を収容するためのコイル収容部24aが形成された樹脂製のホルダ本体に対して、その前後両面に摩擦低減フィルムが貼り付けられた構成となっている。 The coil holder 24 has a structure in which a friction reducing film is attached to both front and rear surfaces of a resin holder body in which a coil housing portion 24a for housing the conductive coil 22 is formed.
 コイルホルダ24の下端面の左右中央位置には、逆U字状の位置決め凹部24bが形成されており、その左右両側には矩形状の大きな切欠き部24cが形成されている。 An inverted U-shaped positioning recess 24b is formed at the left and right center position of the lower end surface of the coil holder 24, and large rectangular cutouts 24c are formed on the left and right sides thereof.
 ケース30は、その1対のハーフ部材30A、30Bによってコイルホルダ24を上下方向および左右方向に位置決めした状態で、その上下両端部を前後両側から挟持するようになっている。その際、このケース30内におけるコイルホルダ24の上下両端部の間には、可動側ユニット40を上下方向に振動させるための可動空間Cが形成されるようになっている。 The case 30 is configured such that the upper and lower ends thereof are sandwiched from both the front and rear sides in a state where the coil holder 24 is positioned in the vertical and horizontal directions by the pair of half members 30A and 30B. At this time, a movable space C for vibrating the movable side unit 40 in the vertical direction is formed between the upper and lower ends of the coil holder 24 in the case 30.
 このケース30における可動空間Cの上端壁30aには、左右方向に帯状に延びるクッション材26が貼付されている。このクッション材26は、可動側ユニット40が上下方向に振動してその振幅が一定値以上になったときにこれに当接して弾性変形し、これにより可動側ユニット40が過振幅で振動してしまうのを規制するとともに、その当接の際の衝撃力を緩和させるようになっている。 A cushion material 26 extending in a strip shape in the left-right direction is attached to the upper end wall 30a of the movable space C in the case 30. When the movable side unit 40 vibrates in the vertical direction and the amplitude becomes a certain value or more, the cushion material 26 abuts on the elastic member and elastically deforms. As a result, the movable side unit 40 vibrates with an excessive amplitude. In addition, the impact force at the time of contact is relieved.
 一方、このケース30における可動空間Cの下端壁30bは、可動側ユニット40が最大許容振幅で振動したときに該可動側ユニット40の下端面と当接する位置に形成されている。 On the other hand, the lower end wall 30b of the movable space C in the case 30 is formed at a position where it comes into contact with the lower end surface of the movable side unit 40 when the movable side unit 40 vibrates with the maximum allowable amplitude.
 このケース30内の左右両側部には、主バネ12を収容するための1対の主バネ収容部30cが形成されており、これら各主バネ収容部30cの上下両側には、主バネ12を係止するための係止ピン30dがそれぞれ形成されている。 A pair of main spring accommodating portions 30c for accommodating the main springs 12 are formed on the left and right sides of the case 30, and the main springs 12 are provided on the upper and lower sides of the main spring accommodating portions 30c. A locking pin 30d for locking is formed.
 また、このケース30内の上部には、回路基板32を収容するための回路基板収容部30eが形成されている。さらに、このケース30内の下部には、左右1対の副バネ14(これについては後述する)を収容するための左右1対の副バネ収容部30fが形成されている。 Further, a circuit board housing part 30e for housing the circuit board 32 is formed in the upper part of the case 30. Further, a pair of left and right auxiliary spring accommodating portions 30f for accommodating a pair of left and right auxiliary springs 14 (which will be described later) are formed in the lower part of the case 30.
 導電コイル22は、横長の長円形の巻回形状を有している。この導電コイル22は、その1対のコイル端末(図示せず)が回路基板32に対して電気的に接続されている。そして、この回路基板32からコード34を介して、振動発電装置10で発電した電気を他の機器に供給するようになっている。 The conductive coil 22 has a horizontally long oval winding shape. The conductive coil 22 has a pair of coil terminals (not shown) electrically connected to the circuit board 32. The electricity generated by the vibration power generator 10 is supplied from the circuit board 32 to the other devices via the cord 34.
 次に、可動側ユニット40の構成について説明する。 Next, the configuration of the movable unit 40 will be described.
 可動側ユニット40は、コイルホルダ24と間隔をおいてこれを囲むように形成された磁気回路ユニットとして構成されている。 The movable unit 40 is configured as a magnetic circuit unit formed so as to surround the coil holder 24 with a space therebetween.
 すなわち、この可動側ユニット40は、コイルホルダ24の前後両側に配置された1対のマグネットホルダ46の各々に、ヨーク44および上下1対のマグネット42が取り付けられた構成となっている。 That is, the movable side unit 40 has a configuration in which a yoke 44 and a pair of upper and lower magnets 42 are attached to each of a pair of magnet holders 46 disposed on both front and rear sides of the coil holder 24.
