JP4649668B2 - Vibration type electromagnetic generator - Google Patents

Vibration type electromagnetic generator Download PDF

Info

Publication number
JP4649668B2
JP4649668B2 JP2007286416A JP2007286416A JP4649668B2 JP 4649668 B2 JP4649668 B2 JP 4649668B2 JP 2007286416 A JP2007286416 A JP 2007286416A JP 2007286416 A JP2007286416 A JP 2007286416A JP 4649668 B2 JP4649668 B2 JP 4649668B2
Authority
JP
Japan
Prior art keywords
magnet
pipe
type electromagnetic
electromagnetic generator
vibration type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007286416A
Other languages
Japanese (ja)
Other versions
JP2009118581A (en
Inventor
哲男 吉田
幸雄 會沢
耕市 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumida Corp
Original Assignee
Sumida Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Corp filed Critical Sumida Corp
Priority to JP2007286416A priority Critical patent/JP4649668B2/en
Publication of JP2009118581A publication Critical patent/JP2009118581A/en
Application granted granted Critical
Publication of JP4649668B2 publication Critical patent/JP4649668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

本発明は、例えば、複数個のソレノイドコイルで構成する発電コイルの中を、長さ方向に着磁された複数個の磁石を含む可動磁石が振動することにより発電を行う振動型電磁発電機に関する。   The present invention relates to a vibration type electromagnetic generator that generates power when a movable magnet including a plurality of magnets magnetized in a length direction vibrates in a power generation coil composed of a plurality of solenoid coils, for example. .

近年、携帯電話やゲーム機などの携帯電子機器の普及が進み、これらに内蔵されている2次電池の量がますます多くなってきている。また、無線技術の発展にともない、微小電力で信号を送受するRFID(Radio Frequency IDentification)の応用が拡がっている。特に電源を有するアクティブRFIDは、数百メートル以上の通信も可能である。このため、牧場の牛や馬などの健康管理や、子供達の登下校時の安全管理等への応用に期待が高まっている。   In recent years, portable electronic devices such as mobile phones and game machines have been widely used, and the amount of secondary batteries incorporated therein has been increasing. In addition, with the development of wireless technology, the application of RFID (Radio Frequency IDentification) that transmits and receives signals with minute power is expanding. In particular, an active RFID having a power source can communicate over several hundred meters. For this reason, it is expected to be applied to health management of cattle and horses in the ranch and safety management when children go to school.

一方、地球環境の維持改善のため、できるだけ環境負荷の少ない電池の研究開発も活発に行われている。その中で、通常無意識かつ無駄に消費されているエネルギーを電気エネルギーに変換して、充電し、この電気エネルギーを携帯機器などの電源として利用することが広く考えられている。   On the other hand, in order to maintain and improve the global environment, research and development of batteries with as little environmental impact as possible are being actively conducted. Among them, it is widely considered that energy that is normally unconsciously and wastefully consumed is converted into electric energy and charged, and this electric energy is used as a power source for a portable device or the like.

特許文献1には、外部から加わる振動によって発電する振動型電磁発電機について開示されている。ここで、図10を参照して、振動型電磁発電機100の構成例について説明する。振動型電磁発電機100は、中空のパイプ105と、パイプ105に巻回された2個のソレノイドコイル104a,104bと、パイプ105の内部を移動可能な可動磁石101を備える。可動磁石101は、2個の磁石102a,102bを備える。磁石102a,102bは、非磁性体のスペーサ103を介して、同極が向かい合うように接合される。振動型電磁発電機100に振動が加わると、可動磁石101がソレノイドコイル104a,104bの巻き軸方向に往復振動し、発電する。
特表2007−521785号公報
Patent Document 1 discloses a vibration type electromagnetic generator that generates electric power by vibration applied from the outside. Here, with reference to FIG. 10, the structural example of the vibration type electromagnetic generator 100 is demonstrated. The vibration electromagnetic generator 100 includes a hollow pipe 105, two solenoid coils 104 a and 104 b wound around the pipe 105, and a movable magnet 101 that can move inside the pipe 105. The movable magnet 101 includes two magnets 102a and 102b. The magnets 102a and 102b are joined through the non-magnetic spacer 103 so that the same poles face each other. When vibration is applied to the vibration type electromagnetic generator 100, the movable magnet 101 reciprocally vibrates in the direction of the winding axis of the solenoid coils 104a and 104b to generate power.
Special table 2007-521785 gazette

従来の振動型電磁発電機100は、小型でありながら発電効率が高いという利点がある。発電効率を高めるには、Nd(ネオジム)磁石等に代表されるエネルギー積の大きな磁石を使用する必要がある。しかし、磁石102a,102bの同極を向かい合わせて近づけると互いの反発力が大きくなってしまう。このため、簡素なスペーサ103では磁石102a,102bを十分に支持し、固定できない。   The conventional vibration type electromagnetic generator 100 has an advantage of high power generation efficiency while being small. In order to increase the power generation efficiency, it is necessary to use a magnet having a large energy product, such as an Nd (neodymium) magnet. However, when the same poles of the magnets 102a and 102b are brought close to each other, the repulsive force between them increases. For this reason, the simple spacer 103 sufficiently supports the magnets 102a and 102b and cannot be fixed.

また、磁石102a,102bの同極を向かい合わせると互いに反発するため、例えば、複数個の磁石とスペーサを、まっすぐに接合することは極めて難しい。仮に、磁石が、わずかでも曲がって接合されると、可動磁石101の側面に凹凸が生じるため、可動磁石101とパイプ105の内壁面に生じる摩擦が大きくなってしまう。この摩擦を小さくするには、磁性流体や潤滑部材(例えば、ビーズ)等を用いなければならず、製造工程の増大、部材コストの高騰が懸念される。しかし、潤滑部材を用いなければ振動型電磁発電機100の発電効率が下がってしまうという課題があった。   Further, when the same poles of the magnets 102a and 102b are opposed to each other, they repel each other. For example, it is extremely difficult to join a plurality of magnets and spacers straightly. If the magnet is bent and joined even slightly, the side surface of the movable magnet 101 is uneven, and the friction generated between the movable magnet 101 and the inner wall surface of the pipe 105 is increased. In order to reduce this friction, a magnetic fluid, a lubricating member (for example, a bead) or the like must be used, and there is a concern that the manufacturing process increases and the member cost increases. However, there is a problem in that the power generation efficiency of the vibration type electromagnetic generator 100 is lowered unless a lubricating member is used.

本発明はこのような状況に鑑みて成されたものであり、簡素な構成でかつ組立が容易でありながら、可動磁石とパイプとの摩擦が小さく、発電効率の高い振動型電磁発電機を提供することを目的とする。   The present invention has been made in view of such a situation, and provides a vibration type electromagnetic generator having a simple configuration and easy assembly, having a small friction between a movable magnet and a pipe, and high power generation efficiency. The purpose is to do.

本発明の振動型電磁発電機は、非磁性材料で形成され、両端部が閉じられた中空の第1のパイプと、第1のパイプの周囲に巻回され、少なくとも1個のソレノイドコイルが設けられた発電コイルと、第1のパイプの内部に配置され、発電コイルの巻軸方向に沿って移動可能である可動磁石と、を備える。そして、可動磁石は、非磁性材料で形成され、両端部が閉じられた中空の第2のパイプと、第2のパイプの内部に、第2のパイプの内壁面により強制的に整列され、封止される複数個の磁石と、を備える。 The vibration type electromagnetic generator according to the present invention includes a hollow first pipe formed of a nonmagnetic material and closed at both ends, wound around the first pipe, and provided with at least one solenoid coil. And a movable magnet disposed inside the first pipe and movable along the winding axis direction of the power generation coil. The movable magnet is forcibly aligned by the inner wall surface of the second pipe inside the second pipe and the hollow second pipe made of a nonmagnetic material and closed at both ends , and sealed. A plurality of magnets to be stopped.

