WO2015022886A1 - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
WO2015022886A1
WO2015022886A1 PCT/JP2014/070647 JP2014070647W WO2015022886A1 WO 2015022886 A1 WO2015022886 A1 WO 2015022886A1 JP 2014070647 W JP2014070647 W JP 2014070647W WO 2015022886 A1 WO2015022886 A1 WO 2015022886A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetostrictive
magnetostrictive rod
permanent magnet
loop forming
magnetostrictive element
Prior art date
Application number
PCT/JP2014/070647
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 古河
貴之 沼宮内
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Publication of WO2015022886A1 publication Critical patent/WO2015022886A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/101Magnetostrictive devices with mechanical input and electrical output, e.g. generators, sensors

Definitions

  • the present invention relates to a power generation device.
  • This power generator includes, for example, a pair of magnetostrictive rods provided side by side, two connecting yokes that connect both ends of these magnetostrictive rods, a coil provided so as to surround the outer peripheral side of each magnetostrictive rod, and a pair of A long back yoke provided along with the magnetostrictive rod, and two permanent magnets disposed between each connecting yoke and the back yoke and applying a bias magnetic field to the magnetostrictive rod are provided.
  • the back yoke is fixed to the connecting yoke via a permanent magnet. Thereby, a magnetic field loop passing through the magnetostrictive rod, the connecting yoke, the permanent magnet and the back yoke is formed.
  • the intensity distribution of the bias magnetic field applied to the magnetostrictive rod varies in the axial direction (longitudinal direction). That is, a uniform bias magnetic field is not applied in the axial direction of the magnetostrictive rod. Therefore, the amount of change in magnetic flux density when the magnetostrictive rod is deformed varies in the axial direction of the magnetostrictive rod depending on the strength of the applied bias magnetic field. As a result, the power generation efficiency described in Patent Document 1 is poor.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a power generator capable of generating power efficiently by applying a uniform bias magnetic field in the axial direction of the magnetostrictive rod. is there.
  • Such an object is achieved by the present invention of the following (1) to (17).
  • (1) comprising a magnetostrictive rod made of a magnetostrictive material and passing the lines of magnetic force in the axial direction; and a coil wound around the outer periphery of the magnetostrictive bar and generating a voltage based on a change in density of the lines of magnetic force,
  • a magnetostrictive element whose portion is relatively displaceable in a direction substantially perpendicular to the axial direction of the magnetostrictive rod with respect to the other end; Generating the lines of magnetic force, having the magnetization direction as the axial direction of the magnetostrictive rod, and having a permanent magnet attached to the magnetostrictive rod so as to be separated from the magnetostrictive element;
  • the length of the permanent magnet in the magnetizing direction is shorter than the length in the axial direction of the region where the coil of the magnetostrictive rod is wound, and the permanent magnet is in the middle of the region in the axial direction.
  • a power generator characterized by being provided
  • the power generation device further includes at least two loop forming members that are made of a magnetic material and that form a loop such that the lines of magnetic force generated by the permanent magnet return to the permanent magnet together with the magnetostrictive element.
  • the at least two loop forming members are provided on a side opposite to the first loop forming member via the first loop forming member provided on the one end side of the magnetostrictive element and the permanent magnet.
  • the permanent magnet is disposed with respect to the magnetostrictive element in a direction substantially perpendicular to a displacement direction in which the magnetostrictive element is displaced and in a direction substantially perpendicular to the axial direction of the magnetostrictive rod.
  • the electric power generating apparatus in any one of (5).
  • Each of the first and second loop forming members is configured not to interfere with the magnetostrictive element when the one end of the magnetostrictive element is displaced with respect to the other end.
  • the first and second loop forming members are each along a displacement direction in which the bottom plate portion provided with the magnetostrictive element and the one end portion of the magnetostrictive element are displaced with respect to the other end portion.
  • the power generation device according to (8) further including at least one side plate portion erected from the bottom plate portion.
  • the at least one side plate portion includes two side plate portions that are opposed to each other via the bottom plate portion and are spaced apart from the magnetostrictive element,
  • the magnetostrictive element further includes a beam member that is provided together with the magnetostrictive rod and has a function of applying stress to the magnetostrictive rod.
  • the magnetostrictive element further includes a beam member provided together with the magnetostrictive rod and having a function of applying stress to the magnetostrictive rod, and a magnetic material, and one end of the magnetostrictive rod and the beam member.
  • the second loop forming member is screwed to the first block body to support the magnetostrictive element so that the one end portion of the magnetostrictive element is displaceable with respect to the other end portion.
  • the magnetostrictive element is further provided with the magnetostrictive rod and includes a beam member having a function of applying stress to the magnetostrictive rod, and a magnetic material, and one end of the magnetostrictive rod and the beam member.
  • the second loop forming member is formed integrally with the first block body, so that the one end portion of the magnetostrictive element supports the magnetostrictive element so as to be displaceable with respect to the other end portion.
  • the power generation device according to any one of (13).
  • a uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod.
  • FIG. 1 is a perspective view showing a first embodiment of a power generator of the present invention.
  • FIG. 2 is a plan view of the power generator shown in FIG.
  • FIG. 3 is a plan view of a power generation device exemplified for comparison with the power generation device of the present invention.
  • FIG. 4 is an analysis diagram analyzing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod in the natural state in the power generator shown in FIG. 2 and the power generator shown in FIG. 3, and the magnetostrictive rod corresponding to the applied stress. It is a graph which shows intensity distribution of the bias magnetic field in the axial direction.
  • FIG. 5 is a perspective view showing a second embodiment of the power generator of the present invention. 6 is an exploded perspective view of the power generator shown in FIG.
  • FIG. 7 is a plan view of the power generator shown in FIG.
  • FIG. 8 is a right side view of the power generator shown in FIG.
  • FIG. 9 is a front view of the power generator shown in FIG. Fig.10 (a) is a figure which shows typically the state which provided the external force upwards with respect to the electric power generating apparatus shown in FIG.
  • FIG.10 (b) is a figure which shows typically the state which provided external force with respect to the electric power generating apparatus shown in FIG.
  • FIG. 11 is a perspective view showing another configuration example of the power generation device according to the second embodiment of the present invention.
  • FIG. 12 is a perspective view showing a third embodiment of the power generator of the present invention.
  • FIG. 13 is a plan view of the power generator shown in FIG.
  • FIG.14 (a) is a figure which shows typically the state which provided the external force upwards with respect to 4th Embodiment of the electric power generating apparatus of this invention.
  • FIG.14 (b) is a figure which shows typically the state which provided the external force downward with respect to 4th Embodiment of the electric power generating apparatus of this invention.
  • FIG. 15 is a graph showing the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod in accordance with the stress (90 MPa elongation stress or 90 MPa contraction stress) applied to the magnetostrictive rod in each of the power generators of Examples 1 to 10. is there.
  • FIG. 14 (a) is a figure which shows typically the state which provided the external force upwards with respect to 4th Embodiment of the electric power generating apparatus of this invention.
  • FIG.14 (b) is a figure which shows typically the state which provided the external force downward with respect to 4th Embodiment of the electric power generating apparatus of this invention.
  • FIG. 15 is a
  • FIG. 1 is a perspective view showing a first embodiment of a power generator according to the present invention.
  • FIG. 2 is a plan view of the power generator shown in FIG.
  • the upper side in FIG. 1 and the front side in FIG. 2 are referred to as “up” or “upward”, and the lower side in FIG. 1 and the rear side in FIG. Say “down”.
  • the right front side in FIG. 1 and the left side in FIG. 2 are referred to as “tip”, and the left back side in FIG. 1 and the right side in FIG. 2 are referred to as “base ends”.
  • FIG. 1 and FIG. 2 includes a magnetostrictive element 10, a permanent magnet 6 provided side by side with the magnetostrictive element 10 so as to be separated from the magnetostrictive element 10, and a base end side of the magnetostrictive element 10.
  • the magnetostrictive element 10 includes two magnetostrictive rods 2, 2 provided side by side, a coil 3 wound on the outer peripheral side (outer periphery) of each magnetostrictive rod 2, and a first end provided on the base end side of the magnetostrictive rod 2.
  • a block body 4 and a second block body 5 provided on the other end side of the magnetostrictive rod 2 are provided.
  • the magnetostrictive rod 2 is made of a magnetostrictive material, and passes the lines of magnetic force in the axial direction.
  • the magnetostrictive element 10 has a first block body 4 side (one end) as a fixed end and a second block body 5 side (the other end) as a movable end, and a direction substantially perpendicular to its axial direction (in FIG. 1). , In the vertical direction), and the magnetostrictive rod 2 expands and contracts due to this displacement. At this time, the magnetic permeability of the magnetostrictive rod 2 changes due to the inverse magnetostrictive effect, and the density of the magnetic lines passing through the magnetostrictive rod 2 (the density of the magnetic lines passing through the coil 3) changes, whereby a voltage is generated in the coil 3.
  • the magnetostrictive rod 2 is made of a magnetostrictive material, and is arranged with the direction in which magnetization is likely to occur (direction of easy magnetization) as the axial direction.
  • the magnetostrictive rod 2 has a long flat plate shape, and passes lines of magnetic force in the axial direction thereof.
  • Such a magnetostrictive rod 2 has a substantially constant thickness (cross-sectional area) along the axial direction.
  • the average thickness of the magnetostrictive rod 2 is not particularly limited, but is preferably about 0.3 to 10 mm, and more preferably about 0.5 to 5 mm.
  • the average cross-sectional area of the magnetostrictive rod 2 is preferably about 0.2 to 200 mm 2 , more preferably about 0.5 to 50 mm 2 . With this configuration, it is possible to reliably pass magnetic lines of force in the axial direction of the magnetostrictive rod 2.
  • the Young's modulus of the magnetostrictive material is preferably about 40 to 100 GPa, more preferably about 50 to 90 GPa, and further preferably about 60 to 80 GPa.
  • the magnetostrictive rod 2 can be expanded and contracted more greatly. For this reason, since the magnetic permeability of the magnetostrictive rod 2 can be changed more greatly, the electric power generation efficiency of the electric power generating apparatus 1 (coil 3) can be improved more.
  • Such a magnetostrictive material is not particularly limited, and examples thereof include an iron-gallium alloy, an iron-cobalt alloy, an iron-nickel alloy, and the like, and one or more of these can be used in combination. .
  • a magnetostrictive material mainly composed of an iron-gallium alloy (Young's modulus: about 70 GPa) is preferably used.
  • a magnetostrictive material whose main component is an iron-gallium alloy is easy to set in the Young's modulus range as described above.
  • the magnetostrictive material as described above preferably contains at least one of rare earth metals such as Y, Pr, Sm, Tb, Dy, Ho, Er, and Tm. Thereby, the change of the magnetic permeability of the magnetostriction stick
  • rod 2 can be enlarged more.
  • the coil 3 is wound (arranged) on the outer periphery of each of the magnetostrictive rods 2 and 2 so as to surround the portions excluding both end portions 21 and 22 thereof.
  • the coil 3 is configured by winding a wire 31 around the outer periphery of the magnetostrictive rod 2. Thereby, the coil 3 is arrange
  • a voltage is generated in the coil 3 based on a change in magnetic permeability of the magnetostrictive rod 2, that is, a change in the density of magnetic lines of force (magnetic flux density) passing through the magnetostrictive rod 2.
  • fusion function to the copper base line the wire which coat
  • the number of windings of the wire 31 is not particularly limited, but is preferably about 100 to 500, and more preferably about 150 to 450. Thereby, the voltage generated in the coil 3 can be further increased.
  • the cross-sectional area of the wire 31 is not particularly limited, but is preferably 5 ⁇ 10 -4 ⁇ 0.126mm 2 mm, and more preferably 2 ⁇ 10 -3 ⁇ 0.03mm 2 approximately. Since the resistance value of such a wire 31 is sufficiently low, the current flowing through the coil 3 can be efficiently flowed to the outside by the generated voltage, and the power generation efficiency of the power generator 1 can be further improved.
  • the cross-sectional shape of the wire 31 may be any shape such as a polygon such as a triangle, a square, a rectangle, and a hexagon, a circle, and an ellipse.
  • a first block body 4 is fixed to the proximal end side of the magnetostrictive rod 2.
  • the magnetostrictive element 10 is fixed to the first loop forming member 7 through the first block body 4.
  • the first block body 4 functions as a fixing portion for fixing to the vibrating body that generates vibration together with a part on the base end side of the first loop forming member 7.
  • the magnetostrictive rod 2 is cantilevered with the base end as a fixed end and the tip as a movable end. Yes.
  • the first block body 4 has a flat plate shape.
  • two upper and lower slits 41 and 42 are formed at the approximate center in the height direction (the vertical direction in FIG. 1).
  • the base end portion 21 of each magnetostrictive rod 2 is inserted and fixed with an adhesive or the like.
  • the second block body 5 is fixed to the tip side of the magnetostrictive rod 2.
  • the magnetostrictive element 10 is fixed to the second loop forming member 8 via the second block body 5.
  • the second block body 5 is a part that functions as a weight for applying external force and vibration to the magnetostrictive rod 2 together with the second loop forming member 8. Due to the vibration of the vibrating body, an external force or vibration in the vertical direction is applied to the second block body 5. As a result, the magnetostrictive rod 2 has its base end as a fixed end, and the tip reciprocates vertically (the tip is displaced relative to the base end).
  • the second block body 5 has a flat plate shape.
  • two upper and lower slits 51 and 52 are formed at substantially the center in the height direction (the vertical direction in FIG. 1).
  • the distal end portion 22 of each magnetostrictive rod 2 is inserted and fixed with an adhesive or the like.
  • the separation distance between the slits 51 and 52 is configured to be substantially equal to the separation distance between the slits 41 and 42 of the first block body 4.
  • the magnetostrictive rods 2 and 2 are arranged so as to be parallel to each other in a state of being separated by a certain distance in a side view in a natural state of the power generation device 1 (a state in which no external force is applied to the magnetostrictive element 10). .
  • the end portions 21 and 22 of the magnetostrictive rod 2 can be reliably fixed, respectively, and uniform stress is applied to the magnetostrictive rod 2.
  • the material is not particularly limited as long as it is a material having sufficient rigidity capable of imparting a magnetic field and having ferromagnetism capable of imparting a bias magnetic field from the permanent magnet 6 to the magnetostrictive rod 2.
  • Examples of the material having the above characteristics include pure iron (for example, JIS SUY), soft iron, carbon steel, electromagnetic steel (silicon steel), high-speed tool steel, structural steel (for example, JIS SS400), stainless steel, permalloy, and the like. These can be used, and one or more of these can be used in combination.
  • the separation distance between the slit 41 and the slit 42 of the first block body 4 is preferably about 0.3 to 10 mm, and more preferably about 0.5 to 3 mm.
  • the separation distance between the slit 51 and the slit 52 of the second block body 5 is preferably about 0.3 to 10 mm, more preferably about 0.5 to 3 mm. preferable.
  • the volume of the coil 3 wound around each magnetostrictive rod 2 is sufficiently ensured while reducing the size of the power generator 1.
  • a wire having a relatively large wire diameter can be used as the wire 31 of the coil 3, and the number of turns of the wire 31 can be increased.
  • the wire 31 having a large wire diameter has a small resistance value (load impedance)
  • the voltage generated in the coil 3 can be efficiently extracted (utilized). Further, by increasing the number of turns of the wire 31, the voltage generated in the coil 3 can be increased, and as a result, the power generation efficiency of the power generator 1 can be improved.
  • each block body 4, 5 (the length in the left-right direction of each block body 4, 5 in FIG. 1) is designed to be substantially the same as the width of the magnetostrictive rod 2.
  • the width of each of the block bodies 4 and 5 is preferably about 1 to 20 mm, and more preferably about 2 to 10 mm.
  • the two magnetostrictive rods 2 and 2 provided side by side function as opposing beams, and each magnetostrictive rod 2 is moved in the same direction as the second block body 5 is displaced (in FIG. 1). , Upward or downward).
  • one of the two magnetostrictive rods 2 functions as a beam member that applies stress to the other magnetostrictive rod 2, and the displacement of one of the magnetostrictive rods 2 is accompanied.
  • the other magnetostrictive rod 2 generates either an extension stress or a contraction stress. Thereby, the density of the magnetic force line which passes through each magnetostrictive rod 2 changes.
  • one of the two upper and lower magnetostrictive rods 2 may be a beam member made of a material other than the magnetostrictive material.
  • a beam member only needs to have rigidity sufficient to apply stress to the magnetostrictive rod 2, and may be a nonmagnetic material.
  • what was comprised with the material which comprises each block body 4 and 5 can be used.
  • the method of fixing the end portions (base end portion 21 and tip end portion 22) of the magnetostrictive rod 2 to the slits of the respective block bodies 4 and 5 is not limited to the above-described adhesive bonding, but caulking, diffusion bonding, pins
  • press fitting, brazing, welding (laser welding, electric welding, etc.), etc. may be used.
  • the first block body 4 is connected to the base end portion of the permanent magnet 6 via the first loop forming member 7.
  • the first loop forming member 7 is fixed to the vibrating body together with the first block body 4, and the distal end portion of the magnetostrictive element 10 is displaced with respect to the proximal end portion by the vibration of the vibrating body.
  • the vibrating body to which the first loop forming member 7 and the first block body 4 are attached include various vibrating bodies such as a pump and an air conditioning duct. A specific example of the vibrating body will be described later.
  • the first loop forming member 7 is made of a magnetic material, and has a first fixing portion 71 fixed to the side surface (the lower side surface in FIG. 2) of the first block body 4, and a permanent magnet. 6, a second fixing portion 72 fixed to the end surface on the base end side, the first fixing portion 71 and the second fixing portion 72 are connected, and a connecting portion 73 having an L shape in plan view is provided. I have.
  • the first loop forming member 7 is prepared, for example, by preparing a belt-like (long plate-like) plate material, and first processing it into an L shape in plan view by pressing, bending, forging, or the like. . Then, both end portions of the plate material can be formed by bending each portion corresponding to the connecting portion 73 by about 90 ° in the L-shaped outer direction.
  • the first fixing portion 71 is fixed to the side surface on the base end side of the first block body 4 by adhesion with, for example, an adhesive.
  • the height of the first fixing portion 71 (vertical direction in FIG. 1) is substantially the same as the height of the first block body 4, and when the power generator 1 is attached to the vibrating body, for example, the first The lower surfaces of the block body 4 and the first fixing portion 71 can be fixed to the vibrating body by bonding with an adhesive or the like.
  • fixed part 71 and the 1st block body 4 is fully ensured, these joint strength can be improved, and durability of the electric power generating apparatus 1 can be improved.
  • the second fixing portion 72 is fixed to the end surface on the base end side of the permanent magnet 6 by adhesion with, for example, an adhesive.
  • the surface area (fixed surface) on the front end side of the second fixed portion 72 is configured to be larger than the surface area of the end surface of the permanent magnet 6, and the permanent magnet 6 is attached to the second fixed portion 72 over the entire end surface. It is fixed.
  • the L-shaped connecting portion 73 has one piece portion 731 connected to the distal end portion of the first fixing portion 71 and the other piece portion 732 connected to the proximal end portion of the second fixing portion 72. ing.
  • the method of fixing the first block body 4 and the first fixing portion 71, and fixing the first loop forming member 7 (first fixing portion 71) and the first block body 4 to the vibrating body is not limited to the above-described bonding using an adhesive or the like, but may be screwing, caulking, diffusion bonding, pin press-fitting, brazing, welding (laser welding, electric welding, etc.), or the like.
  • the constituent material of the first loop forming member 7 the same materials as the various magnetic materials constituting the block bodies 4 and 5 described above can be used.
  • a second loop forming member 8 is arranged on the tip side of the permanent magnet 6 (left permanent magnet 6 in FIG. 2), that is, on the side opposite to the first loop forming member 7 via the permanent magnet 6. Has been.
  • the second loop forming member 8 connects the second block body 5 and the permanent magnet 6, and is fixed to the first loop forming member 7 via the permanent magnet 6.
  • the second loop forming member 8 together with the second block body 5 functions as a weight that applies an external force or vibration to the magnetostrictive rod 2.
  • the second loop forming member 8 is made of a magnetic material, and is fixed to the side surface (lower side surface in FIG. 2) of the second block body 5 and the tip of the permanent magnet 6.
  • a second fixing portion 82 fixed to the end face on the side, a first fixing portion 81 and the second fixing portion 82 are connected, and a connecting portion 83 having an L shape in plan view is provided.
  • Such a second loop forming member 8 is prepared, for example, as a belt-like (long plate-like) plate material, and is first formed into an L shape in plan view by pressing, bending or forging. To process. Then, both end portions of the plate material can be formed by bending each portion corresponding to the connecting portion 83 by about 90 ° in the L-shaped outer direction.
  • the first fixing portion 81 is fixed to the side surface on the distal end side of the second block body 5 by adhesion with, for example, an adhesive.
  • the height of the first fixing portion 81 (vertical direction in FIG. 1) is configured to be substantially the same as the height of the second block body 5.
  • the second fixing portion 82 is fixed to the end face on the tip side of the permanent magnet 6 by adhesion with, for example, an adhesive.
  • the surface area (fixed surface) on the front end side of the second fixed portion 82 is configured to be larger than the surface area of the end surface of the permanent magnet 6, and the permanent magnet 6 has the entire second end surface thereof. It is fixed to.
  • the L-shaped connecting portion 83 has one piece 831 connected to the base end of the first fixing portion 81 and the other piece 832 connected to the base end of the second fixing portion 82. is doing.
  • the method of fixing the second block body 5 and the first fixing portion 81 is not limited to the adhesion by the adhesive as described above, screwing, caulking, diffusion bonding, pin press fitting, brazing, Welding (laser welding, electric welding, etc.) may be used.
  • the constituent material of the second loop forming member 8 the same materials as the various magnetic materials constituting the block bodies 4 and 5 described above can be used.
  • a permanent magnet 6 is fixed between the first loop forming member 7 and the second loop forming member 8 and has a cylindrical shape and applies a bias magnetic field to the magnetostrictive rod 2.
  • two permanent magnets 6 are arranged in series between the first loop forming member 7 and the second loop forming member 8, and these are connected to each other by magnetic force, Further, it is fixed with an adhesive or the like.
  • Each permanent magnet 6 is disposed with respect to the magnetostrictive element 10 in a direction substantially perpendicular to the displacement direction in which the magnetostrictive element 10 (magnetostrictive rod 2) is displaced and in a direction substantially perpendicular to the axial direction of the magnetostrictive rod 2.
  • the permanent magnet 6 for example, an alnico magnet, a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, or a magnet (bond magnet) formed by molding a composite material obtained by pulverizing them and kneading them into a resin material or a rubber material is used. be able to.
  • a permanent magnet 6 is fixed to the first loop forming member 7 (second fixing portion 72) on the base end side, and is fixed to the second loop forming member 8 on the tip end side.
  • a fixing method of these members for example, it can be fixed by bonding with an adhesive or the like.
  • each permanent magnet 6 has an S pole on the left side (second loop forming member 8 side) in FIG. 2 and an N pole on the right side (first loop forming member 7 side) in FIG. Are arranged. Thereby, in the electric power generating apparatus 1, the permanent magnet 6 is arrange
  • the lines of magnetic force generated by the two permanent magnets 6 are the first loop forming member 7, the magnetostrictive element 10 (the first block body 4, the magnetostrictive rod 2, and the first A counterclockwise magnetic field loop is formed which passes through the second block body 5) and the second loop forming member 8 and returns to the permanent magnet 6.
  • the permanent magnet 6 is joined to the second fixing portions 72 and 82 of the first loop forming member 7 and the second loop forming member 8 at both ends thereof. Therefore, it is possible to prevent the flow of the magnetic force lines forming the magnetic field loop from being lost between the permanent magnet 6 and the first loop forming member 7 and the second loop forming member 8. Thereby, the density of the magnetic force line which passes the magnetostrictive rod 2 can be made high enough, and when the magnetostrictive rod 2 deform
  • the first block body 4 and the first loop forming member 7 (mainly the first fixing portion 71) are fixed to the vibrating body.