 各マグネットホルダ46は、正面視において横長矩形状の外形形状を有する樹脂製部材で構成されている。各マグネット42は、例えばネオジウム磁石であって、横長の直方体形状を有している。各ヨーク44は、軟鉄板で構成されており、正面視において各マグネットホルダ46と同一の外形形状を有している。 Each magnet holder 46 is made of a resin member having a laterally long rectangular outer shape when viewed from the front. Each magnet 42 is a neodymium magnet, for example, and has a horizontally long rectangular parallelepiped shape. Each yoke 44 is made of a soft iron plate and has the same outer shape as each magnet holder 46 in a front view.
 そして、この可動側ユニット40においては、上下1対のマグネット42が、各マグネットホルダ46に形成された上下1対の貫通孔の各々に嵌め込まれた状態で、かつ、その内側面を各マグネットホルダ46の内側面と略面一にした状態で、各ヨーク44に磁力で吸着されており、その際、接着剤の併用により各ヨーク44に対する位置決め固定が確実に行われるようになっている。 In the movable unit 40, a pair of upper and lower magnets 42 is fitted in each of a pair of upper and lower through-holes formed in each magnet holder 46, and the inner side surface of each magnet holder is connected to each magnet holder. In a state of being substantially flush with the inner side surface of 46, each yoke 44 is attracted by a magnetic force, and at that time, positioning and fixing to each yoke 44 is surely performed by using an adhesive.
 上下1対のマグネット42は、極性を逆にした状態で配置されており、かつ、前後1対のヨーク44相互間においても極性を逆にした状態(すなわち上下2組のマグネット42の極性を襷がけの位置関係で一致させた状態)で配置されている。 The pair of upper and lower magnets 42 are arranged with their polarities reversed, and the polarity is reversed between the pair of front and rear yokes 44 (that is, the polarity of the upper and lower two pairs of magnets 42 is reduced). In a state of matching in the positional relationship of cliffs).
 これにより、この可動側ユニット40においては、上下2組のマグネット42および前後1対のヨーク44によって、各組のマグネット42相互間の空間を横切る磁束を生じさせる磁気回路が形成されるようになっている。 As a result, in the movable unit 40, a magnetic circuit that generates a magnetic flux across the space between each pair of magnets 42 is formed by the two pairs of upper and lower magnets 42 and a pair of front and rear yokes 44. ing.
 また、この可動側ユニット40においては、前後1対のマグネットホルダ46の両側部の上下両端部において4つの主バネ12を係止するようになっている。 Further, in the movable side unit 40, the four main springs 12 are locked at both upper and lower ends of both sides of the pair of front and rear magnet holders 46.
 コイルホルダ24のコイル収容部24aは、正面視において可動側ユニット40と重複する位置関係で形成されている。その際、このコイル収容部24aは、可動側ユニット40が振動の中立位置にある状態(すなわち、タイヤ2が回転していない状態で振動発電装置10が正立している状態)において、可動側ユニット40の中心位置から下方側に多少変位した位置に形成されており、これにより導電コイル22が中立位置よりもタイヤ2の径方向外側に配置されるようにしている。 The coil accommodating part 24a of the coil holder 24 is formed in a positional relationship overlapping with the movable unit 40 in a front view. At this time, the coil housing portion 24a is movable on the movable side in a state where the movable side unit 40 is in a neutral position of vibration (that is, in a state where the vibration power generator 10 is upright with the tire 2 not rotating). The unit 40 is formed at a position slightly displaced downward from the center position of the unit 40, whereby the conductive coil 22 is arranged on the radially outer side of the tire 2 with respect to the neutral position.
 次に、4つの主バネ12の構成について説明する。 Next, the configuration of the four main springs 12 will be described.
 4つの主バネ12は、コイルホルダ24の左右両側において、可動側ユニット40の上下両側にそれぞれ配置されている。これら4つの主バネ12は、いずれも同一の構成を有するコイルバネであって、左右1対の主バネ収容部30cにおいて上下方向に延びるように配置されている。 The four main springs 12 are arranged on both the upper and lower sides of the movable unit 40 on the left and right sides of the coil holder 24, respectively. These four main springs 12 are coil springs having the same configuration, and are arranged so as to extend in the vertical direction in the pair of left and right main spring accommodating portions 30c.
 その際、可動側ユニット40の上側に位置する左右1対の主バネ12は、その上端部がケース30の上部に形成された係止ピン30dに係止されており、その下端部が可動側ユニット40に係止されている。一方、可動側ユニット40の下側に位置する左右1対の主バネ12は、その下端部がケース30の下部に形成された係止ピン30dに係止されており、その上端部が可動側ユニット40に係止されている。 At that time, the pair of left and right main springs 12 positioned on the upper side of the movable side unit 40 has its upper end portion locked by a locking pin 30d formed on the upper portion of the case 30, and its lower end portion is movable. Locked to the unit 40. On the other hand, the pair of left and right main springs 12 positioned on the lower side of the movable side unit 40 has its lower end engaged with an engagement pin 30d formed at the lower part of the case 30, and its upper end is movable. Locked to the unit 40.
