JP2009100523A - Permanent magnet element and oscillating generator, and acceleration sensor - Google Patents

Permanent magnet element and oscillating generator, and acceleration sensor Download PDF

Info

Publication number
JP2009100523A
JP2009100523A JP2007268565A JP2007268565A JP2009100523A JP 2009100523 A JP2009100523 A JP 2009100523A JP 2007268565 A JP2007268565 A JP 2007268565A JP 2007268565 A JP2007268565 A JP 2007268565A JP 2009100523 A JP2009100523 A JP 2009100523A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
magnet element
cylindrical body
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007268565A
Other languages
Japanese (ja)
Inventor
Iichi Okuno
猪一 奥野
Kazuhiro Nishimura
一寛 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2007268565A priority Critical patent/JP2009100523A/en
Publication of JP2009100523A publication Critical patent/JP2009100523A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new permanent magnet element, which can be used for a generator or an accelerator sensor, a generator which is simple, small and reliable which can reduce its parts count by using this permanent magnet element, and can set the generated voltage to high, and to provide an acceleration sensor. <P>SOLUTION: The permanent magnet element is constituted, being accommodated in an oscillating manner in the axial direction of a tubular body, in the nonmagnetic tubular body 2, where a coil 3 is wound around a peripheral face orthogonal to its axial direction, and it is obtained by combining a plurality of permanent magnets; the permanent magnet element 1 is constituted of a first permanent magnet body 5, where the respective homopoles of two permanent magnets are counterposed to each other, in the axial direction of the nonmagnetic tubular body and the axial centers are fixed with magnetic substances; and a second permanent magnet body 6 which is magnetically coupled with the axial outer face of the nonmagnetic tubular body of this first permanent magnet body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は永久磁石素子およびこの永久磁石素子を用いた発電機および加速度センサに関し、特に同極同士を対向させて固定した一体型磁石を振動させることで軸方向に生じる急激な磁束変化を利用して外周面に設置されたコイルに発生する誘導起電力を利用する発電機および加速度センサに関する。   The present invention relates to a permanent magnet element and a generator and an acceleration sensor using the permanent magnet element. In particular, the present invention utilizes an abrupt magnetic flux change that occurs in the axial direction by vibrating an integrated magnet that is fixed with opposite poles facing each other. The present invention relates to a generator and an acceleration sensor that use an induced electromotive force generated in a coil installed on an outer peripheral surface.

ある方向の磁界(磁場)内を導体が動いたときに、その導体内に電流が流れる現象を利用する発電機および加速度センサとして従来技術1〜従来技術4が知られている。
従来技術1(特許文献1)は、ハウジング内に一対の永久磁石およびをそれらの同極性に対向して互いに離隔して配置させ、それらの磁石の間にコイルを移動させることで発生した電圧をオペアンプに接続している構造である。コイルの移動距離が短いためにコイルの巻数を多く巻く必要があり、現に35μmΦのコイルを2000ターン巻いたものを使用している。そして、コイルの巻回厚さは、0.1mmの厚さと限られたものとなっている。
しかし、従来技術1は、磁束量は同極性に対向させていてもコイルを通過する磁束の通過方向と磁束量の向上が考慮されていないため、コイル巻きに高度な技術を必要として、しかも電圧の成果は低いものとなっている。対向する同極性の対面間の磁束を活用しようとするからであり効果が少ないと考えられる。
また、従来技術1は、ポールの内部でベクトル的に直線となる位置にコイルを置いて加速度センサとするものが最高の検出値がとりだせるものであり、この構造では漏れ磁束で検出されているにすぎない。さらに、コイルが35μmΦの細線となると高価となり、断線が生じやすくなるなど、製品に仕上げた場合は信頼性がない製品となる。
Prior art 1 to prior art 4 are known as a generator and an acceleration sensor that utilize a phenomenon in which a current flows in a conductor when the conductor moves in a magnetic field (magnetic field) in a certain direction.
In Prior Art 1 (Patent Document 1), a pair of permanent magnets and a pair of permanent magnets are arranged in a housing so as to face each other with the same polarity and are separated from each other, and a voltage generated by moving a coil between these magnets. It is a structure connected to an operational amplifier. Since the moving distance of the coil is short, it is necessary to wind a large number of turns of the coil. Actually, a coil of 35 μmΦ wound with 2000 turns is used. The coil winding thickness is limited to a thickness of 0.1 mm.
However, since the prior art 1 does not consider the passage direction of the magnetic flux passing through the coil and the improvement of the magnetic flux amount even if the amount of magnetic flux is opposed to the same polarity, the coil winding requires advanced technology and voltage. The result is low. It is considered that the effect is small because it is intended to utilize the magnetic flux between facing opposite faces of the same polarity.
Further, in the prior art 1, an acceleration sensor by placing a coil at a position that is linearly linear within the pole can extract the highest detection value, and this structure detects the leakage flux. Only. Furthermore, when the coil is a thin wire of 35 μmΦ, it becomes expensive, and disconnection is likely to occur. Thus, when the product is finished, the product becomes unreliable.

従来技術2(特許文献2)は、文献1と同じでハウジング内の中央にホール素子を置きパイプの両側に一対の永久磁石を同極性に対面させて斥力により、パイプの両側に押し付けられている。ハウジングに加速度を加えることで永久磁石は移動する。このとき中央の磁束密度の変化をホール素子で検知をする。したがって、出力電圧を得るためにはホール素子に電流を流す必要がある。
しかし、従来技術2は、永久磁石間の磁束密度の変化を捉える方法であるが、駆動のために電源が必要となる問題がある。
Prior art 2 (patent document 2) is the same as document 1, and a hall element is placed in the center of the housing and a pair of permanent magnets are faced to the same polarity on both sides of the pipe and pressed against both sides of the pipe by repulsive force. . The permanent magnet moves by applying acceleration to the housing. At this time, a change in magnetic flux density at the center is detected by a Hall element. Therefore, in order to obtain an output voltage, it is necessary to pass a current through the Hall element.
However, although the prior art 2 is a method of capturing a change in magnetic flux density between permanent magnets, there is a problem that a power source is required for driving.

従来技術3(特許文献3)は、文献1、2同様に類似の構造であり、ここでは永久磁石の漏れ磁石の循環磁束を永久磁石の外側に巻いたコイルで誘導起電力として検出する。
しかし、従来技術3の漏れ磁束をコイルに通過させる方式では誘導起電力が微弱な電圧であり、直接負荷に供給して利用するには電圧を昇圧させなければならないなどの問題があり、直接に負荷を駆動させる電力とすることは困難である。この負荷は発光照明程度である。
Prior art 3 (patent document 3) has a similar structure as in documents 1 and 2, and here, the circulating magnetic flux of the leakage magnet of the permanent magnet is detected as an induced electromotive force by a coil wound around the permanent magnet.
However, in the method of passing the leakage magnetic flux of the prior art 3 through the coil, the induced electromotive force is a weak voltage, and there is a problem that the voltage must be boosted in order to directly supply and use the load. It is difficult to use power for driving the load. This load is about light emitting illumination.

従来技術4(特許文献4)は、これも文献1、2、3と同様であり、漏れ循環磁束をコイルで誘導起電力として取り出している。
しかし、従来技術4は、可動磁石から放出される漏れ磁束をコイルに通過させており、磁束の通過量が少なく誘導起電力も少ない。そこで、このコイルを2個直接に接続して電圧を昇圧させることで利用している。この構造でも直接負荷に接続する場合の電圧は不足する場合が多く、コイル巻き数を多く巻く必要がある。
Prior art 4 (patent document 4) is also similar to documents 1, 2, and 3, and the leakage circulation magnetic flux is extracted as an induced electromotive force by a coil.
However, in the prior art 4, the leakage magnetic flux emitted from the movable magnet is passed through the coil, and the amount of magnetic flux passing is small and the induced electromotive force is also small. Therefore, the two coils are directly connected to increase the voltage. Even in this structure, the voltage when directly connected to the load is often insufficient, and it is necessary to wind a large number of coil turns.