  • the second block body 5 is displaced (rotated) upward with respect to the first block body 4 due to the vibration of the vibration body, that is, the distal end with respect to the proximal end of the magnetostrictive rod 2. Is displaced upward, the lower magnetostrictive rod 2 is deformed to extend in the axial direction, and the upper magnetostrictive rod 2 is deformed to contract in the axial direction.
  • the second block body 5 is displaced (rotated) downward, that is, when the distal end is displaced downward with respect to the base end of the magnetostrictive rod 2, the lower magnetostrictive rod 2 is moved in the axial direction.
  • the upper magnetostrictive rod 2 is deformed so as to contract, and is deformed so as to extend in the axial direction.
  • the magnetic permeability of each magnetostrictive rod 2 changes due to the inverse magnetostrictive effect, and the density of magnetic lines passing through the magnetostrictive bar 2 (the density of magnetic lines passing through the inner cavity of the coil 3 in the axial direction) changes.
  • a voltage is generated in the coil 3.
  • the permanent magnet 6 is arranged so that the magnetization direction thereof is the axial direction of the magnetostrictive rod 2.
  • the length of the permanent magnet 6 in the magnetization direction is shorter than the length in the axial direction of the region where the coil 3 of the magnetostrictive rod 2 is wound, and the permanent magnet 6 is wound by the coil 3 of the magnetostrictive rod 2. It is provided so as to correspond to the middle of the rotated region in the axial direction.
  • the permanent magnet 6 is disposed so as to be included in the vicinity of the center of the region where the coil 3 is wound around the magnetostrictive rod 2 in a side view (see FIG. 2).
  • the lines of magnetic force generated by the permanent magnet 6 described above form a magnetic field loop that passes through the first loop forming member 7, the magnetostrictive element 10, and the second loop forming member 8, part of which is a permanent magnet. 6 exists as a leakage magnetic flux (magnetic field) around 6 to form a strong magnetic field region.
  • the strong magnetic field region of the permanent magnet 6 overlaps with the magnetostrictive rod 2, and the leakage magnetic flux in the axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound. Passes near the center (near the center in the axial direction of the magnetostrictive rod 2). That is, the leakage magnetic flux from the permanent magnet 6 is applied near the center in the axial direction of the magnetostrictive rod 2 in substantially the same direction as the passing direction of the magnetic lines of force in the magnetostrictive rod 2.
  • a voltage is generated in the coil 3 due to the density change of the magnetic lines of force penetrating the inner cavity of the coil 3 in the axial direction. For this reason, from the viewpoint of efficient power generation, it is not always necessary to apply a uniform bias magnetic field to the entire axial direction of the magnetostrictive rod 2, and at least one entire axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound. Any configuration in which such a bias magnetic field is applied may be used.
  • FIG. 3 is a plan view of a power generation device exemplified for comparison with the power generation device of the present invention. 3 is referred to as “upper” or “upper”, and the rear side of the page is referred to as “lower” or “lower”. Further, the left side in FIG. 3 is referred to as “tip”, and the right side in FIG. 3 is referred to as “base end”.
  • a power generation device 200 shown in FIG. 3 is a power generation device exemplified for comparison with the power generation device 1 of the present invention.
  • the power generation apparatus 200 includes the magnetostrictive element 10 similar to that of the power generation apparatus 1 of the present invention, and further includes a long back yoke 9 provided side by side with a pair of magnetostrictive rods, the block bodies 4 and 5 and the back yoke. 9 and two permanent magnets 6 for applying a bias magnetic field to the magnetostrictive rod 2.
  • the back yoke 9 is fixed to the block bodies 4 and 5 via permanent magnets 6.
  • the permanent magnet 6 on the base end side is arranged with the south pole on the lower side in FIG. 3 (back yoke 9 side) and the north pole on the upper side in FIG. 3 (first block body 4 side). ing. Further, the permanent magnet 6 on the tip side is arranged with the S pole on the upper side (second block body 5 side) in FIG. 3 and the N pole on the lower side in FIG. 3 (back yoke 9 side). Thereby, a counterclockwise magnetic field loop passing through the magnetostrictive element 10, the two permanent magnets 6, and the back yoke 9 is formed.
  • such a power generation apparatus 200 also has a distal end portion (second block body 5) relative to the base end portion (first block body 4) of the magnetostrictive element 10 in a direction substantially perpendicular to the axial direction thereof.
  • the magnetostrictive rod 2 expands and contracts due to the displacement.
  • a voltage is generated in the coil 3 due to a change in density of magnetic lines of force passing through the magnetostrictive rod 2 (density of magnetic lines passing through the coil 3) due to the inverse magnetostrictive effect.
  • FIG. 4 is an analysis diagram analyzing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod in a natural state (a state where no stress is applied to the magnetostrictive rod) in the power generator shown in FIG. 2 and the power generator shown in FIG. 4 is a graph showing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod according to the applied stress.
  • FIG. 4 (a-1) is an analysis diagram analyzing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod 2 in the natural state in the power generation apparatus 200 shown in FIG.
  • FIG. 4A-2 is a graph showing the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod 2 according to the stress applied to the magnetostrictive rod 2 (elongation stress of 90 MPa or contraction stress of 90 MPa).
  • FIG. 4B-1 is an analysis diagram analyzing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod 2 in the natural state in the power generator 1 shown in FIG. FIG.
  • each of the power generation device 1 and the power generation device 200 is a magnetostrictive rod 2 and has a length (distance from the distal end of the first block body 4 to the proximal end of the second block body 5) of 10 mm. Evaluation was performed using a magnetostrictive rod.
  • 4 (a-1) and 4 (b-1) the intensity of the applied bias magnetic field in the axial direction of the magnetostrictive rod 2 is shown by the density of black and white. It shows that the difference in strength of the magnetic field is large.
  • 4 (a-2) and 4 (b-2) show the distance from the axial tip (0 mm) to the base end side of the region around which the coil 3 of the magnetostrictive rod 2 is wound, and the magnetic field strength. Show the relationship.
  • each permanent magnet 6 has a magnetization direction on the side surfaces of the proximal end portion (first block body 4) and the distal end portion (second block body 5) of the magnetostrictive element 10.
  • the magnetostrictive rod 2 is disposed so as to be orthogonal to the axial direction. In such a configuration, the strong magnetic field region due to the leakage magnetic flux from the permanent magnet 6 is generated on the proximal end side and the distal end side of the magnetostrictive rod 2, and the leakage magnetic flux from the permanent magnet 6 is a magnetic field line passing through the magnetostrictive rod 2. Nearly perpendicular to the direction.
  • the leakage magnetic flux of the permanent magnet 6 is not applied in the direction of passage of the magnetic lines of force in the magnetostrictive rod 2, and in the power generator 200, the vicinity of the center in the axial direction of the magnetostrictive rod 2, the proximal end side, and the distal end side
  • the difference in the intensity of the bias magnetic field increases (see FIG. 4A-1).
  • the axial center is further increased than the magnetostrictive rod 2 in the natural state (stress: 0 MPa).
  • stress 90 MPa elongation stress or 90 MPa contraction stress
  • the difference in the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod 2 is large, that is, the variation in the intensity distribution of the bias magnetic field is large.
  • this variation becomes prominent when stress is applied to the magnetostrictive rod 2 and the magnetostrictive rod 2 is deformed. Therefore, in the power generation device 200, the amount of change in the magnetic flux density when the magnetostrictive rod 2 is deformed varies in the axial direction of the magnetostrictive rod depending on the strength of the applied bias magnetic field. As a result, in the power generation device 200, the power generation efficiency cannot be sufficiently increased.
  • the leakage magnetic flux from the permanent magnet 6 is substantially the same as the passing direction of the magnetic lines of force in the magnetostrictive rod 2 near the center in the axial direction of the region where the coil 3 is wound. Applied in the direction. Therefore, there is very little variation in the intensity of the bias magnetic field between the vicinity of the center of the magnetostrictive rod 2 in the axial direction, the proximal end side, and the distal end side, and particularly in the region where the coil 3 contributing to power generation is wound, A uniform bias magnetic field is applied over the entire area (see FIG. 4B-1).
  • the magnetostrictive rod 2 is similar to the magnetostrictive rod 2 in the natural state (stress: 0 MPa). A uniform bias magnetic field is applied over the entire axial direction (see FIG. 4B-2).
  • the bias magnetic field strength that maximizes the amount of change in the magnetic flux density in the magnetostrictive rod 2 is obtained in advance from the material characteristics of the magnetostrictive rod 2, and the bias magnetic field having the obtained strength is applied to the magnetostrictive rod 2. By configuring so, it is possible to efficiently generate power with a high power generation amount.
  • the length in the axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound is A [mm]
  • the length in the magnetization direction of the permanent magnet 6 in this embodiment, it is arranged in series.
  • the relationship B ⁇ A is satisfied.
  • the relationship between A and B may satisfy the above relationship, but it is particularly preferable to satisfy the relationship B ⁇ 0.6A, and more preferably satisfy the relationship 0.1A ⁇ B ⁇ 0.6A. preferable.
  • the strong magnetic field region around the permanent magnet 6 overlaps with the vicinity of the axial center of the magnetostrictive rod 2 over a wider range, and a sufficiently strong leakage magnetic flux is applied near the axial center of the magnetostrictive rod 2. can do. Therefore, a more uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod 2.
  • the distance from the region where the coil 3 of the magnetostrictive rod 2 is wound to the permanent magnet 6 is X [mm]
  • the strong magnetic field region present around the permanent magnet 6 sufficiently overlaps with the vicinity of the axial center of the magnetostrictive rod 2, and a leakage flux having a sufficient strength is applied near the axial center of the magnetostrictive rod 2. Can do. Therefore, a more uniform bias magnetic field can be applied over the entire axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound.
  • the standard deviation of the intensity distribution is preferably 3000 [A / m] or less, preferably 100 to 2000 [A / m]. A / m] is more preferable.
  • a sufficiently uniform bias magnetic field is applied over the entire axial direction of the magnetostrictive rod 2, and the amount of change in magnetic flux density when the magnetostrictive rod 2 is deformed is the axis of the magnetostrictive rod 2. Uniform throughout the direction. Thereby, in the electric power generating apparatus 1, it can generate electric power efficiently.
  • a vibrating body which attaches the electric power generating apparatus 1 it is an apparatus which moves steam, water, fuel oil, gas (air, fuel gas, etc.) etc. through a pipe or a duct (exhaust, ventilation, intake air, waste liquid, circulation), for example.
  • pipes and air conditioning ducts installed in large facilities, buildings, stations, etc.
  • transportation equipment cargo trains, automobiles, truck beds
  • rails that make up tracks rails that make up tracks (sleepers)
  • highway and tunnel wall panels bridges, pumps, turbines, etc. Examples include equipment.
  • the vibration generated in these vibrators is unnecessary for the movement of the target medium (in the case of an air conditioning duct, the gas passing through the duct), which may cause noise and unpleasant vibration. It has become.
  • the unnecessary vibration kinetic energy
  • the unnecessary vibration can be converted (regenerated) as electric energy.
  • the obtained electrical energy is used as a power source for sensors, wireless devices, etc., and the illuminance, temperature, humidity, pressure, and noise of the facility living space are measured, and the detection data is transmitted by the wireless device for various control signals and monitoring. It can be used as a signal. It can also be used as a system for monitoring the state of each part of the vehicle (for example, a tire air pressure sensor, a seat belt wearing detection sensor). Further, by converting unnecessary vibration into electric power in this way, an effect of reducing noise from the vibrating body and unpleasant vibration can be obtained.
  • a structure that is fixed to a base other than the vibrating body and directly applies external force to the tip (second block body 5) of the power generator 1 is added.
  • it can be used as a switch operated by a person by combining with a wireless device.
  • Such a switch functions without wiring the power supply and signal lines.
  • a home lighting wireless switch a home security system (especially a system that wirelessly detects the operation of windows and doors), etc. Can do.
  • the power generation device 1 by applying the power generation device 1 to each switch of the vehicle, there is no need for wiring of the power source and signal line, which not only reduces assembly man-hours but also reduces the weight required for wiring provided in the vehicle, thereby reducing the weight of the vehicle, etc. Therefore, it is possible to suppress the load on the tire, the vehicle body, and the engine and contribute to safety.
  • the power generation amount of the power generator 1 is not particularly limited, but is preferably about 20 to 2000 ⁇ J. If the power generation amount (power generation capacity) of the power generation device 1 is within the above range, for example, by combining with a wireless device, it can be effectively used for the above-described home illumination wireless switch, home security system, and the like.
  • the two permanent magnets 6 connected in series are arrange
  • positioned the two permanent magnets 6 may be sufficient.
  • a rare earth magnet such as an alnico magnet, a neodymium magnet, or a samarium cobalt magnet having an excellent holding force and a relatively high maximum energy product is used as the permanent magnet 6, one permanent magnet is used.
  • a sufficiently strong bias magnetic field can be applied to the magnetostrictive rod 2.
  • the maximum energy product is an index indicating the magnitude of energy of the magnet, and the magnetic flux density and magnetic field in the BH demagnetization curve (B: magnetic flux density, H: magnetic field (magnetic field)) of each magnet. It is the maximum value of the product of.
  • FIG. 5 is a perspective view showing a second embodiment of the power generator of the present invention.
  • 6 is an exploded perspective view of the power generator shown in FIG.
  • FIG. 7 is a plan view of the power generator shown in FIG.
  • FIG. 8 is a right side view of the power generator shown in FIG.
  • FIG. 9 is a front view of the power generator shown in FIG. Fig.10 (a) is a figure which shows typically the state which provided the external force upwards with respect to the electric power generating apparatus shown in FIG.
  • FIG.10 (b) is a figure which shows typically the state which provided external force with respect to the electric power generating apparatus shown in FIG.
  • FIGS. 5, 6, 8, 9 and 10 (a) and 10 (b) and the front side in FIG. 7 are referred to as “up” or “upward”
  • the lower side in FIGS. 5, 6, 8, 9 and 10 (a) and 10 (b) and the back side in FIG. 7 are referred to as “lower” or “lower”.
  • 5 and FIG. 6 and the left side in FIG. 7, FIG. 8 and FIGS. 10A and 10B are referred to as “tip”
  • the right side in FIGS. 7, 8 and 10 (a) and 10 (b) is referred to as the “base end”.
  • the power generation device of the second embodiment will be described with a focus on differences from the power generation device of the first embodiment, and description of similar matters will be omitted.
  • the power generation device 1 shown in FIGS. 5 and 6 includes a magnetostrictive element 10, a first loop forming member 7 that supports the base end portion of the magnetostrictive element 10, a permanent magnet 6, and a first magnet via the permanent magnet 6.
  • the second loop forming member 8 provided on the opposite side of the loop forming member 7 is used, and the first loop forming member 7 is used by being fixed to a base body such as a vibrating body that generates vibration. .
  • the magnetostrictive element 10 is supported by the first loop forming member 7 so that the distal end portion thereof can be displaced with respect to the proximal end portion.
  • the first loop forming member 7 and the second loop forming member 8 are made of a magnetic material, and the lines of magnetic force generated by the permanent magnet 6 are the second loop forming member 8 and the magnetostrictive element 10.
  • a loop magnetic field loop is formed so as to pass through the first loop forming member 7 and return to the permanent magnet 6.
  • the magnetostrictive element 10 has a through-hole through which the first block body 4 penetrates in the width direction (left and right direction in FIG. 6) at a position separated from the slits 41 and 42 on the base end side of the slits 41 and 42. Except that 43 is formed, it has the same configuration as the magnetostrictive element 10 of the first embodiment.
  • the first block body 4 is fixed to the first loop forming member 7, whereby the magnetostrictive element 10 has a distal end portion (second block body 5) as a base end portion (first block body 4). ) In a cantilevered manner by the first loop forming member 7. Further, the first loop forming member 7 is fixed to the vibrating body, and the distal end portion of the magnetostrictive element 10 is displaced with respect to the proximal end portion by the vibration of the vibrating body. Examples of the vibration body to which the first loop forming member 7 is attached include the various vibration bodies described above.
  • Such a first loop forming member 7 is made of a magnetic material, and is provided on a base portion 74 fixed to the vibrating body and an upper surface on the base end side of the base portion 74, and accommodates the first block body 4. Part 75.
  • the base portion 74 includes a pair of projecting portions (bracket portions) 741 projecting in the lateral direction on the proximal end side (left and right direction in FIG. 6), and has a T shape in plan view.
  • the accommodating portion 75 is provided in a region between the pair of overhang portions 741 and includes a bottom plate 751 and a pair of side plates 752 erected from the bottom plate 751, and has a front (rear) view shape. It is almost U-shaped.
  • the first block body 4 is accommodated between the pair of side plates 752.
  • the housing portion 75 is fixed to the base portion 74 by, for example, welding or the like so that the bottom plate 751 is brought into contact with the upper surface of the base portion 74 on the base end side.
  • the base 74 is a member that comes into contact with the permanent magnet 6 at the tip, and is configured such that the thickness of the tip is thicker than the thickness of the portion other than the tip.
  • the cross-sectional shape of the tip portion is configured to be substantially the same as the cross-sectional shape of the permanent magnet 6. Therefore, it is possible to prevent the flow of the magnetic field lines forming the magnetic field loop from being lost between the permanent magnet 6 and the first loop forming member 7. Thereby, the density of the magnetic force line which passes the magnetostrictive rod 2 can be made high enough, and when the magnetostrictive rod 2 deform
  • each of the pair of overhang portions 741 is provided with a through hole 742 that penetrates in the thickness direction.
  • the first loop forming member 7 can be fixed (screwed) to the vibrating body by inserting the male screw 743 into the through hole 742 and screwing it into the vibrating body.
  • the accommodating portion 75 is configured such that the distance between the pair of side plates 752 is substantially the same as the width of the first block body 4.
  • a through hole 753 penetrating in the width direction is provided in the approximate center of each side plate 752.
  • the first block body 4 is inserted between the pair of side plates 752, the male screw 754 is inserted into the through hole 753 and the through hole 43 of the first block body 4, and the nut 755 is screwed. Accordingly, the first block body 4 is screwed to the housing portion 75, and the magnetostrictive element 10 is fixed to the first loop forming member 7.
  • the method of fixing the first loop forming member 7 to the vibrating body and the method of fixing the magnetostrictive element 10 to the first loop forming member 7 are not limited to the screwing as described above, and are bonded by an adhesive. , Crimping, diffusion bonding, pin press-fit, brazing, welding (laser welding, electric welding, etc.), etc.
  • the constituent material of the first loop forming member 7 base 74 and accommodating portion 75
  • the same materials as the various magnetic materials constituting the first loop forming member 7 of the first embodiment described above are used. it can.
  • a quadrangular prism-shaped permanent magnet 6 is fixed to the first loop forming member 7 at the distal end portion of the base 74 of the first loop forming member 7.
  • the permanent magnet 6 various magnets similar to the permanent magnet 6 in the first embodiment described above can be used.
  • Such a permanent magnet 6 is fixed to the first loop forming member 7 (base 74) on the base end side, and is fixed to the second loop forming member 8 on the tip end side.
  • As a fixing method of these members for example, it can be fixed by bonding with an adhesive or the like.
  • the permanent magnet 6 has an S pole on the right side (first loop forming member 7 side) in FIG. 8 and an N pole on the left side in FIG. 8 (second loop forming member 8 side). Has been placed. That is, the permanent magnet 6 is arranged between the first loop forming member 7 and the second loop forming member 8 so that the magnetization direction of the first loop forming member 7 and the second loop forming member 8 is arranged. The permanent magnet 6 is arranged so that the magnetizing direction is the axial direction of the magnetostrictive rod 2 so as to be in the arranged direction.
  • the second loop forming member 8 is disposed on the front end side of the permanent magnet 6 and is fixed to the first loop forming member 7 through the permanent magnet 6.
  • Such a second loop forming member 8 is made of a magnetic material, and is disposed so as to face the bottom plate portion 84 provided side by side with the magnetostrictive element 10 and on the front end side of the bottom plate portion 84 with the bottom plate portion 84 interposed therebetween. And a pair of side plate portions 85 erected upward.
  • the bottom plate portion 84 and the pair of side plate portions 85 each have a band shape (long plate shape), and the side plate portion 85 is configured to be thinner than the bottom plate portion 84.
  • the bottom plate portion 84 and the pair of side plate portions 85 may be connected by welding or the like, but are preferably formed integrally.
  • the bottom plate portion 84 is fixed to the permanent magnet 6 by the magnetic force at the base end portion.
  • the thickness of the base end part of the baseplate part 84 is comprised so that it may become thicker than the thickness of parts other than a base end part.
  • the cross-sectional shape of the base end portion is configured to be substantially the same as the cross-sectional shape of the permanent magnet 6.
  • the density of the magnetic force line which passes the magnetostrictive rod 2 can be made high enough, and when the magnetostrictive rod 2 deform
  • the distance between the pair of side plate portions 85 is designed to be larger than the width of the second block body 5, and the distal end portion (second block body 5) of the magnetostrictive element 10 is In a state of being separated from the respective side plate portions 85, they are positioned between them.
  • the magnetostrictive element 10 when the distal end portion of the magnetostrictive element 10 is displaced in the vertical direction with respect to the proximal end portion (first block body 4), the magnetostrictive element 10 is configured not to come into contact therewith.
  • the tip portion of the magnetostrictive element 10 is configured not to contact the bottom plate portion 84. That is, the second loop forming member 8 is configured not to interfere with the magnetostrictive element 10 when the distal end portion of the magnetostrictive element 10 is displaced in the vertical direction with respect to the proximal end portion.
  • “does not interfere with” the magnetostrictive element 10 in which the second loop forming member 8 is displaced is a configuration in which the second loop forming member 8 maintains a state completely separated from the magnetostrictive element 10 in which it is displaced.
  • the second loop forming member 8 is in contact with the displacing magnetostrictive element 10, but includes a configuration in which the displacement of the magnetostrictive element 10 is not hindered by the second loop forming member 8. It is.
  • each side plate portion 85 functions as a guide portion that guides the displacement of the second block body 5 in the vertical direction, and can be prevented from being displaced in the other direction (left-right direction). For this reason, the tip of the magnetostrictive element 10 can be reliably displaced in the vertical direction by the applied external force, and the amount of deformation can be further increased. As a result, the power generation efficiency of the power generation device 1 can be further improved.
  • the second loop forming member 8 is made of a magnetic material and is not in contact with the second block body 5, but is sufficiently close thereto. For this reason, the magnetic field lines generated by the permanent magnet 6 can be transferred to the second block body 5, in other words, the bias magnetic field from the permanent magnet 6 can be applied to the second block body 5. Therefore, in the power generation device 1, as shown in FIG. 8, the lines of magnetic force generated by the permanent magnets 6 are the second loop forming member 8, the magnetostrictive element 10 (second block body 5, magnetostrictive rod 2, and first block). A clockwise magnetic field loop is formed which passes through the body 4) and the first loop forming member 7 and returns to the permanent magnet 6.
  • such a power generation device 1 has the first loop forming member 7 fixed to the casing 100 of the vibrating body by a male screw 743.
  • the second block body 5 is displaced (rotated) upward with respect to the first block body 4 by the vibration of the vibration body (see FIG. 10A), that is, the magnetostrictive rod.
  • the tip is displaced upward with respect to the base end of 2
  • the lower magnetostrictive rod 2 is deformed so as to extend in the axial direction
  • the upper magnetostrictive rod 2 is deformed so as to contract in the axial direction.
  • the second block body 5 is displaced (rotated) downward, that is, when the distal end is displaced downward with respect to the base end of the magnetostrictive rod 2, the lower magnetostrictive rod 2 is moved in the axial direction.
  • the upper magnetostrictive rod 2 is deformed so as to contract, and is deformed so as to extend in the axial direction.
  • the magnetic permeability of each magnetostrictive rod 2 changes due to the inverse magnetostrictive effect, and the density of magnetic lines passing through the magnetostrictive bar 2 (the density of magnetic lines passing through the inner cavity of the coil 3 in the axial direction) changes.