 次に、2つの副バネ14の構成について説明する。 Next, the configuration of the two auxiliary springs 14 will be described.
 2つの副バネ14は、可動側ユニット40の下方において、ケース30内の下部に形成された左右1対の副バネ収容部30fに収容されている。これら2つの副バネ14は、いずれも同一の構成を有するコイルバネであって、上下方向に延びるように配置されている。その際、これら各副バネ14は、各主バネ12のバネ定数に対して10~200倍(例えば100倍程度)のバネ定数のものが用いられている。なお、これら各副バネ14には、各主バネ12のようなバネ係止部は形成されていない。 The two auxiliary springs 14 are accommodated in a pair of left and right auxiliary spring accommodating portions 30f formed in the lower part of the case 30 below the movable unit 40. These two auxiliary springs 14 are coil springs having the same configuration, and are arranged to extend in the vertical direction. At this time, each of the secondary springs 14 has a spring constant of 10 to 200 times (for example, about 100 times) with respect to the spring constant of each main spring 12. Each of the auxiliary springs 14 is not formed with a spring locking portion like the main springs 12.
 ケース30の各副バネ収容部30fは、各副バネ14の巻き径よりも僅かに大きい内径を有する円筒状凹部として形成されている。そして、各副バネ12は、各副バネ収容部30fに収容された状態で、その上端部を可動空間Cの下端壁30bから可動空間Cに突出させるようにして配置されている。 Each auxiliary spring accommodating portion 30f of the case 30 is formed as a cylindrical recess having an inner diameter slightly larger than the winding diameter of each auxiliary spring 14. And each subspring 12 is arrange | positioned so that the upper end part may protrude from the lower end wall 30b of the movable space C to the movable space C in the state accommodated in each subspring accommodating part 30f.
 これら各副バネ12に対して、コイルホルダ24の下端面に形成された各切欠き部24cが上方側から係合している。そしてこれにより、各副バネ12が各副バネ収容部30fから離脱してしまうのを阻止するようになっている。 The notches 24c formed on the lower end surface of the coil holder 24 are engaged with the auxiliary springs 12 from above. As a result, the secondary springs 12 are prevented from being detached from the secondary spring accommodating portions 30f.
 中立位置にある可動側ユニット40の下端面から各副バネ12の上端縁までの距離は、中立位置にある可動側ユニット40の上端面からクッション材26の下面までの距離と略等しい値に設定されている。 The distance from the lower end surface of the movable side unit 40 in the neutral position to the upper end edge of each auxiliary spring 12 is set to a value substantially equal to the distance from the upper end surface of the movable side unit 40 in the neutral position to the lower surface of the cushion material 26. Has been.
 次に本実施形態の作用について説明する。 Next, the operation of this embodiment will be described.
 図4は、可動側ユニット40が上下方向(すなわちタイヤ2の径方向)に振動したときの様子を示す振動発電装置10の正面図である。なお、同図においては、ケース30の前側のハーフ部材30Bを外した状態で、かつコイルホルダ24を省略した状態で示している。 FIG. 4 is a front view of the vibration power generation apparatus 10 showing a state when the movable unit 40 vibrates in the vertical direction (that is, the radial direction of the tire 2). In the figure, the front half member 30B of the case 30 is removed and the coil holder 24 is omitted.
 同図(a)は、タイヤ2が回転しておらず、可動側ユニット40が振動の中立位置にある状態を示す図であり、同図(b)は、タイヤ2の回転速度が低いときの可動側ユニット40の振動状態を示す図であり、同図(c)は、タイヤ2の回転速度が高いときの可動側ユニット40の振動状態を示す図である。 FIG. 4A is a view showing a state where the tire 2 is not rotating and the movable unit 40 is in a neutral position of vibration, and FIG. 4B is a view when the rotation speed of the tire 2 is low. It is a figure which shows the vibration state of the movable side unit 40, and the same figure (c) is a figure which shows the vibration state of the movable side unit 40 when the rotational speed of the tire 2 is high.
 同図(a)に示すように、振動発電装置10に外部荷重が作用していない状態では、上下2対の主バネ12の弾性力が互いに均衡しており、可動側ユニット40は振動の中立位置に保持されている。ただし、この中立位置では、可動側ユニット40の自重の分だけ、その上側に位置する左右1対の主バネ12の方が、その下側に位置する左右1対の主バネ12よりも僅かにバネ長が大きくなっている。 As shown in FIG. 5A, in the state where no external load is applied to the vibration power generator 10, the elastic forces of the two upper and lower main springs 12 are balanced with each other, and the movable unit 40 is neutral in vibration. Held in position. However, in this neutral position, the pair of left and right main springs 12 located on the upper side of the movable unit 40 is slightly more than the pair of left and right main springs 12 located on the lower side by the weight of the movable unit 40. The spring length is large.