従来技術1〜従来技術4は、漏れ循環磁束をコイルで誘導起電力として取り出しているものであり、これらの構成で発電できるのは、漏れ循環磁束を誘導起電力として得る方法に頼っている。よって、磁軸の側面からコイルの芯までの角度とその距離と変化させる速度で誘導起電力の大きさが決まる。この離隔距離を如何に小さくした製品に仕上げることができるか、コイル巻き数を多くすることで製品の性能が問われることになり、あまり距離を近づけることができなかった。そのため誘導起電力には限界があった。例えば、この現象を利用する従来の永久磁石発電機やセンサに使用される永久磁石から放出されている磁束密度は、直径6mm、長さ20mmの円柱の、ネオジム磁石で磁軸側面の磁束密度は、0.466(T)であり、距離が遠くなるほど磁束密度も低下する。たとえば側面からの離隔5mmの磁束密度は0.0638(T)これが離隔20mmでは0.00389(T)ほどに低下する。そして、コイルを貫く磁束の方向と揺動磁石から放出される磁束の方向は磁軸の方向に放出され、コイルを通過し循環する経路を通り一巡する。これは漏れ磁束を捉えている現象である。   Prior art 1 to prior art 4 take out leakage circulation magnetic flux as an induced electromotive force with a coil, and power generation with these configurations relies on a method for obtaining leakage circulation magnetic flux as induction electromotive force. Therefore, the magnitude of the induced electromotive force is determined by the angle from the side surface of the magnetic axis to the core of the coil, its distance, and the changing speed. The product performance can be questioned by increasing the number of coil turns, so that the product can be finished to a product with a small separation distance, and the distance cannot be made too close. Therefore, the induced electromotive force has a limit. For example, the magnetic flux density emitted from the permanent magnets used in conventional permanent magnet generators and sensors that utilize this phenomenon is a cylindrical neodymium magnet with a diameter of 6 mm and a length of 20 mm. 0.466 (T), and the magnetic flux density decreases as the distance increases. For example, the magnetic flux density at a distance of 5 mm from the side surface is 0.0638 (T), and when the distance is 20 mm, the magnetic flux density decreases to about 0.00389 (T). The direction of the magnetic flux passing through the coil and the direction of the magnetic flux emitted from the oscillating magnet are released in the direction of the magnetic axis, and make a round through a path passing through the coil and circulating. This is a phenomenon that captures leakage magnetic flux.

上記従来技術を改良し、発電のための負荷が少なく、発生電圧が高い高出力、高効率の小型携帯発電機を得るために、同極同士を微小な距離を有して対向させ、長さ方向に着磁した複数の永久磁石を一体化し、磁束分布の変化を急峻にするとともに、磁束の方向をコイルの巻き方向に概略直角になるようにし、磁束を局所的に高密度にし、一体化した複数の永久磁石の外周に複数のコイルを直列に配置し、該コイルは適宜の間隔を有し、交互に巻き方向が逆になるように構成し、上記一体化した永久磁石を移動させることにより発電する振動発電機が知られている(特許文献5)。
しかしながら、この方法においても、一体化した永久磁石の構造については検討されていない。例えば、磁束分布の変化の急峻性または直線性については考慮されていない。また、発電機とした場合の漏れ磁界についても考慮されておらず、さらには加速度センサについては開示されていない。
In order to improve the above prior art and obtain a small portable generator with high output and high efficiency with low load for power generation and high generated voltage, the same poles face each other with a minute distance, and the length Integrates a plurality of permanent magnets magnetized in the direction, steeply changes the magnetic flux distribution, makes the direction of the magnetic flux approximately perpendicular to the winding direction of the coil, and makes the magnetic flux locally dense and integrated A plurality of coils are arranged in series on the outer periphery of the plurality of permanent magnets, the coils are arranged at appropriate intervals, and the winding directions are alternately reversed, and the integrated permanent magnet is moved. There is known a vibration generator that generates electric power (Patent Document 5).
However, even in this method, the structure of the integrated permanent magnet has not been studied. For example, the steepness or linearity of changes in magnetic flux distribution is not considered. Further, the leakage magnetic field in the case of the generator is not taken into consideration, and further, the acceleration sensor is not disclosed.

特開平6−27135号公報JP-A-6-27135 特開平5−113448号公報Japanese Patent Laid-Open No. 5-113448 特開2002−281727号公報JP 2002-281727 A 特開表2001−508280号公報JP-A-2001-508280 特開2006−296144号公報JP 2006-296144 A

本発明は、上記課題に対処するためになされたもので、発電機および加速度センサに用いることができる新規の永久磁石素子、およびこの永久磁石素子を用いることで、簡素で部品点数を少なくでき小型で信頼性に優れ、発生電圧を高くできる発電機および加速度センサの提供を目的とする。   The present invention has been made in order to address the above-described problems. A novel permanent magnet element that can be used for a generator and an acceleration sensor, and the use of this permanent magnet element can simplify the number of components and reduce the size. An object of the present invention is to provide a generator and an acceleration sensor that are excellent in reliability and can generate a high voltage.

本発明の永久磁石素子は、軸方向と直交する外周面にコイルが巻回された非磁性筒状体内に、該筒状体の軸方向に振動可能に収容されて使用され、複数の永久磁石を組み合わせて得られ、上記永久磁石素子は、2個の永久磁石の同極同士を非磁性筒状体の軸方向に対向させて該軸方向中心部を磁性体で固定した第1の永久磁石体と、この第1の永久磁石体の非磁性筒状体の軸方向外面に磁気結合された第2の永久磁石体とからなることを特徴とする。   The permanent magnet element of the present invention is used in a non-magnetic cylindrical body having a coil wound around an outer peripheral surface orthogonal to the axial direction so as to vibrate in the axial direction of the cylindrical body. The permanent magnet element is a first permanent magnet in which the same poles of two permanent magnets are opposed to each other in the axial direction of the non-magnetic cylindrical body, and the central portion in the axial direction is fixed with a magnetic body. And a second permanent magnet body magnetically coupled to the outer surface in the axial direction of the nonmagnetic cylindrical body of the first permanent magnet body.

また、永久磁石素子を構成する第1の永久磁石体における同極同士は、相互に密接して対向していることを特徴とする。
また、上記第1の永久磁石体および第2の永久磁石体から構成される永久磁石素子は、複数個で構成される第1の永久磁石体と、この第1の永久磁石体の非磁性筒状体の軸方向外面間に磁気結合された第2の永久磁石体とからなり、複数個の第1の永久磁石体における対向固定された磁極は第2の永久磁石体を挟んで磁極が異なることを特徴とする。
Further, the same poles in the first permanent magnet body constituting the permanent magnet element are in close contact with each other.
The permanent magnet element composed of the first permanent magnet body and the second permanent magnet body includes a plurality of first permanent magnet bodies and a nonmagnetic cylinder of the first permanent magnet body. A second permanent magnet body magnetically coupled between the outer surfaces in the axial direction of the rod-like body, and the oppositely fixed magnetic poles of the plurality of first permanent magnet bodies have different magnetic poles across the second permanent magnet body It is characterized by that.

本発明の振動発電機は、軸方向と直交する外周面にコイルが巻回された非磁性筒状体と、この筒状体に収容された上記本発明に係る永久磁石素子とを含み、この永久磁石素子を上記非磁性筒状体内で振動させることにより、非磁性筒状体の外周面に巻回されたコイルに電圧を発生させることを特徴とする。
また、本発明の振動発電機は、非磁性筒状体の外周面に巻回されたコイルの外周に嵌合できる磁性筒状体を設けることを特徴とする。
The vibration generator of the present invention includes a non-magnetic cylindrical body having a coil wound on an outer peripheral surface orthogonal to the axial direction, and the permanent magnet element according to the present invention housed in the cylindrical body. A voltage is generated in a coil wound around the outer peripheral surface of the nonmagnetic cylindrical body by vibrating the permanent magnet element in the nonmagnetic cylindrical body.
The vibration generator according to the present invention is characterized in that a magnetic cylindrical body that can be fitted to the outer periphery of a coil wound around the outer peripheral surface of the non-magnetic cylindrical body is provided.

本発明の加速度センサは、軸方向と直交する外周面にコイルが巻回された非磁性筒状体と、この筒状体に収容された上記本発明に係る永久磁石素子とを含み、この永久磁石素子に印加された加速度を非磁性筒状体の外周面に巻回されたコイルに発生した電力として検知することを特徴とする。   The acceleration sensor of the present invention includes a non-magnetic cylindrical body having a coil wound on an outer peripheral surface orthogonal to the axial direction, and the permanent magnet element according to the present invention housed in the cylindrical body. The acceleration applied to the magnet element is detected as electric power generated in a coil wound around the outer peripheral surface of the non-magnetic cylindrical body.