  • a voltage is generated in the coil 3.
  • the permanent magnet 6 is arranged so that the magnetization direction thereof is the axial direction of the magnetostrictive rod 2 as in the power generation device 1 of the first embodiment described above. Further, the length of the permanent magnet 6 in the magnetization direction is shorter than the length in the axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound, and the permanent magnet 6 is wound by the coil 3 of the magnetostrictive rod 2. It is provided so as to correspond to the middle of the rotated region in the axial direction. In the present embodiment, as shown in FIG. 7, the permanent magnet 6 is disposed so as to be included in the vicinity of the center of the region where the coil 3 is wound around the magnetostrictive rod 2 in plan view.
  • the magnetic flux intensity is compensated by applying the leakage magnetic flux of the permanent magnet 6 to the vicinity of the center in the axial direction of the magnetostrictive rod 2 having the weakest magnetic field lines forming the magnetic field loop. Therefore, a uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod 2, and the amount of change in magnetic flux density when the magnetostrictive rod 2 is deformed is uniform over the entire axial direction of the magnetostrictive rod 2. As a result, the power generation apparatus 1 can generate power efficiently.
  • the tip portion of the magnetostrictive element 10 is used as a member (permanent magnet 6, first loop forming member 7, and second loop forming member 8) that forms a loop (magnetic field loop) together with the magnetostrictive element 10.
  • a member permanent magnet 6, first loop forming member 7, and second loop forming member 8
  • the applied external force can be efficiently used for deformation of the magnetostrictive element 10 (magnetostrictive rod 2).
  • the mass of the tip portion of the magnetostrictive element 10 is only the mass of the second block body 5, which is made of a material having a high specific gravity and has a relatively large mass or the second magnet 6.
  • the mass of the loop forming member 8 is not included.
  • a member having a relatively large mass is connected to the tip of the magnetostrictive element and deformed together with the tip of the magnetostrictive element, elastic energy for deforming the connected member and structural damping accompanying the deformation occur, Power generation efficiency will decrease.
  • the magnetostrictive element 10 since structural attenuation due to deformation for moving members other than the second block body 5 does not occur, the magnetostrictive element 10 can be efficiently deformed by the applied external force. .
  • the tip portion of the magnetostrictive element 10 can be displaced in a non-contact state with respect to the other members without interfering with other members constituting the power generation device 1. Therefore, it is possible to prevent the occurrence of energy loss such as friction generated on the contact surface due to the contact between the members due to the displacement of the tip portion of the magnetostrictive element 10.
  • the power generator 1 having such a configuration can be efficiently used for the deformation of the magnetostrictive rod 2 without losing the applied external force.
  • the power generation device 1 when a uniform bias magnetic field is applied over the entire magnetostrictive rod 2, when the magnetostrictive rod 2 is deformed, a uniform change in magnetic flux density occurs over the entire axial direction of the magnetostrictive rod 2. Excellent power generation efficiency. In addition, since the external force applied to the power generation device 1 can be used to deform the magnetostrictive rod 2 without losing it, the power generation efficiency of the power generation device 1 can be further improved.
  • the power generation amount of the power generation device 1 can be freely designed by changing the mechanical parameters of the constituent members of the magnetostrictive element 10, and the power generation device 1 having a desired power generation amount can be easily designed.
  • the 1st loop formation member 7 is being fixed to the vibrating body among the 1st loop formation member 7 and the 2nd loop formation member 8, and the 2nd loop formation member 8 is It is not fixed to the vibrating body.
  • the second loop forming member 8 it is not necessary to provide the second loop forming member 8 with a portion for fixing to the vibrating body (for example, a bracket portion corresponding to the overhanging portion 741 of the first loop forming member 7, It is not necessary to provide a portion such as a flange portion), and the structure on the front end side of the power generator 1 can be reduced (slimmed). As a result, space saving (miniaturization) of the power generator 1 can be achieved.
  • the second loop forming member 8 vibrates in the vertical direction due to the vibration of the vibrating body.
  • the natural frequency of the vibration of the second loop forming member 8 is set to the same level as the natural frequency of the vibration of the second block body 5, a resonance phenomenon similar to that of a tuning fork can be generated.
  • the electric power generating apparatus 1 it can generate
  • the second block body 5 can continue to vibrate for a long time due to the small vibration, and the power generation efficiency of the power generator 1 is increased. Can be further improved.
  • the coil of the magnetostrictive rod 2 on the lower side in FIG. 8 among the two magnetostrictive rods 2 provided side by side in a natural state (a state in which no stress is applied to the magnetostrictive rod 2).
  • A is the axial length of the region around which the coil 3 of the magnetostrictive rod 2 is wound.
  • the strong magnetic field region around the permanent magnet 6 sufficiently overlaps with the vicinity of the axial center of each of the magnetostrictive rods 2 provided side by side in FIG. It is possible to apply a leakage flux with a sufficient strength. Therefore, a more uniform bias magnetic field can be applied over the entire axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound.
  • the separation distance between the pair of side plate portions 85 is designed to be larger than the width of the second block body 5, and the side plate portions 85 and the second block body 5 are separated from each other.
  • the distance between each side plate 85 and the second block body 5 is preferably about 0.01 to 0.5 mm, and more preferably about 0.03 to 0.2 mm.
  • the pair of side plate portions 85 have an overlapping area with the second block body 5 in a side view so that the magnetic field lines generated by the permanent magnet 6 can be sufficiently transferred to the second block body 5. It is preferable that the design is large. Specifically, when the side plate portion 85 and the second block body 5 of the magnetostrictive element 10 in the natural state are S 1 and the side area of the second block body 5 is S 2 in side view, , S 1 / S 2 is preferably 0.1 or more, more preferably 0.3 to 1.
  • the vibration of the vibrating body is transmitted to the members (the first loop forming member 7, the permanent magnet 6, and the second loop forming member 8) provided on the vibrating body side.
  • the magnetostrictive element 10 is displaced by the vibration. That is, the magnetostrictive element 10 is displaced relative to these members.
  • the constituent material of the second loop forming member 8 (the bottom plate portion 84 and the side plate portion 85), the same materials as the various magnetic materials constituting the second loop forming member 8 of the first embodiment described above are used. be able to.
  • the power generation device 1 is fixed to a base other than the vibrating body, and a force is directly applied to the front end (second block body 5) of the power generation device 1 from the outside. It can be used as a switch operated by a person by adding a structure to be given and combining with a wireless device.
  • the members (the first loop forming member 7, the permanent magnet 6, and the second loop forming member 8) provided on the vibrating body side do not move, and only the magnetostrictive element 10 is displaced. That is, the magnetostrictive element 10 is displaced relative to these members.
  • the pair of side plate portions 85 of the second loop forming member 8 are provided so as to face each other with the bottom plate portion 84 interposed therebetween.
  • the configuration described above is not limited as long as the bias magnetic field from the permanent magnet 6 can be sufficiently transferred.
  • either one of the pair of side plate portions 85 may be omitted, or both may be omitted.
  • the magnitude of the bias magnetic field that can be transferred to the second block body 5 can be sufficiently increased.
  • FIG. 11 below may be used as another configuration.
  • FIG. 11 is a perspective view showing another configuration example of the power generation device according to the second embodiment of the present invention.
  • the second loop forming member 8 includes a bottom plate portion 84 and a side plate portion 85 erected vertically upward from the tip portion of the bottom plate portion 84.
  • the power generation device 1 is configured such that the side plate portion 85 and the second block body 5 do not come into contact when the magnetostrictive element 10 is deformed. Therefore, even in such a configuration, the second loop forming member 8 does not interfere with the tip portion of the magnetostrictive element 10 and can obtain the same effect as the power generation device 1 of the present embodiment described above.
  • the power generation device 1 according to the second embodiment produces the same operations and effects as those of the power generation device 1 according to the first embodiment.
  • FIG. 12 is a perspective view showing a third embodiment of the power generator of the present invention.
  • FIG. 13 is a plan view of the power generator shown in FIG.
  • FIGS. 12 and 13 the upper side in FIGS. 12 and 13 is referred to as “upper” or “upper”, and the lower side in FIGS. 12 and 13 is referred to as “lower” or “lower”. Further, the left front side in FIG. 12 and the left side in FIG. 13 are referred to as “tip”, and the right back side in FIG. 12 and the right side in FIG. 13 are referred to as “base ends”.
  • the power generation device of the third embodiment will be described focusing on the differences from the power generation devices of the first and second embodiments, and description of similar matters will be omitted.
  • the power generator 1 of the third embodiment is different from the power generator 1 of the second embodiment except that the configurations of the first loop forming member 7 and the second loop forming member 8 are different. It is the same.
  • the first loop forming member 7 includes a base portion 74, a fixing portion 77 that fixes the base end portion 21 of each magnetostrictive rod 2, both side portions of the base portion 74, and the fixing portion 77.
  • a pair of connecting portions 76 that connect the lower end portions are provided, and these are integrally formed.
  • the base portion 74 includes a pair of protruding portions (bracket portions) 741 protruding in the short side direction (left and right direction in FIG. 12) on the distal end side.
  • the base 74, the connecting portion 76, and the fixing portion 77 constituting the first loop forming member 7 are integrally formed.
  • the first loop forming member 7 a substantially T-shaped plate material made of a magnetic material is prepared.
  • the connecting portions 76 and the fixed portions are fixed to the base portion 74 by pressing, bending, forging, or the like. It can be formed by bending the plate 77 so that the portions 77 are bent in the same direction and the fixing portions 77 are connected to each other. Since the first loop forming member 7 is formed by bending one plate material by press working or the like, the number of parts and the number of assembly steps for fixing the members can be reduced. Further, the distal end portion of the base portion 74 is also bent by press working or the like.
  • the fixing portion 77 constitutes the first block body of the magnetostrictive element 10.
  • the second loop forming member 8 is connected to the bottom plate portion 84 and the tip side of the bottom plate portion 84 from both sides thereof via the bottom plate portion 84. And a pair of side plate portions 85 provided vertically above, and in the present embodiment, these are integrally formed.
  • the second loop forming member 8 is made of a magnetic material, and a T-shaped plate material is prepared in a plan view.
  • each side plate portion 85 with respect to the bottom plate portion 84 is formed by pressing, bending, forging, or the like. Can be formed by bending the plate material in the same direction. Since the second loop forming member 8 is formed by bending one plate material by pressing or the like, the number of parts and assembly man-hours for fixing and connecting the members can be reduced.
  • the base end portion of the bottom plate portion 84 is also bent by pressing or the like.
  • the constituent materials of the plate members constituting the first loop forming member 7 and the second loop forming member 8 various materials constituting the loop forming members 7 and 8 of the first and second embodiments described above, respectively.
  • the same material as the magnetic material can be used.
  • the power generator 1 according to the third embodiment produces the same operation and effect as the power generator 1 according to the first and second embodiments.
  • FIG. 14 (a) is a diagram schematically showing a state in which an external force is applied in the upward direction to the fourth embodiment of the power generator of the present invention.
  • FIG.14 (b) is a figure which shows typically the state which provided the external force downward with respect to 4th Embodiment of the electric power generating apparatus of this invention.
  • FIGS. 14A and 14B the upper side in FIGS. 14A and 14B is referred to as “upper” or “upper”, and the lower side in FIGS. 14A and 14B is referred to as “lower” or “lower”. " Further, the left side in FIGS. 14A and 14B is referred to as a “tip”, and the right side in FIGS. 14A and 14B is referred to as a “base end”.
  • the power generation device of the fourth embodiment will be described focusing on differences from the power generation devices of the first to third embodiments, and description of similar matters will be omitted.
  • the power generation device 1 of the fourth embodiment is the same as the power generation device 1 of the second embodiment except that the configuration of the first block body 4 included in the first loop forming member 7 and the magnetostrictive element 10 is different. .
  • the first block body 4 has a longer length from the distal end to the proximal end than the first block body 4 of the second embodiment described above. Except for being configured, it has the same configuration as the first block body 4 in the second embodiment.
  • the through-hole 43 is provided in the base end part vicinity of the 1st block body 4, and the length from each slit 41 and 42 to the through-hole 43 is each in 1st Embodiment. It is configured to be longer than the length from the slits 41 and 42 to the through hole 43.
  • the first loop forming member 7 is provided on the base 74, the upper surface of the base 74 on the base end side, the housing portion 75 that houses the first block body 4, and the longitudinal center of the base 74 at its center. And a pair of side plate portions 78 provided vertically from both side portions.
  • the first loop forming member 7 of the present embodiment has a length in the longitudinal direction of the base 74 longer than the base 74 of the second embodiment described above. And it has the same structure as the 1st loop formation member 7 of 2nd Embodiment except having provided a pair of side plate part 78 as mentioned above.
  • the pair of side plate portions 78 has a strip shape (long plate shape) and is configured to be thinner than the base portion 74.
  • the pair of side plate portions 78 may be connected to the base portion 74 by welding or the like, but are preferably formed integrally.
  • Such a side plate portion 78 is also made of the same material (the above-described various magnetic materials) as the base portion 74 and the accommodating portion 75.
  • the distance between such a pair of side plate portions 78 is designed to be larger than the width of the first block body 4, and the base end portion (first block body 4) of the magnetostrictive element 10 is arranged on each side plate. In a state of being separated from the portion 78, it is located between them.
  • the magnetostrictive element 10 is configured not to come into contact therewith. That is, the pair of side plate portions 78 is configured not to interfere with the magnetostrictive element 10 when the distal end portion of the magnetostrictive element 10 is displaced in the vertical direction with respect to the proximal end portion.
  • the lines of magnetic force generated by the permanent magnet 6 are the second loop forming member 8, the magnetostrictive element 10, and the pair of side plate portions 78 and base portions 74 (side plate portions) of the first loop forming member 7.
  • a clockwise magnetic field loop is formed so as to pass back to the permanent magnet 6 after passing through the front end (78). That is, in the present embodiment, the magnetic lines of force pass through the pair of side plate portions 78 instead of the accommodating portion 75 of the first loop forming member 7.
  • the second loop forming member 8 (the pair of side plate portions 85), the pair of side plate portions 78 of the first loop forming member 7, and the magnetostrictive element 10 (first block).
  • the body 4 and the second block body 5) are configured not to contact each other.
  • the magnetic resistance of the movable side (the second loop forming member 8 and the second block body 5) that forms the magnetic field loop of the power generation device 1 and the fixed side (the first loop forming member 7 and the first block 5).
  • the magnetic resistance of the block body 4) is substantially equal.
  • the balance of the magnetic flux density in the magnetic circuit which consists of the permanent magnet 6, the 2nd loop formation member 8, the magnetostrictive element 10, and the 1st loop formation member 7 becomes favorable, and the fixed side and movable side of the electric power generating apparatus 1 are
  • the intensity distribution of the bias magnetic field becomes more uniform.
  • a more uniform bias magnetic field is applied across the entire magnetostrictive rod 2, so that when the magnetostrictive rod 2 is deformed, a more uniform change in magnetic flux density occurs across the entire axial direction of the magnetostrictive rod 2, thereby further improving power generation efficiency.
  • the pair of side plate portions 78 of the first loop forming member 7 is of a configuration that maintains a state of being completely separated from the displacing magnetostrictive element 10 like the second loop forming member 8. Although it is in the state which contacted the magnetostrictive element 10 to displace, the structure that the displacement of the magnetostrictive element 10 is not inhibited by a pair of side-plate part 78 may be sufficient.
  • each side plate portion 78 functions as a guide portion that guides the displacement of the first block body 4 in the vertical direction, and can be prevented from being displaced in the other direction (left-right direction). For this reason, the tip of the magnetostrictive element 10 can be reliably displaced in the vertical direction by the applied external force, and the amount of deformation can be further increased. As a result, the power generation efficiency of the power generation device 1 can be further improved.
  • the power generator 1 according to the fourth embodiment produces the same operations and effects as the power generator 1 according to the first to third embodiments.
  • any configuration of the first to fourth embodiments can be combined.
  • each of the magnetostrictive rods has a rectangular cross-sectional shape, for example, a circular shape, an elliptical shape, a triangular shape, a square shape, a polygonal shape such as a hexagonal shape. There may be.
  • the shape of the permanent magnet is not limited to the above-described columnar shape or quadrangular prism shape, and may be a flat plate shape or a triangular prism shape.
  • Examples 1 to 10 In the power generation apparatus 1 having the configuration shown in FIG. 2, a neodymium magnet is used as the permanent magnet 6, and the axial length A [mm] of the region around which the coil 3 of the magnetostrictive rod 2 is wound is attached.
  • the length in the magnetic direction (the length in the arrangement direction of the two permanent magnets 6 arranged in series) B [mm], and the distance X [from the region where the coil 3 of the magnetostrictive rod 2 is wound to the permanent magnet 6 mm] was set as shown in Table 1 and Table 2 below.
  • Example 11 to 13 In the power generator 1 having the configuration shown in FIG. 2, ferrite magnets were used as the permanent magnets 6 and the above A [mm], B [mm], and X [mm] were set as shown in Table 3 below. In the power generators of Examples 11 to 13, the surface area of the end surface of the permanent magnet 6 was configured to be about three times the surface area of the end surface of the permanent magnet 6 in Examples 1 to 10.
  • 15 and 16 show the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod 2 according to the stress (90 MPa elongation stress or 90 MPa contraction stress) applied to the magnetostrictive rod 2 in the power generation apparatus of each example. It is a graph. Tables 1 to 3 show the standard deviation ⁇ [A / m] of the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod 2 shown in each graph and the power generation amount of the power generator of each example.
  • the axial direction of the magnetostrictive rod 2 is adjusted by adjusting the length of the magnetization direction of the permanent magnet 6 so as to satisfy the relationship of B ⁇ 0.6A. It can be seen that a more uniform bias field is applied throughout. Therefore, in Examples 1 to 4 that satisfy the above relationship, compared with Example 5 that does not satisfy the above relationship, the power generation efficiency is higher and the power generation amount can be sufficiently increased. The same can be said from the comparison between Examples 6 to 9 and Example 10 and the comparison between Examples 11 and 12 and Example 13.
  • a uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod.
  • the amount of change in the magnetic flux density when the magnetostrictive rod is deformed is uniform over the entire axial direction of the magnetostrictive rod, and as a result, the power generation efficiency of the power generator can be improved. Therefore, the present invention has industrial applicability.

Abstract

A power generation device (1) has a magnetostrictor (10) and a permanent magnet (6) provided adjacent to and apart from the magnetostrictor (10), wherein the permanent magnet (6) is disposed so that the magnetization direction thereof coincides with the axial direction of a magnetostrictive rod (2). The magnetization direction length of the permanent magnet (6) is shorter than the axial direction length of a region where the coil (3) of the magnetostrictive rod (2) is wound, and the permanent magnet (6) is provided so as to correspond to an axial direction middle of the region where the coil (3) of the magnetostrictive rod (2) is wound. When the axial direction length of the region where the coil (3) of the magnetostrictive rod (2) is wound is denoted by A [mm] and the magnetization direction length of the permanent magnet (6) is denoted by B [mm], it is preferable that the power generation device (1) is constructed so as to satisfy a relationship of B ≤ 0.6A.

Description

発電装置Power generator
 本発明は、発電装置に関する。 The present invention relates to a power generation device.
 近年、磁歪材料で構成された磁歪棒の透磁率の変化を利用して発電する発電装置が検討されている(例えば、特許文献1参照)。 In recent years, a power generation device that generates electric power by using a change in magnetic permeability of a magnetostrictive rod made of a magnetostrictive material has been studied (for example, see Patent Document 1).
 この発電装置は、例えば、併設された一対の磁歪棒と、これらの磁歪棒の両端部を連結する2つの連結ヨークと、各磁歪棒の外周側を囲むように設けられたコイルと、一対の磁歪棒に併設された長尺状のバックヨークと、各連結ヨークとバックヨークとの間に配設され、磁歪棒にバイアス磁界を印加する2つの永久磁石とを備えている。このバックヨークは、連結ヨークに対して永久磁石を介して固定されている。これにより、磁歪棒、連結ヨーク、永久磁石およびバックヨークを通過する磁界ループが形成される。 This power generator includes, for example, a pair of magnetostrictive rods provided side by side, two connecting yokes that connect both ends of these magnetostrictive rods, a coil provided so as to surround the outer peripheral side of each magnetostrictive rod, and a pair of A long back yoke provided along with the magnetostrictive rod, and two permanent magnets disposed between each connecting yoke and the back yoke and applying a bias magnetic field to the magnetostrictive rod are provided. The back yoke is fixed to the connecting yoke via a permanent magnet. Thereby, a magnetic field loop passing through the magnetostrictive rod, the connecting yoke, the permanent magnet and the back yoke is formed.
 そして、一方の連結ヨークを固定した状態で、他方の連結ヨークに対して、磁歪棒の軸方向に対して垂直な方向に外力を付与すると、一方の磁歪棒が伸長するように変形し、他方の磁歪棒が収縮するように変形する。この変形の際に磁歪棒に生じる応力(伸長応力または収縮応力)により、各磁歪棒を通過する磁力線の密度(磁束密度)、すなわち、各コイルを貫く磁力線の密度が変化し、これにより、各コイルに電圧が発生する。 Then, when one connecting yoke is fixed and an external force is applied to the other connecting yoke in a direction perpendicular to the axial direction of the magnetostrictive rod, the other magnetostrictive rod is deformed so as to extend, The magnetostrictive rod deforms so as to contract. Due to the stress (elongation stress or contraction stress) generated in the magnetostrictive rod during this deformation, the density of magnetic lines of force passing through each magnetostrictive bar (magnetic flux density), that is, the density of magnetic lines of force passing through each coil, A voltage is generated in the coil.
 しかしながら、特許文献1に記載の発電装置では、磁歪棒に印加されるバイアス磁界の強度分布が、その軸方向(長手方向)にバラついてしまう。すなわち、磁歪棒の軸方向に一様なバイアス磁界が印加されない。そのため、磁歪棒が変形した際の磁束密度の変化量は、印加されたバイアス磁界の強度に依存して、磁歪棒の軸方向でバラついてしまう。その結果、特許文献1に記載の発電装置では、発電効率が悪い。 However, in the power generation device described in Patent Document 1, the intensity distribution of the bias magnetic field applied to the magnetostrictive rod varies in the axial direction (longitudinal direction). That is, a uniform bias magnetic field is not applied in the axial direction of the magnetostrictive rod. Therefore, the amount of change in magnetic flux density when the magnetostrictive rod is deformed varies in the axial direction of the magnetostrictive rod depending on the strength of the applied bias magnetic field. As a result, the power generation efficiency described in Patent Document 1 is poor.
WO2011/158473WO2011 / 158473
 本発明は、上記従来の問題点を鑑みたものであり、その目的は、磁歪棒の軸方向に一様なバイアス磁界を印加することによって、効率良く発電を行い得る発電装置を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a power generator capable of generating power efficiently by applying a uniform bias magnetic field in the axial direction of the magnetostrictive rod. is there.
 このような目的は以下の(1)~(17)の本発明により達成される。
 (1) 磁歪材料で構成され、磁力線を軸方向に通過させる磁歪棒と、該磁歪棒の外周側に巻回され、前記磁力線の密度の変化に基づいて電圧が発生するコイルとを備え、一端部が他端部に対して前記磁歪棒の軸方向とほぼ垂直な方向に相対的に変位可能な磁歪素子と、
 前記磁力線を発生し、着磁方向を前記磁歪棒の軸方向として、前記磁歪素子から離間するように前記磁歪棒と併設された永久磁石とを有し、
 前記永久磁石の着磁方向の長さが、前記磁歪棒の前記コイルが巻回された領域の前記軸方向の長さよりも短く、かつ、前記永久磁石が、前記領域の前記軸方向の途中に対応するよう設けられていることを特徴とする発電装置。
Such an object is achieved by the present invention of the following (1) to (17).