 また、導電コイル22は、振動の中立位置にある可動側ユニット40と正面視において重複しているが、この可動側ユニット40の中心位置に対して下方側に変位した位置にある。 The conductive coil 22 is overlapped with the movable side unit 40 in the neutral position of the vibration when viewed from the front, but is located at a position displaced downward with respect to the center position of the movable side unit 40.
 同図(b)に示すように、タイヤ2が低速で回転すると、振動発電装置10は路面4からの衝撃力により可動側ユニット40が中立位置から主バネ12の弾性力に抗して上下方向に振動する。その際、可動側ユニット40が中立位置から上方側に大きく変位すると、クッション材26に当接して過振幅が規制され、可動側ユニット40が中立位置から下方側に大きく変位すると、副バネ14に当接して過振幅が規制される。 As shown in FIG. 4B, when the tire 2 rotates at a low speed, the vibration power generation apparatus 10 moves in the vertical direction against the elastic force of the main spring 12 from the neutral position due to the impact force from the road surface 4. Vibrate. At that time, if the movable unit 40 is largely displaced upward from the neutral position, the over-amplitude is restricted by contacting the cushion material 26, and if the movable unit 40 is largely displaced downward from the neutral position, the auxiliary spring 14 is moved. The over-amplitude is regulated by contact.
 なお、タイヤ2が低速で回転している状態では、振動発電装置10に作用する遠心力Fは小さいので、可動側ユニット40の振動は上記中立位置よりもやや下方の位置を中心にして行われる。 In the state where the tire 2 is rotating at a low speed, the centrifugal force F acting on the vibration power generation apparatus 10 is small, and therefore the vibration of the movable unit 40 is performed around a position slightly below the neutral position. .
 同図(c)に示すように、タイヤ2が高速で回転して、振動発電装置10に大きな遠心力Fが作用すると、可動側ユニット40は、上下2対の主バネ12の弾性力に抗して1対の副バネ14に当接する位置まで変位し、あるいは、さらに1対の副バネ14を圧縮弾性変形させる位置まで変位する。そして、この状態で振動発電装置10が路面4からの衝撃力を受けることにより、可動側ユニット40が上下方向に振動する。 As shown in FIG. 5C, when the tire 2 rotates at a high speed and a large centrifugal force F acts on the vibration power generator 10, the movable unit 40 resists the elastic force of the two upper and lower main springs 12. Then, it is displaced to a position where it comes into contact with the pair of auxiliary springs 14, or is further displaced to a position where the pair of auxiliary springs 14 is subjected to compression elastic deformation. In this state, when the vibration power generation apparatus 10 receives an impact force from the road surface 4, the movable side unit 40 vibrates in the vertical direction.
 上述したとおり、導電コイル22は振動の中立位置から下方側に変位しているが、その下方変位量は、同図(b)、(c)に示すように、タイヤ2の回転速度が低いときでも高いときでも、可動側ユニット40が正面視において導電コイル22と重複する位置を中心にして振動するような値に設定されている。 As described above, the conductive coil 22 is displaced downward from the neutral position of the vibration, but the downward displacement amount is when the rotational speed of the tire 2 is low as shown in FIGS. However, even when it is high, the value is set such that the movable side unit 40 vibrates around the position overlapping the conductive coil 22 in front view.
 図5は、本実施形態の作用を検証するために行ったシミュレーションの結果を示すグラフである。 FIG. 5 is a graph showing the results of a simulation performed to verify the operation of this embodiment.
 このシミュレーションにおいては、可動側ユニット40の振動により導電コイル22に生じる誘導起電力を、コンデンサの充電電圧として計測し、これを車速との関係で解析した。 In this simulation, the induced electromotive force generated in the conductive coil 22 due to the vibration of the movable side unit 40 was measured as the charging voltage of the capacitor, and this was analyzed in relation to the vehicle speed.
 また、このシミュレーションにおいては、各副バネ14のバネ定数が各主バネ12のバネ定数に対して100倍であるものとして(すなわち2つの副バネ14全体としてのバネ定数が上下2対の主バネ12全体としてのバネ定数に対して50倍であるものとして)解析を行った。 In this simulation, it is assumed that the spring constant of each auxiliary spring 14 is 100 times the spring constant of each main spring 12 (that is, the spring constant of the two auxiliary springs 14 as a whole is two pairs of upper and lower main springs). The analysis was performed (assuming 50 times the spring constant of 12 as a whole).
 同図において実線で示すグラフAは、本実施形態に係る振動発電装置10のように、主バネ12と共に副バネ14が配置されている場合の発電特性を示すグラフである。 A graph A indicated by a solid line in the drawing is a graph showing the power generation characteristics when the sub spring 14 is disposed together with the main spring 12 as in the vibration power generation apparatus 10 according to the present embodiment.
 一方、同図において2点鎖線で示すグラフBは、副バネ14が存在せずに、主バネ12のみが配置されている場合の発電特性を示すグラフである。 On the other hand, a graph B indicated by a two-dot chain line in the figure is a graph showing power generation characteristics when only the main spring 12 is arranged without the secondary spring 14.