本発明の永久磁石素子は、2個の永久磁石の同極同士を非磁性筒状体の軸方向に対向させて該軸方向中心部を磁性体で固定した第1の永久磁石体と、この第1の永久磁石体の非磁性筒状体の軸方向外面に磁気結合された第2の永久磁石体とから構成されるので、第1の永久磁石体において対向された配置された一体型の磁石の中間部分から放出される磁束密度の最高値と永久磁石の中間地点で極性変換する最低値の変化を変化率としてコイルで捉える機構となる。その結果、振動発電機の永久磁石素子として用いると、非磁性筒状体の外周面に巻回されたコイルが誘導起電力として発電する電力比率は高効率となる。また、加速度センサとして用いると、磁束の変化率が一定になる領域が広くなるので、大きな振幅でも出力が線形的になる。
上記効果は、第1の永久磁石体を磁性体で固定することにより、また、永久磁石素子を構成する第1の永久磁石体における同極同士を相互に密接して対向させることにより、中間部分から放出される磁束密度がより高くなり、発電効率が高まる。また、該対向で磁束の変化率が一定になるので、加速度センサとしての出力の線形性が向上する。
The permanent magnet element of the present invention includes a first permanent magnet body in which the same poles of two permanent magnets are opposed to each other in the axial direction of the non-magnetic cylindrical body, and the axial center portion is fixed with a magnetic body. Since the second permanent magnet body is magnetically coupled to the outer surface in the axial direction of the non-magnetic cylindrical body of the first permanent magnet body, the one-piece integrated type disposed opposite to the first permanent magnet body This is a mechanism that captures the change in the maximum value of the magnetic flux density emitted from the intermediate portion of the magnet and the minimum value of polarity conversion at the intermediate point of the permanent magnet as a change rate by the coil. As a result, when used as a permanent magnet element of a vibration power generator, the power ratio that the coil wound around the outer peripheral surface of the non-magnetic cylindrical body generates as an induced electromotive force becomes high efficiency. Further, when used as an acceleration sensor, the region where the rate of change of magnetic flux becomes constant becomes wider, so that the output becomes linear even with a large amplitude.
The above effect is achieved by fixing the first permanent magnet body with a magnetic body, and by making the same poles in the first permanent magnet body constituting the permanent magnet element face each other in close contact with each other. The magnetic flux density emitted from the battery becomes higher and the power generation efficiency increases. In addition, since the rate of change of the magnetic flux becomes constant at the opposite side, the linearity of the output as the acceleration sensor is improved.

本発明の永久磁石素子は、複数個で構成される第1の永久磁石体と、磁気結合された第2の永久磁石体とから構成され、複数個の第1の永久磁石体における対向固定された磁極が第2の永久磁石体を挟んで磁極が異なるので、第1の永久磁石体と第2の永久磁石体とを容易に磁気結合することができる。
また、磁力線の閉回路を構成しやすくなり、永久磁石素子を振動させても定位置に戻ろうとする復元作用が働きやすくなる。さらに永久磁石素子を非磁性筒状体内部空間に保持しようとする力が発生して非磁性筒状体内面と永久磁石素子外面との摩擦を減少させることができ、非磁性筒状体内部で永久磁石素子を容易に振動させることができる。
The permanent magnet element of the present invention is composed of a plurality of first permanent magnet bodies and a magnetically coupled second permanent magnet body, which are fixedly opposed to each other in the plurality of first permanent magnet bodies. Since the magnetic poles are different from each other with the second permanent magnet body interposed therebetween, the first permanent magnet body and the second permanent magnet body can be easily magnetically coupled.
In addition, it becomes easy to construct a closed circuit of magnetic lines of force, and a restoring action to return to a fixed position even if the permanent magnet element is vibrated easily. Further, a force is generated to hold the permanent magnet element in the inner space of the non-magnetic cylindrical body, so that friction between the inner surface of the non-magnetic cylindrical body and the outer surface of the permanent magnet element can be reduced. The permanent magnet element can be easily vibrated.

本発明の振動発電機は、軸方向と直交する外周面にコイルが巻回された非磁性筒状体と、この筒状体に収容される上記本発明に係る永久磁石素子とから構成されるので発電効率が高まる。その結果、別電源で増幅させるか、または、コイル巻き数を増やし電圧昇圧を計ることなく、そのままで直接負荷に接続することが可能な発電機が得られる。
特に非磁性筒状体の外周面に巻回されたコイルの外周に嵌合できる磁性筒状体を設けるので、外部の漏れ磁界を低減できる。また、対向固定された異なる磁極の永久磁石体を組み合わせることで、反発面での磁束が循環し,もれ磁場を低減でき,安定した発電が図れる。
The vibration generator according to the present invention includes a nonmagnetic cylindrical body having a coil wound around an outer peripheral surface orthogonal to the axial direction, and the permanent magnet element according to the present invention housed in the cylindrical body. As a result, power generation efficiency increases. As a result, it is possible to obtain a generator that can be directly connected to a load without being amplified by a separate power source or without increasing the number of coil turns and measuring the voltage boost.
In particular, since the magnetic cylindrical body that can be fitted to the outer periphery of the coil wound around the outer peripheral surface of the nonmagnetic cylindrical body is provided, an external leakage magnetic field can be reduced. In addition, by combining permanent magnet bodies with different magnetic poles fixed opposite to each other, the magnetic flux on the rebound surface circulates, and the leakage magnetic field can be reduced, thereby achieving stable power generation.

本発明の加速度センサは、軸方向と直交する外周面にコイルが巻回された非磁性筒状体と、この筒状体に収容された上記本発明に係る永久磁石素子とから構成されるので磁束の変化が一定になる幅が広くなる。その結果、大きな振幅でも出力が線形的になる。また、駆動のための電源が要らないので、無給電加速度センサが得られる。   Since the acceleration sensor of the present invention is composed of a non-magnetic cylindrical body in which a coil is wound around an outer peripheral surface orthogonal to the axial direction, and the permanent magnet element according to the present invention housed in the cylindrical body. The width in which the change of the magnetic flux becomes constant becomes wider. As a result, the output becomes linear even with a large amplitude. Further, since no power source is required for driving, a non-powered acceleration sensor can be obtained.

振動発電機ならびに加速度センサに利用できる本発明の永久磁石素子を図1〜図6で説明する。
図1は、永久磁石素子が収容されている状態を示す図であり、図2は永久磁石素子の断面図であり、図3および図4は第1の永久磁石体の組立斜視図であり、図5および図6は対向する磁極を変化させた場合の永久磁石体の組み合わせによる磁束密度の変化を表す図である。
本発明の永久磁石素子1は非磁性筒状体2内の軸方向に振動可能に収容されて使用される。非磁性筒状体2はその外周面にコイル3が筒状体2の軸方向と直交する方向に巻回されている。また、好ましくは非磁性筒状体2の外周面に巻回されたコイル3の外周に嵌合できる磁性筒状体4が設けられている。
A permanent magnet element of the present invention that can be used in a vibration generator and an acceleration sensor will be described with reference to FIGS.
1 is a view showing a state in which a permanent magnet element is accommodated, FIG. 2 is a cross-sectional view of the permanent magnet element, FIGS. 3 and 4 are assembly perspective views of a first permanent magnet body, 5 and 6 are diagrams showing changes in magnetic flux density due to combinations of permanent magnet bodies when the opposing magnetic poles are changed.
The permanent magnet element 1 of the present invention is housed and used so as to vibrate in the axial direction in the non-magnetic cylindrical body 2. The non-magnetic cylindrical body 2 has a coil 3 wound around the outer peripheral surface thereof in a direction perpendicular to the axial direction of the cylindrical body 2. A magnetic cylindrical body 4 that can be fitted to the outer periphery of the coil 3 wound around the outer peripheral surface of the nonmagnetic cylindrical body 2 is preferably provided.