(1) comprising a magnetostrictive rod made of a magnetostrictive material and passing the lines of magnetic force in the axial direction; and a coil wound around the outer periphery of the magnetostrictive bar and generating a voltage based on a change in density of the lines of magnetic force, A magnetostrictive element whose portion is relatively displaceable in a direction substantially perpendicular to the axial direction of the magnetostrictive rod with respect to the other end;
Generating the lines of magnetic force, having the magnetization direction as the axial direction of the magnetostrictive rod, and having a permanent magnet attached to the magnetostrictive rod so as to be separated from the magnetostrictive element;
The length of the permanent magnet in the magnetizing direction is shorter than the length in the axial direction of the region where the coil of the magnetostrictive rod is wound, and the permanent magnet is in the middle of the region in the axial direction. A power generator characterized by being provided.
 (2) 前記領域の前記軸方向の長さをA[mm]とし、前記永久磁石の着磁方向の長さをB[mm]としたとき、B≦0.6Aなる関係を満足する上記(1)に記載の発電装置。 (2) When the length in the axial direction of the region is A [mm] and the length in the magnetization direction of the permanent magnet is B [mm], the above relationship satisfying the relationship of B ≦ 0.6A ( The electric power generating apparatus as described in 1).
 (3) 当該発電装置は、さらに、磁性材料で構成され、前記永久磁石が発生した前記磁力線が前記永久磁石に戻るようなループを、前記磁歪素子とともに形成する少なくとも2つのループ形成部材を有し、
 前記少なくとも2つのループ形成部材は、前記磁歪素子の前記一端部側に設けられた第1のループ形成部材と、前記永久磁石を介して、前記第1のループ形成部材とは反対側に設けられた第2のループ形成部材とを含む上記(1)または(2)に記載の発電装置。
(3) The power generation device further includes at least two loop forming members that are made of a magnetic material and that form a loop such that the lines of magnetic force generated by the permanent magnet return to the permanent magnet together with the magnetostrictive element. ,
The at least two loop forming members are provided on a side opposite to the first loop forming member via the first loop forming member provided on the one end side of the magnetostrictive element and the permanent magnet. The power generation device according to (1) or (2), further including a second loop forming member.
 (4) 前記永久磁石は、前記第1のループ形成部材および前記第2のループ形成部材を介して前記磁歪素子に固定されている上記(3)に記載の発電装置。 (4) The power generator according to (3), wherein the permanent magnet is fixed to the magnetostrictive element via the first loop forming member and the second loop forming member.
 (5) 前記領域の前記軸方向の長さをA[mm]とし、前記領域から前記永久磁石までの距離をX[mm]としたとき、X=0.05A~0.3Aとなる関係を満足する上記(4)に記載の発電装置。 (5) When the axial length of the region is A [mm] and the distance from the region to the permanent magnet is X [mm], a relationship of X = 0.05A to 0.3A is established. The power generation device according to (4), which is satisfied.
 (6) 前記永久磁石は、前記磁歪素子が変位する変位方向とほぼ垂直な方向、かつ、前記磁歪棒の前記軸方向とほぼ垂直な方向に、前記磁歪素子に対して配設される上記(1)ないし(5)のいずれかに記載の発電装置。 (6) The permanent magnet is disposed with respect to the magnetostrictive element in a direction substantially perpendicular to a displacement direction in which the magnetostrictive element is displaced and in a direction substantially perpendicular to the axial direction of the magnetostrictive rod. 1) The electric power generating apparatus in any one of (5).
 (7) 少なくとも前記磁歪素子が、前記永久磁石、前記第1のループ形成部材および前記第2のループ形成部材から独立し、かつ、これらに対して相対的に変位するように構成されている上記(3)に記載の発電装置。 (7) The above, wherein at least the magnetostrictive element is independent of the permanent magnet, the first loop forming member, and the second loop forming member, and is configured to displace relative thereto. (3) The electric power generating apparatus as described.
 (8) 前記第1および第2のループ形成部材は、それぞれ、前記磁歪素子の前記一端部が前記他端部に対して変位した際に、前記磁歪素子と干渉しないように構成されている上記(7)に記載の発電装置。 (8) Each of the first and second loop forming members is configured not to interfere with the magnetostrictive element when the one end of the magnetostrictive element is displaced with respect to the other end. (7) The power generation device described in.
 (9) 前記第1および第2のループ形成部材は、それぞれ、前記磁歪素子と併設された底板部と、前記磁歪素子の前記一端部が前記他端部に対して変位する変位方向に沿って、前記底板部から立設された少なくとも1つの側板部とを備える上記(8)に記載の発電装置。 (9) The first and second loop forming members are each along a displacement direction in which the bottom plate portion provided with the magnetostrictive element and the one end portion of the magnetostrictive element are displaced with respect to the other end portion. The power generation device according to (8), further including at least one side plate portion erected from the bottom plate portion.
 (10) 前記底板部と前記側板部とが一体的に形成されている上記(9)に記載の発電装置。 (10) The power generation device according to (9), wherein the bottom plate portion and the side plate portion are integrally formed.
 (11) 前記少なくとも1つの側板部は、前記底板部を介して対向し、かつ、前記磁歪素子から離間して配置された2つの前記側板部を含み、
 前記2つの側板部の間で、前記磁歪素子の前記一端部が前記他端部に対して変位するように構成されている上記(9)または(10)に記載の発電装置。
(11) The at least one side plate portion includes two side plate portions that are opposed to each other via the bottom plate portion and are spaced apart from the magnetostrictive element,
The power generation device according to (9) or (10), wherein the one end portion of the magnetostrictive element is displaced with respect to the other end portion between the two side plate portions.
 (12) 各前記側板部と前記磁歪素子の前記一端部との間隔の大きさは、0.01~0.5mmである上記(11)に記載の発電装置。 (12) The power generation device according to (11), wherein the distance between each side plate and the one end of the magnetostrictive element is 0.01 to 0.5 mm.
 (13) 前記第2のループ形成部材は、前記磁歪素子の前記一端部が前記他端部に対して変位可能に前記磁歪素子を支持する上記(7)ないし(12)のいずれかに記載の発電装置。 (13) The second loop forming member according to any one of (7) to (12), wherein the one end portion of the magnetostrictive element supports the magnetostrictive element so as to be displaceable with respect to the other end portion. Power generation device.
 (14) 前記磁歪素子は、さらに、前記磁歪棒と併設され、前記磁歪棒に応力を付与する機能を有する梁部材を備える上記(1)ないし(13)のいずれかに記載の発電装置。 (14) The power generation device according to any one of (1) to (13), wherein the magnetostrictive element further includes a beam member that is provided together with the magnetostrictive rod and has a function of applying stress to the magnetostrictive rod.
 (15) 前記磁歪素子は、さらに、前記磁歪棒と併設され、前記磁歪棒に応力を付与する機能を有する梁部材と、磁性材料で構成され、前記磁歪棒および前記梁部材の一方の端部同士を連結する第1のブロック体と、磁性材料で構成され、前記磁歪棒および前記梁部材の他方の端部同士を連結する第2のブロック体とを備え、
 前記第2のループ形成部材は、前記第1のブロック体にネジ止めされることにより、前記磁歪素子の前記一端部が前記他端部に対して変位可能に前記磁歪素子を支持する上記(7)ないし(13)のいずれかに記載の発電装置。
(15) The magnetostrictive element further includes a beam member provided together with the magnetostrictive rod and having a function of applying stress to the magnetostrictive rod, and a magnetic material, and one end of the magnetostrictive rod and the beam member. A first block body that connects the two, and a second block body that is made of a magnetic material and connects the other ends of the magnetostrictive rod and the beam member;
The second loop forming member is screwed to the first block body to support the magnetostrictive element so that the one end portion of the magnetostrictive element is displaceable with respect to the other end portion. ) To (13).
 (16) 前記磁歪素子は、さらに、前記磁歪棒と併設され、前記磁歪棒に応力を付与する機能を有する梁部材と、磁性材料で構成され、前記磁歪棒および前記梁部材の一方の端部同士を連結する第1のブロック体と、磁性材料で構成され、前記磁歪棒および前記梁部材の他方の端部同士を連結する第2のブロック体とを備え、
 前記第2のループ形成部材は、前記第1のブロック体と一体的に形成されることにより、前記磁歪素子の前記一端部が前記他端部に対して変位可能に前記磁歪素子を支持する上記(7)ないし(13)のいずれかに記載の発電装置。
(16) The magnetostrictive element is further provided with the magnetostrictive rod and includes a beam member having a function of applying stress to the magnetostrictive rod, and a magnetic material, and one end of the magnetostrictive rod and the beam member. A first block body that connects the two, and a second block body that is made of a magnetic material and connects the other ends of the magnetostrictive rod and the beam member;
The second loop forming member is formed integrally with the first block body, so that the one end portion of the magnetostrictive element supports the magnetostrictive element so as to be displaceable with respect to the other end portion. (7) The power generation device according to any one of (13).
 (17) 前記梁部材は、磁歪材料で構成された磁歪棒である上記(14)ないし(16)のいずれかに記載の発電装置。 (17) The power generation device according to any one of (14) to (16), wherein the beam member is a magnetostrictive rod made of a magnetostrictive material.
 本発明によれば、磁歪棒の軸方向全体にわたって、一様なバイアス磁界を印加することができる。これにより、磁歪棒が変形した際の磁束密度の変化量は、磁歪棒の軸方向全体にわたって均一となり、その結果、発電装置の発電効率の向上を図ることができる。 According to the present invention, a uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod. Thereby, the amount of change in the magnetic flux density when the magnetostrictive rod is deformed is uniform over the entire axial direction of the magnetostrictive rod, and as a result, the power generation efficiency of the power generator can be improved.
図1は、本発明の発電装置の第1実施形態を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of a power generator of the present invention. 図2は、図1に示す発電装置の平面図である。FIG. 2 is a plan view of the power generator shown in FIG. 図3は、本発明の発電装置との比較のために例示する発電装置の平面図である。FIG. 3 is a plan view of a power generation device exemplified for comparison with the power generation device of the present invention. 図4は、図2に示す発電装置および図3に示す発電装置において、自然状態における磁歪棒の軸方向におけるバイアス磁界の強度分布を解析した解析図、および、付与する応力に応じた、磁歪棒の軸方向におけるバイアス磁界の強度分布を示すグラフである。FIG. 4 is an analysis diagram analyzing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod in the natural state in the power generator shown in FIG. 2 and the power generator shown in FIG. 3, and the magnetostrictive rod corresponding to the applied stress. It is a graph which shows intensity distribution of the bias magnetic field in the axial direction. 図5は、本発明の発電装置の第2実施形態を示す斜視図である。FIG. 5 is a perspective view showing a second embodiment of the power generator of the present invention. 図6は、図5に示す発電装置の分解斜視図である。6 is an exploded perspective view of the power generator shown in FIG. 図7は、図5に示す発電装置の平面図である。FIG. 7 is a plan view of the power generator shown in FIG. 図8は、図5に示す発電装置の右側面図である。FIG. 8 is a right side view of the power generator shown in FIG. 図9は、図5に示す発電装置の正面図である。FIG. 9 is a front view of the power generator shown in FIG. 図10(a)は、図5に示す発電装置に対して上方向に外力を付与した状態を模式的に示す図である。図10(b)は、図5に示す発電装置に対して下方向に外力を付与した状態を模式的に示す図である。Fig.10 (a) is a figure which shows typically the state which provided the external force upwards with respect to the electric power generating apparatus shown in FIG. FIG.10 (b) is a figure which shows typically the state which provided external force with respect to the electric power generating apparatus shown in FIG. 図11は、本発明の第2実施形態の発電装置の他の構成例を示す斜視図である。FIG. 11 is a perspective view showing another configuration example of the power generation device according to the second embodiment of the present invention. 図12は、本発明の発電装置の第3実施形態を示す斜視図である。FIG. 12 is a perspective view showing a third embodiment of the power generator of the present invention. 図13は、図12に示す発電装置の平面図である。FIG. 13 is a plan view of the power generator shown in FIG. 図14(a)は、本発明の発電装置の第4実施形態に対して上方向に外力を付与した状態を模式的に示す図である。図14(b)は、本発明の発電装置の第4実施形態に対して下方向に外力を付与した状態を模式的に示す図である。Fig.14 (a) is a figure which shows typically the state which provided the external force upwards with respect to 4th Embodiment of the electric power generating apparatus of this invention. FIG.14 (b) is a figure which shows typically the state which provided the external force downward with respect to 4th Embodiment of the electric power generating apparatus of this invention. 図15は、実施例1~10の各発電装置において、磁歪棒に付与した応力(90MPaの伸長応力または90MPaの収縮応力)に応じた、磁歪棒の軸方向におけるバイアス磁界の強度を示すグラフである。FIG. 15 is a graph showing the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod in accordance with the stress (90 MPa elongation stress or 90 MPa contraction stress) applied to the magnetostrictive rod in each of the power generators of Examples 1 to 10. is there. 図16は、実施例11~13および比較例の各発電装置において、磁歪棒に付与した応力(90MPaの伸長応力または90MPaの収縮応力)に応じた、磁歪棒の軸方向におけるバイアス磁界の強度を示すグラフである。FIG. 16 shows the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod in accordance with the stress (90 MPa elongation stress or 90 MPa contraction stress) applied to the magnetostrictive rod in each of the power generators of Examples 11 to 13 and the comparative example. It is a graph to show.
 以下、本発明の発電装置を添付図面に示す好適な実施形態に基づいて説明する。
 <第1実施形態>
 まず、本発明の発電装置の第1実施形態について説明する。
Hereinafter, a power generator according to the present invention will be described based on preferred embodiments shown in the accompanying drawings.
<First Embodiment>
First, a first embodiment of the power generator of the present invention will be described.
 図1は、本発明の発電装置の第1実施形態を示す斜視図である。図2は、図1に示す発電装置の平面図である。 FIG. 1 is a perspective view showing a first embodiment of a power generator according to the present invention. FIG. 2 is a plan view of the power generator shown in FIG.
 なお、以下の説明では、図1中の上側および図2中の紙面手前側を「上」または「上方」と言い、図1中の下側および図2中の紙面奥側を「下」または「下方」と言う。また、図1中の紙面右手前側および図2中の左側を「先端」と言い、図1中の紙面左奥側および図2中の右側を「基端」と言う。 In the following description, the upper side in FIG. 1 and the front side in FIG. 2 are referred to as “up” or “upward”, and the lower side in FIG. 1 and the rear side in FIG. Say “down”. Further, the right front side in FIG. 1 and the left side in FIG. 2 are referred to as “tip”, and the left back side in FIG. 1 and the right side in FIG. 2 are referred to as “base ends”.
 図1および図2に示す発電装置1は、磁歪素子10と、磁歪素子10から離間するように磁歪素子10と併設された永久磁石6と、磁歪素子10の基端部側に設けられ、磁歪素子10と永久磁石6とを連結する第1のループ形成部材7と、磁歪素子10の先端部側に設けられ、磁歪素子10と永久磁石6とを連結する第2のループ形成部材8とを有している。 1 and FIG. 2 includes a magnetostrictive element 10, a permanent magnet 6 provided side by side with the magnetostrictive element 10 so as to be separated from the magnetostrictive element 10, and a base end side of the magnetostrictive element 10. A first loop forming member 7 that connects the element 10 and the permanent magnet 6, and a second loop forming member 8 that is provided on the distal end side of the magnetostrictive element 10 and connects the magnetostrictive element 10 and the permanent magnet 6. Have.
 以下、各部の構成について説明する。
 磁歪素子10は、併設された2つの磁歪棒2、2と、各磁歪棒2の外周側(外周)に巻回されたコイル3と、磁歪棒2の基端側に設けられた第1のブロック体4と、磁歪棒2の他端側に設けられた第2のブロック体5とを備えている。この磁歪棒2は、磁歪材料で構成され、磁力線を軸方向に通過させる。
Hereinafter, the configuration of each unit will be described.
The magnetostrictive element 10 includes two magnetostrictive rods 2, 2 provided side by side, a coil 3 wound on the outer peripheral side (outer periphery) of each magnetostrictive rod 2, and a first end provided on the base end side of the magnetostrictive rod 2. A block body 4 and a second block body 5 provided on the other end side of the magnetostrictive rod 2 are provided. The magnetostrictive rod 2 is made of a magnetostrictive material, and passes the lines of magnetic force in the axial direction.
 磁歪素子10は、第1のブロック体4側(一端部)を固定端とし、第2のブロック体5側(他端部)を可動端として、その軸方向とほぼ垂直な方向(図1中、上下方向)に相対的に変位可能となっており、この変位により磁歪棒2が伸縮する。このとき、逆磁歪効果により磁歪棒2の透磁率が変化し、磁歪棒2を通過する磁力線の密度(コイル3を貫く磁力線の密度)が変化することにより、コイル3に電圧が発生する。 The magnetostrictive element 10 has a first block body 4 side (one end) as a fixed end and a second block body 5 side (the other end) as a movable end, and a direction substantially perpendicular to its axial direction (in FIG. 1). , In the vertical direction), and the magnetostrictive rod 2 expands and contracts due to this displacement. At this time, the magnetic permeability of the magnetostrictive rod 2 changes due to the inverse magnetostrictive effect, and the density of the magnetic lines passing through the magnetostrictive rod 2 (the density of the magnetic lines passing through the coil 3) changes, whereby a voltage is generated in the coil 3.
 磁歪棒2は、磁歪材料で構成され、磁化が生じ易い方向(磁化容易方向)を軸方向として配置されている。本実施形態では、この磁歪棒2は、長尺の平板状をなしており、その軸方向に磁力線を通過させる。 The magnetostrictive rod 2 is made of a magnetostrictive material, and is arranged with the direction in which magnetization is likely to occur (direction of easy magnetization) as the axial direction. In the present embodiment, the magnetostrictive rod 2 has a long flat plate shape, and passes lines of magnetic force in the axial direction thereof.
 このような磁歪棒2は、その厚さ(横断面積)が軸方向に沿ってほぼ一定となっている。磁歪棒2の平均厚さは、特に限定されないが、0.3~10mm程度であるのが好ましく、0.5~5mm程度であるのがより好ましい。また、磁歪棒2の平均横断面積は、0.2~200mm程度であるのが好ましく、0.5~50mm程度であるのがより好ましい。かかる構成により、磁歪棒2の軸方向に磁力線を確実に通過させることができる。 Such a magnetostrictive rod 2 has a substantially constant thickness (cross-sectional area) along the axial direction. The average thickness of the magnetostrictive rod 2 is not particularly limited, but is preferably about 0.3 to 10 mm, and more preferably about 0.5 to 5 mm. The average cross-sectional area of the magnetostrictive rod 2 is preferably about 0.2 to 200 mm 2 , more preferably about 0.5 to 50 mm 2 . With this configuration, it is possible to reliably pass magnetic lines of force in the axial direction of the magnetostrictive rod 2.
 磁歪材料のヤング率は、40~100GPa程度であるのが好ましく、50~90GPa程度であるのがより好ましく、60~80GPa程度であるのがさらに好ましい。かかるヤング率を有する磁歪材料で磁歪棒2を構成することにより、磁歪棒2をより大きく伸縮させることができる。このため、磁歪棒2の透磁率をより大きく変化させることができるので、発電装置1(コイル3)の発電効率をより向上させることができる。 The Young's modulus of the magnetostrictive material is preferably about 40 to 100 GPa, more preferably about 50 to 90 GPa, and further preferably about 60 to 80 GPa. By configuring the magnetostrictive rod 2 with a magnetostrictive material having such a Young's modulus, the magnetostrictive rod 2 can be expanded and contracted more greatly. For this reason, since the magnetic permeability of the magnetostrictive rod 2 can be changed more greatly, the electric power generation efficiency of the electric power generating apparatus 1 (coil 3) can be improved more.
 かかる磁歪材料としては、特に限定されないが、例えば、鉄-ガリウム系合金、鉄-コバルト系合金、鉄-ニッケル系合金等が挙げられ、これらの1種または2種以上を組み合わせて用いることができる。これらの中でも、鉄-ガリウム系合金(ヤング率:約70GPa)を主成分とする磁歪材料が好適に用いられる。鉄-ガリウム系合金を主成分とする磁歪材料は、前述したようなヤング率の範囲に設定し易い。 Such a magnetostrictive material is not particularly limited, and examples thereof include an iron-gallium alloy, an iron-cobalt alloy, an iron-nickel alloy, and the like, and one or more of these can be used in combination. . Among these, a magnetostrictive material mainly composed of an iron-gallium alloy (Young's modulus: about 70 GPa) is preferably used. A magnetostrictive material whose main component is an iron-gallium alloy is easy to set in the Young's modulus range as described above.
 また、以上のような磁歪材料は、Y、Pr、Sm、Tb、Dy、Ho、Er、Tmのような希土類金属のうちの少なくとも1種を含むのが好ましい。これにより、磁歪棒2の透磁率の変化をより大きくすることができる。 The magnetostrictive material as described above preferably contains at least one of rare earth metals such as Y, Pr, Sm, Tb, Dy, Ho, Er, and Tm. Thereby, the change of the magnetic permeability of the magnetostriction stick | rod 2 can be enlarged more.
 かかる各磁歪棒2、2の外周には、その両端部21、22を除く部分を囲むようにコイル3が巻回(配置)されている。 The coil 3 is wound (arranged) on the outer periphery of each of the magnetostrictive rods 2 and 2 so as to surround the portions excluding both end portions 21 and 22 thereof.
 コイル3は、線材31を磁歪棒2の外周に巻回することにより構成されている。これにより、コイル3は、磁歪棒2を通過している磁力線が、その軸方向に通過する(内腔部を貫く)ように配設されている。このコイル3には、磁歪棒2の透磁率の変化、すなわち、磁歪棒2を通過する磁力線の密度(磁束密度)の変化に基づいて、電圧が発生する。 The coil 3 is configured by winding a wire 31 around the outer periphery of the magnetostrictive rod 2. Thereby, the coil 3 is arrange | positioned so that the magnetic force line which has passed the magnetostriction stick | rod 2 may pass to the axial direction (penetrating a lumen | bore part). A voltage is generated in the coil 3 based on a change in magnetic permeability of the magnetostrictive rod 2, that is, a change in the density of magnetic lines of force (magnetic flux density) passing through the magnetostrictive rod 2.
 線材31としては、特に限定されないが、例えば、銅製の基線に絶縁被膜を被覆した線材や、銅製の基線に融着機能を付加した絶縁被膜を被覆した線材等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Although it does not specifically limit as the wire 31, For example, the wire which coat | covered the insulating film which added the fusion | fusion function to the copper base line, the wire which coat | covered the copper base line, etc. are mentioned, Of these, 1 Species or a combination of two or more can be used.
 線材31の巻き数は、特に限定されないが、100~500程度であるのが好ましく、150~450程度であるのがより好ましい。これにより、コイル3に発生する電圧をより大きくすることができる。 The number of windings of the wire 31 is not particularly limited, but is preferably about 100 to 500, and more preferably about 150 to 450. Thereby, the voltage generated in the coil 3 can be further increased.
 また、線材31の横断面積は、特に限定されないが、5×10-4~0.126mm程度であるのが好ましく、2×10-3~0.03mm程度であるのがより好ましい。このような線材31は、その抵抗値が十分に低いため、発生した電圧によってコイル3を流れる電流を効率良く外部に流すことができ、発電装置1の発電効率をより向上させることができる。 Further, the cross-sectional area of the wire 31 is not particularly limited, but is preferably 5 × 10 -4 ~ 0.126mm 2 mm, and more preferably 2 × 10 -3 ~ 0.03mm 2 approximately. Since the resistance value of such a wire 31 is sufficiently low, the current flowing through the coil 3 can be efficiently flowed to the outside by the generated voltage, and the power generation efficiency of the power generator 1 can be further improved.
 なお、線材31の横断面形状は、例えば、三角形、正方形、長方形、六角形のような多角形、円形、楕円形等のいかなる形状であってもよい。 In addition, the cross-sectional shape of the wire 31 may be any shape such as a polygon such as a triangle, a square, a rectangle, and a hexagon, a circle, and an ellipse.