 同図においてグラフBに示すように、主バネ12のみが配置されている場合には、低車速領域では(すなわちタイヤ2の回転速度が低いときには)車速の上昇に応じて電圧も上昇しているが、中車速領域になると車速が上昇しても電圧が上昇しなくなり、高車速領域では車速が上昇すると電圧が低下してしまう。 In the same figure, as shown in the graph B, when only the main spring 12 is arranged, the voltage increases in accordance with the increase in the vehicle speed in the low vehicle speed region (that is, when the rotation speed of the tire 2 is low). However, when the vehicle speed increases in the middle vehicle speed region, the voltage does not increase, and when the vehicle speed increases in the high vehicle speed region, the voltage decreases.
 これは、タイヤ2の回転速度の上昇により可動側ユニット40に作用する遠心力Fが主バネ12の弾性力よりも大きくなって可動側ユニット40が振動しなくなってしまうことによるものと考えられる。 This is considered to be due to the fact that the centrifugal force F acting on the movable side unit 40 is greater than the elastic force of the main spring 12 due to the increase in the rotational speed of the tire 2, and the movable side unit 40 does not vibrate.
 一方、同図においてグラフAに示すように、主バネ12と共に副バネ14が配置されている場合には、低車速領域のみならず中高車速領域においても車速の上昇に応じて電圧も上昇している。 On the other hand, as shown in the graph A in the figure, when the auxiliary spring 14 is disposed together with the main spring 12, the voltage increases as the vehicle speed increases not only in the low vehicle speed region but also in the medium and high vehicle speed regions. Yes.
 これは、タイヤ2の回転速度の上昇により可動側ユニット40に作用する遠心力Fが主バネ12の弾性力よりも大きくなっても、遠心力Fと副バネ14の弾性力とによって可動側ユニット40が振動することによるものと考えられる。 This is because even if the centrifugal force F acting on the movable side unit 40 is larger than the elastic force of the main spring 12 due to the increase in the rotational speed of the tire 2, the movable side unit is affected by the centrifugal force F and the elastic force of the auxiliary spring 14. This is considered to be due to the vibration of 40.
 以上詳述したように、本実施形態に係る振動発電装置10は、固定側ユニット20に主バネ12を介して支持された可動側ユニット40が主バネ12の弾性力に抗して振動する構成となっているが、固定側ユニット20には、可動側ユニット40が振動の中立位置から径方向外側へ所定量変位したとき該可動側ユニット40に当接するとともに該可動側ユニット40がさらに径方向外側へ変位したとき圧縮弾性変形する副バネ14が配置されているので、次のような作用効果を得ることができる。 As described in detail above, the vibration power generation apparatus 10 according to the present embodiment is configured such that the movable side unit 40 supported by the fixed side unit 20 via the main spring 12 vibrates against the elastic force of the main spring 12. However, when the movable side unit 40 is displaced by a predetermined amount from the neutral position of the vibration to the outside in the radial direction, the fixed side unit 20 abuts on the movable side unit 40 and further moves the movable side unit 40 in the radial direction. Since the secondary spring 14 that is compressed and elastically deformed when displaced outward is provided, the following operational effects can be obtained.
 すなわち、本実施形態に係る振動発電装置10が装着されたタイヤ2が回転すると、その回転速度が低いときには、可動側ユニット40が主バネ12の弾性力に抗して振動することにより発電が行われ、また、回転速度が上昇して、可動側ユニット40が遠心力Fによって径方向外側へ大きく変位したときには、その遠心力Fと副バネ14の弾性力とによって可動側ユニット40が振動し、これにより発電が行われることとなる。したがって、タイヤ2の回転速度が低いときでも高いときでも可動側ユニット40の振動により発電を行うことができる。 That is, when the tire 2 equipped with the vibration power generation device 10 according to this embodiment rotates, when the rotation speed is low, the movable unit 40 vibrates against the elastic force of the main spring 12 to generate power. In addition, when the rotational speed is increased and the movable side unit 40 is greatly displaced radially outward by the centrifugal force F, the movable side unit 40 vibrates by the centrifugal force F and the elastic force of the auxiliary spring 14, As a result, power generation is performed. Therefore, even when the rotation speed of the tire 2 is low or high, power can be generated by the vibration of the movable unit 40.
 その際、副バネ14は、可動側ユニット40が振動の中立位置から径方向外側へ所定量変位したとき該可動側ユニット40に当接する態様で固定側ユニット20に配置されているので、従来の振動発電装置のように第1のバネと第2のバネとがフレーム部材を介してその内外に2重に配置された構成とする必要をなくすことができる。したがって、振動発電装置10を容易に小型化することができ、これにより装着スペースが限られたタイヤ2への装着も容易に行うことができる。 At this time, the secondary spring 14 is disposed on the fixed side unit 20 in such a manner that it comes into contact with the movable side unit 40 when the movable side unit 40 is displaced by a predetermined amount from the neutral position of the vibration to the outside in the radial direction. It is possible to eliminate the need for a configuration in which the first spring and the second spring are doubled inside and outside through the frame member as in the vibration power generator. Therefore, the vibration power generation apparatus 10 can be easily reduced in size and can be easily mounted on the tire 2 having a limited mounting space.