本発明の永久磁石素子1は、第1の永久磁石体5と第2の永久磁石体6とが相互に磁気結合されている。本発明において、「磁気結合」とは永久磁石体においてS極とN極が磁力により相互に固着していることをいう。
第1の永久磁石体5は、図3に示すように、永久磁石体5aおよび5bの例えばN極同士を対向させ、永久磁石体5aおよび5bの中心部を貫通する磁性体7を準備し(図3(a))、対向させたN極同士を相互に密接させて磁性体7を中心部に貫通させ(図3(b))、磁性体7の頭をかしめることで永久磁石体5aおよび5bを対向固定させる(図3(c))。
固定方法としては、図4に示すように、磁性体7aおよび7bの結合部を雄ねじおよび雌ねじの構造として、永久磁石体5aおよび5bを対向固定させることができる。
In the permanent magnet element 1 of the present invention, a first permanent magnet body 5 and a second permanent magnet body 6 are magnetically coupled to each other. In the present invention, “magnetic coupling” means that the S and N poles are fixed to each other by a magnetic force in a permanent magnet body.
As shown in FIG. 3, the first permanent magnet body 5 is prepared with a magnetic body 7 that faces, for example, the N poles of the permanent magnet bodies 5 a and 5 b and penetrates the central portions of the permanent magnet bodies 5 a and 5 b ( 3 (a)), the N poles opposed to each other are brought into close contact with each other so that the magnetic body 7 penetrates through the center (FIG. 3 (b)), and the head of the magnetic body 7 is caulked to thereby permanent magnet body 5a. And 5b are fixed to face each other (FIG. 3C).
As the fixing method, as shown in FIG. 4, the permanent magnet bodies 5a and 5b can be fixed opposite to each other, with the coupling portion of the magnetic bodies 7a and 7b having a male screw and female screw structure.

永久磁石体5aおよび5bは、僅かな隙間を有して対向させてもよいが、本発明においては、相互に密接して固定されていることが好ましい。
磁束密度の変化を示す図において、図5(a)は1つの永久磁石体における磁束密度の変化図であり、図5(b)は異極同士を対向させた2つの永久磁石体における磁束密度の変化図であり、図5(c)は同極同士を1mmの間隔で対向させた2つの永久磁石体における磁束密度の変化図であり、図6(a)は同極同士を5mmの間隔で対向させた2つの永久磁石体における磁束密度の変化図であり、図6(b)は同極同士を10mmの間隔で対向させた2つの永久磁石体における磁束密度の変化図である。
1つの永久磁石体の場合、磁石体のN極の端面を0mmとし、磁石体の長さを20mmとした例では、その磁石体の長さ方向の距離xを横軸に、磁束密度Bを縦軸に表すと、磁束密度Bの変化は図5(a)に示される凸分布となる。
2つの永久磁石体の異なる磁極を僅かな隙間を持たせて対向させた場合、その隙間に応じて山中央部分がくびれた凸分布となる(図5(b))。この山中央部分がくびれは2つの永久磁石体の離間距離が大きくなるに従い大きくなる。
2つの永久磁石体の同じ磁極を対向させた場合(図5(c)ではN極同士)、磁束密度は磁石体の対向しているN極の端面で反転し、その離間距離が大きくなるに従い磁束密度の線形性が失われる(図5(c)〜図6(b))。
このため、第1の永久磁石体5において、永久磁石体5aおよび5bは相互に密接して固定されていることが好ましい。
The permanent magnet bodies 5a and 5b may be opposed to each other with a slight gap. However, in the present invention, the permanent magnet bodies 5a and 5b are preferably fixed in close contact with each other.
FIG. 5A is a diagram showing a change in magnetic flux density in one permanent magnet body, and FIG. 5B is a magnetic flux density in two permanent magnet bodies in which different polarities are opposed to each other. FIG. 5C is a variation diagram of magnetic flux density in two permanent magnet bodies in which the same poles are opposed to each other at an interval of 1 mm, and FIG. 6A is an interval of 5 mm between the same poles. FIG. 6B is a change diagram of magnetic flux density in two permanent magnet bodies in which the same poles face each other at an interval of 10 mm.
In the case of one permanent magnet body, in the example in which the end face of the N pole of the magnet body is 0 mm and the length of the magnet body is 20 mm, the distance x in the length direction of the magnet body is taken as the horizontal axis, and the magnetic flux density B is When expressed on the vertical axis, the change in the magnetic flux density B has a convex distribution shown in FIG.
When the different magnetic poles of the two permanent magnet bodies are opposed to each other with a slight gap, a convex distribution with a constricted central part of the mountain is formed according to the gap (FIG. 5B). The constriction at the center of the mountain increases as the distance between the two permanent magnet bodies increases.
When the same magnetic poles of two permanent magnet bodies are made to face each other (N poles in FIG. 5 (c)), the magnetic flux density is reversed at the end faces of the facing N poles of the magnet body, and the separation distance increases. The linearity of the magnetic flux density is lost (FIG. 5 (c) to FIG. 6 (b)).
For this reason, in the first permanent magnet body 5, the permanent magnet bodies 5a and 5b are preferably fixed in close contact with each other.

なお、本発明において、振動発電機または加速度センサとして有効に働くことができる永久磁石体5aおよび5bの離間距離は、磁束密度の変化が直線性を示す範囲であればよい。その目安として、例えば、直径6mmΦ、長さ5mmの永久磁石に、直径6mmΦの純鉄を吸着させたときの純鉄端の磁場を縦軸に、その長さを横軸に取ったものを図7に示す。この永久磁石は永久磁石体5aと6を磁気結合したものに対応し、純鉄は磁性体7に対応している。図7は、永久磁石のみの磁場についてもその端から長さを変化させたものも示している。この磁場の変化が直線的になる距離まで、すなわち15mmの距離までが直線性を保つ目安とした。この長さは一方の磁石についてのものであり、対称性からその長さを2倍した30mmが直線を保つ長さと考えられる。永久磁石の長さの約6倍の長さまで直線性を保つと考えられる。   In the present invention, the separation distance between the permanent magnet bodies 5a and 5b that can effectively function as a vibration generator or an acceleration sensor may be within a range in which a change in magnetic flux density exhibits linearity. As a guideline, for example, the figure shows the magnetic field at the end of pure iron when the pure iron with a diameter of 6 mmΦ is adsorbed on a permanent magnet with a diameter of 6 mmΦ and a length of 5 mm, and the length is plotted on the horizontal axis. 7 shows. This permanent magnet corresponds to the magnetic coupling of the permanent magnet bodies 5 a and 6, and the pure iron corresponds to the magnetic body 7. FIG. 7 also shows a magnetic field of only a permanent magnet, the length of which is changed from the end. Up to a distance where the change of the magnetic field is linear, that is, up to a distance of 15 mm was used as a guideline for maintaining linearity. This length is for one of the magnets, and 30 mm, which is twice the length, is considered to be a length that maintains a straight line because of symmetry. It is considered that the linearity is maintained up to about six times the length of the permanent magnet.

本発明に使用できる第2の永久磁石体6はN極およびS極を両端面に有する単一の永久磁石体である。
本発明に使用できる第1および第2の永久磁石体は、着磁された、フェライト磁石、アルニコ磁石、サマリウムコバルト磁石、ネオジム磁石等を使用できる。なかでも、磁力の強さ、減磁曲線の直線性などから、サマリウムコバルト磁石、ネオジウム磁石が好ましい。
また、これらの材料を用いて、鋳造磁石、焼結磁石、ボンド磁石、プラスチック磁石等とした永久磁石体を使用できる。
第1の永久磁石体5を結合させるための磁性体7は、永久磁石の磁力によって磁化される軟磁性体であればよく、鉄、コバルト、ニッケル、またはこれらの合金である強磁性体が好ましい。
The second permanent magnet body 6 that can be used in the present invention is a single permanent magnet body having N poles and S poles at both end faces.
As the first and second permanent magnet bodies that can be used in the present invention, a magnetized ferrite magnet, alnico magnet, samarium cobalt magnet, neodymium magnet, or the like can be used. Of these, samarium cobalt magnets and neodymium magnets are preferred in view of the strength of the magnetic force and the linearity of the demagnetization curve.
Also, permanent magnets such as cast magnets, sintered magnets, bonded magnets, and plastic magnets can be used using these materials.
The magnetic body 7 for coupling the first permanent magnet body 5 may be a soft magnetic body that is magnetized by the magnetic force of the permanent magnet, and is preferably a ferromagnetic body that is iron, cobalt, nickel, or an alloy thereof. .