 磁歪棒2の基端側には、第1のブロック体4が固定されている。この第1のブロック体4を介して、磁歪素子10が第1のループ形成部材7に固定されている。 A first block body 4 is fixed to the proximal end side of the magnetostrictive rod 2. The magnetostrictive element 10 is fixed to the first loop forming member 7 through the first block body 4.
 この第1のブロック体4は、第1のループ形成部材7の基端部側の一部とともに、振動を発生する振動体に固定するための固定部として機能する。第1のブロック体4および第1のループ形成部材7を介して発電装置1を基体に固定することにより、磁歪棒2は、その基端を固定端、先端を可動端として片持ち支持されている。 The first block body 4 functions as a fixing portion for fixing to the vibrating body that generates vibration together with a part on the base end side of the first loop forming member 7. By fixing the power generating device 1 to the base body via the first block body 4 and the first loop forming member 7, the magnetostrictive rod 2 is cantilevered with the base end as a fixed end and the tip as a movable end. Yes.
 図1に示すように、第1のブロック体4は、平板状をなしている。第1のブロック体4の先端側には、その高さ方向(図1中、上下方向)の略中央に上下2つのスリット41、42が形成されている。各スリット41、42には、各磁歪棒2の基端部21が挿入され、接着剤等により固定されている。 As shown in FIG. 1, the first block body 4 has a flat plate shape. On the distal end side of the first block body 4, two upper and lower slits 41 and 42 are formed at the approximate center in the height direction (the vertical direction in FIG. 1). In each of the slits 41 and 42, the base end portion 21 of each magnetostrictive rod 2 is inserted and fixed with an adhesive or the like.
 一方、磁歪棒2の先端側には、第2のブロック体5が固定されている。この第2のブロック体5を介して、磁歪素子10が第2のループ形成部材8に固定されている。 On the other hand, the second block body 5 is fixed to the tip side of the magnetostrictive rod 2. The magnetostrictive element 10 is fixed to the second loop forming member 8 via the second block body 5.
 この第2のブロック体5は、第2のループ形成部材8とともに磁歪棒2に対して外力や振動を付与する錘として機能する部位である。振動体の振動により、第2のブロック体5に対して、上下方向への外力または振動が付与される。これにより、磁歪棒2は、その基端を固定端とし、先端が上下方向に往復動(先端が基端に対して相対的に変位)する。 The second block body 5 is a part that functions as a weight for applying external force and vibration to the magnetostrictive rod 2 together with the second loop forming member 8. Due to the vibration of the vibrating body, an external force or vibration in the vertical direction is applied to the second block body 5. As a result, the magnetostrictive rod 2 has its base end as a fixed end, and the tip reciprocates vertically (the tip is displaced relative to the base end).
 図1に示すように、第2のブロック体5は、平板状をなしている。第2のブロック体5の基端側には、その高さ方向(図1中、上下方向)の略中央に上下2つのスリット51、52が形成されている。各スリット51、52には、各磁歪棒2の先端部22が挿入され、接着剤等により固定されている。なお、スリット51、52間の離間距離は、第1のブロック体4のスリット41、42間の離間距離とほぼ等しく構成されている。これにより、発電装置1の自然状態(磁歪素子10に外力が付与されていない状態)における側面視において、磁歪棒2、2が一定の距離離間した状態で互いに平行となるように配置されている。 As shown in FIG. 1, the second block body 5 has a flat plate shape. On the base end side of the second block body 5, two upper and lower slits 51 and 52 are formed at substantially the center in the height direction (the vertical direction in FIG. 1). In each of the slits 51 and 52, the distal end portion 22 of each magnetostrictive rod 2 is inserted and fixed with an adhesive or the like. The separation distance between the slits 51 and 52 is configured to be substantially equal to the separation distance between the slits 41 and 42 of the first block body 4. Thus, the magnetostrictive rods 2 and 2 are arranged so as to be parallel to each other in a state of being separated by a certain distance in a side view in a natural state of the power generation device 1 (a state in which no external force is applied to the magnetostrictive element 10). .
 第1のブロック体4および第2のブロック体5の構成材料としては、それぞれ、磁歪棒2の端部21、22を確実に固定することができ、磁歪棒2に対して、一様な応力を付与し得る十分な剛性を備え、かつ、磁歪棒2に永久磁石6からのバイアス磁界を付与し得る強磁性を備える材料であれば、特に限定されない。上記の特性を備える材料としては、例えば、純鉄(例えば、JIS SUY)、軟鉄、炭素鋼、電磁鋼(ケイ素鋼)、高速度工具鋼、構造鋼(例えば、JIS SS400)、ステンレス、パーマロイ等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 As the constituent materials of the first block body 4 and the second block body 5, the end portions 21 and 22 of the magnetostrictive rod 2 can be reliably fixed, respectively, and uniform stress is applied to the magnetostrictive rod 2. The material is not particularly limited as long as it is a material having sufficient rigidity capable of imparting a magnetic field and having ferromagnetism capable of imparting a bias magnetic field from the permanent magnet 6 to the magnetostrictive rod 2. Examples of the material having the above characteristics include pure iron (for example, JIS SUY), soft iron, carbon steel, electromagnetic steel (silicon steel), high-speed tool steel, structural steel (for example, JIS SS400), stainless steel, permalloy, and the like. These can be used, and one or more of these can be used in combination.
 また、第1のブロック体4のスリット41とスリット42との離間距離は、0.3~10mm程度であるのが好ましく、0.5~3mm程度であるのがより好ましい。また、同様に、側面視において、第2のブロック体5のスリット51とスリット52との離間距離は、0.3~10mm程度であるのが好ましく、0.5~3mm程度であるのがより好ましい。 Further, the separation distance between the slit 41 and the slit 42 of the first block body 4 is preferably about 0.3 to 10 mm, and more preferably about 0.5 to 3 mm. Similarly, in the side view, the separation distance between the slit 51 and the slit 52 of the second block body 5 is preferably about 0.3 to 10 mm, more preferably about 0.5 to 3 mm. preferable.
 各ブロック体4、5のスリット間の離間距離を上記範囲内とすることにより、発電装置1の小型化を図りながら、各磁歪棒2に巻回されるコイル3の体積を十分に確保することができる。かかる発電装置1では、コイル3の体積を十分に確保することができるため、コイル3の線材31として、比較的線径が大きいものを用いることができるとともに、線材31の巻き数を多くすることができる。線径が大きい線材31は、抵抗値(負荷インピーダンス)が小さいため、コイル3に発生した電圧を効率良く取り出す(利用)することができる。また、線材31の巻き数を多くすることにより、コイル3に発生する電圧を大きくすることができ、その結果、発電装置1の発電効率を向上させることができる。 By ensuring that the distance between the slits of the block bodies 4 and 5 is within the above range, the volume of the coil 3 wound around each magnetostrictive rod 2 is sufficiently ensured while reducing the size of the power generator 1. Can do. In this power generator 1, since the volume of the coil 3 can be secured sufficiently, a wire having a relatively large wire diameter can be used as the wire 31 of the coil 3, and the number of turns of the wire 31 can be increased. Can do. Since the wire 31 having a large wire diameter has a small resistance value (load impedance), the voltage generated in the coil 3 can be efficiently extracted (utilized). Further, by increasing the number of turns of the wire 31, the voltage generated in the coil 3 can be increased, and as a result, the power generation efficiency of the power generator 1 can be improved.
 また、各ブロック体4、5の幅(図1中、各ブロック体4、5の左右方向の長さ)は、磁歪棒2の幅とほぼ同じになるように設計されている。このような各ブロック体4、5の幅は、1~20mm程度であるのが好ましく、2~10mm程度であるのがより好ましい。 Further, the width of each block body 4, 5 (the length in the left-right direction of each block body 4, 5 in FIG. 1) is designed to be substantially the same as the width of the magnetostrictive rod 2. The width of each of the block bodies 4 and 5 is preferably about 1 to 20 mm, and more preferably about 2 to 10 mm.
 かかる構成の磁歪素子10では、併設された2つの磁歪棒2、2が、対向する梁として機能し、第2のブロック体5の変位に伴って、各磁歪棒2が同一方向(図1中、上方向または下方向)に変位する。このような構成により、2つの磁歪棒2のうちの一方の磁歪棒2は、他方の磁歪棒2に応力を付与する梁部材としての機能を発揮し、一方の磁歪棒2の変位に伴って、他方の磁歪棒2には伸長応力または収縮応力のいずれかの応力が発生する。これにより、各磁歪棒2を通過する磁力線の密度が変化する。 In the magnetostrictive element 10 having such a configuration, the two magnetostrictive rods 2 and 2 provided side by side function as opposing beams, and each magnetostrictive rod 2 is moved in the same direction as the second block body 5 is displaced (in FIG. 1). , Upward or downward). With such a configuration, one of the two magnetostrictive rods 2 functions as a beam member that applies stress to the other magnetostrictive rod 2, and the displacement of one of the magnetostrictive rods 2 is accompanied. The other magnetostrictive rod 2 generates either an extension stress or a contraction stress. Thereby, the density of the magnetic force line which passes through each magnetostrictive rod 2 changes.
 なお、図1中、上下2つの磁歪棒2のうちのいずれか一方の磁歪棒2を、磁歪材料以外の材料で構成された梁部材としてもよい。このような梁部材としては、磁歪棒2に応力を付与するだけの剛性を有していればよく、また、非磁性材料でもよい。例えば、各ブロック体4、5を構成する材料で構成されたものを用いることができる。 In FIG. 1, one of the two upper and lower magnetostrictive rods 2 may be a beam member made of a material other than the magnetostrictive material. Such a beam member only needs to have rigidity sufficient to apply stress to the magnetostrictive rod 2, and may be a nonmagnetic material. For example, what was comprised with the material which comprises each block body 4 and 5 can be used.
 なお、磁歪棒2の端部(基端部21、先端部22)を各ブロック体4、5のスリットに固定する方法としては、上述した接着剤による接着に限られず、カシメ、拡散接合、ピンの圧入、ろう付け、溶接(レーザ溶接、電気溶接等)等でも良い。 Note that the method of fixing the end portions (base end portion 21 and tip end portion 22) of the magnetostrictive rod 2 to the slits of the respective block bodies 4 and 5 is not limited to the above-described adhesive bonding, but caulking, diffusion bonding, pins For example, press fitting, brazing, welding (laser welding, electric welding, etc.), etc. may be used.
 第1のブロック体4は、第1のループ形成部材7を介して永久磁石6の基端部と連結している。 The first block body 4 is connected to the base end portion of the permanent magnet 6 via the first loop forming member 7.
 前述したように、第1のループ形成部材7は、第1のブロック体4とともに、振動体に固定され、振動体の振動により、磁歪素子10の先端部が基端部に対して変位する。第1のループ形成部材7および第1のブロック体4を取り付ける振動体としては、例えば、ポンプや空調用ダクト等の各種振動体が挙げられる。振動体の具体例については、後述する。 As described above, the first loop forming member 7 is fixed to the vibrating body together with the first block body 4, and the distal end portion of the magnetostrictive element 10 is displaced with respect to the proximal end portion by the vibration of the vibrating body. Examples of the vibrating body to which the first loop forming member 7 and the first block body 4 are attached include various vibrating bodies such as a pump and an air conditioning duct. A specific example of the vibrating body will be described later.
 このような第1のループ形成部材7は、磁性材料で構成され、第1のブロック体4の側面(図2中、下側の側面)に固定される第1の固定部71と、永久磁石6の基端側の端面に固定される第2の固定部72と、第1の固定部71と第2の固定部72とを連結し、平面視においてL字状をなす連結部73とを備えている。 The first loop forming member 7 is made of a magnetic material, and has a first fixing portion 71 fixed to the side surface (the lower side surface in FIG. 2) of the first block body 4, and a permanent magnet. 6, a second fixing portion 72 fixed to the end surface on the base end side, the first fixing portion 71 and the second fixing portion 72 are connected, and a connecting portion 73 having an L shape in plan view is provided. I have.
 第1のループ形成部材7は、例えば、帯状(長尺の平板状)の板材を用意し、プレス加工、曲げ加工または鍛造加工等により、まず、平面視においてL字状をなすように加工する。そして、その板材の両端部を、連結部73に相当する部位に対して、それぞれ、L字の外側方向に約90°屈曲させることにより形成することができる。 The first loop forming member 7 is prepared, for example, by preparing a belt-like (long plate-like) plate material, and first processing it into an L shape in plan view by pressing, bending, forging, or the like. . Then, both end portions of the plate material can be formed by bending each portion corresponding to the connecting portion 73 by about 90 ° in the L-shaped outer direction.
 第1の固定部71は、第1のブロック体4の基端側の側面と、例えば、接着剤等による接着により固定されている。この第1の固定部71の高さ(図1中、上下方向)は、第1のブロック体4の高さとほぼ同じであり、発電装置1を振動体に取り付ける際には、例えば、第1のブロック体4、第1の固定部71のそれぞれの下面を振動体に接着剤等による接着により固定することができる。また、第1の固定部71と第1のブロック体4との接着面積を十分に確保して、これらの接合強度を高めて、発電装置1の耐久性を向上することができる。 The first fixing portion 71 is fixed to the side surface on the base end side of the first block body 4 by adhesion with, for example, an adhesive. The height of the first fixing portion 71 (vertical direction in FIG. 1) is substantially the same as the height of the first block body 4, and when the power generator 1 is attached to the vibrating body, for example, the first The lower surfaces of the block body 4 and the first fixing portion 71 can be fixed to the vibrating body by bonding with an adhesive or the like. Moreover, the adhesion area of the 1st fixing | fixed part 71 and the 1st block body 4 is fully ensured, these joint strength can be improved, and durability of the electric power generating apparatus 1 can be improved.
 第2の固定部72は、永久磁石6の基端側の端面と、例えば、接着剤等による接着により固定されている。この第2の固定部72の先端側の表面(固定面)の表面積は、永久磁石6の端面の表面積よりも大きく構成されており、永久磁石6はその端面全体で第2の固定部72に固定されている。 The second fixing portion 72 is fixed to the end surface on the base end side of the permanent magnet 6 by adhesion with, for example, an adhesive. The surface area (fixed surface) on the front end side of the second fixed portion 72 is configured to be larger than the surface area of the end surface of the permanent magnet 6, and the permanent magnet 6 is attached to the second fixed portion 72 over the entire end surface. It is fixed.
 平面視においてL字状の連結部73は、一方の片部731が第1の固定部71の先端部と連結し、他方の片部732が第2の固定部72の基端部と連結している。 In the plan view, the L-shaped connecting portion 73 has one piece portion 731 connected to the distal end portion of the first fixing portion 71 and the other piece portion 732 connected to the proximal end portion of the second fixing portion 72. ing.
 なお、第1のブロック体4と第1の固定部71とを固定する方法、また、第1のループ形成部材7(第1の固定部71)および第1のブロック体4を振動体に固定する方法は、上述したような接着剤等による接着に限られず、ネジ止め、カシメ、拡散接合、ピンの圧入、ろう付け、溶接(レーザ溶接、電気溶接等)等でも良い。 In addition, the method of fixing the first block body 4 and the first fixing portion 71, and fixing the first loop forming member 7 (first fixing portion 71) and the first block body 4 to the vibrating body. The method of performing is not limited to the above-described bonding using an adhesive or the like, but may be screwing, caulking, diffusion bonding, pin press-fitting, brazing, welding (laser welding, electric welding, etc.), or the like.
 かかる第1のループ形成部材7の構成材料としては、前述した各ブロック体4、5を構成する各種磁性材料と同様の材料を用いることができる。 As the constituent material of the first loop forming member 7, the same materials as the various magnetic materials constituting the block bodies 4 and 5 described above can be used.
 永久磁石6(図2中、左側の永久磁石6)の先端側、すなわち、永久磁石6を介して、第1のループ形成部材7とは反対側には、第2のループ形成部材8が配置されている。第2のループ形成部材8は、第2のブロック体5と永久磁石6とを連結し、かつ、永久磁石6を介して第1のループ形成部材7と固定されている。 A second loop forming member 8 is arranged on the tip side of the permanent magnet 6 (left permanent magnet 6 in FIG. 2), that is, on the side opposite to the first loop forming member 7 via the permanent magnet 6. Has been. The second loop forming member 8 connects the second block body 5 and the permanent magnet 6, and is fixed to the first loop forming member 7 via the permanent magnet 6.
 前述したように、第2のループ形成部材8は、第2のブロック体5とともに、磁歪棒2に対して外力や振動を付与する錘として機能する。 As described above, the second loop forming member 8 together with the second block body 5 functions as a weight that applies an external force or vibration to the magnetostrictive rod 2.
 第2のループ形成部材8は、磁性材料で構成され、第2のブロック体5の側面(図2中、下側の側面)に固定される第1の固定部81と、永久磁石6の先端側の端面に固定される第2の固定部82と、第1の固定部81と第2の固定部82とを連結し、平面視においてL字状をなす連結部83とを備えている。 The second loop forming member 8 is made of a magnetic material, and is fixed to the side surface (lower side surface in FIG. 2) of the second block body 5 and the tip of the permanent magnet 6. A second fixing portion 82 fixed to the end face on the side, a first fixing portion 81 and the second fixing portion 82 are connected, and a connecting portion 83 having an L shape in plan view is provided.
 このような第2のループ形成部材8は、例えば、帯状(長尺の平板状)の板材を用意し、プレス加工、曲げ加工または鍛造加工等により、まず、平面視においてL字状をなすように加工する。そして、その板材の両端部を、連結部83に相当する部位に対して、それぞれ、L字の外側方向に約90°屈曲させることにより形成することができる。 Such a second loop forming member 8 is prepared, for example, as a belt-like (long plate-like) plate material, and is first formed into an L shape in plan view by pressing, bending or forging. To process. Then, both end portions of the plate material can be formed by bending each portion corresponding to the connecting portion 83 by about 90 ° in the L-shaped outer direction.
 第1の固定部81は、第2のブロック体5の先端側の側面と、例えば、接着剤等による接着により固定されている。この第1の固定部81の高さ(図1中、上下方向)は、第2のブロック体5の高さとほぼ同じに構成されている。これにより、第1の固定部81と第2のブロック体5との接着面積を十分に確保して、これらの接合強度を高めて、発電装置1の耐久性を向上することができる。 The first fixing portion 81 is fixed to the side surface on the distal end side of the second block body 5 by adhesion with, for example, an adhesive. The height of the first fixing portion 81 (vertical direction in FIG. 1) is configured to be substantially the same as the height of the second block body 5. Thereby, the adhesion area of the 1st fixing | fixed part 81 and the 2nd block body 5 is fully ensured, these joint strength can be improved, and durability of the electric power generating apparatus 1 can be improved.
 第2の固定部82は、永久磁石6の先端側の端面と、例えば、接着剤等による接着により固定されている。この第2の固定部82の先端側の表面(固定面)の表面積は、永久磁石6の端面の表面積よりも大きく構成されており、永久磁石6は、その端面全体で第2の固定部82に固定されている。 The second fixing portion 82 is fixed to the end face on the tip side of the permanent magnet 6 by adhesion with, for example, an adhesive. The surface area (fixed surface) on the front end side of the second fixed portion 82 is configured to be larger than the surface area of the end surface of the permanent magnet 6, and the permanent magnet 6 has the entire second end surface thereof. It is fixed to.
 平面視においてL字状の連結部83は、一方の片部831が第1の固定部81の基端部と連結し、他方の片部832が第2の固定部82の基端部と連結している。 In plan view, the L-shaped connecting portion 83 has one piece 831 connected to the base end of the first fixing portion 81 and the other piece 832 connected to the base end of the second fixing portion 82. is doing.
 なお、第2のブロック体5と第1の固定部81とを固定する方法は、上述したような接着剤等による接着に限られず、ネジ止め、カシメ、拡散接合、ピンの圧入、ろう付け、溶接(レーザ溶接、電気溶接等)等でも良い。 In addition, the method of fixing the second block body 5 and the first fixing portion 81 is not limited to the adhesion by the adhesive as described above, screwing, caulking, diffusion bonding, pin press fitting, brazing, Welding (laser welding, electric welding, etc.) may be used.
 かかる第2のループ形成部材8の構成材料としては、前述した各ブロック体4、5を構成する各種磁性材料と同様の材料を用いることができる。 As the constituent material of the second loop forming member 8, the same materials as the various magnetic materials constituting the block bodies 4 and 5 described above can be used.
 第1のループ形成部材7と第2のループ形成部材8との間には、円柱状をなし、磁歪棒2にバイアス磁界を印加する永久磁石6が固定されている。本実施形態では、第1のループ形成部材7と第2のループ形成部材8との間には、2つの永久磁石6が、直列に配設されており、これらは、磁力により互いに連結し、さらに、接着剤等により固定されている。 A permanent magnet 6 is fixed between the first loop forming member 7 and the second loop forming member 8 and has a cylindrical shape and applies a bias magnetic field to the magnetostrictive rod 2. In the present embodiment, two permanent magnets 6 are arranged in series between the first loop forming member 7 and the second loop forming member 8, and these are connected to each other by magnetic force, Further, it is fixed with an adhesive or the like.
 各永久磁石6は、磁歪素子10(磁歪棒2)が変位する変位方向とほぼ垂直な方向、かつ、磁歪棒2の軸方向とほぼ垂直な方向に磁歪素子10に対して配設される。 Each permanent magnet 6 is disposed with respect to the magnetostrictive element 10 in a direction substantially perpendicular to the displacement direction in which the magnetostrictive element 10 (magnetostrictive rod 2) is displaced and in a direction substantially perpendicular to the axial direction of the magnetostrictive rod 2.
 永久磁石6には、例えば、アルニコ磁石、フェライト磁石、ネオジム磁石、サマリウムコバルト磁石や、それらを粉砕して樹脂材料やゴム材料に混練した複合素材を成形してなる磁石(ボンド磁石)等を用いることができる。このような永久磁石6は、その基端側において、第1のループ形成部材7(第2の固定部72)と固定され、また、その先端側において、第2のループ形成部材8と固定されている。これらの部材の固定方法としては、例えば、接着剤による接着等により固定することができる。 As the permanent magnet 6, for example, an alnico magnet, a ferrite magnet, a neodymium magnet, a samarium cobalt magnet, or a magnet (bond magnet) formed by molding a composite material obtained by pulverizing them and kneading them into a resin material or a rubber material is used. be able to. Such a permanent magnet 6 is fixed to the first loop forming member 7 (second fixing portion 72) on the base end side, and is fixed to the second loop forming member 8 on the tip end side. ing. As a fixing method of these members, for example, it can be fixed by bonding with an adhesive or the like.
 図2に示すように、各永久磁石6は、S極を図2中左側(第2のループ形成部材8側)に、N極を図2中右側(第1のループ形成部材7側)にして配置されている。これにより、発電装置1では、永久磁石6が、その着磁方向が磁歪棒2の軸方向となるように配置されている。 As shown in FIG. 2, each permanent magnet 6 has an S pole on the left side (second loop forming member 8 side) in FIG. 2 and an N pole on the right side (first loop forming member 7 side) in FIG. Are arranged. Thereby, in the electric power generating apparatus 1, the permanent magnet 6 is arrange | positioned so that the magnetization direction may turn into the axial direction of the magnetostrictive rod 2. FIG.
 かかる構成の発電装置1では、図2に示すように、2つの永久磁石6が発生した磁力線が、第1のループ形成部材7、磁歪素子10(第1のブロック体4、磁歪棒2および第2のブロック体5)および第2のループ形成部材8を通過して永久磁石6に戻るような、反時計回りの磁界ループが形成される。 In the power generator 1 having such a configuration, as shown in FIG. 2, the lines of magnetic force generated by the two permanent magnets 6 are the first loop forming member 7, the magnetostrictive element 10 (the first block body 4, the magnetostrictive rod 2, and the first A counterclockwise magnetic field loop is formed which passes through the second block body 5) and the second loop forming member 8 and returns to the permanent magnet 6.