 このように本実施形態によれば、タイヤ2に装着された状態で用いられる振動発電装置10において、タイヤ2の回転速度が低いときでも高いときでも発電を行うことができ、かつこれをタイヤ2に対して容易に装着することができる。 As described above, according to the present embodiment, in the vibration power generation apparatus 10 used in a state where the tire 2 is mounted, the power generation can be performed even when the rotation speed of the tire 2 is low or high, and this is applied to the tire 2. Can be easily mounted.
 本実施形態においては、副バネ14のバネ定数が主バネ12のバネ定数よりも大きい値に設定されているので、タイヤ2の回転速度がより高い高速回転領域においても発電を行うことができる。 In the present embodiment, since the spring constant of the auxiliary spring 14 is set to a value larger than the spring constant of the main spring 12, power generation can be performed even in a high-speed rotation region where the rotation speed of the tire 2 is higher.
 具体的には、本実施形態においては、各副バネ14として、各主バネ12のバネ定数に対して10~200倍のバネ定数のものが用いられており、これにより2つの副バネ14全体としてのバネ定数が、上下2対の主バネ12全体としてのバネ定数に対して5~100倍の値に設定されているので、各副バネ14の圧縮弾性変形による可動側ユニット40の振動を維持した上で、高速回転領域における発電を効率的に行うことができる。 Specifically, in the present embodiment, each secondary spring 14 has a spring constant of 10 to 200 times the spring constant of each main spring 12, whereby the two secondary springs 14 as a whole are used. Is set to a value 5 to 100 times larger than the spring constant of the two upper and lower main springs 12 as a whole. Therefore, the vibration of the movable unit 40 due to the compression elastic deformation of each auxiliary spring 14 is reduced. In addition, power generation in the high-speed rotation region can be performed efficiently.
 本実施形態においては、副バネ14が並列に2つ配置されているので、高速回転領域における可動側ユニット40の振動が、可動側ユニット40が傾斜してしまうことなく円滑に行われるようにすることができる。また、このように副バネ14が複数個配置された構成とすることにより、個々の副バネ14のバネ定数を小さくした場合にも、複数個の副バネ14全体としてのバネ定数を大きくすることができる。 In the present embodiment, since the two auxiliary springs 14 are arranged in parallel, the vibration of the movable side unit 40 in the high-speed rotation region is smoothly performed without the movable side unit 40 being inclined. be able to. In addition, by adopting a configuration in which a plurality of auxiliary springs 14 are arranged in this manner, even when the spring constant of each auxiliary spring 14 is reduced, the spring constant of the plurality of auxiliary springs 14 as a whole is increased. Can do.
 本実施形態においては、固定側ユニット20に導電コイル22が配置されるとともに可動側ユニット40が磁気回路ユニットとして構成されており、その上で、導電コイル22が振動の中立位置よりも径方向外側に配置された構成となっているので、タイヤ2の回転速度が低いときでも高いときでも発電効率を十分に高めることができる。 In the present embodiment, the conductive coil 22 is arranged in the fixed side unit 20 and the movable side unit 40 is configured as a magnetic circuit unit, on which the conductive coil 22 is radially outward from the neutral position of vibration. Therefore, even when the rotation speed of the tire 2 is low or high, the power generation efficiency can be sufficiently increased.
 特に本実施形態においては、振動の中立位置から径方向外側への導電コイル22の変位量が、タイヤ2の回転速度が低いときでも高いときでも、可動側ユニット40が正面視において導電コイル22と重複する位置を中心にして振動するような値に設定されているので、発電効率を最大限に高めることができる。 In particular, in the present embodiment, the movable unit 40 and the conductive coil 22 are viewed from the front when the displacement amount of the conductive coil 22 from the neutral position of vibration to the radially outer side is high or low when the rotation speed of the tire 2 is low or high. Since it is set to a value that vibrates around the overlapping position, the power generation efficiency can be maximized.
 上記実施形態においては、副バネ14が並列に2つ配置されているものとして説明したが、3つ以上の副バネが配置された構成とすることも可能であり、また、単一の副バネが配置された構成とすることも可能である。 In the above embodiment, two auxiliary springs 14 are arranged in parallel. However, a configuration in which three or more auxiliary springs are arranged is also possible, and a single auxiliary spring is also possible. It is also possible to adopt a configuration in which are arranged.
 上記実施形態のように可動側ユニット40の上下両側に左右1対の主バネ12がそれぞれ配置された構成とする代わりに、可動側ユニット40の上側に配置された左右1対のコイルバネからなる主バネにより可動側ユニット40が固定側ユニット20に吊り支持された構成とすることも可能である。 Instead of adopting a configuration in which a pair of left and right main springs 12 are respectively disposed on both upper and lower sides of the movable side unit 40 as in the above embodiment, a main pair of left and right coil springs disposed on the upper side of the movable side unit 40 is used. It is also possible to adopt a configuration in which the movable side unit 40 is suspended and supported by the fixed side unit 20 by a spring.