このように振動型電磁発電機を構成することによって、可動磁石と第1のパイプの内壁面との摩擦が小さくなり、可動磁石が振動しやすくなる。   By configuring the vibration type electromagnetic generator in this way, the friction between the movable magnet and the inner wall surface of the first pipe is reduced, and the movable magnet is likely to vibrate.

本発明によれば、複数個の磁石を第2のパイプの内部に封止することで、可動磁石と第1のパイプの内壁面との摩擦が小さくなる。このため、わずかな振動が加わるだけで、可動磁石が振動しやすくなり、振動型電磁発電機の発電効率が高まるという効果がある。   According to the present invention, the friction between the movable magnet and the inner wall surface of the first pipe is reduced by sealing the plurality of magnets inside the second pipe. For this reason, even if slight vibration is applied, the movable magnet is likely to vibrate, and the power generation efficiency of the vibration type electromagnetic generator is increased.

以下、本発明の第1の実施の形態例について、図1〜図8を参照して説明する。本実施の形態例は、複数個のソレノイドコイルの中に、長さ方向に着磁された複数個の円筒形の磁石を振動または移動して発電する振動型電磁発電機1に適用したものである。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. This embodiment is applied to a vibration type electromagnetic generator 1 that generates power by vibrating or moving a plurality of cylindrical magnets magnetized in the length direction in a plurality of solenoid coils. is there.

まず、本例の振動型電磁発電機1の構成例について、図1の断面図を参照して説明する。振動型電磁発電機1は、可動磁石3と、第1のソレノイドコイル4a〜第3のソレノイドコイル4cで構成される。3個のソレノイドコイルは、中空の第1のパイプ2の外周に巻き付けられる。第1のパイプ2は、非磁性材料で形成される。第1のパイプ2の材質は、金属等の非磁性材料であってもよいが、加工性等を考慮するとプラスチック等の合成樹脂で製造することが望ましい。第1のパイプ2の内部を、可動磁石3が直線往復運動(以下、単に振動とも言う。)すると、第1のソレノイドコイル4a〜第3のソレノイドコイル4cに電圧が発生する。   First, the structural example of the vibration type electromagnetic generator 1 of this example is demonstrated with reference to sectional drawing of FIG. The vibration type electromagnetic generator 1 includes a movable magnet 3 and a first solenoid coil 4a to a third solenoid coil 4c. The three solenoid coils are wound around the outer periphery of the hollow first pipe 2. The first pipe 2 is made of a nonmagnetic material. The material of the first pipe 2 may be a non-magnetic material such as a metal, but it is preferable to manufacture the first pipe 2 from a synthetic resin such as plastic in consideration of workability and the like. When the movable magnet 3 reciprocates linearly (hereinafter simply referred to as vibration) inside the first pipe 2, a voltage is generated in the first solenoid coil 4a to the third solenoid coil 4c.

可動磁石3は、非磁性材料で形成された中空の第2のパイプ5と、第2のパイプ5の内部に封止され、同じ極性が対向して接合された複数個の磁石(例えば、ネオジム磁石)で構成される。可動磁石3の両端部には、第1の磁石3aを保護する第1の磁石端部材8aと、第3の磁石3cを保護する第2の磁石端部材8bが形成される。   The movable magnet 3 includes a hollow second pipe 5 made of a nonmagnetic material, and a plurality of magnets (for example, neodymium) that are sealed inside the second pipe 5 and have the same polarity opposed to each other. Magnet). At both ends of the movable magnet 3, a first magnet end member 8a that protects the first magnet 3a and a second magnet end member 8b that protects the third magnet 3c are formed.

長さ方向に着磁された同じ長さの第1の磁石3a〜第3の磁石3cは、所定の厚さの第1のスペーサ6aと第2のスペーサ6bを介した上で、同じ極を向かい合わせて一体に接合される。このように、第1のスペーサ6aと第2のスペーサ6bは、隣り合う磁石の間隔を空ける間隔部材として用いられる。第1のスペーサ6aと第2のスペーサ6bの材質は、磁性体又は非磁性体のいずれでもよい。さらに、スペーサを介さない状態で複数個の磁石を同極対向させ、隣り合う磁石同士を接触させた際の減磁が、振動型電磁発電機の出力特性に大きく影響しないのであれば、磁石間にスペーサを介さなくてもよい。また、可動磁石3を構成する磁石は、複数個用いることが望ましい。第1の磁石3a〜第3の磁石3cと、第1のスペーサ6a,第2のスペーサ6bは、第2のパイプ5の内部に挿入された状態で、第2のパイプ5の両端に施される加締め加工によって、第2のパイプ5の内部に封止される。   The first magnet 3a to the third magnet 3c of the same length magnetized in the length direction have the same poles through the first spacer 6a and the second spacer 6b having a predetermined thickness. Face to face and joined together. Thus, the 1st spacer 6a and the 2nd spacer 6b are used as a spacing member which leaves the space | interval of adjacent magnets. The material of the first spacer 6a and the second spacer 6b may be either a magnetic material or a non-magnetic material. Furthermore, if the demagnetization when a plurality of magnets are opposed to each other with the same polarity and without contacting a spacer and the adjacent magnets are brought into contact with each other, the output characteristics of the vibration type electromagnetic generator will not be greatly affected. The spacer may not be interposed. Moreover, it is desirable to use a plurality of magnets constituting the movable magnet 3. The first magnet 3a to the third magnet 3c, the first spacer 6a, and the second spacer 6b are applied to both ends of the second pipe 5 while being inserted into the second pipe 5. The inside of the second pipe 5 is sealed by the caulking process.

なお、以下の説明において、第1のパイプ2の内壁面と可動磁石3が物理的に接触した状態で、相対的に移動する際に、互いの運動を互いに妨げる向きに力が働く現象を、「摩擦」と定義する。摩擦は、可動磁石3が振動する際にブレが生じ、第1のパイプ2の内壁面と可動磁石3との接触箇所や衝突回数が増えることによって発生し、可動磁石3の振動が減衰する要因となりうる。   In the following description, when the inner wall surface of the first pipe 2 and the movable magnet 3 are in physical contact with each other, when the relative movement is performed, a phenomenon in which force acts in a direction that interferes with each other's movement, It is defined as “friction”. Friction is generated when the movable magnet 3 vibrates and is caused by an increase in the number of contact points and the number of collisions between the inner wall surface of the first pipe 2 and the movable magnet 3, and a factor that attenuates the vibration of the movable magnet 3. It can be.

このような理由から、第1のパイプ2と、第1のパイプ2の内部に配置され、複数個の磁石が封止される第2のパイプ5のうち、少なくとも一方または双方に、ポリプロピレン(PP:polypropylene)等の摩擦係数が低い材質を用いることが望ましい。このような材質を用いることで、第1のパイプ2と第2のパイプ5の摩擦を低減させることができる。   For this reason, polypropylene (PP) is attached to at least one or both of the first pipe 2 and the second pipe 5 disposed inside the first pipe 2 and sealed with a plurality of magnets. : It is desirable to use a material with a low coefficient of friction, such as polypropylene. By using such a material, friction between the first pipe 2 and the second pipe 5 can be reduced.