本発明の永久磁石素子1は、図2に示すように、第1の永久磁石体5と第2の永久磁石体6とが相互に磁気結合されている。第1の永久磁石体5は、同極同士が磁性体で結合されているので、この永久磁石体5に磁気結合される永久磁石体6の外面の磁極は永久磁石体5の外面の磁極と同極となる。そのため、N極同士を対向させた永久磁石体5Nと、S極同士を対向させた永久磁石体5Sと第2の永久磁石体6とが容易に磁気結合により配列できる。なお、第1の永久磁石体5の両側に第2の永久磁石体6を磁気結合させた永久磁石体を複数個形成した後に、それらを磁気結合させてもよく、または第1の永久磁石体5同士を直接永久磁石体6で磁気結合させてもよい。
第1の永久磁石体5間に永久磁石体6を挟んで配列することで、永久磁石素子1の振動幅を調節することができる。また、第1の永久磁石体5は円筒磁石であるので永久磁石体6に比較して磁束密度が小さくなるため、出力を大きくできる効果がある。
また、第1の永久磁石体5の数は、少なくとも2個以上あれば振動発電機ならびに加速度センサに利用したとき効果を生じるが、3個以上とすることで反発面での磁束が循環し、もれ磁場を低減でき、安定化が図れる。
In the permanent magnet element 1 of the present invention, as shown in FIG. 2, a first permanent magnet body 5 and a second permanent magnet body 6 are magnetically coupled to each other. Since the first permanent magnet body 5 has the same polarity coupled by a magnetic body, the magnetic pole on the outer surface of the permanent magnet body 6 magnetically coupled to the permanent magnet body 5 is the same as the magnetic pole on the outer surface of the permanent magnet body 5. It becomes the same pole. Therefore, the permanent magnet body 5N in which the N poles face each other, the permanent magnet body 5S in which the S poles face each other, and the second permanent magnet body 6 can be easily arranged by magnetic coupling. In addition, after forming a plurality of permanent magnet bodies in which the second permanent magnet bodies 6 are magnetically coupled to both sides of the first permanent magnet body 5, they may be magnetically coupled, or the first permanent magnet body. 5 may be directly magnetically coupled by the permanent magnet body 6.
By arranging the permanent magnet body 6 between the first permanent magnet bodies 5, the vibration width of the permanent magnet element 1 can be adjusted. In addition, since the first permanent magnet body 5 is a cylindrical magnet, the magnetic flux density is smaller than that of the permanent magnet body 6, so that the output can be increased.
In addition, if the number of the first permanent magnet bodies 5 is at least 2 or more, an effect is obtained when used for a vibration generator and an acceleration sensor, but by setting the number to 3 or more, the magnetic flux on the rebound surface circulates, Leakage magnetic field can be reduced and stabilization can be achieved.

本発明の振動発電機について図8により説明する。振動発電機9は、外周面にコイル3が筒状体2の軸方向と直交する方向に巻回されている非磁性筒状体2と、コイル3の外周に嵌合できる磁性筒状体4と、筒状体2に収容された永久磁石素子1とから構成される。非磁性筒状体2の内部両端にはバネ10が、永久磁石素子1の両端には緩衝材8がそれぞれ設けられている。   The vibration generator of the present invention will be described with reference to FIG. The vibration generator 9 includes a non-magnetic cylindrical body 2 in which the coil 3 is wound on the outer peripheral surface in a direction orthogonal to the axial direction of the cylindrical body 2, and a magnetic cylindrical body 4 that can be fitted to the outer periphery of the coil 3. And the permanent magnet element 1 accommodated in the cylindrical body 2. Springs 10 are provided at both ends of the nonmagnetic cylindrical body 2, and cushioning materials 8 are provided at both ends of the permanent magnet element 1.

非磁性筒状体2の外周面には、軸方向と直交する方向にコイル3が巻回されているが、永久磁石体5aおよび5bを相互に密接して固定した第1の永久磁石体5を有する上記永久磁石素子1を用いた振動発電機において、(1)コイル3は複数個設け、その巻回方向は隣り合うコイルが相互に逆方向となるようにし、(2)コイル3が巻回されているコイル幅を磁石素子の長さから振動の振幅を差し引いた長さとし、(3)コイル3の間隔を磁石素子の長さからコイルの幅を差し引いた長さとし、(4)コイル3の個数を磁石素子数個とした場合に、発電出力を大きく取ることができる。ここで磁石素子の長さL3は第1の永久磁石体5の両端に第2の永久磁石体6を磁気結合した長さをいう。 A coil 3 is wound around the outer peripheral surface of the nonmagnetic cylindrical body 2 in a direction orthogonal to the axial direction, and the first permanent magnet body 5 in which the permanent magnet bodies 5a and 5b are fixed in close contact with each other. (1) A plurality of coils 3 are provided, and the winding directions thereof are such that adjacent coils are opposite to each other, and (2) the coil 3 is wound. The coil width being rotated is the length obtained by subtracting the amplitude of vibration from the length of the magnet element, (3) the interval between the coils 3 is the length obtained by subtracting the width of the coil from the length of the magnet element, and (4) the coil 3 When the number of magnets is several magnet elements, a large power generation output can be obtained. Here, the length L 3 of the magnet element means a length obtained by magnetically coupling the second permanent magnet body 6 to both ends of the first permanent magnet body 5.

コイル3は非磁性筒状体2の軸方向中央部に複数個設けることが好ましい。特に永久磁石素子1が複数個の第1の永久磁石体5を有する場合、コイル3を複数個設けることで永久磁石素子1の振動に伴う出力を効率的に取り出せる。
また、コイル3の巻回方向は隣り合うコイルが相互に逆方向となるようにすることが好ましい。なお、巻回方向は実質的に逆になるように構成すればよいので、コイルをすべて同方向に巻回し、隣接するコイルの巻始め端と巻終わり端とを交互に入れ換えて直列に接続してもよい。
It is preferable to provide a plurality of coils 3 at the axially central portion of the nonmagnetic cylindrical body 2. In particular, when the permanent magnet element 1 has a plurality of first permanent magnet bodies 5, the output accompanying the vibration of the permanent magnet element 1 can be efficiently extracted by providing a plurality of coils 3.
The winding direction of the coil 3 is preferably such that adjacent coils are opposite to each other. Since the winding direction may be substantially reversed, all the coils are wound in the same direction, and the winding start ends and winding end ends of adjacent coils are alternately switched and connected in series. May be.

コイル3が巻回されているコイル幅L1は、磁石素子の長さL3から振動の振幅を差し引いた長さが好ましい。この長さとすることで、磁束密度が急峻に変化する領域で磁石素子を振動させることができるので発電効率が向上する。 The coil width L 1 around which the coil 3 is wound is preferably a length obtained by subtracting the amplitude of vibration from the length L 3 of the magnet element. By setting the length, the magnet element can be vibrated in a region where the magnetic flux density changes sharply, so that power generation efficiency is improved.

コイル3の間隔の長さL2は磁石素子の長さL3からコイルの幅の長さL1を差し引いた長さが好ましい。この長さとすることで、磁束密度の変化が振動の振幅に対して対象となる位置となるため、出力波形の直線性や発電効率が向上する。 The distance L 2 between the coils 3 is preferably a length obtained by subtracting the length L 1 of the coil width from the length L 3 of the magnet element. By setting this length, the change in the magnetic flux density becomes a target position with respect to the amplitude of vibration, so that the linearity of the output waveform and the power generation efficiency are improved.

コイルの個数は磁石素子数個とすることが好ましい。磁石素子数個とすることで、磁束密度が急峻に変化する位置に設定できるので、発電効率が向上する。   The number of coils is preferably several magnet elements. By setting the number of magnet elements to several, it is possible to set the magnetic flux density at a position where the magnetic flux density changes sharply, thereby improving the power generation efficiency.

コイル3の外周に嵌合できる磁性筒状体4は、強磁性体で形成することが好ましい。磁性筒状体4を設けた場合の磁力線の分布を図9に示す。図9において磁力線11および12は破線で示される。図9に示すように、磁性筒状体4を強磁性体にすることで外部の漏れ磁界を低減できる。また、磁石素子1を振動させても、磁力線11および12の作用により、定位置に戻ろうとする復元力を磁石素子1に与えることができる。この強磁性体は、上記第1の永久磁石体5を結合させるため用いた磁性体と同一の材料を用いることができる。   The magnetic cylindrical body 4 that can be fitted to the outer periphery of the coil 3 is preferably formed of a ferromagnetic material. FIG. 9 shows the distribution of magnetic lines of force when the magnetic cylindrical body 4 is provided. In FIG. 9, the magnetic lines 11 and 12 are indicated by broken lines. As shown in FIG. 9, an external leakage magnetic field can be reduced by making the magnetic cylindrical body 4 a ferromagnetic body. Further, even if the magnet element 1 is vibrated, the restoring force for returning to a fixed position can be applied to the magnet element 1 by the action of the magnetic lines of force 11 and 12. As this ferromagnetic material, the same material as the magnetic material used for coupling the first permanent magnet body 5 can be used.