 上記実施形態においては、固定側ユニット20に導電コイル22が配置されるとともに可動側ユニット40が磁気回路ユニットとして構成されているものとして説明したが、固定側ユニット20に磁気回路ユニットが配置されるとともに、可動側ユニット40に導電コイル22が配置された構成とすることも可能である。 In the above-described embodiment, the conductive coil 22 is disposed in the fixed unit 20 and the movable unit 40 is configured as a magnetic circuit unit. However, the magnetic circuit unit is disposed in the fixed unit 20. In addition, a configuration in which the conductive coil 22 is arranged in the movable unit 40 is also possible.
 なお、上記実施形態において諸元として示した数値は一例にすぎず、これらを適宜異なる値に設定してもよいことはもちろんである。 It should be noted that the numerical values shown as specifications in the above embodiment are merely examples, and it is needless to say that these may be set to different values as appropriate.
 また、本願発明は、上記実施形態に記載された構成に限定されるものではなく、これ以外の種々の変更を加えた構成が採用可能である。 Further, the present invention is not limited to the configuration described in the above embodiment, and a configuration with various other changes can be adopted.
 2 タイヤ
 2a 内周壁
 4 路面
 10 振動発電装置
 12 主バネ
 14 副バネ
 20 固定側ユニット
 22 導電コイル
 24 コイルホルダ
 24a コイル収容部
 24b 位置決め凹部
 24c 切欠き部
 26 クッション材
 30 ケース
 30A、30B ハーフ部材
 30a 上端壁
 30b 下端壁
 30c 主バネ収容部
 30d 係止ピン
 30e 回路基板収容部
 30f 副バネ収容部
 32 回路基板
 34 コード
 40 可動側ユニット
 42 マグネット
 44 ヨーク
 46 マグネットホルダ
 C 可動空間
DESCRIPTION OF SYMBOLS 2 Tire 2a Inner peripheral wall 4 Road surface 10 Vibration power generator 12 Main spring 14 Sub spring 20 Fixed side unit 22 Conductive coil 24 Coil holder 24a Coil accommodating part 24b Positioning recessed part 24c Notch part 26 Cushion material 30 Case 30A, 30B Half member 30a Upper end Wall 30b Lower end wall 30c Main spring accommodating portion 30d Locking pin 30e Circuit board accommodating portion 30f Sub spring accommodating portion 32 Circuit board 34 Cord 40 Movable side unit 42 Magnet 44 Yoke 46 Magnet holder C Movable space

Claims (4)

  1.  タイヤに装着された状態で用いられる振動発電装置であって、
     固定側ユニットとこの固定側ユニットに主バネを介して支持された可動側ユニットとを備え、上記可動側ユニットが上記主バネの弾性力を利用して上記タイヤの径方向に振動することにより誘導起電力を生じさせるように構成された振動発電装置において、
     上記固定側ユニットに、上記可動側ユニットが上記振動の中立位置から径方向外側へ所定量変位したとき該可動側ユニットに当接するとともに該可動側ユニットがさらに径方向外側へ変位したとき圧縮弾性変形する副バネが配置されている、ことを特徴とする振動発電装置。
    A vibration power generator used in a state of being mounted on a tire,
    A stationary side unit and a movable side unit supported by the stationary side unit via a main spring, and the movable side unit is guided by vibrating in a radial direction of the tire using the elastic force of the main spring. In a vibration power generator configured to generate an electromotive force,
    When the movable side unit is displaced by a predetermined amount radially outward from the neutral position of the vibration, the fixed side unit abuts on the movable side unit and is compressed and elastically deformed when the movable side unit is further displaced radially outward. A vibration power generation device characterized in that a secondary spring is disposed.
  2.  上記副バネのバネ定数が、上記主バネのバネ定数よりも大きい値に設定されている、ことを特徴とする請求項1記載の振動発電装置。 The vibration power generator according to claim 1, wherein a spring constant of the auxiliary spring is set to a value larger than a spring constant of the main spring.
  3.  上記副バネが、並列に複数個配置されている、ことを特徴とする請求項1または2記載の振動発電装置。 The vibration power generator according to claim 1 or 2, wherein a plurality of the auxiliary springs are arranged in parallel.
  4.  上記固定側ユニットに導電コイルが配置されるとともに、上記可動側ユニットに磁気回路ユニットが配置されており、
     上記導電コイルが、上記振動の中立位置よりも径方向外側に配置されている、ことを特徴とする請求項1~3いずれか記載の振動発電装置。
    A conductive coil is arranged on the fixed side unit, and a magnetic circuit unit is arranged on the movable side unit,
    The vibration power generator according to any one of claims 1 to 3, wherein the conductive coil is disposed radially outside a neutral position of the vibration.