第1のソレノイドコイル4a〜第3のソレノイドコイル4cは、逆極性に直列接続された複数個のコイルであって、所定の間隔を空けた状態で第1のパイプ2に配置される。各ソレノイドコイルの巻き方向は、隣り合うソレノイドコイル毎に互いに逆向きの正・逆・正方向である。以下の説明では、直列接続された第1のソレノイドコイル4a〜第3のソレノイドコイル4cを、発電コイル9と称する。第1のパイプ2には、少なくとも1個のソレノイドコイルが、発電コイル9として構成される。   The first solenoid coil 4a to the third solenoid coil 4c are a plurality of coils connected in series with opposite polarities, and are disposed on the first pipe 2 with a predetermined interval therebetween. The winding directions of the solenoid coils are forward, reverse, and forward directions that are opposite to each other for each adjacent solenoid coil. In the following description, the first solenoid coil 4 a to the third solenoid coil 4 c connected in series are referred to as a power generation coil 9. In the first pipe 2, at least one solenoid coil is configured as a power generation coil 9.

第1のパイプ2の両端部には、可動磁石3の飛び出しを防止するため、樹脂等で形成された第1の端部材7aと第2の端部材7bがはめ込まれる。第1の端部材7aと第2の端部材7bは、同形状であるが、これら端部材を、お互いに異形状としてもよい。このようにして、振動型電磁発電機1では、可動磁石3が発電コイル9の巻き軸方向に振動可能となる。そして、操作者が、振動型電磁発電機1を振ると、可動磁石3が発電コイル9の中を振動し、第1のソレノイドコイル4a〜第3のソレノイドコイル4cで電圧が誘起される。   A first end member 7a and a second end member 7b made of resin or the like are fitted into both ends of the first pipe 2 in order to prevent the movable magnet 3 from jumping out. Although the first end member 7a and the second end member 7b have the same shape, these end members may have different shapes. In this manner, in the vibration type electromagnetic generator 1, the movable magnet 3 can vibrate in the winding axis direction of the power generation coil 9. When the operator swings the vibration type electromagnetic generator 1, the movable magnet 3 vibrates in the power generation coil 9, and a voltage is induced in the first solenoid coil 4a to the third solenoid coil 4c.

そして、第1のソレノイドコイル4a〜第3のソレノイドコイル4cが発生する電圧の位相を合わせて、合成することにより、振動型電磁発電機1が出力する電圧が増大する。そのためには、磁石長とスペーサの厚さを加えた磁石ピッチと、コイル長とコイル間隔を加えたコイルピッチを、ほぼ等しくする必要がある。さらに、ソレノイドコイルのコイル長は磁石長より短くすることが望ましい。この結果、安定して電圧が得られる。   And the voltage which the vibration type electromagnetic generator 1 outputs increases by combining and synthesizing the phase of the voltage which the 1st solenoid coil 4a-the 3rd solenoid coil 4c generate | occur | produce. For this purpose, the magnet pitch obtained by adding the magnet length and the spacer thickness and the coil pitch obtained by adding the coil length and the coil interval must be substantially equal. Furthermore, the coil length of the solenoid coil is preferably shorter than the magnet length. As a result, a voltage can be obtained stably.

次に、可動磁石3の断面構造の例について、図2を参照して説明する。
第1の磁石端部材8aと第2の磁石端部材8bは、第2のパイプ5の両端部を確実に封止するために、熱可塑性樹脂又は熱硬化性樹脂によって形成される。第1の磁石端部材8aと第2の磁石端部材8bは、後述するように第2のパイプ5と熱溶着により接合されるため、これらの材質は同じであることが望ましい。なお、第2のパイプ5と第1の磁石端部材8a,第2の磁石端部材8bを、接着剤等を用いて接着固定してもよい。ただし、接着性が良好な接着剤を用いるのであれば、第2のパイプ5と第1の磁石端部材8a,第2の磁石端部材8bの材質を同じにする必要はない。
Next, an example of a cross-sectional structure of the movable magnet 3 will be described with reference to FIG.
The first magnet end member 8a and the second magnet end member 8b are formed of a thermoplastic resin or a thermosetting resin in order to securely seal both ends of the second pipe 5. Since the first magnet end member 8a and the second magnet end member 8b are joined to the second pipe 5 by thermal welding as will be described later, it is desirable that these materials are the same. The second pipe 5, the first magnet end member 8a, and the second magnet end member 8b may be bonded and fixed using an adhesive or the like. However, if an adhesive with good adhesiveness is used, it is not necessary to use the same material for the second pipe 5, the first magnet end member 8a, and the second magnet end member 8b.

次に、可動磁石3の一方の端部の構成例について、図3を参照して説明する。図3は、可動磁石3に取り付けられる第1の磁石端部材8a付近を示す拡大図である。   Next, a configuration example of one end of the movable magnet 3 will be described with reference to FIG. FIG. 3 is an enlarged view showing the vicinity of the first magnet end member 8 a attached to the movable magnet 3.

第2のパイプ5に、第1の磁石3a〜第3の磁石3cを封止する工程では、第2のパイプ5の両端部に熱が加えられる。この工程において、熱可塑性樹脂で形成される第1の磁石端部材8aを第2のパイプ5の端部(換言すれば、第2のパイプ5に配置される複数の磁石のうち、最も外側に配置される磁石の端部である。)に配置する。第2のパイプ5の端部に熱が加わると、第1の磁石端部材8aと第2のパイプ5の端部が熱溶着し、熱溶着部10が形成される。通常、この工程において、第1の磁石3a〜第3の磁石3cに熱が加わると磁気特性が著しく劣化してしまう。このため、第2のパイプ5の端部に第1の磁石端部材8aを設けると、第1の磁石3a〜第3の磁石3cに熱が伝わりにくくなる。つまり、第1の磁石端部材8aを第2のパイプ5の端部に配置する構成は、加熱手段によって封止処理を行う場合に特に望ましい形態であると言える。   In the process of sealing the first magnet 3 a to the third magnet 3 c to the second pipe 5, heat is applied to both ends of the second pipe 5. In this step, the first magnet end member 8a formed of a thermoplastic resin is placed on the end of the second pipe 5 (in other words, the outermost of the plurality of magnets arranged on the second pipe 5). It is the end of the magnet to be placed. When heat is applied to the end of the second pipe 5, the first magnet end member 8 a and the end of the second pipe 5 are thermally welded to form the heat welded portion 10. Usually, in this process, when heat is applied to the first magnet 3a to the third magnet 3c, the magnetic characteristics are remarkably deteriorated. For this reason, if the 1st magnet end member 8a is provided in the end of the 2nd pipe 5, it will become difficult to transmit heat to the 1st magnet 3a-the 3rd magnet 3c. That is, it can be said that the configuration in which the first magnet end member 8a is disposed at the end of the second pipe 5 is a particularly desirable form when the sealing process is performed by the heating means.

また、第2のパイプ5に、第1の磁石3a〜第3の磁石3cを封止する工程では、可動磁石3の両端部に接着剤11が用いられる。接着剤11は、使用する樹脂に対して十分な接着性を示す接着剤が用いられる。可動磁石3の両端部に用いられた接着剤11は、第2のパイプ5と第1の磁石端部材8aとの接合面に浸透する。そして、第2のパイプ5と第1の磁石端部材8aは、強固に結合する。   Further, in the process of sealing the first magnet 3 a to the third magnet 3 c to the second pipe 5, the adhesive 11 is used at both ends of the movable magnet 3. As the adhesive 11, an adhesive exhibiting sufficient adhesiveness to the resin to be used is used. The adhesive 11 used at both ends of the movable magnet 3 penetrates into the joint surface between the second pipe 5 and the first magnet end member 8a. And the 2nd pipe 5 and the 1st magnet end member 8a are couple | bonded firmly.