 なお、前述したように、永久磁石6は、その両端面全体が第1のループ形成部材7および第2のループ形成部材8の第2の固定部72、82と接合している。そのため、磁界ループを形成する磁力線の流れが、永久磁石6と第1のループ形成部材7および第2のループ形成部材8との間で損失するのが防止される。これにより、磁歪棒2を通過する磁力線の密度を十分に高くすることができ、磁歪棒2が変形した際に、磁歪棒2を通過する磁力線の密度の変化量を十分に大きくすることができる。その結果、発電装置1の発電効率が向上する。 Note that, as described above, the permanent magnet 6 is joined to the second fixing portions 72 and 82 of the first loop forming member 7 and the second loop forming member 8 at both ends thereof. Therefore, it is possible to prevent the flow of the magnetic force lines forming the magnetic field loop from being lost between the permanent magnet 6 and the first loop forming member 7 and the second loop forming member 8. Thereby, the density of the magnetic force line which passes the magnetostrictive rod 2 can be made high enough, and when the magnetostrictive rod 2 deform | transforms, the variation | change_quantity of the density of the magnetic force line which passes the magnetostrictive rod 2 can fully be enlarged. . As a result, the power generation efficiency of the power generator 1 is improved.
 発電装置1は、第1のブロック体4および第1のループ形成部材7(主に、第1の固定部71)が振動体に固定される。この状態において、振動体の振動により、第1のブロック体4に対して、第2のブロック体5が上方に向かって変位(回動)すると、すなわち、磁歪棒2の基端に対して先端が上方に向かって変位すると、下側の磁歪棒2が軸方向に伸長するように変形し、上側の磁歪棒2が軸方向に収縮するように変形する。一方、第2のブロック体5が下方に向かって変位(回動)すると、すなわち、磁歪棒2の基端に対して先端が下方に向かって変位すると、下側の磁歪棒2が軸方向に収縮するように変形し、上側の磁歪棒2が軸方向に伸長するように変形する。その結果、逆磁歪効果により各磁歪棒2の透磁率が変化して、磁歪棒2を通過する磁力線の密度(コイル3の内腔部を軸方向に貫く磁力線の密度)が変化する。これにより、コイル3に電圧が発生する。 In the power generation device 1, the first block body 4 and the first loop forming member 7 (mainly the first fixing portion 71) are fixed to the vibrating body. In this state, the second block body 5 is displaced (rotated) upward with respect to the first block body 4 due to the vibration of the vibration body, that is, the distal end with respect to the proximal end of the magnetostrictive rod 2. Is displaced upward, the lower magnetostrictive rod 2 is deformed to extend in the axial direction, and the upper magnetostrictive rod 2 is deformed to contract in the axial direction. On the other hand, when the second block body 5 is displaced (rotated) downward, that is, when the distal end is displaced downward with respect to the base end of the magnetostrictive rod 2, the lower magnetostrictive rod 2 is moved in the axial direction. The upper magnetostrictive rod 2 is deformed so as to contract, and is deformed so as to extend in the axial direction. As a result, the magnetic permeability of each magnetostrictive rod 2 changes due to the inverse magnetostrictive effect, and the density of magnetic lines passing through the magnetostrictive bar 2 (the density of magnetic lines passing through the inner cavity of the coil 3 in the axial direction) changes. As a result, a voltage is generated in the coil 3.
 かかる発電装置1では、前述したように、永久磁石6が、その着磁方向が磁歪棒2の軸方向となるように配置されている。そして、永久磁石6の着磁方向の長さが、磁歪棒2のコイル3が巻回された領域の軸方向の長さよりも短く、かつ、永久磁石6が、磁歪棒2のコイル3が巻回された領域の軸方向の途中に対応するよう設けられている。本実施形態では、側面視において、永久磁石6が、磁歪棒2にコイル3が巻回された領域の中央付近に包含されるように配設されている(図2参照)。 In the power generator 1, as described above, the permanent magnet 6 is arranged so that the magnetization direction thereof is the axial direction of the magnetostrictive rod 2. The length of the permanent magnet 6 in the magnetization direction is shorter than the length in the axial direction of the region where the coil 3 of the magnetostrictive rod 2 is wound, and the permanent magnet 6 is wound by the coil 3 of the magnetostrictive rod 2. It is provided so as to correspond to the middle of the rotated region in the axial direction. In the present embodiment, the permanent magnet 6 is disposed so as to be included in the vicinity of the center of the region where the coil 3 is wound around the magnetostrictive rod 2 in a side view (see FIG. 2).
 上述した永久磁石6が発生する磁力線の大部分は、第1のループ形成部材7、磁歪素子10および第2のループ形成部材8を通過する磁界ループを形成するが、その一部は、永久磁石6の周囲に漏れ磁束(磁界)として存在して強磁界領域を形成する。上記構成の発電装置1では、図2に示すように、永久磁石6の強磁界領域が磁歪棒2と重なり、その漏れ磁束が、磁歪棒2のコイル3が巻回された領域の軸方向の中央付近(磁歪棒2の軸方向の中央付近)を通過する。すなわち、永久磁石6からの漏れ磁束が、磁歪棒2の軸方向の中央付近に、磁歪棒2中の磁力線の通過方向とほぼ同じ方向に印加される。 Most of the lines of magnetic force generated by the permanent magnet 6 described above form a magnetic field loop that passes through the first loop forming member 7, the magnetostrictive element 10, and the second loop forming member 8, part of which is a permanent magnet. 6 exists as a leakage magnetic flux (magnetic field) around 6 to form a strong magnetic field region. In the power generator 1 having the above-described configuration, as shown in FIG. 2, the strong magnetic field region of the permanent magnet 6 overlaps with the magnetostrictive rod 2, and the leakage magnetic flux in the axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound. Passes near the center (near the center in the axial direction of the magnetostrictive rod 2). That is, the leakage magnetic flux from the permanent magnet 6 is applied near the center in the axial direction of the magnetostrictive rod 2 in substantially the same direction as the passing direction of the magnetic lines of force in the magnetostrictive rod 2.
 磁歪棒2の軸方向の中央付近は、磁界ループを形成する磁気回路としては、永久磁石6から最も離れた位置にある。そのため、磁界ループを形成する磁力線の強度は、磁歪棒2の軸方向の中央付近が最も弱くなるが、ここに永久磁石6の漏れ磁束が印加されることにより、磁界強度が補填される。これにより、磁歪棒2の軸方向全体にわたって、一様なバイアス磁界を印加することができる。 Near the center in the axial direction of the magnetostrictive rod 2 is located farthest from the permanent magnet 6 as a magnetic circuit forming a magnetic field loop. Therefore, the strength of the magnetic field lines forming the magnetic field loop is weakest near the center in the axial direction of the magnetostrictive rod 2, but the magnetic field strength is compensated by applying the leakage magnetic flux of the permanent magnet 6 here. Thereby, a uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod 2.
 なお、発電装置1では、コイル3の内腔部を軸方向に貫く磁力線の密度変化によって、コイル3に電圧が生じる。そのため、効率良く発電する観点から、必ずしも磁歪棒2の軸方向全体に一様なバイアス磁界が印加される必要はなく、少なくとも磁歪棒2のコイル3が巻回された領域の軸方向全体に一様なバイアス磁界が印加される構成であればよい。 Note that, in the power generation device 1, a voltage is generated in the coil 3 due to the density change of the magnetic lines of force penetrating the inner cavity of the coil 3 in the axial direction. For this reason, from the viewpoint of efficient power generation, it is not always necessary to apply a uniform bias magnetic field to the entire axial direction of the magnetostrictive rod 2, and at least one entire axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound. Any configuration in which such a bias magnetic field is applied may be used.
 以下に、磁歪棒に対する永久磁石の配設位置およびその着磁方向に応じた、磁歪棒の軸方向におけるバイアス磁界の強度分布について説明する。 Hereinafter, the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod according to the arrangement position of the permanent magnet with respect to the magnetostrictive rod and the magnetization direction thereof will be described.
 図3は、本発明の発電装置との比較のために例示する発電装置の平面図である。
 なお、図3中の紙面手前側を「上」または「上方」と言い、紙面奥側を「下」または「下方」と言う。また、図3中の左側を「先端」と言い、図3中の右側を「基端」と言う。
FIG. 3 is a plan view of a power generation device exemplified for comparison with the power generation device of the present invention.
3 is referred to as “upper” or “upper”, and the rear side of the page is referred to as “lower” or “lower”. Further, the left side in FIG. 3 is referred to as “tip”, and the right side in FIG. 3 is referred to as “base end”.
 図3に示す発電装置200は、本発明の発電装置1との比較のために例示する発電装置である。 A power generation device 200 shown in FIG. 3 is a power generation device exemplified for comparison with the power generation device 1 of the present invention.
 発電装置200は、本発明の発電装置1と同様の磁歪素子10を備えており、さらに、一対の磁歪棒に併設された長尺状のバックヨーク9と、各ブロック体4、5とバックヨーク9との間に配設され、磁歪棒2にバイアス磁界を印加する2つの永久磁石6とを備えている。このバックヨーク9は、各ブロック体4、5に対して永久磁石6を介して固定されている。 The power generation apparatus 200 includes the magnetostrictive element 10 similar to that of the power generation apparatus 1 of the present invention, and further includes a long back yoke 9 provided side by side with a pair of magnetostrictive rods, the block bodies 4 and 5 and the back yoke. 9 and two permanent magnets 6 for applying a bias magnetic field to the magnetostrictive rod 2. The back yoke 9 is fixed to the block bodies 4 and 5 via permanent magnets 6.
 発電装置200では、基端側の永久磁石6が、S極を図3中下側(バックヨーク9側)に、N極を図3中上側(第1のブロック体4側)にして配置されている。また、先端側の永久磁石6が、S極を図3中上側(第2のブロック体5側)に、N極を図3中下側(バックヨーク9側)にして配置されている。これにより、磁歪素子10、2つの永久磁石6およびバックヨーク9を通過する反時計回りの磁界ループが形成される。 In the power generation apparatus 200, the permanent magnet 6 on the base end side is arranged with the south pole on the lower side in FIG. 3 (back yoke 9 side) and the north pole on the upper side in FIG. 3 (first block body 4 side). ing. Further, the permanent magnet 6 on the tip side is arranged with the S pole on the upper side (second block body 5 side) in FIG. 3 and the N pole on the lower side in FIG. 3 (back yoke 9 side). Thereby, a counterclockwise magnetic field loop passing through the magnetostrictive element 10, the two permanent magnets 6, and the back yoke 9 is formed.
 なお、このような発電装置200も、磁歪素子10の基端部(第1のブロック体4)に対して先端部(第2のブロック体5)が、その軸方向とほぼ垂直な方向に相対的に変位することにより、磁歪棒2が伸縮する。このとき、逆磁歪効果により磁歪棒2を通過する磁力線の密度(コイル3を貫く磁力線の密度)が変化することにより、コイル3に電圧が発生する。 Note that such a power generation apparatus 200 also has a distal end portion (second block body 5) relative to the base end portion (first block body 4) of the magnetostrictive element 10 in a direction substantially perpendicular to the axial direction thereof. The magnetostrictive rod 2 expands and contracts due to the displacement. At this time, a voltage is generated in the coil 3 due to a change in density of magnetic lines of force passing through the magnetostrictive rod 2 (density of magnetic lines passing through the coil 3) due to the inverse magnetostrictive effect.
 図4は、図2に示す発電装置および図3に示す発電装置において、自然状態(磁歪棒に応力が付与されていない状態)における磁歪棒の軸方向におけるバイアス磁界の強度分布を解析した解析図、および、付与する応力に応じた、磁歪棒の軸方向におけるバイアス磁界の強度分布を示すグラフである。 FIG. 4 is an analysis diagram analyzing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod in a natural state (a state where no stress is applied to the magnetostrictive rod) in the power generator shown in FIG. 2 and the power generator shown in FIG. 4 is a graph showing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod according to the applied stress.
 具体的には、図4(a-1)は、図3に示す発電装置200において、自然状態における磁歪棒2の軸方向におけるバイアス磁界の強度分布を解析した解析図である。図4(a-2)は、磁歪棒2に付与した応力(90MPaの伸長応力または90MPaの収縮応力)に応じた、磁歪棒2の軸方向におけるバイアス磁界の強度を示すグラフである。また、図4(b-1)は、図2に示す発電装置1において、自然状態における磁歪棒2の軸方向におけるバイアス磁界の強度分布を解析した解析図である。図4(b-2)は、磁歪棒2に付与した応力(90MPaの伸長応力または90MPaの収縮応力)に応じた、磁歪棒2の軸方向におけるバイアス磁界の強度を示すグラフである。なお、図4において、発電装置1および発電装置200は、いずれも磁歪棒2として、長さ(第1のブロック体4の先端から第2のブロック体5の基端までの距離)が10mmの磁歪棒を用いて評価を行った。 Specifically, FIG. 4 (a-1) is an analysis diagram analyzing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod 2 in the natural state in the power generation apparatus 200 shown in FIG. FIG. 4A-2 is a graph showing the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod 2 according to the stress applied to the magnetostrictive rod 2 (elongation stress of 90 MPa or contraction stress of 90 MPa). FIG. 4B-1 is an analysis diagram analyzing the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod 2 in the natural state in the power generator 1 shown in FIG. FIG. 4B-2 is a graph showing the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod 2 according to the stress applied to the magnetostrictive rod 2 (elongation stress of 90 MPa or contraction stress of 90 MPa). In FIG. 4, each of the power generation device 1 and the power generation device 200 is a magnetostrictive rod 2 and has a length (distance from the distal end of the first block body 4 to the proximal end of the second block body 5) of 10 mm. Evaluation was performed using a magnetostrictive rod.
 また、図4(a-1)および(b-1)中、白黒の濃淡により、磁歪棒2の軸方向における印加されたバイアス磁界の強度が示されており、濃淡の差が大きいほど、バイアス磁界の強度差が大きいことを示す。また、図4(a-2)および(b-2)は、磁歪棒2のコイル3が巻回される領域の軸方向の先端(0mm)から基端側への距離と、磁界強度との関係を示す。 4 (a-1) and 4 (b-1), the intensity of the applied bias magnetic field in the axial direction of the magnetostrictive rod 2 is shown by the density of black and white. It shows that the difference in strength of the magnetic field is large. 4 (a-2) and 4 (b-2) show the distance from the axial tip (0 mm) to the base end side of the region around which the coil 3 of the magnetostrictive rod 2 is wound, and the magnetic field strength. Show the relationship.
 図3に示す発電装置200では、各永久磁石6が、磁歪素子10の基端部(第1のブロック体4)および先端部(第2のブロック体5)の側面に、その着磁方向が磁歪棒2の軸方向と直交するように配設されている。かかる構成では、永久磁石6からの漏れ磁束による強磁界領域は、磁歪棒2の基端側および先端側に発生し、かつ、永久磁石6からの漏れ磁束は、磁歪棒2を通過する磁力線の方向とほぼ直交する。このため、永久磁石6の漏れ磁束が、磁歪棒2中の磁力線の通過方向に印加されることはなく、発電装置200では、磁歪棒2の軸方向の中央付近と基端側および先端側とのバイアス磁界の強度差が大きくなる(図4(a-1)参照)。 In the power generation device 200 shown in FIG. 3, each permanent magnet 6 has a magnetization direction on the side surfaces of the proximal end portion (first block body 4) and the distal end portion (second block body 5) of the magnetostrictive element 10. The magnetostrictive rod 2 is disposed so as to be orthogonal to the axial direction. In such a configuration, the strong magnetic field region due to the leakage magnetic flux from the permanent magnet 6 is generated on the proximal end side and the distal end side of the magnetostrictive rod 2, and the leakage magnetic flux from the permanent magnet 6 is a magnetic field line passing through the magnetostrictive rod 2. Nearly perpendicular to the direction. For this reason, the leakage magnetic flux of the permanent magnet 6 is not applied in the direction of passage of the magnetic lines of force in the magnetostrictive rod 2, and in the power generator 200, the vicinity of the center in the axial direction of the magnetostrictive rod 2, the proximal end side, and the distal end side The difference in the intensity of the bias magnetic field increases (see FIG. 4A-1).
 さらに、発電装置200では、磁歪棒2に応力(90MPaの伸長応力または90MPaの収縮応力)が付与されると、自然状態(応力:0MPa)での磁歪棒2よりも、さらにその軸方向の中央付近と基端側および先端側とのバイアス磁界の強度差が大きくなる(図4(a-2)参照)。 Further, in the power generation apparatus 200, when stress (90 MPa elongation stress or 90 MPa contraction stress) is applied to the magnetostrictive rod 2, the axial center is further increased than the magnetostrictive rod 2 in the natural state (stress: 0 MPa). The difference in the intensity of the bias magnetic field between the vicinity, the proximal end side, and the distal end side increases (see FIG. 4A-2).
 このような発電装置200では、磁歪棒2の軸方向におけるバイアス磁界の強度差が大きい、すなわち、バイアス磁界の強度分布のバラつきが大きい。特に、このバラつきは、磁歪棒2に応力が付与されて、磁歪棒2が変形する際に顕著となる。したがって、発電装置200では、磁歪棒2が変形した際の磁束密度の変化量が、印加されたバイアス磁界の強度に依存して、磁歪棒の軸方向でバラついてしまう。その結果、発電装置200では、発電効率を十分に高くすることができない。 In such a power generation apparatus 200, the difference in the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod 2 is large, that is, the variation in the intensity distribution of the bias magnetic field is large. In particular, this variation becomes prominent when stress is applied to the magnetostrictive rod 2 and the magnetostrictive rod 2 is deformed. Therefore, in the power generation device 200, the amount of change in the magnetic flux density when the magnetostrictive rod 2 is deformed varies in the axial direction of the magnetostrictive rod depending on the strength of the applied bias magnetic field. As a result, in the power generation device 200, the power generation efficiency cannot be sufficiently increased.
 これに対して、本発明の発電装置1では、永久磁石6からの漏れ磁束が、コイル3が巻回された領域の軸方向の中央付近に、磁歪棒2中の磁力線の通過方向とほぼ同じ方向に印加される。そのため、磁歪棒2の軸方向の中央付近と基端側および先端側とで、バイアス磁界の強度のバラつきは極めて少なく、特に、発電に寄与するコイル3が巻回された領域では、軸方向全体にわたって一様なバイアス磁界が印加される(図4(b-1)参照)。 On the other hand, in the power generator 1 of the present invention, the leakage magnetic flux from the permanent magnet 6 is substantially the same as the passing direction of the magnetic lines of force in the magnetostrictive rod 2 near the center in the axial direction of the region where the coil 3 is wound. Applied in the direction. Therefore, there is very little variation in the intensity of the bias magnetic field between the vicinity of the center of the magnetostrictive rod 2 in the axial direction, the proximal end side, and the distal end side, and particularly in the region where the coil 3 contributing to power generation is wound, A uniform bias magnetic field is applied over the entire area (see FIG. 4B-1).
 さらに、発電装置1では、磁歪棒2に応力(90MPaの伸長応力または90MPaの収縮応力)が付与された場合でも、自然状態(応力:0MPa)での磁歪棒2と同様に、磁歪棒2の軸方向全体にわたって一様なバイアス磁界が印加される(図4(b-2)参照)。 Furthermore, in the power generation device 1, even when stress (90 MPa elongation stress or 90 MPa contraction stress) is applied to the magnetostrictive rod 2, the magnetostrictive rod 2 is similar to the magnetostrictive rod 2 in the natural state (stress: 0 MPa). A uniform bias magnetic field is applied over the entire axial direction (see FIG. 4B-2).
 図4(b-2)に示すように、発電装置1では、自然状態および磁歪棒2に応力が付与された状態のいずれにおいても、磁歪棒2の軸方向全体にわたって一様なバイアス磁界が印加される。これにより、磁歪棒2が変形した際の磁束密度の変化量は、磁歪棒2の軸方向全体にわたって均一になるため、発電装置1では、効率良く発電することができる。特に、かかる発電装置1では、磁歪棒2の材料特性から、あらかじめ磁歪棒2中の磁束密度の変化量が最大となるバイアス磁界の強度を求め、求めた強度のバイアス磁界を磁歪棒2に印加するように構成することにより、高い発電量で効率良く発電することができる。 As shown in FIG. 4 (b-2), in the power generator 1, a uniform bias magnetic field is applied over the entire axial direction of the magnetostrictive rod 2 in both the natural state and the state where stress is applied to the magnetostrictive rod 2. Is done. Thereby, since the variation | change_quantity of the magnetic flux density when the magnetostriction stick | rod 2 deform | transforms becomes uniform over the whole axial direction of the magnetostriction stick | rod 2, the electric power generating apparatus 1 can generate electric power efficiently. In particular, in the power generation device 1, the bias magnetic field strength that maximizes the amount of change in the magnetic flux density in the magnetostrictive rod 2 is obtained in advance from the material characteristics of the magnetostrictive rod 2, and the bias magnetic field having the obtained strength is applied to the magnetostrictive rod 2. By configuring so, it is possible to efficiently generate power with a high power generation amount.
 発電装置1では、磁歪棒2のコイル3が巻回された領域の軸方向の長さをA[mm]とし、永久磁石6の着磁方向の長さ(本実施形態では、直列に配列された2つの永久磁石6の配列方向の長さ)をB[mm]としたとき、B<Aの関係を満足している。AとBとの関係は、上記関係を満足すればよいが、特に、B≦0.6Aなる関係を満足するのが好ましく、0.1A≦B≦0.6Aなる関係を満足するのがより好ましい。これにより、永久磁石6の周囲に存在する強磁界領域が、磁歪棒2の軸方向の中心付近と、より広範囲にわたって重なり、磁歪棒2の軸方向の中心付近に十分な強度の漏れ磁束を印加することができる。そのため、磁歪棒2の軸方向全体にわたって、より一様なバイアス磁界を印加することができる。 In the power generation device 1, the length in the axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound is A [mm], and the length in the magnetization direction of the permanent magnet 6 (in this embodiment, it is arranged in series. When the length in the arrangement direction of the two permanent magnets 6 is B [mm], the relationship B <A is satisfied. The relationship between A and B may satisfy the above relationship, but it is particularly preferable to satisfy the relationship B ≦ 0.6A, and more preferably satisfy the relationship 0.1A ≦ B ≦ 0.6A. preferable. As a result, the strong magnetic field region around the permanent magnet 6 overlaps with the vicinity of the axial center of the magnetostrictive rod 2 over a wider range, and a sufficiently strong leakage magnetic flux is applied near the axial center of the magnetostrictive rod 2. can do. Therefore, a more uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod 2.
 また、磁歪棒2のコイル3が巻回された領域から永久磁石6までの距離をX[mm]としたとき、この距離Xは、特に限定されないが、X=0.05A~0.3Aなる関係を満足するのが好ましく、X=0.1A~0.2Aなる関係を満足するのがより好ましい。これにより、永久磁石6の周囲に存在する強磁界領域が、磁歪棒2の軸方向の中心付近と十分に重なり、磁歪棒2の軸方向の中心付近に十分な強度の漏れ磁束を印加することができる。そのため、磁歪棒2のコイル3が巻回された領域の軸方向全体にわたって、より一様なバイアス磁界を印加することができる。 Further, when the distance from the region where the coil 3 of the magnetostrictive rod 2 is wound to the permanent magnet 6 is X [mm], the distance X is not particularly limited, but X = 0.05A to 0.3A. It is preferable to satisfy the relationship, and it is more preferable to satisfy the relationship of X = 0.1A to 0.2A. As a result, the strong magnetic field region present around the permanent magnet 6 sufficiently overlaps with the vicinity of the axial center of the magnetostrictive rod 2, and a leakage flux having a sufficient strength is applied near the axial center of the magnetostrictive rod 2. Can do. Therefore, a more uniform bias magnetic field can be applied over the entire axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound.