磁性筒状体4の長さL4は、磁石素子の長さL3と磁石素子の個数をかけたものに振動の振幅を2倍した長さが好ましい。この長さであると漏れ磁界、摩擦を低減でき、出力を増大させることができる。 The length L 4 of the magnetic cylindrical body 4 is preferably a length obtained by multiplying the length L 3 of the magnet element by the number of magnet elements and doubling the amplitude of vibration. With this length, the leakage magnetic field and friction can be reduced, and the output can be increased.

本発明の振動発電機において、非磁性筒状体2の形状は上記永久磁石素子を収容し筒状体の軸方向に振動させることができる形状であればよい。磁束密度が周面で均一となると考えられることから、永久磁石素子1が断面円柱状で、非磁性筒状体2が断面円筒状であることが好ましい。なお、携帯電話などの薄型機器の電源として用いる場合は、非磁性筒状体2を断面偏平円筒状とすることができる。   In the vibration power generator of the present invention, the shape of the nonmagnetic cylindrical body 2 may be any shape that can accommodate the permanent magnet element and vibrate in the axial direction of the cylindrical body. Since the magnetic flux density is considered to be uniform on the peripheral surface, it is preferable that the permanent magnet element 1 has a columnar cross section and the non-magnetic cylindrical body 2 has a cylindrical cross section. In addition, when using as a power supply of thin apparatuses, such as a mobile telephone, the nonmagnetic cylindrical body 2 can be made into a cross-sectional flat cylindrical shape.

非磁性筒状体2の材質は、磁石素子1を内部に収容し、振動させることができる機械的強度を有し、非磁性体であれば使用できる。例えば、プラスチック、セラミックス、これらの複合材料などを挙げることができる。中でも機械的強度と摺動性に優れた樹脂または樹脂組成物を用いることが好ましい。非磁性筒状体2内部に摺動性塗膜を形成することも好ましい。
また、コイル3は断面が円形または四角形の巻線を巻回して使用できる。
The material of the non-magnetic cylindrical body 2 has a mechanical strength that allows the magnet element 1 to be housed inside and vibrates, and any non-magnetic material can be used. For example, plastics, ceramics, and composite materials thereof can be used. Among them, it is preferable to use a resin or a resin composition excellent in mechanical strength and slidability. It is also preferable to form a slidable coating film inside the non-magnetic cylindrical body 2.
The coil 3 can be used by winding a winding having a circular or square cross section.

図8に示す振動発電機の製造方法としては、磁石素子1、非磁性筒状体2、コイル3、磁性筒状体4をそれぞれ準備して、順に組み立てることができる。また、金型内に磁性筒状体4およびコイル3を収納して、一体成形法により非磁性筒状体2を形成することができる。   As a method for manufacturing the vibration generator shown in FIG. 8, the magnet element 1, the nonmagnetic cylindrical body 2, the coil 3, and the magnetic cylindrical body 4 can be prepared and assembled in sequence. In addition, the magnetic cylindrical body 4 and the coil 3 can be housed in the mold, and the nonmagnetic cylindrical body 2 can be formed by an integral molding method.

本発明の振動発電機は、非磁性筒状体2内部の一体となった磁石素子1を振動させることで、コイル3の巻数を多くするなど、外側の重さを重くすることで大きな発電力が生まれる。そのため、オペアンプなどを必要とすることなく電力を取り出すことができる。
また、人の動きに対応した周波数である数Hzから十数Hzに共振周波数を持たせることができるため、人が携帯した際に共振周波数付近の動作をすることで発電効果を高くできる。また、整流回路を用いることで直流電源とすることができる。
用途としては、デシタルカメラ電源、時計、各種リモコン、パソコン・マウス、電動歯ブラシの電源として利用できる。また、乾電池の代替として、各種玩具類、緊急災害機器の電源、懐中電灯に利用できる。潮汐力発電機、地震警報器、携帯電話の充電池、魔法瓶、信号機の電源等に利用できる。
The vibration generator of the present invention generates a large amount of power by increasing the weight of the outside, such as increasing the number of turns of the coil 3 by vibrating the magnet element 1 integrated inside the non-magnetic cylindrical body 2. Is born. Therefore, power can be taken out without requiring an operational amplifier or the like.
In addition, since the resonance frequency can be set from several Hz to several tens of Hz, which is a frequency corresponding to the movement of the person, the power generation effect can be increased by operating near the resonance frequency when the person carries the object. In addition, a DC power supply can be obtained by using a rectifier circuit.
It can be used as a power source for digital camera power supplies, watches, various remote controls, personal computers / mouses, and electric toothbrushes. As an alternative to dry batteries, it can be used for various toys, power supplies for emergency disaster equipment, and flashlights. It can be used for tidal power generators, earthquake alarms, mobile phone rechargeable batteries, thermos bottles, traffic lights, etc.

本発明の加速度センサは、上記振動発電機において、永久磁石素子に印加された加速度をコイルに発生した電力として検知することで作動する。磁石体7の長さを調節することで低い周波数で大きな振幅に対応させることができる。その場合、図7の結果より、線形性を保つためには、磁性体の長さは磁石素子の長さL3の3倍まで離すことができる。
また、線形性を保ち、出力が大きくなるので、オペアンプなどが必要ない。そのため、駆動のための電源が要らない無給電振動センサが得られる。
用途としては、自動車の衝突時のセンサ、エアー・バッグの動作センサに応用できる。
The acceleration sensor of the present invention operates by detecting the acceleration applied to the permanent magnet element as electric power generated in the coil in the vibration generator. By adjusting the length of the magnet body 7, it is possible to cope with a large amplitude at a low frequency. In that case, from the result of FIG. 7, in order to maintain linearity, the length of the magnetic body can be separated up to three times the length L 3 of the magnet element.
In addition, since linearity is maintained and the output becomes large, an operational amplifier or the like is not necessary. Therefore, a parasitic vibration sensor that does not require a power source for driving can be obtained.
As a use, it can be applied to a sensor at the time of collision of an automobile and an operation sensor of an air bag.

実施例1
外径24mmφ、内径5mmφ、長さ4mmのネオジム円柱状永久磁石を準備し、その内径部分の一端面を拡径して軸方向断面が漏斗状になるように加工した。このネオジム円柱状永久磁石を着磁して、2個の永久磁石をS極同士またはN極同士であって小径部分を軸方向に密接して対向させ、中心部を貫通する磁性体(材質はパーマロイ(PC78))でかしめて固定した。この密接固定された2個の永久磁石の両側に外径23.5mmφ、長さ25mmの着磁されたネオジム円柱状永久磁石を磁気結合して永久磁石素子を得た。N極同士を固定した永久磁石素子と、S極同士を固定した永久磁石素子と、N極同士を固定した永久磁石素子とを順に磁気結合して永久磁石素子を得た。永久磁石素子の軸方向外面に緩衝部材としてSUSバネを取付けた。
Example 1
A neodymium cylindrical permanent magnet having an outer diameter of 24 mmφ, an inner diameter of 5 mmφ, and a length of 4 mm was prepared and processed so that one end face of the inner diameter portion was expanded to have a funnel-shaped cross section in the axial direction. This neodymium cylindrical permanent magnet is magnetized, and the two permanent magnets are S poles or N poles, with the small diameter portion closely contacting each other in the axial direction, and a magnetic material (material is penetrating through the center) It was fixed by caulking with Permalloy (PC78)). A permanent magnet element was obtained by magnetically coupling a magnetized neodymium cylindrical permanent magnet having an outer diameter of 23.5 mmφ and a length of 25 mm on both sides of the two closely fixed permanent magnets. A permanent magnet element in which N poles were fixed, a permanent magnet element in which S poles were fixed, and a permanent magnet element in which N poles were fixed were sequentially magnetically coupled to obtain a permanent magnet element. A SUS spring was attached as a buffer member to the outer surface in the axial direction of the permanent magnet element.