なお、第2のパイプ5と第1の磁石端部材8aの材質に、熱硬化性樹脂や非磁性金属を使用する場合、有機接着剤等を用いて、第2のパイプ5と第1の磁石端部材8aを十分に接着固定する必要がある。このためには、第2のパイプ5と第1の磁石端部材8aの隙間に接着剤が十分に流れ込むように、隙間の大きさや形を工夫するとよい。   In addition, when using a thermosetting resin or a nonmagnetic metal for the material of the 2nd pipe 5 and the 1st magnet end member 8a, the 2nd pipe 5 and the 1st magnet are used using an organic adhesive agent etc. It is necessary to bond and fix the end member 8a sufficiently. For this purpose, the size and shape of the gap may be devised so that the adhesive sufficiently flows into the gap between the second pipe 5 and the first magnet end member 8a.

このように、第2のパイプ5の内部に第1の磁石3a〜第3の磁石3cが封止され、接着剤等によって固定され、強度もまた向上する。このため、発電を行う際の振動によって可動磁石3に衝撃が加えられても、可動磁石が損傷する虞が小さくなる。
なお、可動磁石3の磁石端部材8b付近についても、第1の磁石端部材8aと同様の構成であるため、磁石端部材8b付近の構成例については詳細な説明を省略する。
In this way, the first magnet 3a to the third magnet 3c are sealed inside the second pipe 5 and are fixed by an adhesive or the like, and the strength is also improved. For this reason, even if an impact is applied to the movable magnet 3 due to vibration during power generation, the possibility of damage to the movable magnet is reduced.
Note that the vicinity of the magnet end member 8b of the movable magnet 3 has the same configuration as that of the first magnet end member 8a, and therefore a detailed description of the configuration example near the magnet end member 8b is omitted.

次に、可動磁石3を組立てる可動磁石組立て装置20の構成例と、可動磁石組立て装置20を用いて行われる可動磁石3の製造方法の例について、図4〜図8を参照して説明する。
可動磁石3は、強い磁力を有する第1の磁石3a〜第3の磁石3cを備えるため、弱い磁力を有する磁石を用いた場合に比べて、振動型電磁発電機1の発電コイル9に生じる起電力が上がる。しかし、特に、スペーサを非磁性体とした場合や、スペーサを使用しない形態においては、各磁石の同極が対向すると、互いに磁石は強く反発する。このため、可動磁石3の製造方法には、特別な工夫が必要となる。
Next, a configuration example of the movable magnet assembling apparatus 20 for assembling the movable magnet 3 and an example of a method for manufacturing the movable magnet 3 performed using the movable magnet assembling apparatus 20 will be described with reference to FIGS.
Since the movable magnet 3 includes the first magnet 3a to the third magnet 3c having a strong magnetic force, the movable magnet 3 is generated in the power generation coil 9 of the vibration type electromagnetic generator 1 as compared with the case where a magnet having a weak magnetic force is used. The power goes up. However, in particular, when the spacer is made of a non-magnetic material or in a form in which the spacer is not used, the magnets strongly repel each other when the same poles of the magnets face each other. For this reason, a special device is required for the method of manufacturing the movable magnet 3.

図4は、第1の磁石3aと第1のスペーサ6aを、可動磁石組立て装置20にセットした状態の例を示す。
可動磁石組立て装置20は、長さに応じて第2のパイプ5を保持する位置決めストッパ部21と、第2のパイプ5から磁石とスペーサが飛び出さないように、磁石とスペーサを押さえる飛び出し押さえ部22と、磁石とスペーサを第2のパイプ5の内部に真っすぐ挿入するための挿入口を有する磁石ガイド23と、磁石とスペーサを第2のパイプ5に押し込む押し棒24と、押し棒24の押込みを制御する押し棒制御装置25と、を備える。
FIG. 4 shows an example of a state in which the first magnet 3 a and the first spacer 6 a are set in the movable magnet assembling apparatus 20.
The movable magnet assembling apparatus 20 includes a positioning stopper portion 21 that holds the second pipe 5 according to the length, and a pop-out pressing portion that presses the magnet and the spacer so that the magnet and the spacer do not jump out of the second pipe 5. 22, a magnet guide 23 having an insertion port for inserting a magnet and a spacer straight into the second pipe 5, a push rod 24 for pushing the magnet and the spacer into the second pipe 5, and a push of the push rod 24 And a push rod control device 25 for controlling.

第2のパイプ5の一方の端部は、事前に位置決めストッパ部21に固定されており、磁石端部材8aは、予め熱溶着や接着によって固定される。第1の磁石3aには、第1のスペーサ6aが接触した状態で、磁石ガイド23にセットされる。   One end of the second pipe 5 is fixed to the positioning stopper 21 in advance, and the magnet end member 8a is fixed in advance by heat welding or adhesion. The first magnet 3a is set on the magnet guide 23 with the first spacer 6a in contact therewith.

図5は、セットした第1の磁石3aと第1のスペーサ6a(図4参照)を、押し棒24で第2のパイプ5に押し込んだ後、第2の磁石3bと第2のスペーサ6bを、可動磁石組立て装置20にセットした状態の例を示す。   FIG. 5 shows that after the set first magnet 3a and first spacer 6a (see FIG. 4) are pushed into the second pipe 5 with the push rod 24, the second magnet 3b and the second spacer 6b are moved. The example of the state set to the movable magnet assembly apparatus 20 is shown.

図6は、セットした第2の磁石3bと第2のスペーサ6b(図5参照)を、押し棒24で第2のパイプ5に押し込んだ状態の例を示す。
第2のパイプ5の奥には、第1の磁石3aが押し込まれており、第1の磁石3aのS極が第2の磁石3bに向く。一方、第2の磁石3bは、第2の磁石3bのS極が第1の磁石3aに向いた状態で、第2のパイプ5に挿入される。このように、第1の磁石3aと第2の磁石3bの同極が対向するため、第1の磁石3aと第2の磁石3bは互いに反発力が生じる。この反発力によって、第2のパイプ5から第2の磁石3bが飛び出すおそれがある。
FIG. 6 shows an example of a state in which the set second magnet 3 b and second spacer 6 b (see FIG. 5) are pushed into the second pipe 5 by the push rod 24.
The first magnet 3a is pushed into the back of the second pipe 5, and the south pole of the first magnet 3a faces the second magnet 3b. On the other hand, the second magnet 3b is inserted into the second pipe 5 with the S pole of the second magnet 3b facing the first magnet 3a. Thus, since the same polarity of the 1st magnet 3a and the 2nd magnet 3b opposes, the 1st magnet 3a and the 2nd magnet 3b produce repulsive force mutually. The repulsive force may cause the second magnet 3b to jump out of the second pipe 5.

そこで、第2の磁石3bが第2のパイプ5に完全に挿入されると、飛び出し押さえ部22が動く。飛び出し押さえ部22は、第2のパイプ5の内径より狭い位置まで動いて、第2のパイプ5から飛び出そうとする第2の磁石3bを押さえる。   Therefore, when the second magnet 3b is completely inserted into the second pipe 5, the pop-out pressing portion 22 moves. The pop-out pressing portion 22 moves to a position narrower than the inner diameter of the second pipe 5 and presses the second magnet 3 b that is about to jump out from the second pipe 5.

図7は、セットした第2の磁石3bと第2のスペーサ6b(図6参照)を、押し棒24で第2のパイプ5に押し込んだ後、第3の磁石3cと第2の磁石端部材8bを、可動磁石組立て装置20にセットした状態の例を示す。   FIG. 7 shows that after the set second magnet 3b and the second spacer 6b (see FIG. 6) are pushed into the second pipe 5 by the push rod 24, the third magnet 3c and the second magnet end member are pressed. The example of the state which set 8b to the movable magnet assembly apparatus 20 is shown.