 なお、かかる発電装置1において、磁歪棒2の軸方向におけるバイアス磁界の強度を測定した際に、その強度分布の標準偏差は、3000[A/m]以下であるのが好ましく、100~2000[A/m]であるのがより好ましい。上記条件を満足する発電装置1では、磁歪棒2の軸方向全体にわたって十分に均一なバイアス磁界が印加されており、磁歪棒2が変形した際の磁束密度の変化量は、磁歪棒2の軸方向全体にわたって均一になる。これにより、発電装置1では、効率良く発電することができる。 In the power generator 1, when the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod 2 is measured, the standard deviation of the intensity distribution is preferably 3000 [A / m] or less, preferably 100 to 2000 [A / m]. A / m] is more preferable. In the power generation device 1 that satisfies the above conditions, a sufficiently uniform bias magnetic field is applied over the entire axial direction of the magnetostrictive rod 2, and the amount of change in magnetic flux density when the magnetostrictive rod 2 is deformed is the axis of the magnetostrictive rod 2. Uniform throughout the direction. Thereby, in the electric power generating apparatus 1, it can generate electric power efficiently.
 なお、発電装置1を取り付ける振動体としては、例えば、蒸気、水、燃料油、気体(空気、燃料ガス等)等をパイプやダクトを通して移動(排気、換気、吸気、廃液、循環)させる装置であり、大型施設、ビル、駅等に設置される配管や空調用ダクトが挙げられる。また、配管や空調用ダクト以外には、例えば、輸送機(貨物列車や自動車、トラックの荷台)、線路を構成するレール(枕木)、高速道路やトンネルの壁面パネル、架橋、ポンプやタービン等の機器等が挙げられる。 In addition, as a vibrating body which attaches the electric power generating apparatus 1, it is an apparatus which moves steam, water, fuel oil, gas (air, fuel gas, etc.) etc. through a pipe or a duct (exhaust, ventilation, intake air, waste liquid, circulation), for example. Yes, there are pipes and air conditioning ducts installed in large facilities, buildings, stations, etc. In addition to pipes and air conditioning ducts, for example, transportation equipment (cargo trains, automobiles, truck beds), rails that make up tracks (sleepers), highway and tunnel wall panels, bridges, pumps, turbines, etc. Examples include equipment.
 これらの振動体に発生する振動は、目的とする媒体(空調用ダクトの場合、ダクト内を通過する気体等)の移動には不必要な振動であり、騒音や不快な振動を発生させる原因となっている。このような振動体に上記発電装置1を取り付けることにより、この不必要な振動(運動エネルギー)を電気エネルギーとして変換(回生)して得ることができる。 The vibration generated in these vibrators is unnecessary for the movement of the target medium (in the case of an air conditioning duct, the gas passing through the duct), which may cause noise and unpleasant vibration. It has become. By attaching the power generation device 1 to such a vibrating body, the unnecessary vibration (kinetic energy) can be converted (regenerated) as electric energy.
 この得られた電気エネルギーをセンサー、無線装置等の電源に用いて、施設居住空間の照度、温度、湿度、圧力、騒音を計測し、無線装置で検出データを送信して、各種制御信号やモニタリング信号として利用することができる。また、車両の各部の状態を監視するシステム(例えば、タイヤ空気圧センサー、シートベルト着装検知センサー)としても利用することができる。また、このように不必要な振動を電力に変換することで、振動体からの騒音や不快な振動を軽減する効果も得られる。 The obtained electrical energy is used as a power source for sensors, wireless devices, etc., and the illuminance, temperature, humidity, pressure, and noise of the facility living space are measured, and the detection data is transmitted by the wireless device for various control signals and monitoring. It can be used as a signal. It can also be used as a system for monitoring the state of each part of the vehicle (for example, a tire air pressure sensor, a seat belt wearing detection sensor). Further, by converting unnecessary vibration into electric power in this way, an effect of reducing noise from the vibrating body and unpleasant vibration can be obtained.
 また、上記のような振動体からの振動を回生する以外にも、振動体以外の基体に固定し、発電装置1の先端(第2のブロック体5)に直接外部から力を与える構造を付加し、無線装置と組み合わせることで人が操作するスイッチとして用いることができる。 In addition to regenerating the vibration from the vibrating body as described above, a structure that is fixed to a base other than the vibrating body and directly applies external force to the tip (second block body 5) of the power generator 1 is added. However, it can be used as a switch operated by a person by combining with a wireless device.
 このようなスイッチは、電源、信号線の配線をしなくとも機能し、例えば、住宅照明用無線スイッチ、住宅セキュリティー用システム(特に、窓やドアの操作検知を無線で知らせるシステム)等に用いることができる。 Such a switch functions without wiring the power supply and signal lines. For example, it is used for a home lighting wireless switch, a home security system (especially a system that wirelessly detects the operation of windows and doors), etc. Can do.
 また、車両の各スイッチに発電装置1を応用することで、電源、信号線の配線がなくなり、組立工数の削減だけではなく、車両に設ける配線に必要な重量を軽減し、車両等の軽量化を得て、タイヤ、車体、エンジンにかかる負荷を抑制し、安全性にも寄与することができる。 In addition, by applying the power generation device 1 to each switch of the vehicle, there is no need for wiring of the power source and signal line, which not only reduces assembly man-hours but also reduces the weight required for wiring provided in the vehicle, thereby reducing the weight of the vehicle, etc. Therefore, it is possible to suppress the load on the tire, the vehicle body, and the engine and contribute to safety.
 なお、発電装置1の発電量は、特に限定されないが、20~2000μJ程度であるのが好ましい。発電装置1の発電量(発電能力)が上記範囲内であれば、例えば、無線装置と組み合わせることで、上述した住宅照明用無線スイッチや住宅セキュリティー用システム等に有効に利用することができる。 The power generation amount of the power generator 1 is not particularly limited, but is preferably about 20 to 2000 μJ. If the power generation amount (power generation capacity) of the power generation device 1 is within the above range, for example, by combining with a wireless device, it can be effectively used for the above-described home illumination wireless switch, home security system, and the like.
 なお、本実施形態の発電装置1では、第1のループ形成部材7と第2のループ形成部材8との間に、直列に連結された2つの永久磁石6を配設しているが、1つの永久磁石6を配設した構成であってもよい。例えば、永久磁石6として、優れた保持力を有するとともに、比較的高い最大エネルギー積を有する、アルニコ磁石、ネオジム磁石、サマリウムコバルト磁石等の希土類磁石を用いる場合には、1つの永久磁石であっても、磁歪棒2に十分な強度のバイアス磁界を印加することができる。なお、上記最大エネルギー積とは、磁石が持つエネルギーの大きさを示す指標であり、各磁石のB-H減磁曲線(B:磁束密度、H:磁場(磁界))における磁束密度と磁場との積の最大値のことである。 In addition, in the electric power generating apparatus 1 of this embodiment, although the two permanent magnets 6 connected in series are arrange | positioned between the 1st loop formation member 7 and the 2nd loop formation member 8, 1 The structure which arrange | positioned the two permanent magnets 6 may be sufficient. For example, when a rare earth magnet such as an alnico magnet, a neodymium magnet, or a samarium cobalt magnet having an excellent holding force and a relatively high maximum energy product is used as the permanent magnet 6, one permanent magnet is used. In addition, a sufficiently strong bias magnetic field can be applied to the magnetostrictive rod 2. The maximum energy product is an index indicating the magnitude of energy of the magnet, and the magnetic flux density and magnetic field in the BH demagnetization curve (B: magnetic flux density, H: magnetic field (magnetic field)) of each magnet. It is the maximum value of the product of.
 <第2実施形態>
 まず、本発明の発電装置の第2実施形態について説明する。
Second Embodiment
First, 2nd Embodiment of the electric power generating apparatus of this invention is described.
 図5は、本発明の発電装置の第2実施形態を示す斜視図である。図6は、図5に示す発電装置の分解斜視図である。図7は、図5に示す発電装置の平面図である。図8は、図5に示す発電装置の右側面図である。図9は、図5に示す発電装置の正面図である。図10(a)は、図5に示す発電装置に対して上方向に外力を付与した状態を模式的に示す図である。図10(b)は、図5に示す発電装置に対して下方向に外力を付与した状態を模式的に示す図である。 FIG. 5 is a perspective view showing a second embodiment of the power generator of the present invention. 6 is an exploded perspective view of the power generator shown in FIG. FIG. 7 is a plan view of the power generator shown in FIG. FIG. 8 is a right side view of the power generator shown in FIG. FIG. 9 is a front view of the power generator shown in FIG. Fig.10 (a) is a figure which shows typically the state which provided the external force upwards with respect to the electric power generating apparatus shown in FIG. FIG.10 (b) is a figure which shows typically the state which provided external force with respect to the electric power generating apparatus shown in FIG.
 なお、以下の説明では、図5、図6、図8、図9および図10(a),(b)中の上側および図7中の紙面手前側を「上」または「上方」と言い、図5、図6、図8、図9および図10(a),(b)中の下側および図7中の紙面奥側を「下」または「下方」と言う。また、図5および図6中の紙面左手前側および図7、図8および図10(a),(b)中の左側を「先端」と言い、図5および図6中の紙面右奥側および図7、図8および図10(a),(b)中の右側を「基端」と言う。 In the following description, the upper side in FIGS. 5, 6, 8, 9 and 10 (a) and 10 (b) and the front side in FIG. 7 are referred to as “up” or “upward”, The lower side in FIGS. 5, 6, 8, 9 and 10 (a) and 10 (b) and the back side in FIG. 7 are referred to as “lower” or “lower”. 5 and FIG. 6 and the left side in FIG. 7, FIG. 8 and FIGS. 10A and 10B are referred to as “tip”, and the right rear side in FIG. 5 and FIG. The right side in FIGS. 7, 8 and 10 (a) and 10 (b) is referred to as the “base end”.
 以下、第2実施形態の発電装置について、前記第1実施形態の発電装置との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the power generation device of the second embodiment will be described with a focus on differences from the power generation device of the first embodiment, and description of similar matters will be omitted.
 図5および図6に示す発電装置1は、磁歪素子10と、磁歪素子10の基端部を支持する第1のループ形成部材7と、永久磁石6と、永久磁石6を介して第1のループ形成部材7と反対側に設けられた第2のループ形成部材8とを有しており、第1のループ形成部材7を、振動を発生する振動体等の基体に固定して使用される。この磁歪素子10は、その先端部が基端部に対して変位可能に第1のループ形成部材7に支持されている。 The power generation device 1 shown in FIGS. 5 and 6 includes a magnetostrictive element 10, a first loop forming member 7 that supports the base end portion of the magnetostrictive element 10, a permanent magnet 6, and a first magnet via the permanent magnet 6. The second loop forming member 8 provided on the opposite side of the loop forming member 7 is used, and the first loop forming member 7 is used by being fixed to a base body such as a vibrating body that generates vibration. . The magnetostrictive element 10 is supported by the first loop forming member 7 so that the distal end portion thereof can be displaced with respect to the proximal end portion.
 かかる発電装置1では、第1のループ形成部材7および第2のループ形成部材8が磁性材料で構成されており、永久磁石6が発生した磁力線が、第2のループ形成部材8、磁歪素子10および第1のループ形成部材7を通過して永久磁石6に戻るようなループ(磁界ループ)が形成されている。 In the power generation device 1, the first loop forming member 7 and the second loop forming member 8 are made of a magnetic material, and the lines of magnetic force generated by the permanent magnet 6 are the second loop forming member 8 and the magnetostrictive element 10. A loop (magnetic field loop) is formed so as to pass through the first loop forming member 7 and return to the permanent magnet 6.
 以下、各部の構成について説明する。
 磁歪素子10は、第1のブロック体4が、そのスリット41、42の基端側において、スリット41、42と離間した位置に、その幅方向(図6中、左右方向)に貫通する貫通孔43が形成されている以外は、前記第1実施形態の磁歪素子10と同じ構成を有している。
Hereinafter, the configuration of each unit will be described.
The magnetostrictive element 10 has a through-hole through which the first block body 4 penetrates in the width direction (left and right direction in FIG. 6) at a position separated from the slits 41 and 42 on the base end side of the slits 41 and 42. Except that 43 is formed, it has the same configuration as the magnetostrictive element 10 of the first embodiment.
 この第1のブロック体4は、第1のループ形成部材7に固定され、これにより、磁歪素子10は、その先端部(第2のブロック体5)が基端部(第1のブロック体4)に対して変位可能に第1のループ形成部材7に片持ち支持されている。また、第1のループ形成部材7は、振動体に固定され、振動体の振動により、磁歪素子10の先端部が基端部に対して変位する。第1のループ形成部材7を取り付ける振動体としては、例えば、前述した各種振動体が挙げられる。 The first block body 4 is fixed to the first loop forming member 7, whereby the magnetostrictive element 10 has a distal end portion (second block body 5) as a base end portion (first block body 4). ) In a cantilevered manner by the first loop forming member 7. Further, the first loop forming member 7 is fixed to the vibrating body, and the distal end portion of the magnetostrictive element 10 is displaced with respect to the proximal end portion by the vibration of the vibrating body. Examples of the vibration body to which the first loop forming member 7 is attached include the various vibration bodies described above.
 このような第1のループ形成部材7は、磁性材料で構成され、振動体に固定される基部74と、基部74の基端側の上面に設けられ、第1のブロック体4を収容する収容部75とを備えている。 Such a first loop forming member 7 is made of a magnetic material, and is provided on a base portion 74 fixed to the vibrating body and an upper surface on the base end side of the base portion 74, and accommodates the first block body 4. Part 75.
 基部74は、その基端側の短手方向(図6中、左右方向)に張り出した一対の張出部(ブラケット部)741を備え、平面視においてT字状をなしている。また、収容部75は、一対の張出部741同士の間の領域に設けられており、底板751と、底板751から立設した一対の側板752とで構成され、正面(背面)視形状が略コの字状をなしている。第1のブロック体4は、この一対の側板752同士の間に収容される。 The base portion 74 includes a pair of projecting portions (bracket portions) 741 projecting in the lateral direction on the proximal end side (left and right direction in FIG. 6), and has a T shape in plan view. The accommodating portion 75 is provided in a region between the pair of overhang portions 741 and includes a bottom plate 751 and a pair of side plates 752 erected from the bottom plate 751, and has a front (rear) view shape. It is almost U-shaped. The first block body 4 is accommodated between the pair of side plates 752.
 収容部75は、基部74の基端側の上面に底板751を当接させるようにして、例えば、溶接等により基部74に固定されている。 The housing portion 75 is fixed to the base portion 74 by, for example, welding or the like so that the bottom plate 751 is brought into contact with the upper surface of the base portion 74 on the base end side.
 基部74は、その先端部において永久磁石6と接触する部材であり、先端部の厚さが、先端部以外の部分の厚さよりも厚くなるように構成されている。具体的には、その先端部の横断面形状は、永久磁石6の横断面形状とほぼ同じになるように構成されている。そのため、磁界ループを形成する磁力線の流れが、永久磁石6と第1のループ形成部材7との間で損失するのが防止される。これにより、磁歪棒2を通過する磁力線の密度を十分に高くすることができ、磁歪棒2が変形した際に、磁歪棒2を通過する磁力線の密度の変化量を十分に大きくすることができる。その結果、発電装置1の発電効率が向上する。 The base 74 is a member that comes into contact with the permanent magnet 6 at the tip, and is configured such that the thickness of the tip is thicker than the thickness of the portion other than the tip. Specifically, the cross-sectional shape of the tip portion is configured to be substantially the same as the cross-sectional shape of the permanent magnet 6. Therefore, it is possible to prevent the flow of the magnetic field lines forming the magnetic field loop from being lost between the permanent magnet 6 and the first loop forming member 7. Thereby, the density of the magnetic force line which passes the magnetostrictive rod 2 can be made high enough, and when the magnetostrictive rod 2 deform | transforms, the variation | change_quantity of the density of the magnetic force line which passes the magnetostrictive rod 2 can fully be enlarged. . As a result, the power generation efficiency of the power generator 1 is improved.
 また、一対の張出部741には、それぞれ、厚さ方向に貫通する貫通孔742が設けられている。雄ネジ743を、貫通孔742に挿通し、振動体に螺合することにより、第1のループ形成部材7を振動体に固定(ネジ止め)することができる。 Further, each of the pair of overhang portions 741 is provided with a through hole 742 that penetrates in the thickness direction. The first loop forming member 7 can be fixed (screwed) to the vibrating body by inserting the male screw 743 into the through hole 742 and screwing it into the vibrating body.
 収容部75は、一対の側板752同士の間の距離が、第1のブロック体4の幅とほぼ同じになるように構成されている。各側板752の略中央には、その幅方向に貫通する貫通孔753が設けられている。一対の側板752間に第1のブロック体4を挿入し、雄ネジ754を貫通孔753および第1のブロック体4の貫通孔43に挿通して、ナット755を螺合する。これにより、第1のブロック体4が収容部75にネジ止めされ、磁歪素子10が第1のループ形成部材7に固定されている。 The accommodating portion 75 is configured such that the distance between the pair of side plates 752 is substantially the same as the width of the first block body 4. A through hole 753 penetrating in the width direction is provided in the approximate center of each side plate 752. The first block body 4 is inserted between the pair of side plates 752, the male screw 754 is inserted into the through hole 753 and the through hole 43 of the first block body 4, and the nut 755 is screwed. Accordingly, the first block body 4 is screwed to the housing portion 75, and the magnetostrictive element 10 is fixed to the first loop forming member 7.
 なお、第1のループ形成部材7を振動体に固定する方法、また、磁歪素子10を第1のループ形成部材7に固定する方法は、上述したようなネジ止めに限られず、接着剤による接着、カシメ、拡散接合、ピンの圧入、ろう付け、溶接(レーザ溶接、電気溶接等)等でも良い。 Note that the method of fixing the first loop forming member 7 to the vibrating body and the method of fixing the magnetostrictive element 10 to the first loop forming member 7 are not limited to the screwing as described above, and are bonded by an adhesive. , Crimping, diffusion bonding, pin press-fit, brazing, welding (laser welding, electric welding, etc.), etc.
 かかる第1のループ形成部材7(基部74および収容部75)の構成材料としては、前述した第1実施形態の第1のループ形成部材7を構成する各種磁性材料と同様の材料を用いることができる。 As the constituent material of the first loop forming member 7 (base 74 and accommodating portion 75), the same materials as the various magnetic materials constituting the first loop forming member 7 of the first embodiment described above are used. it can.
 第1のループ形成部材7の基部74の先端部には、四角柱状をなす永久磁石6が第1のループ形成部材7に固定されている。 A quadrangular prism-shaped permanent magnet 6 is fixed to the first loop forming member 7 at the distal end portion of the base 74 of the first loop forming member 7.
 永久磁石6としては、前述した第1実施形態における永久磁石6と同様の各種磁石を用いるこができる。このような永久磁石6は、その基端側において、第1のループ形成部材7(基部74)と固定され、また、その先端側において、第2のループ形成部材8と固定されている。これらの部材の固定方法としては、例えば、接着剤による接着等により固定することができる。 As the permanent magnet 6, various magnets similar to the permanent magnet 6 in the first embodiment described above can be used. Such a permanent magnet 6 is fixed to the first loop forming member 7 (base 74) on the base end side, and is fixed to the second loop forming member 8 on the tip end side. As a fixing method of these members, for example, it can be fixed by bonding with an adhesive or the like.
 図8に示すように、永久磁石6は、S極を図8中右側(第1のループ形成部材7側)に、N極を図8中左側(第2のループ形成部材8側)にして配置されている。すなわち、永久磁石6は、第1のループ形成部材7と第2のループ形成部材8との間に、その着磁方向が第1のループ形成部材7および第2のループ形成部材8が配設された配設方向となるように、そして、永久磁石6が、その着磁方向が磁歪棒2の軸方向となるように配置されている。 As shown in FIG. 8, the permanent magnet 6 has an S pole on the right side (first loop forming member 7 side) in FIG. 8 and an N pole on the left side in FIG. 8 (second loop forming member 8 side). Has been placed. That is, the permanent magnet 6 is arranged between the first loop forming member 7 and the second loop forming member 8 so that the magnetization direction of the first loop forming member 7 and the second loop forming member 8 is arranged. The permanent magnet 6 is arranged so that the magnetizing direction is the axial direction of the magnetostrictive rod 2 so as to be in the arranged direction.
 永久磁石6の先端側には、第2のループ形成部材8が配置されており、永久磁石6を介して第1のループ形成部材7と固定されている。 The second loop forming member 8 is disposed on the front end side of the permanent magnet 6 and is fixed to the first loop forming member 7 through the permanent magnet 6.
 このような第2のループ形成部材8は、磁性材料で構成され、磁歪素子10と併設された底板部84と、底板部84の先端側に底板部84を介して対向して配置され、鉛直上方に立設する一対の側板部85とを備えている。 Such a second loop forming member 8 is made of a magnetic material, and is disposed so as to face the bottom plate portion 84 provided side by side with the magnetostrictive element 10 and on the front end side of the bottom plate portion 84 with the bottom plate portion 84 interposed therebetween. And a pair of side plate portions 85 erected upward.
 本実施形態では、底板部84と一対の側板部85とが、いずれも帯状(長尺の平板状)をなしており、側板部85の方が、底板部84よりも肉薄に構成されている。このような底板部84と一対の側板部85とは、溶接等により連結した構成であってもよいが、一体的に形成されているのが好ましい。 In the present embodiment, the bottom plate portion 84 and the pair of side plate portions 85 each have a band shape (long plate shape), and the side plate portion 85 is configured to be thinner than the bottom plate portion 84. . The bottom plate portion 84 and the pair of side plate portions 85 may be connected by welding or the like, but are preferably formed integrally.
 底板部84は、その基端部において、永久磁石6にその磁力により固定されている。底板部84の基端部の厚さは、基端部以外の部分の厚さよりも厚くなるように構成されている。具体的には、その基端部の横断面形状は、永久磁石6の横断面形状とほぼ同じになるように構成されている。これにより、磁界ループを形成する磁力線の流れが、永久磁石6と第2のループ形成部材8との間で損失するのが防止される。これにより、磁歪棒2を通過する磁力線の密度を十分に高くすることができ、磁歪棒2が変形した際に、磁歪棒2を通過する磁力線の密度の変化量を十分に大きくすることができる。その結果、発電装置1の発電効率が向上する。 The bottom plate portion 84 is fixed to the permanent magnet 6 by the magnetic force at the base end portion. The thickness of the base end part of the baseplate part 84 is comprised so that it may become thicker than the thickness of parts other than a base end part. Specifically, the cross-sectional shape of the base end portion is configured to be substantially the same as the cross-sectional shape of the permanent magnet 6. Thereby, it is prevented that the flow of the magnetic force line which forms a magnetic field loop loses between the permanent magnet 6 and the 2nd loop formation member 8. FIG. Thereby, the density of the magnetic force line which passes the magnetostrictive rod 2 can be made high enough, and when the magnetostrictive rod 2 deform | transforms, the variation | change_quantity of the density of the magnetic force line which passes the magnetostrictive rod 2 can fully be enlarged. . As a result, the power generation efficiency of the power generator 1 is improved.
 一対の側板部85同士の間の距離は、図9に示すように、第2のブロック体5の幅よりも大きく設計されており、磁歪素子10の先端部(第2のブロック体5)は、各側板部85から離間した状態で、これらの間に位置している。このような構成により、磁歪素子10の先端部が基端部(第1のブロック体4)に対して上下方向に変位した際に、これらと接触しないように構成されている。また、この際に、磁歪素子10の先端部は、底板部84とも接触しないように構成されている。すなわち、磁歪素子10の先端部が基端部に対して上下方向に変位した際に、第2のループ形成部材8は、磁歪素子10と干渉することがないように構成されている。 As shown in FIG. 9, the distance between the pair of side plate portions 85 is designed to be larger than the width of the second block body 5, and the distal end portion (second block body 5) of the magnetostrictive element 10 is In a state of being separated from the respective side plate portions 85, they are positioned between them. With such a configuration, when the distal end portion of the magnetostrictive element 10 is displaced in the vertical direction with respect to the proximal end portion (first block body 4), the magnetostrictive element 10 is configured not to come into contact therewith. At this time, the tip portion of the magnetostrictive element 10 is configured not to contact the bottom plate portion 84. That is, the second loop forming member 8 is configured not to interfere with the magnetostrictive element 10 when the distal end portion of the magnetostrictive element 10 is displaced in the vertical direction with respect to the proximal end portion.