PCT/JP2014/069506 2013-08-28 2014-07-24 Vibration-based electric power generator WO2015029655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013176552A JP6070482B2 (en) 2013-08-28 2013-08-28 Vibration power generator
JP2013-176552 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015029655A1 true WO2015029655A1 (en) 2015-03-05

Family

ID=52586229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069506 WO2015029655A1 (en) 2013-08-28 2014-07-24 Vibration-based electric power generator

Country Status (2)

Country Link
JP (1) JP6070482B2 (en)
WO (1) WO2015029655A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043131A1 (en) * 2016-09-02 2018-03-08 アルプス電気株式会社 Power generation device
CN108370209A (en) * 2015-12-09 2018-08-03 株式会社普利司通 Power generator and tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712898B2 (en) * 2016-04-28 2020-06-24 日本電産コパル株式会社 Linear vibration motor
JP2018038150A (en) * 2016-08-30 2018-03-08 日本電産セイミツ株式会社 Vibration motor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117489A (en) * 2001-10-10 2003-04-22 Citizen Electronics Co Ltd Axially driven vibrator
WO2007121380A2 (en) * 2006-04-13 2007-10-25 Ciiis, Llc Motion-specific power generator unit and method of generating power using same
US20100194117A1 (en) * 2009-02-05 2010-08-05 Schlumberger Technology Corporation Electromagnetic device having compact flux paths for harvesting energy from vibrations
JP2010200479A (en) * 2009-02-25 2010-09-09 Bridgestone Corp Power generator inside tire
CN102064660A (en) * 2011-01-26 2011-05-18 麦伟仪 Rotor structure of resonant type permanent magnet linear generator
US20110133577A1 (en) * 2008-08-18 2011-06-09 In Ho Lee Horizontal linear vibration device
JP2011114884A (en) * 2009-11-24 2011-06-09 Takenaka Komuten Co Ltd Generation device
US20110193427A1 (en) * 2010-01-06 2011-08-11 Tremont Electric, Llc Electrical energy generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117489A (en) * 2001-10-10 2003-04-22 Citizen Electronics Co Ltd Axially driven vibrator
WO2007121380A2 (en) * 2006-04-13 2007-10-25 Ciiis, Llc Motion-specific power generator unit and method of generating power using same
US20110133577A1 (en) * 2008-08-18 2011-06-09 In Ho Lee Horizontal linear vibration device
US20100194117A1 (en) * 2009-02-05 2010-08-05 Schlumberger Technology Corporation Electromagnetic device having compact flux paths for harvesting energy from vibrations
JP2010200479A (en) * 2009-02-25 2010-09-09 Bridgestone Corp Power generator inside tire
JP2011114884A (en) * 2009-11-24 2011-06-09 Takenaka Komuten Co Ltd Generation device
US20110193427A1 (en) * 2010-01-06 2011-08-11 Tremont Electric, Llc Electrical energy generator
CN102064660A (en) * 2011-01-26 2011-05-18 麦伟仪 Rotor structure of resonant type permanent magnet linear generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370209A (en) * 2015-12-09 2018-08-03 株式会社普利司通 Power generator and tire
WO2018043131A1 (en) * 2016-09-02 2018-03-08 アルプス電気株式会社 Power generation device
CN109643946A (en) * 2016-09-02 2019-04-16 阿尔卑斯阿尔派株式会社 Power generator
US10855157B2 (en) 2016-09-02 2020-12-01 Alps Alpine Co., Ltd. Power generation device

Also Published As

Publication number Publication date
JP6070482B2 (en) 2017-02-01
JP2015047003A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
CN107276360B (en) Linear vibrator
US10328461B2 (en) Vibration motor
JP6195422B2 (en) Vibration motor
KR101467500B1 (en) Sensory signal output apparatus
JP5248598B2 (en) A permanent magnet generator for converting mechanical vibration energy into electrical energy.
WO2015029655A1 (en) Vibration-based electric power generator
KR101339606B1 (en) Linear vibrator
KR101055508B1 (en) Linear vibration motor
KR101944654B1 (en) Linear vibration motor
US20110316361A1 (en) Horizontal linear vibrator
KR20120086056A (en) Apparatus for generating vibration
KR20100119970A (en) Linear vibrator
CN105207440A (en) Magnetic balance guiding linear vibration motor
US9515540B2 (en) Linear vibrator
JP6174053B2 (en) Magnetostrictive vibration power generator
KR20150053106A (en) Linear vibration generating device
CN106655695B (en) Linear vibration motor
KR101079416B1 (en) A linear vibrator
KR20150053104A (en) Linear vibration generating device
KR20110125988A (en) A linear vibrator
KR20110125987A (en) A linear vibrator
KR20120064808A (en) Linear vibration
KR101275286B1 (en) Linear vibration motor
WO2018097110A1 (en) Electric power generating element, and smart key
WO2017098912A1 (en) Power generation device and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839970

Country of ref document: EP

Kind code of ref document: A1