第2の磁石3bと第2のスペーサ6bは、押し棒24が離れても、飛出し押さえ部22により、第2のパイプ5の中に保持される。
3個以上の磁石を含む可動磁石を形成する場合、図5〜図7に示したように、可動磁石組立て装置20に磁石をセットして、第2のパイプ5に押し込む工程を繰り返せばよい。
The second magnet 3b and the second spacer 6b are held in the second pipe 5 by the pop-out pressing portion 22 even when the push bar 24 is separated.
When forming a movable magnet including three or more magnets, as shown in FIGS. 5 to 7, the process of setting the magnet in the movable magnet assembling apparatus 20 and pushing it into the second pipe 5 may be repeated.

図8は、第2のパイプ5に、第3の磁石3cと第2の磁石端部材8bを押し込んだ状態の例を示す。
第3の磁石3cと第2の磁石端部材8bが押し棒24に押し込まれると、反発力が作用して、第3の磁石3cは第2のパイプ5から飛び出そうとする。しかし、飛び出し押さえ部22によって、第3の磁石3cの飛び出しが押さえられる。このため、押し棒24が、第2の磁石端部材8bから離れても、第3の磁石3cは第2のパイプ5から飛び出さない。そして、加熱冶具(図示せず)により、第2のパイプ5と第2の磁石端部材8bの重なっている部分を、熱溶着や接着によって固定・封止、あるいは加締め加工できる。
FIG. 8 shows an example of a state in which the third magnet 3 c and the second magnet end member 8 b are pushed into the second pipe 5.
When the third magnet 3c and the second magnet end member 8b are pushed into the push rod 24, a repulsive force acts and the third magnet 3c tries to jump out of the second pipe 5. However, the pop-out pressing portion 22 suppresses the third magnet 3c from popping out. For this reason, even if the push rod 24 moves away from the second magnet end member 8 b, the third magnet 3 c does not jump out of the second pipe 5. Then, the overlapping portion of the second pipe 5 and the second magnet end member 8b can be fixed / sealed or crimped by heat welding or bonding with a heating jig (not shown).

また、第2のパイプ5と第1の磁石端部材8a,第2の磁石端部材8bを接着することによって、可動磁石3が一体に接合されるため、衝撃が加わっても容易に分解することがない。このとき用いる接着剤としては、使用する樹脂に対して十分に接着力が大きい接着剤を選定することは言うまでもない。   Moreover, since the movable magnet 3 is integrally joined by bonding the second pipe 5 with the first magnet end member 8a and the second magnet end member 8b, it can be easily disassembled even if an impact is applied. There is no. Needless to say, an adhesive having a sufficiently large adhesive strength to the resin to be used is selected as the adhesive used at this time.

以上説明した第1の実施の形態に係る振動型電磁発電機1を構成する可動磁石3は、対向する磁極が互いに同極となるように配置された複数個の磁石(第1の磁石3a〜第3の磁石3c)を備える。これら複数個の磁石は、第2のパイプ5の内部に挿入されるという簡素な構成であるため、可動磁石3の組み立ては、極めて容易であるという効果がある。   The movable magnet 3 constituting the vibration-type electromagnetic generator 1 according to the first embodiment described above has a plurality of magnets (first magnets 3a to 3a) arranged so that opposing magnetic poles are the same. A third magnet 3c) is provided. Since the plurality of magnets have a simple configuration of being inserted into the second pipe 5, there is an effect that the assembly of the movable magnet 3 is extremely easy.

また、可動磁石3の形成工程は、第2のパイプ5の内壁面に沿って第1のスペーサ6a,第2のスペーサ6bを挿入するという簡単な作業のみである。そして、第2のパイプ5に挿入された複数個の磁石と、スペーサ、磁石端部材は、強制的に整列されるため、可動磁石3の外周面が歪まない。このため、可動磁石3が振動する際に、可動磁石3と第1のパイプ2の内壁面に生じていた不要な摩擦抵抗が抑えられる。この結果、発電効率に優れた振動型電磁発電機1を実現できるという効果がある。   Moreover, the formation process of the movable magnet 3 is only a simple operation of inserting the first spacer 6 a and the second spacer 6 b along the inner wall surface of the second pipe 5. And since the some magnet inserted in the 2nd pipe 5, a spacer, and a magnet end member are forcedly aligned, the outer peripheral surface of the movable magnet 3 does not distort. For this reason, when the movable magnet 3 vibrates, unnecessary frictional resistance generated on the inner wall surfaces of the movable magnet 3 and the first pipe 2 is suppressed. As a result, there is an effect that the vibration type electromagnetic generator 1 having excellent power generation efficiency can be realized.

また、第1のスペーサ6a,第2のスペーサ6bを介して、複数個の磁石が同極対向するため、発電コイル9に鎖交する磁束の磁束分布は、急激に大きくなる。この結果、振動型電磁発電機1の発電効率が高まるという効果がある。   In addition, since a plurality of magnets face each other with the same polarity through the first spacer 6a and the second spacer 6b, the magnetic flux distribution of the magnetic flux interlinking with the power generation coil 9 increases rapidly. As a result, there is an effect that the power generation efficiency of the vibration type electromagnetic generator 1 is increased.

また、第2のパイプ5と、第1の磁石端部材8a,第2の磁石端部材8bが樹脂材料で構成される場合には、加熱や溶剤による溶着処理を封止加工とすることができる。このため、可動磁石3の製造を容易化できるという効果がある。さらに、第1の磁石端部材8aと第2の磁石端部材8bの材質を弾性部材として、両側の先端部を突起状に構成してもよい。この場合、可動磁石3が第1のパイプ2の端部材に衝突する衝撃を緩和するため、可動磁石3の破損を防ぐことができるという効果が得られる。   Moreover, when the 2nd pipe 5, and the 1st magnet end member 8a and the 2nd magnet end member 8b are comprised with a resin material, the welding process by a heating or a solvent can be made into a sealing process. . For this reason, there exists an effect that manufacture of the movable magnet 3 can be made easy. Furthermore, the material of the first magnet end member 8a and the second magnet end member 8b may be an elastic member, and the tip portions on both sides may be formed in a protruding shape. In this case, since the impact that the movable magnet 3 collides with the end member of the first pipe 2 is mitigated, an effect that the breakage of the movable magnet 3 can be prevented is obtained.

また、磁石とスペーサの外周径は、第2のパイプ5の内周径よりわずかに小さくしておくとよい。このようにしておくと、可動磁石組立て装置20で可動磁石3を組立てる場合に、第2のパイプ5の内部に空気が圧縮されることがなく、押し棒24の押下力に対する抵抗力とならない。または、磁石とスペーサに溝等を形成して、圧縮される空気を逃がしてもよい。   The outer diameters of the magnet and the spacer are preferably slightly smaller than the inner diameter of the second pipe 5. In this way, when the movable magnet 3 is assembled by the movable magnet assembling apparatus 20, air is not compressed inside the second pipe 5 and does not become a resistance force against the pressing force of the push rod 24. Or a groove | channel etc. may be formed in a magnet and a spacer, and the compressed air may be escaped.

なお、図4〜図8の説明では、非磁性体材料で形成された第2のパイプ5と、第1の磁石端部材8a及び第2の磁石端部材8bの材質として熱可塑性樹脂を用い、それらを熱溶着により接合した場合について説明した。しかし、非磁性体材料として熱硬化性樹脂を用いる場合でも、接着剤による固定手段を用いれば上述した第1の実施の形態とほぼ同じ製造方法で可動磁石3を製造できる。   In the description of FIGS. 4 to 8, a thermoplastic resin is used as the material of the second pipe 5 formed of a non-magnetic material, and the first magnet end member 8a and the second magnet end member 8b. The case where they were joined by heat welding was described. However, even when a thermosetting resin is used as the non-magnetic material, the movable magnet 3 can be manufactured by substantially the same manufacturing method as that of the first embodiment described above, if an adhesive fixing means is used.