実施例2
外径54mmφ、内径27.2mmφ、長さ160.6mmのポリアセタール樹脂(ジュラコン)製円筒を準備し、この円筒の中央外周部分をくり抜いて、コイル幅の長さ25mmのコイルを2mmの間隔をあけて3個埋め込み配置した。コイルの巻回方向はそれぞれ異なる方向とした。また、コイルは0.4mmφのポリエステル線を1500ターン巻回した。3個のコイルの接続は巻回方向が異なるように直列接続として、コイル端末を出力端子に接続した。このコイルの外周に厚さ2mm、長さ100mmの磁性筒状体(材質はパーマロイ(PC78))を嵌合固定した。
この円筒内に実施例1で得られた永久磁石素子を挿入して円筒体を密封して振動発電機を得た。
Example 2
A cylinder made of polyacetal resin (Duracon) with an outer diameter of 54 mmφ, an inner diameter of 27.2 mmφ, and a length of 160.6 mm is prepared, and the central outer peripheral portion of this cylinder is cut out, and a coil with a coil width of 25 mm is spaced by 2 mm. 3 embedded. The winding directions of the coils were different from each other. Further, the coil was wound by 1500 turns of a 0.4 mmφ polyester wire. The connection of the three coils was connected in series so that the winding directions were different, and the coil terminal was connected to the output terminal. A magnetic cylindrical body (material is permalloy (PC78)) having a thickness of 2 mm and a length of 100 mm was fitted and fixed to the outer periphery of the coil.
The permanent magnet element obtained in Example 1 was inserted into the cylinder, and the cylinder was sealed to obtain a vibration generator.

得られた振動発電機を加振機(エア・ブラウン社製MODEL113)に円筒軸方向に振動するように設置して、周波数を1Hz〜20Hzまで変化させてその出力を測定した。結果を図10〜図13に示す。
図10は加振機の周波数が3Hz時の出力波形を破線で示し、図11は同5Hz時の出力波形を破線で示す。図12は出力電圧を、図13出力電力をそれぞれ示す。
周波数が1Hzおよび2Hzでは測定できる出力が見られず、周波数が3Hzでは正弦波ではないが最大の出力を示した。5Hzでは正常な正弦波出力が見られた。
The obtained vibration generator was installed in a vibrator (MODEL 113 manufactured by Air Brown) so as to vibrate in the cylindrical axis direction, and the output was measured by changing the frequency from 1 Hz to 20 Hz. The results are shown in FIGS.
10 shows the output waveform when the frequency of the vibrator is 3 Hz by a broken line, and FIG. 11 shows the output waveform when the frequency is 5 Hz by a broken line. FIG. 12 shows the output voltage, and FIG. 13 shows the output power.
No measurable output was seen at frequencies of 1 Hz and 2 Hz, and a maximum output was shown at a frequency of 3 Hz, although not a sine wave. A normal sine wave output was observed at 5 Hz.

実施例3
実施例2で得られた振動発電機を加速度センサとして評価した。
実施例2と同一の加振機を用いて、加速度Gと負荷抵抗とを変化させた場合の出力値を測定した。結果を表1に示す。

Figure 2009100523
Example 3
The vibration generator obtained in Example 2 was evaluated as an acceleration sensor.
Using the same vibrator as in Example 2, the output value when the acceleration G and the load resistance were changed was measured. The results are shown in Table 1.
Figure 2009100523

本発明は、反発磁石間から放出される循環磁束を移動させることで発電機ならびに加速度センサとして、簡素で小型、高性能で高信頼性の特徴を有する。デシタルカメラ電源、時計、各種リモコン、パソコン・マウス、電動歯ブラシの電源として利用できる。また、乾電池の代替として、各種玩具類、緊急災害機器の電源、懐中電灯に利用できる。潮汐力発電機、地震警報器、携帯電話の充電池、魔法瓶、信号機の電源等に利用できる。   The present invention has features of simple, small size, high performance and high reliability as a generator and an acceleration sensor by moving a circulating magnetic flux released between repulsive magnets. It can be used as a power source for digital camera power supplies, watches, various remote controls, personal computers / mouses, and electric toothbrushes. As an alternative to dry batteries, it can be used for various toys, power supplies for emergency disaster equipment, and flashlights. It can be used for tidal power generators, earthquake alarms, mobile phone rechargeable batteries, thermos bottles, traffic lights, etc.

永久磁石素子が収容されている状態を示す図である。It is a figure which shows the state in which the permanent magnet element is accommodated. 永久磁石素子の断面図である。It is sectional drawing of a permanent magnet element. 第1の永久磁石体の組立斜視図である。It is an assembly perspective view of the 1st permanent magnet body. 第1の永久磁石体の他の組立斜視図である。It is another assembly perspective view of the 1st permanent magnet body. 永久磁石体の組み合わせによる磁束密度の変化を表す図である。It is a figure showing the change of the magnetic flux density by the combination of a permanent magnet body. 永久磁石体の組み合わせによる磁束密度の変化を表す他の図である。It is another figure showing the change of the magnetic flux density by the combination of a permanent magnet body. 永久磁石体の離間距離を変化させたときの出力図である。It is an output figure when the separation distance of a permanent magnet body is changed. 本発明の振動発電機を示す図である。It is a figure which shows the vibration generator of this invention. 磁性筒状体を設けた場合の磁力線の分布を示す図である。It is a figure which shows distribution of the magnetic force line at the time of providing a magnetic cylindrical body. 加振機の周波数が3Hz時の出力波形を示す図である。It is a figure which shows the output waveform when the frequency of a vibration exciter is 3 Hz. 加振機の周波数が5Hz時の出力波形を示す図である。It is a figure which shows the output waveform when the frequency of a vibration exciter is 5 Hz. 加振機の周波数を変化させたときの出力電圧を示す図である。It is a figure which shows an output voltage when changing the frequency of a vibration exciter. 加振機の周波数を変化させたときの出力電力を示す図である。It is a figure which shows output electric power when changing the frequency of a vibration exciter.

符号の説明Explanation of symbols

1 永久磁石素子
2 非磁性筒状体
3 コイル
4 磁性筒状体
5 第1の永久磁石体
6 第2の永久磁石体
7 磁性体
8 緩衝材
9 振動発電機
10 バネ
11 磁力線
12 磁力線
DESCRIPTION OF SYMBOLS 1 Permanent magnet element 2 Nonmagnetic cylindrical body 3 Coil 4 Magnetic cylindrical body 5 1st permanent magnet body 6 2nd permanent magnet body 7 Magnetic body 8 Buffer material 9 Vibration generator 10 Spring 11 Magnetic field line 12 Magnetic field line

Claims (6)