また、可動磁石3の両端部には、第1の磁石端部材8aと第2の磁石端部材8bが配置される。そして、第2のパイプ5の材質に、例えば、アルミニウムや銅、真鍮等に代表される非磁性金属を用いる。この場合、第2のパイプ5に複数個の磁石を挿入した後に、第2のパイプ5の両端部を加締め加工によって封止する。このような製造方法を用いると、第1の磁石端部材8aと第2の磁石端部材8bが変形するのみであり、複数個の磁石の端部に不要な応力が加わったり、変形したりすることがない。また、複数個の磁石に対して熱が加わらないため、磁石の劣化が抑えられる。この結果、複数個の磁石が生じる磁束密度のバラつきを減らせるという効果がある。ただし、加締め加工の方法を最適化し、磁石に対して過度の応力を与えないようにすれば、磁石端部材8a,8bは必ずしも必須の構成にはならない。   Moreover, the 1st magnet end member 8a and the 2nd magnet end member 8b are arrange | positioned at the both ends of the movable magnet 3. As shown in FIG. And the non-magnetic metal represented by aluminum, copper, brass etc. is used for the material of the 2nd pipe 5, for example. In this case, after inserting a plurality of magnets into the second pipe 5, both ends of the second pipe 5 are sealed by caulking. If such a manufacturing method is used, only the 1st magnet end member 8a and the 2nd magnet end member 8b will deform | transform, and unnecessary stress will be added to the edge part of a several magnet, or will deform | transform. There is nothing. Moreover, since heat is not applied to a plurality of magnets, deterioration of the magnets can be suppressed. As a result, there is an effect that variations in magnetic flux density generated by a plurality of magnets can be reduced. However, the magnet end members 8a and 8b are not necessarily indispensable if the caulking method is optimized so as not to apply excessive stress to the magnet.

次に、本発明の第2の実施の形態に係る振動型電磁発電機30の構成例について、図9を参照して説明する。なお、図9において、既に第1の実施の形態で説明した図1に対応する部分には同一符号を付し、詳細な説明を省略する。   Next, a configuration example of the vibration type electromagnetic generator 30 according to the second embodiment of the present invention will be described with reference to FIG. In FIG. 9, parts corresponding to those in FIG. 1 already described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本例の振動型電磁発電機30は、可動磁石33の両端を2本のコイルバネ(引っ張りバネ)で吊るすバネ吊り方式としたことを特徴とする。
可動磁石33は、第2のパイプ5と、第1のスペーサ6a,第2のスペーサ6bを介して、同極が対向するように第2のパイプ5に封止される第1の磁石3a〜第3の磁石3cと、第2のパイプ5の両端部に固定される第1の磁石端部材31a,第2の磁石端部材31bを備える。第1の磁石端部材31aには、第1のコイルバネ34aを取り付けるための細孔35aが形成される。第2の磁石端部材31bには、第2のコイルバネ34bを取り付けるための細孔35bが形成される。
The vibration type electromagnetic generator 30 of the present example is characterized by a spring suspension system in which both ends of the movable magnet 33 are suspended by two coil springs (tensile springs).
The movable magnet 33 is sealed with the second pipe 5 so that the same poles face each other through the second pipe 5 and the first spacer 6a and the second spacer 6b. A third magnet 3c, a first magnet end member 31a and a second magnet end member 31b fixed to both ends of the second pipe 5 are provided. The first magnet end member 31a is formed with a pore 35a for attaching the first coil spring 34a. The second magnet end member 31b is formed with a pore 35b for attaching the second coil spring 34b.

可動磁石3を振動可能な状態で封止する第1のパイプ2の両端部には、可動磁石3の飛び出しを防ぐため、第1の端部材32a,第2の端部材32bが装着される。第1の端部材32aには、第1のコイルバネ34aを取り付けるための細孔36aが形成される。第2の端部材32bには、第2のコイルバネ34bを取り付けるための細孔36bが形成される。   A first end member 32 a and a second end member 32 b are attached to both ends of the first pipe 2 that seals the movable magnet 3 in a state where the movable magnet 3 can vibrate in order to prevent the movable magnet 3 from popping out. The first end member 32a is formed with a pore 36a for attaching the first coil spring 34a. The second end member 32b is formed with a pore 36b for attaching the second coil spring 34b.

第1のコイルバネ32aの両端部は、細孔35a,36aに取り付けられる。第2のコイルバネ32bの両端部は、細孔35b,36bに取り付けられる。このようにして、振動型電磁発電機30は、2つのコイルバネで可動磁石3を吊るす共振系を構成する。可動磁石33は、第2のパイプ5に複数の磁石とスペーサを封止した構成であり、可動磁石33が発電コイル9の巻き軸方向に沿って共振振動することによって、発電コイル9で電圧が誘起される。   Both ends of the first coil spring 32a are attached to the pores 35a and 36a. Both ends of the second coil spring 32b are attached to the pores 35b and 36b. In this way, the vibration type electromagnetic generator 30 constitutes a resonance system in which the movable magnet 3 is suspended by two coil springs. The movable magnet 33 has a configuration in which a plurality of magnets and spacers are sealed in the second pipe 5, and the voltage is generated in the power generation coil 9 when the movable magnet 33 resonates along the winding axis direction of the power generation coil 9. Induced.

以上説明した第2の実施の形態に係る振動型電磁発電機30は、第1の可動磁石33を2本のコイルバネ(第1のコイルバネ34aと第2のコイルバネ34b)で支持する構成としている。第1のパイプ2の内壁面と第2のパイプ5の外壁面との摩擦が小さいため、2本のコイルバネと可動磁石33との共振振動を最大限に利用できる。そして、発電機を上下に振る場合はもちろん、発電機を任意の向きで振動させたときでも、可動磁石33が共振振動しやすくなり、少ない振動であっても、大きな電圧を得ることができるという効果がある。   The vibration type electromagnetic generator 30 according to the second embodiment described above is configured to support the first movable magnet 33 with two coil springs (a first coil spring 34a and a second coil spring 34b). Since the friction between the inner wall surface of the first pipe 2 and the outer wall surface of the second pipe 5 is small, the resonance vibration between the two coil springs and the movable magnet 33 can be utilized to the maximum. And even when the generator is shaken up and down, even when the generator is vibrated in an arbitrary direction, the movable magnet 33 tends to resonate, and a large voltage can be obtained even with a small amount of vibration. effective.

また、振動型電磁発電機30は、微弱な振動エネルギーを効率的に可動磁石33の直線往復運動に変換することができる。このため、重力方向に対して振動型電磁発電機30が平行な状態であって、かつ振動型電磁発電機30の設置方向が一定である場合、例えば、海上船舶の安全な航行のために波の上下運動によって発電し発光する発光ブイ等、への発電機として好適であると言える。また、自転車の荷台あるいはサドル、または、自動車のサスペンション部等に採用することも可能である。   Further, the vibration type electromagnetic generator 30 can efficiently convert the weak vibration energy into the linear reciprocating motion of the movable magnet 33. For this reason, when the vibration electromagnetic generator 30 is parallel to the direction of gravity and the installation direction of the vibration electromagnetic generator 30 is constant, for example, a wave for safe navigation of a marine vessel. It can be said that it is suitable as a power generator for a light emitting buoy that generates electric power by moving up and down. It can also be employed in a bicycle carrier or saddle, or in a car suspension.

なお、上述した第2の実施の形態では、可動磁石33を2本のコイルバネ(第1のコイルバネ34aと第2のコイルバネ34b)で支持する構成としたが、コイルバネは少なくとも1本あればよい。この場合、可動磁石33の重力方向(上側)に第1のコイルバネ34aを設置すればよい。   In the second embodiment described above, the movable magnet 33 is supported by two coil springs (the first coil spring 34a and the second coil spring 34b). However, at least one coil spring is sufficient. In this case, the first coil spring 34 a may be installed in the direction of gravity (upper side) of the movable magnet 33.

また、上述した第2の実施の形態では、2本の引っ張りバネを用いて可動磁石33を支持する構成としたが、弾性体として2本の圧縮バネを用いてもよい。圧縮バネであっても、可動磁石33の両端部を発電コイル9の巻軸方向に振動可能に支持することができる。
また、一個の圧縮バネのみを用いてもよい。この場合、圧縮バネを可動磁石33の重力方向(下側)に設置するとともに、第2の磁石端部材31bと第2の端部材32bに圧縮バネを固定しておくことが望ましい。このような構成であっても、好適に発電を行うことが可能である。
In the above-described second embodiment, the movable magnet 33 is supported using two tension springs. However, two compression springs may be used as the elastic body. Even if it is a compression spring, both ends of the movable magnet 33 can be supported so as to vibrate in the winding axis direction of the power generation coil 9.
Further, only one compression spring may be used. In this case, it is desirable that the compression spring is installed in the gravity direction (lower side) of the movable magnet 33 and the compression spring is fixed to the second magnet end member 31b and the second end member 32b. Even with such a configuration, it is possible to suitably generate power.

また、上述した第1及び第2の実施の形態では、可動磁石3を構成する複数の磁石は、隣り合う磁石の同極を対向させて配置するようにしたが、異極を対向させて配置してもよい。この場合、隣り合う磁石は引き合うが、スペーサを介することで磁石間の間隔を空けた状態を保つことができる。   In the first and second embodiments described above, the plurality of magnets constituting the movable magnet 3 are arranged so that the same poles of adjacent magnets face each other, but are placed so that different poles face each other. May be. In this case, adjacent magnets attract each other, but a state where a gap between the magnets is provided can be maintained by using a spacer.

また、本発明の本質、すなわち可動磁石3の形成するため非磁性筒体である第2のパイプ5を用いることを考慮すると、可動磁石3を構成する複数個の磁石間に、磁石と同径を有したスペーサを配置することは必ずしも必須の構成ではない。   In consideration of the essence of the present invention, that is, the use of the second pipe 5 which is a non-magnetic cylindrical body for forming the movable magnet 3, the same diameter as the magnet is provided between the plurality of magnets constituting the movable magnet 3. It is not always essential to dispose a spacer having a gap.

本発明の第1の実施の形態に係る振動型電磁発電機の構成例を示す断面図である。It is sectional drawing which shows the structural example of the vibration type electromagnetic generator which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る可動磁石の構成例を示す断面図である。It is sectional drawing which shows the structural example of the movable magnet which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る可動磁石の端部の構成例を示す断面図である。It is sectional drawing which shows the structural example of the edge part of the movable magnet which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る可動磁石組立て装置に、第1の磁石と第1のスペーサをセットした状態の例を示す断面図である。It is sectional drawing which shows the example of the state which set the 1st magnet and the 1st spacer to the movable magnet assembly apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る可動磁石組立て装置に、第2の磁石と第2のスペーサをセットした状態の例を示す断面図である。It is sectional drawing which shows the example of the state which set the 2nd magnet and the 2nd spacer to the movable magnet assembly apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る可動磁石組立て装置にセットされた第2の磁石と第2のスペーサを、第2のパイプに押し込んだ状態の例を示す断面図である。It is sectional drawing which shows the example of the state which pushed into the 2nd pipe the 2nd magnet and 2nd spacer which were set to the movable magnet assembly apparatus based on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る可動磁石組立て装置に、第3の磁石と第2の磁石端部材をセットした状態の例を示す断面図である。It is sectional drawing which shows the example of the state which set the 3rd magnet and the 2nd magnet end member to the movable magnet assembly apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る可動磁石組立て装置にセットされた第3の磁石と第2の磁石端部材を、第2のパイプに押し込んだ状態の例を示す断面図である。It is sectional drawing which shows the example of the state which pushed in the 2nd pipe the 3rd magnet and 2nd magnet end member which were set to the movable magnet assembly apparatus based on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る振動型電磁発電機の構成例を示す断面図である。It is sectional drawing which shows the structural example of the vibration type electromagnetic generator which concerns on the 2nd Embodiment of this invention. 従来の振動型電磁発電機の例を示す構成図である。It is a block diagram which shows the example of the conventional vibration type electromagnetic generator.

符号の説明Explanation of symbols

1…振動型電磁発電機、2…第1のパイプ、3…可動磁石、3a,3b…磁石、4a〜4c…ソレノイドコイル、5…第2のパイプ、6a,6b…スペーサ、7a,7b…端部材、8a,8b…磁石端部材、9…発電コイル、10…熱溶着部、11…接着剤、20…可動磁石組立て装置、21…位置決めストッパ部、22…飛び出し押さえ部、23…磁石ガイド、24…押し棒、25…押し棒制御装置、30…振動型電磁発電機、33…可動磁石、43…可動磁石   DESCRIPTION OF SYMBOLS 1 ... Vibration type electromagnetic generator, 2 ... 1st pipe, 3 ... Movable magnet, 3a, 3b ... Magnet, 4a-4c ... Solenoid coil, 5 ... 2nd pipe, 6a, 6b ... Spacer, 7a, 7b ... End member, 8a, 8b ... Magnet end member, 9 ... Power generation coil, 10 ... Heat welding part, 11 ... Adhesive, 20 ... Movable magnet assembly device, 21 ... Positioning stopper part, 22 ... Pop-out pressing part, 23 ... Magnet guide , 24 ... push rod, 25 ... push rod control device, 30 ... vibration type electromagnetic generator, 33 ... movable magnet, 43 ... movable magnet

Claims (6)