軸方向と直交する外周面にコイルが巻回された非磁性筒状体内に、該筒状体の軸方向に振動可能に収容されて使用され、複数の永久磁石を組み合わせて得られる永久磁石素子であって、
該永久磁石素子は、2個の永久磁石の同極同士を前記筒状体の軸方向に対向させて該軸方向中心部を磁性体で固定した第1の永久磁石体と、この第1の永久磁石体の前記筒状体の軸方向外面に磁気結合された第2の永久磁石体とからなることを特徴とする永久磁石素子。
Permanent magnet element obtained by combining a plurality of permanent magnets in a non-magnetic cylindrical body having a coil wound around an outer peripheral surface orthogonal to the axial direction and housed so as to vibrate in the axial direction of the cylindrical body Because
The permanent magnet element includes a first permanent magnet body in which the same poles of two permanent magnets are opposed to each other in the axial direction of the cylindrical body, and the central portion in the axial direction is fixed with a magnetic body. A permanent magnet element comprising: a second permanent magnet body magnetically coupled to an outer surface in the axial direction of the cylindrical body of the permanent magnet body.
前記第1の永久磁石体における同極同士は、相互に密接して対向していることを特徴とする請求項1記載の永久磁石素子。   2. The permanent magnet element according to claim 1, wherein the same poles in the first permanent magnet body are in close contact with each other. 前記第1の永久磁石体および第2の永久磁石体から構成される永久磁石素子は、複数個の前記第1の永久磁石体と、この第1の永久磁石体の前記筒状体の軸方向外面間に磁気結合された第2の永久磁石体とからなり、前記複数個の前記第1の永久磁石体における対向固定された磁極は前記第2の永久磁石体を挟んで磁極が異なることを特徴とする請求項1または請求項2記載の永久磁石素子。   The permanent magnet element composed of the first permanent magnet body and the second permanent magnet body includes a plurality of the first permanent magnet bodies and an axial direction of the cylindrical body of the first permanent magnet bodies. A second permanent magnet body magnetically coupled between outer surfaces, and the oppositely fixed magnetic poles of the plurality of first permanent magnet bodies are different from each other across the second permanent magnet body. The permanent magnet element according to claim 1 or 2, characterized in that 軸方向と直交する外周面にコイルが巻回された非磁性筒状体と、この筒状体に収容された永久磁石素子とを含み、この永久磁石素子を前記非磁性筒状体内で振動させることにより、前記コイルに電圧を発生させる振動発電機において、
前記永久磁石素子が請求項1、請求項2または請求項3記載の永久磁石素子であることを特徴とする振動発電機。
A non-magnetic cylindrical body having a coil wound on an outer peripheral surface orthogonal to the axial direction; and a permanent magnet element housed in the cylindrical body, the permanent magnet element being vibrated in the non-magnetic cylindrical body In the vibration generator that generates a voltage in the coil,
The vibration generator according to claim 1, wherein the permanent magnet element is the permanent magnet element according to claim 1.
前記コイルの外周に嵌合できる磁性筒状体を設けることを特徴とする請求項4記載の振動発電機。   The vibration generator according to claim 4, wherein a magnetic cylindrical body that can be fitted to an outer periphery of the coil is provided. 軸方向と直交する外周面にコイルが巻回された非磁性筒状体と、この筒状体に収容された永久磁石素子とを含み、この永久磁石素子に印加された加速度を前記コイルに発生した電力として検知する加速度センサにおいて、
前記永久磁石素子が請求項1、請求項2または請求項3記載の永久磁石素子であることを特徴とする加速度センサ。
A non-magnetic cylindrical body in which a coil is wound on an outer peripheral surface orthogonal to the axial direction and a permanent magnet element housed in the cylindrical body, and an acceleration applied to the permanent magnet element is generated in the coil In the acceleration sensor that detects it as
An acceleration sensor, wherein the permanent magnet element is the permanent magnet element according to claim 1, claim 2, or claim 3.
JP2007268565A 2007-10-16 2007-10-16 Permanent magnet element and oscillating generator, and acceleration sensor Pending JP2009100523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268565A JP2009100523A (en) 2007-10-16 2007-10-16 Permanent magnet element and oscillating generator, and acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268565A JP2009100523A (en) 2007-10-16 2007-10-16 Permanent magnet element and oscillating generator, and acceleration sensor

Publications (1)

Publication Number Publication Date
JP2009100523A true JP2009100523A (en) 2009-05-07

Family

ID=40703032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268565A Pending JP2009100523A (en) 2007-10-16 2007-10-16 Permanent magnet element and oscillating generator, and acceleration sensor

Country Status (1)

Country Link
JP (1) JP2009100523A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105190A1 (en) * 2010-02-25 2011-09-01 ブラザー工業株式会社 Method for producing homopolar opposing magnets, and oscillation generator
WO2011114822A1 (en) * 2010-03-17 2011-09-22 ブラザー工業株式会社 Vibration-based power generator
WO2012073980A1 (en) * 2010-11-30 2012-06-07 セイコーインスツル株式会社 Electromagnetic generator
KR101172706B1 (en) 2010-12-08 2012-08-09 국방과학연구소 Energy Harvester and Portable Electronic Device
WO2012127859A1 (en) * 2011-03-22 2012-09-27 スミダコーポレーション株式会社 Vibration power generator
JP2013055717A (en) * 2011-08-31 2013-03-21 Brother Ind Ltd Oscillating generator
JP2014011891A (en) * 2012-06-29 2014-01-20 Ulvac Japan Ltd Portable type power generator
US8631532B2 (en) 2011-07-25 2014-01-21 Braun Gmbh Oral hygiene device
KR101354158B1 (en) 2012-09-28 2014-01-23 울산대학교 산학협력단 Vibration-driven eletromagnetic energy harvester
JP2015084647A (en) * 2015-02-03 2015-04-30 スミダコーポレーション株式会社 Oscillating electromagnetic generator
US9099939B2 (en) 2011-07-25 2015-08-04 Braun Gmbh Linear electro-polymer motors and devices having the same
US9154025B2 (en) 2010-07-23 2015-10-06 Braun Gmbh Personal care device
US9226808B2 (en) 2011-07-25 2016-01-05 Braun Gmbh Attachment section for an oral hygiene device
WO2016067368A1 (en) * 2014-10-28 2016-05-06 下西技研工業株式会社 Electrodynamic pickup
US10470857B2 (en) 2010-07-23 2019-11-12 Braun Gmbh Personal care device
DE102018219705A1 (en) * 2018-11-16 2020-05-20 Zf Friedrichshafen Ag Vehicle component with a vibration unit

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176966A (en) * 2010-02-25 2011-09-08 Brother Industries Ltd Method for producing homopolar opposing magnets, and oscillation generator
WO2011105190A1 (en) * 2010-02-25 2011-09-01 ブラザー工業株式会社 Method for producing homopolar opposing magnets, and oscillation generator
WO2011114822A1 (en) * 2010-03-17 2011-09-22 ブラザー工業株式会社 Vibration-based power generator
JP2011199916A (en) * 2010-03-17 2011-10-06 Brother Industries Ltd Vibration-based power generator
US9154025B2 (en) 2010-07-23 2015-10-06 Braun Gmbh Personal care device
US10470857B2 (en) 2010-07-23 2019-11-12 Braun Gmbh Personal care device
WO2012073980A1 (en) * 2010-11-30 2012-06-07 セイコーインスツル株式会社 Electromagnetic generator
KR101172706B1 (en) 2010-12-08 2012-08-09 국방과학연구소 Energy Harvester and Portable Electronic Device
US9240710B2 (en) 2011-03-22 2016-01-19 Sumida Corporation Vibration-powered generator
WO2012127859A1 (en) * 2011-03-22 2012-09-27 スミダコーポレーション株式会社 Vibration power generator
US8631532B2 (en) 2011-07-25 2014-01-21 Braun Gmbh Oral hygiene device
US9099939B2 (en) 2011-07-25 2015-08-04 Braun Gmbh Linear electro-polymer motors and devices having the same
US9226808B2 (en) 2011-07-25 2016-01-05 Braun Gmbh Attachment section for an oral hygiene device
US10327876B2 (en) 2011-07-25 2019-06-25 Braun Gmbh Oral cleaning tool for an oral hygiene device
JP2013055717A (en) * 2011-08-31 2013-03-21 Brother Ind Ltd Oscillating generator
JP2014011891A (en) * 2012-06-29 2014-01-20 Ulvac Japan Ltd Portable type power generator
KR101354158B1 (en) 2012-09-28 2014-01-23 울산대학교 산학협력단 Vibration-driven eletromagnetic energy harvester
WO2016067368A1 (en) * 2014-10-28 2016-05-06 下西技研工業株式会社 Electrodynamic pickup
JP2015084647A (en) * 2015-02-03 2015-04-30 スミダコーポレーション株式会社 Oscillating electromagnetic generator
DE102018219705A1 (en) * 2018-11-16 2020-05-20 Zf Friedrichshafen Ag Vehicle component with a vibration unit

Similar Documents

Publication Publication Date Title
JP2009100523A (en) Permanent magnet element and oscillating generator, and acceleration sensor
JP4704093B2 (en) Vibration generator
US6936937B2 (en) Linear electric generator having an improved magnet and coil structure, and method of manufacture
JP4315811B2 (en) Dynamic magnet system
JP5660479B2 (en) Power switch
JP2011166894A (en) Oscillating generator
JP5418485B2 (en) Vibration generator
JP2011147276A (en) Oscillation type electromagnetic power generator
JP2010279145A (en) Oscillating generator
US20090284020A1 (en) Vibration electric power generator
JP2012039824A (en) Vibration generator
ATE525782T1 (en) LINEAR DRIVE DEVICE WITH AN ANCHOR BODY HAVING A MAGNETIC CARRIER
JP2004050154A (en) Vibration generating device
CN206640487U (en) Linear vibrator
JP2012249442A (en) Oscillating generator
JP2596857Y2 (en) Moving magnet type actuator
KR101172706B1 (en) Energy Harvester and Portable Electronic Device
JP2012151982A (en) Vibration power generator
JP5327110B2 (en) Vibration generator
JP2012151985A (en) Vibration power generator
CN110557000B (en) Vibration generator device and ringing device
RU2304342C1 (en) Reciprocate motion generator
JP2011166893A (en) Oscillating generator
JPH11155273A (en) Vibration device
JP5758068B2 (en) Electromagnetic induction generator