非磁性材料で形成され、両端部が閉じられた中空の第1のパイプと、
前記第1のパイプの周囲に巻回され、少なくとも1個のソレノイドコイルが設けられた発電コイルと、
前記第1のパイプの内部に配置され、前記発電コイルの巻軸方向に沿って移動可能である可動磁石と、を備え、
前記可動磁石は、
非磁性材料で形成され、両端部が閉じられた中空の第2のパイプと、
前記第2のパイプの内部に、前記第2のパイプの内壁面により強制的に整列され、封止される複数個の磁石と、を備えることを特徴とする
振動型電磁発電機。
A hollow first pipe formed of a non-magnetic material and closed at both ends;
A power generating coil wound around the first pipe and provided with at least one solenoid coil;
A movable magnet disposed inside the first pipe and movable along a winding axis direction of the power generation coil,
The movable magnet is
A hollow second pipe formed of a non-magnetic material and closed at both ends;
And a plurality of magnets that are forcibly aligned and sealed by the inner wall surface of the second pipe inside the second pipe .
請求項1に記載の振動型電磁発電機において、
前記可動磁石は、前記第2のパイプの両端部に配置され、前記複数個の磁石を保護する磁石端部材を備えることを特徴とする
振動型電磁発電機。
In the vibration type electromagnetic generator according to claim 1,
The movable magnet is provided with a magnet end member that is disposed at both ends of the second pipe and protects the plurality of magnets.
請求項2に記載の振動型電磁発電機において、
前記第1のパイプの少なくとも一方の端部に固定され、前記可動磁石を前記発電コイルの巻軸方向に振動可能に支持する伸縮可能な弾性体を備えることを特徴とする
振動型電磁発電機。
In the vibration type electromagnetic generator according to claim 2,
A vibration type electromagnetic generator, comprising: an elastic body that is fixed to at least one end of the first pipe and supports the movable magnet so as to vibrate in the winding axis direction of the power generation coil.
請求項1〜3のいずれか1項に記載の振動型電磁発電機において、In the vibration type electromagnetic generator according to any one of claims 1 to 3,
前記複数個の磁石が前記第2のパイプの内壁面と緊密に接することを特徴とするThe plurality of magnets are in close contact with an inner wall surface of the second pipe.
振動型電磁発電機。Vibration type electromagnetic generator.
請求項1〜3のいずれか1項に記載の振動型電磁発電機において、In the vibration type electromagnetic generator according to any one of claims 1 to 3,
前記複数個の磁石の直径を、前記第2のパイプの内周径より小さくすることを特徴とするThe diameter of the plurality of magnets is smaller than the inner peripheral diameter of the second pipe.
振動型電磁発電機。Vibration type electromagnetic generator.
請求項1〜3のいずれか1項に記載の振動型電磁発電機において、In the vibration type electromagnetic generator according to any one of claims 1 to 3,
前記第2のパイプの端部を加締め加工することにより前記複数個の磁石が前記第2のパイプに封止されることを特徴とするThe plurality of magnets are sealed by the second pipe by crimping the end of the second pipe.
振動型電磁発電機。Vibration type electromagnetic generator.
JP2007286416A 2007-11-02 2007-11-02 Vibration type electromagnetic generator Active JP4649668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286416A JP4649668B2 (en) 2007-11-02 2007-11-02 Vibration type electromagnetic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286416A JP4649668B2 (en) 2007-11-02 2007-11-02 Vibration type electromagnetic generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010073315A Division JP4680317B2 (en) 2010-03-26 2010-03-26 Vibration type electromagnetic generator

Publications (2)

Publication Number Publication Date
JP2009118581A JP2009118581A (en) 2009-05-28
JP4649668B2 true JP4649668B2 (en) 2011-03-16

Family

ID=40785090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286416A Active JP4649668B2 (en) 2007-11-02 2007-11-02 Vibration type electromagnetic generator

Country Status (1)

Country Link
JP (1) JP4649668B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733487A (en) * 2011-09-14 2014-04-16 胜美达集团株式会社 Vibration power generator
CN109639088A (en) * 2019-01-16 2019-04-16 吕梁学院 A kind of compound source energy collector that declines of electromagnetism-piezoelectricity-magnetostriction

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI351158B (en) * 2007-12-11 2011-10-21 Ind Tech Res Inst Reciprocating power generating module
ES2377656B1 (en) * 2009-06-16 2013-02-06 Consejo Superior De Investigaciones Científicas (Csic) DEVICE FOR GENERATING ELECTRICAL ENERGY FROM SMALL MOVEMENTS.
JP5760316B2 (en) * 2010-01-14 2015-08-05 スミダコーポレーション株式会社 Vibration type electromagnetic generator
JP5327097B2 (en) * 2010-02-25 2013-10-30 ブラザー工業株式会社 Method for manufacturing same-pole opposed magnet and vibration generator
JP5637028B2 (en) * 2011-03-22 2014-12-10 スミダコーポレーション株式会社 Vibration generator
JP6149593B2 (en) * 2013-08-08 2017-06-21 スミダコーポレーション株式会社 Vibration generator
WO2015140959A1 (en) * 2014-03-19 2015-09-24 三菱電機エンジニアリング株式会社 Vibration-powered generator
JP6004024B2 (en) * 2015-02-03 2016-10-05 スミダコーポレーション株式会社 Vibration type electromagnetic generator
JP6556458B2 (en) * 2015-02-09 2019-08-07 ヒーハイスト精工株式会社 In-pipe traveling body and electromagnetic generator using it, gravity center moving lure, and slide unit
CN108683357B (en) * 2018-06-14 2019-07-23 东华大学 A kind of friction electromagnetism hybrid generator of piston like motion and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179254A (en) * 1988-12-28 1990-07-12 Mayekawa Mfg Co Ltd Linear driving gear
JP2002374661A (en) * 2001-06-15 2002-12-26 Yamaguchi Technology Licensing Organization Ltd Portable generator and portable electronic apparatus comprising it
JP2006296144A (en) * 2005-04-14 2006-10-26 Shinichi Hayashizaki Oscillating generator
JP2006333688A (en) * 2005-05-30 2006-12-07 Tokai Rika Co Ltd Power generating apparatus
JP2007515916A (en) * 2003-12-12 2007-06-14 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト Travel mechanism components
JP2007529688A (en) * 2004-03-16 2007-10-25 オーシャン パワー テクノロジーズ,インク. Wave energy converter (WEC) with linear generator (LEG)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0500507D0 (en) * 2005-01-11 2005-02-16 Kelly H P G Improvements to tubular electrical generators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179254A (en) * 1988-12-28 1990-07-12 Mayekawa Mfg Co Ltd Linear driving gear
JP2002374661A (en) * 2001-06-15 2002-12-26 Yamaguchi Technology Licensing Organization Ltd Portable generator and portable electronic apparatus comprising it
JP2007515916A (en) * 2003-12-12 2007-06-14 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト Travel mechanism components
JP2007529688A (en) * 2004-03-16 2007-10-25 オーシャン パワー テクノロジーズ,インク. Wave energy converter (WEC) with linear generator (LEG)
JP2006296144A (en) * 2005-04-14 2006-10-26 Shinichi Hayashizaki Oscillating generator
JP2006333688A (en) * 2005-05-30 2006-12-07 Tokai Rika Co Ltd Power generating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733487A (en) * 2011-09-14 2014-04-16 胜美达集团株式会社 Vibration power generator
US9509202B2 (en) 2011-09-14 2016-11-29 Sumida Corporation Vibration generator
CN109639088A (en) * 2019-01-16 2019-04-16 吕梁学院 A kind of compound source energy collector that declines of electromagnetism-piezoelectricity-magnetostriction
CN109639088B (en) * 2019-01-16 2021-03-23 吕梁学院 Electromagnetic-piezoelectric-magnetostrictive composite micro-energy collector

Also Published As

Publication number Publication date
JP2009118581A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4649668B2 (en) Vibration type electromagnetic generator
JP4680317B2 (en) Vibration type electromagnetic generator
JP5760316B2 (en) Vibration type electromagnetic generator
US8519573B2 (en) Reciprocating vibration generator
JP3163956U (en) Vibration type electromagnetic generator
JP5417719B2 (en) Vibration type electromagnetic generator
JP5659426B2 (en) Vibration generator
US8941273B2 (en) Vibration generation device
US8941272B2 (en) Linear vibrator and method of manufacturing the same
US20140333156A1 (en) Electric power generation device
JP5969244B2 (en) Power generation element
US20160373032A1 (en) Power generator
WO2015162984A1 (en) Electricity generation device
US20220085271A1 (en) Power generation element and power generation apparatus
US20230101894A1 (en) Vibration actuator and electronic device
JP6004024B2 (en) Vibration type electromagnetic generator
JP2016502323A (en) Electromagnetic transducer and vibration control system
JP2001057767A (en) Electromagnetic reciprocating driving mechanism
WO2014168008A1 (en) Power generation device
WO2015022886A1 (en) Power generation device
JP2015223061A (en) Base and power generator
US20220085272A1 (en) Power generating element and apparatus including power generating element
WO2014168007A1 (en) Power generation device
JPWO2017038750A1 (en) Power generation element, dynamic damper and torsional damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100607

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

R150 Certificate of patent or registration of utility model

Ref document number: 4649668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250