 なお、第2のループ形成部材8が変位する磁歪素子10と「干渉しない」とは、第2のループ形成部材8が変位する磁歪素子10と完全に離間した状態を維持している構成であることはもちろんのこと、第2のループ形成部材8が変位する磁歪素子10と接触した状態となっているが、磁歪素子10の変位が第2のループ形成部材8により阻害されないような構成も含まれる。 Note that “does not interfere with” the magnetostrictive element 10 in which the second loop forming member 8 is displaced is a configuration in which the second loop forming member 8 maintains a state completely separated from the magnetostrictive element 10 in which it is displaced. Of course, the second loop forming member 8 is in contact with the displacing magnetostrictive element 10, but includes a configuration in which the displacement of the magnetostrictive element 10 is not hindered by the second loop forming member 8. It is.
 後者の場合、磁歪素子10が変位する際に、第2のブロック体5が各側板部85に摺接しつつ変位する。したがって、各側板部85は、第2のブロック体5の上下方向への変位をガイドするガイド部として機能して、他の方向(左右方向)に変位するのを防止することができる。このため、付与された外力によって、確実に磁歪素子10の先端部を上下方向に変位させることができるとともに、その変形量をより大きくすることができる。その結果、発電装置1の発電効率をより向上させることができる。 In the latter case, when the magnetostrictive element 10 is displaced, the second block body 5 is displaced while being in sliding contact with each side plate portion 85. Therefore, each side plate portion 85 functions as a guide portion that guides the displacement of the second block body 5 in the vertical direction, and can be prevented from being displaced in the other direction (left-right direction). For this reason, the tip of the magnetostrictive element 10 can be reliably displaced in the vertical direction by the applied external force, and the amount of deformation can be further increased. As a result, the power generation efficiency of the power generation device 1 can be further improved.
 第2のループ形成部材8は、磁性材料で構成されるとともに、第2のブロック体5と非接触であるが、これに十分に接近している。このため、永久磁石6が発生した磁力線を第2のブロック体5に受け渡すこと、言い換えれば、永久磁石6からのバイアス磁界を第2のブロック体5に印加することができる。したがって、発電装置1では、図8に示すように、永久磁石6が発生した磁力線が、第2のループ形成部材8、磁歪素子10(第2のブロック体5、磁歪棒2および第1のブロック体4)および第1のループ形成部材7を通過して永久磁石6に戻るような、時計回りの磁界ループが形成される。 The second loop forming member 8 is made of a magnetic material and is not in contact with the second block body 5, but is sufficiently close thereto. For this reason, the magnetic field lines generated by the permanent magnet 6 can be transferred to the second block body 5, in other words, the bias magnetic field from the permanent magnet 6 can be applied to the second block body 5. Therefore, in the power generation device 1, as shown in FIG. 8, the lines of magnetic force generated by the permanent magnets 6 are the second loop forming member 8, the magnetostrictive element 10 (second block body 5, magnetostrictive rod 2, and first block). A clockwise magnetic field loop is formed which passes through the body 4) and the first loop forming member 7 and returns to the permanent magnet 6.
 このような発電装置1は、図8に示すように、雄ネジ743により第1のループ形成部材7が振動体の筐体100に固定される。この状態において、振動体の振動により、第1のブロック体4に対して、第2のブロック体5が上方に向かって変位(回動)すると(図10(a)参照)、すなわち、磁歪棒2の基端に対して先端が上方に向かって変位すると、下側の磁歪棒2が軸方向に伸長するように変形し、上側の磁歪棒2が軸方向に収縮するように変形する。一方、第2のブロック体5が下方に向かって変位(回動)すると、すなわち、磁歪棒2の基端に対して先端が下方に向かって変位すると、下側の磁歪棒2が軸方向に収縮するように変形し、上側の磁歪棒2が軸方向に伸長するように変形する。その結果、逆磁歪効果により各磁歪棒2の透磁率が変化して、磁歪棒2を通過する磁力線の密度(コイル3の内腔部を軸方向に貫く磁力線の密度)が変化する。これにより、コイル3に電圧が発生する。 As shown in FIG. 8, such a power generation device 1 has the first loop forming member 7 fixed to the casing 100 of the vibrating body by a male screw 743. In this state, when the second block body 5 is displaced (rotated) upward with respect to the first block body 4 by the vibration of the vibration body (see FIG. 10A), that is, the magnetostrictive rod. When the tip is displaced upward with respect to the base end of 2, the lower magnetostrictive rod 2 is deformed so as to extend in the axial direction, and the upper magnetostrictive rod 2 is deformed so as to contract in the axial direction. On the other hand, when the second block body 5 is displaced (rotated) downward, that is, when the distal end is displaced downward with respect to the base end of the magnetostrictive rod 2, the lower magnetostrictive rod 2 is moved in the axial direction. The upper magnetostrictive rod 2 is deformed so as to contract, and is deformed so as to extend in the axial direction. As a result, the magnetic permeability of each magnetostrictive rod 2 changes due to the inverse magnetostrictive effect, and the density of magnetic lines passing through the magnetostrictive bar 2 (the density of magnetic lines passing through the inner cavity of the coil 3 in the axial direction) changes. As a result, a voltage is generated in the coil 3.
 かかる構成の発電装置1においても、前述した第1実施形態の発電装置1と同様に、永久磁石6が、その着磁方向が磁歪棒2の軸方向となるように配置されている。また、永久磁石6の着磁方向の長さが、磁歪棒2のコイル3が巻回された領域の軸方向の長さよりも短く、かつ、永久磁石6が、磁歪棒2のコイル3が巻回された領域の軸方向の途中に対応するよう設けられている。本実施形態では、図7に示すように、平面視において、永久磁石6が、磁歪棒2にコイル3が巻回された領域の中央付近に包含されるように配設されている。 Also in the power generation device 1 having such a configuration, the permanent magnet 6 is arranged so that the magnetization direction thereof is the axial direction of the magnetostrictive rod 2 as in the power generation device 1 of the first embodiment described above. Further, the length of the permanent magnet 6 in the magnetization direction is shorter than the length in the axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound, and the permanent magnet 6 is wound by the coil 3 of the magnetostrictive rod 2. It is provided so as to correspond to the middle of the rotated region in the axial direction. In the present embodiment, as shown in FIG. 7, the permanent magnet 6 is disposed so as to be included in the vicinity of the center of the region where the coil 3 is wound around the magnetostrictive rod 2 in plan view.
 これにより、発電装置1では、永久磁石6の漏れ磁束が、磁界ループを形成する磁力線の強度が最も弱い磁歪棒2の軸方向の中央付近に印加されることにより、磁界強度が補填される。そのため、磁歪棒2の軸方向全体にわたって、一様なバイアス磁界を印加することができ、磁歪棒2が変形した際の磁束密度の変化量は、磁歪棒2の軸方向全体にわたって均一になる。その結果、発電装置1では、効率良く発電することができる。 Thereby, in the power generation device 1, the magnetic flux intensity is compensated by applying the leakage magnetic flux of the permanent magnet 6 to the vicinity of the center in the axial direction of the magnetostrictive rod 2 having the weakest magnetic field lines forming the magnetic field loop. Therefore, a uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod 2, and the amount of change in magnetic flux density when the magnetostrictive rod 2 is deformed is uniform over the entire axial direction of the magnetostrictive rod 2. As a result, the power generation apparatus 1 can generate power efficiently.
 さらに、発電装置1では、磁歪素子10の先端部が、磁歪素子10とともにループ(磁界ループ)を形成する部材(永久磁石6、第1のループ形成部材7および第2のループ形成部材8)に対して、独立して変位することができる。そのため、付与された外力を効率良く磁歪素子10(磁歪棒2)の変形に用いることができる。 Furthermore, in the power generation device 1, the tip portion of the magnetostrictive element 10 is used as a member (permanent magnet 6, first loop forming member 7, and second loop forming member 8) that forms a loop (magnetic field loop) together with the magnetostrictive element 10. On the other hand, it can be displaced independently. Therefore, the applied external force can be efficiently used for deformation of the magnetostrictive element 10 (magnetostrictive rod 2).
 特に、発電装置1では、磁歪素子10の先端部の質量が、第2のブロック体5の質量のみであり、比重が高い材料で構成され、比較的大きな質量を有する永久磁石6や第2のループ形成部材8の質量は含まれない。このような比較的質量の大きい部材が磁歪素子の先端部に連結し、磁歪素子の先端部とともに変形する構成では、連結した部材を変形させるための弾性エネルギーおよび変形に伴う構造減衰が発生し、発電効率が低下してしまう。これに対して、発電装置1では、第2のブロック体5以外の部材を動かすための変形に伴う構造減衰が発生しないため、付与された外力により、効率良く磁歪素子10を変形させることができる。 In particular, in the power generation device 1, the mass of the tip portion of the magnetostrictive element 10 is only the mass of the second block body 5, which is made of a material having a high specific gravity and has a relatively large mass or the second magnet 6. The mass of the loop forming member 8 is not included. In such a configuration in which a member having a relatively large mass is connected to the tip of the magnetostrictive element and deformed together with the tip of the magnetostrictive element, elastic energy for deforming the connected member and structural damping accompanying the deformation occur, Power generation efficiency will decrease. On the other hand, in the power generation device 1, since structural attenuation due to deformation for moving members other than the second block body 5 does not occur, the magnetostrictive element 10 can be efficiently deformed by the applied external force. .
 さらに、磁歪素子10の先端部は、発電装置1を構成する他の部材と干渉することなく、具体的には、他の部材に対して非接触な状態で変位することができる。そのため、磁歪素子10の先端部の変位に伴って、部材同士の接触によりその接触面に発生する摩擦のようなエネルギーロスが発生するのを防止することができる。 Furthermore, the tip portion of the magnetostrictive element 10 can be displaced in a non-contact state with respect to the other members without interfering with other members constituting the power generation device 1. Therefore, it is possible to prevent the occurrence of energy loss such as friction generated on the contact surface due to the contact between the members due to the displacement of the tip portion of the magnetostrictive element 10.
 したがって、かかる構成の発電装置1では、付与された外力をロスすることなく、効率良く磁歪棒2の変形に用いることができる。 Therefore, the power generator 1 having such a configuration can be efficiently used for the deformation of the magnetostrictive rod 2 without losing the applied external force.
 上述したように、発電装置1では、磁歪棒2全体にわたって均一なバイアス磁界が印加されることによって、磁歪棒2が変形した際に、磁歪棒2の軸方向全体にわたって均一な磁束密度変化が生じ、発電効率に優れる。その上、発電装置1に付与された外力をロスすることなく磁歪棒2の変形に用いることができるので、発電装置1の発電効率をさらに向上させることができる。 As described above, in the power generation device 1, when a uniform bias magnetic field is applied over the entire magnetostrictive rod 2, when the magnetostrictive rod 2 is deformed, a uniform change in magnetic flux density occurs over the entire axial direction of the magnetostrictive rod 2. Excellent power generation efficiency. In addition, since the external force applied to the power generation device 1 can be used to deform the magnetostrictive rod 2 without losing it, the power generation efficiency of the power generation device 1 can be further improved.
 さらに、発電装置1では、磁歪素子10の先端部の質量として、永久磁石6や第2のループ形成部材8の質量が含まれないため、付与された外力に対する磁歪素子10の変形特性は、付与される外力と、磁歪素子10の機械的パラメータ(振動周波数、減衰率、ヤング率、比重、断面2次モーメント等)とで決まる。そのため、発電装置1の発電量は、磁歪素子10の構成部材の機械的パラメータを変更することにより、自由に設計することができ、所望の発電量を有する発電装置1の設計が容易である。 Furthermore, in the power generation device 1, since the mass of the permanent magnet 6 and the second loop forming member 8 is not included as the mass of the tip portion of the magnetostrictive element 10, the deformation characteristics of the magnetostrictive element 10 with respect to the applied external force are imparted. Is determined by the external force applied and the mechanical parameters of the magnetostrictive element 10 (vibration frequency, damping factor, Young's modulus, specific gravity, cross-sectional second moment, etc.) Therefore, the power generation amount of the power generation device 1 can be freely designed by changing the mechanical parameters of the constituent members of the magnetostrictive element 10, and the power generation device 1 having a desired power generation amount can be easily designed.
 また、発電装置1では、第1のループ形成部材7および第2のループ形成部材8のうち、第1のループ形成部材7のみが振動体に固定されており、第2のループ形成部材8は、振動体に固定されない。かかる構成では、第2のループ形成部材8に、振動体と固定するための部位を設ける必要がないため(例えば、第1のループ形成部材7の張出部741に相当するようなブラケット部、フランジ部等の部位を設ける必要がない)、発電装置1の先端側の構造を小さく(スリム化)することができる。その結果、発電装置1の省スペース化(小型化)を図ることができる。 Moreover, in the electric power generating apparatus 1, only the 1st loop formation member 7 is being fixed to the vibrating body among the 1st loop formation member 7 and the 2nd loop formation member 8, and the 2nd loop formation member 8 is It is not fixed to the vibrating body. In such a configuration, it is not necessary to provide the second loop forming member 8 with a portion for fixing to the vibrating body (for example, a bracket portion corresponding to the overhanging portion 741 of the first loop forming member 7, It is not necessary to provide a portion such as a flange portion), and the structure on the front end side of the power generator 1 can be reduced (slimmed). As a result, space saving (miniaturization) of the power generator 1 can be achieved.
 さらに、かかる構成では、第2のループ形成部材8は、振動体の振動により、上下方向に振動する。この第2のループ形成部材8の振動の固有振動数を、第2のブロック体5の振動の固有振動数と同程度とすることにより、音叉と同様の共鳴現象を発生させることができる。これにより、第2のブロック体5の振動の減衰が抑制されるため、発電装置1では、振動体から付与された外力によってさらに効率良く発電することができる。特に、振動体の振動が連続的ではなく、断続的に発生する場合であっても、その少ない振動により第2のブロック体5を長時間にわたって振動させ続けることができ、発電装置1の発電効率をさらに向上させることができる。 Furthermore, in such a configuration, the second loop forming member 8 vibrates in the vertical direction due to the vibration of the vibrating body. By setting the natural frequency of the vibration of the second loop forming member 8 to the same level as the natural frequency of the vibration of the second block body 5, a resonance phenomenon similar to that of a tuning fork can be generated. Thereby, since attenuation | damping of the vibration of the 2nd block body 5 is suppressed, in the electric power generating apparatus 1, it can generate | occur | produce still more efficiently with the external force provided from the vibration body. In particular, even when the vibration of the vibrating body occurs intermittently rather than continuously, the second block body 5 can continue to vibrate for a long time due to the small vibration, and the power generation efficiency of the power generator 1 is increased. Can be further improved.
 なお、本実施形態の発電装置1では、自然状態(磁歪棒2に応力が付与されていない状態)において、併設された2つの磁歪棒2のうち、図8中下側の磁歪棒2のコイル3が巻回された領域から永久磁石6までの距離をX[mm]としたとき、この距離Xは、特に限定されないが、X=0.05A~0.3Aなる関係を満足するのが好ましく、X=0.1A~0.2Aなる関係を満足するのがより好ましい。なお、Aは、磁歪棒2のコイル3が巻回された領域の軸方向の長さである。 In addition, in the electric power generating apparatus 1 of this embodiment, the coil of the magnetostrictive rod 2 on the lower side in FIG. 8 among the two magnetostrictive rods 2 provided side by side in a natural state (a state in which no stress is applied to the magnetostrictive rod 2). When the distance from the region where 3 is wound to the permanent magnet 6 is X [mm], the distance X is not particularly limited, but preferably satisfies the relationship of X = 0.05A to 0.3A. More preferably, the relationship X = 0.1 A to 0.2 A is satisfied. A is the axial length of the region around which the coil 3 of the magnetostrictive rod 2 is wound.
 これにより、永久磁石6の周囲に存在する強磁界領域が、図8中上下に併設された各磁歪棒2の軸方向の中心付近と十分に重なり、磁歪棒2の軸方向の中心付近に十分な強度の漏れ磁束を印加することができる。そのため、磁歪棒2のコイル3が巻回された領域の軸方向全体にわたって、より一様なバイアス磁界を印加することができる。 Thereby, the strong magnetic field region around the permanent magnet 6 sufficiently overlaps with the vicinity of the axial center of each of the magnetostrictive rods 2 provided side by side in FIG. It is possible to apply a leakage flux with a sufficient strength. Therefore, a more uniform bias magnetic field can be applied over the entire axial direction of the region around which the coil 3 of the magnetostrictive rod 2 is wound.
 上述したように、一対の側板部85の離間距離は、第2のブロック体5の幅よりも大きく設計されており、各側板部85と第2のブロック体5とが離間している。各側板部85と第2のブロック体5との間隔の大きさは、0.01~0.5mm程度であるのが好ましく、0.03~0.2mm程度であるのがより好ましい。これにより、永久磁石6が発生した磁力線を、側板部85(第2のループ形成部材8)から第2のブロック体5に十分に受け渡すことができるとともに、磁歪素子10が変形する際に、磁歪素子10と側板部85とが接触するのをより確実に防止することができる。 As described above, the separation distance between the pair of side plate portions 85 is designed to be larger than the width of the second block body 5, and the side plate portions 85 and the second block body 5 are separated from each other. The distance between each side plate 85 and the second block body 5 is preferably about 0.01 to 0.5 mm, and more preferably about 0.03 to 0.2 mm. Thereby, the magnetic lines of force generated by the permanent magnet 6 can be sufficiently transferred from the side plate portion 85 (second loop forming member 8) to the second block body 5, and when the magnetostrictive element 10 is deformed, It can prevent more reliably that the magnetostrictive element 10 and the side-plate part 85 contact.
 また、一対の側板部85は、第2のブロック体5に、永久磁石6が発生した磁力線を十分に受け渡すことができるように、側面視における、第2のブロック体5との重なり面積が大きく設計されているのが好ましい。具体的には、側面視において、側板部85と自然状態における磁歪素子10の第2のブロック体5との重なり面積をS、第2のブロック体5の側面の面積をSとしたとき、S/Sの値が、0.1以上であるのが好ましく、0.3~1であるのがより好ましい。これにより、第2のループ形成部材8(側板部85)と磁歪素子10(第2のブロック体5)との間で磁気抵抗が変化するのを確実に防止することができ、永久磁石6が発生した磁力線をより十分に第2のブロック体5に受け渡すことができる。 Further, the pair of side plate portions 85 have an overlapping area with the second block body 5 in a side view so that the magnetic field lines generated by the permanent magnet 6 can be sufficiently transferred to the second block body 5. It is preferable that the design is large. Specifically, when the side plate portion 85 and the second block body 5 of the magnetostrictive element 10 in the natural state are S 1 and the side area of the second block body 5 is S 2 in side view, , S 1 / S 2 is preferably 0.1 or more, more preferably 0.3 to 1. Thereby, it is possible to reliably prevent the magnetoresistance from changing between the second loop forming member 8 (side plate portion 85) and the magnetostrictive element 10 (second block body 5), and the permanent magnet 6 The generated magnetic field lines can be transferred to the second block body 5 more sufficiently.
 このように、発電装置1では、振動体の振動が振動体側に設けられた部材(第1のループ形成部材7、永久磁石6および第2のループ形成部材8)に伝わって、これらの部材の振動により磁歪素子10が変位する。すなわち、磁歪素子10が、これらの部材に対して相対的に変位する。 As described above, in the power generation device 1, the vibration of the vibrating body is transmitted to the members (the first loop forming member 7, the permanent magnet 6, and the second loop forming member 8) provided on the vibrating body side. The magnetostrictive element 10 is displaced by the vibration. That is, the magnetostrictive element 10 is displaced relative to these members.
 また、第2のループ形成部材8(底板部84および側板部85)の構成材料としては、前述した第1実施形態の第2のループ形成部材8を構成する各種磁性材料と同様の材料を用いることができる。 Further, as the constituent material of the second loop forming member 8 (the bottom plate portion 84 and the side plate portion 85), the same materials as the various magnetic materials constituting the second loop forming member 8 of the first embodiment described above are used. be able to.
 なお、かかる発電装置1は、前述した第1実施形態の発電装置1と同様に、振動体以外の基体に固定し、発電装置1の先端(第2のブロック体5)に直接外部から力を与える構造を付加し、無線装置と組み合わせることで人が操作するスイッチとして用いることができる。この場合、発電装置1では、振動体側に設けられた部材(第1のループ形成部材7、永久磁石6および第2のループ形成部材8)が動かずに、磁歪素子10だけが変位する。すなわち、磁歪素子10が、これらの部材に対して相対的に変位する。 Note that, like the power generation device 1 of the first embodiment described above, the power generation device 1 is fixed to a base other than the vibrating body, and a force is directly applied to the front end (second block body 5) of the power generation device 1 from the outside. It can be used as a switch operated by a person by adding a structure to be given and combining with a wireless device. In this case, in the power generation device 1, the members (the first loop forming member 7, the permanent magnet 6, and the second loop forming member 8) provided on the vibrating body side do not move, and only the magnetostrictive element 10 is displaced. That is, the magnetostrictive element 10 is displaced relative to these members.
 なお、本実施形態の発電装置1では、第2のループ形成部材8の一対の側板部85が、底板部84を介して対向するように設けられているが、第2のブロック体5に、永久磁石6からのバイアス磁界を十分に受け渡すことができるのであれば、上述した構成に限定されない。例えば、図5に示す発電装置1において、一対の側板部85のうちのいずれか一方を省略してもよく、双方を省略してもよい。ただし、本実施形態のように、一対の側板部85を設けることにより、第2のブロック体5に受け渡すことのできるバイアス磁界の大きさを十分に大きくすることができる。また、その他の構成として、以下の図11に示す構成であってもよい。 In the power generator 1 of the present embodiment, the pair of side plate portions 85 of the second loop forming member 8 are provided so as to face each other with the bottom plate portion 84 interposed therebetween. The configuration described above is not limited as long as the bias magnetic field from the permanent magnet 6 can be sufficiently transferred. For example, in the power generator 1 shown in FIG. 5, either one of the pair of side plate portions 85 may be omitted, or both may be omitted. However, by providing the pair of side plate portions 85 as in the present embodiment, the magnitude of the bias magnetic field that can be transferred to the second block body 5 can be sufficiently increased. Further, as another configuration, the configuration shown in FIG. 11 below may be used.
 図11は、本発明の第2実施形態の発電装置の他の構成例を示す斜視図である。
 図11に示す発電装置1では、第2のループ形成部材8が、底板部84と、底板部84の先端部から鉛直上方に立設した側板部85とを備えている。かかる発電装置1では、磁歪素子10が変形した際に、側板部85と第2のブロック体5とが接触しないように構成されている。そのため、かかる構成でも、第2のループ形成部材8は、磁歪素子10の先端部と干渉することがなく、上述した本実施形態の発電装置1と同様の効果を得ることができる。
FIG. 11 is a perspective view showing another configuration example of the power generation device according to the second embodiment of the present invention.
In the power generation device 1 shown in FIG. 11, the second loop forming member 8 includes a bottom plate portion 84 and a side plate portion 85 erected vertically upward from the tip portion of the bottom plate portion 84. The power generation device 1 is configured such that the side plate portion 85 and the second block body 5 do not come into contact when the magnetostrictive element 10 is deformed. Therefore, even in such a configuration, the second loop forming member 8 does not interfere with the tip portion of the magnetostrictive element 10 and can obtain the same effect as the power generation device 1 of the present embodiment described above.
 かかる第2実施形態の発電装置1によっても、前記第1実施形態の発電装置1と同様の作用・効果を生じる。 The power generation device 1 according to the second embodiment produces the same operations and effects as those of the power generation device 1 according to the first embodiment.
 <第3実施形態>
 次に、本発明の発電装置の第3実施形態について説明する。
<Third Embodiment>
Next, a third embodiment of the power generator of the present invention will be described.
 図12は、本発明の発電装置の第3実施形態を示す斜視図である。図13は、図12に示す発電装置の平面図である。 FIG. 12 is a perspective view showing a third embodiment of the power generator of the present invention. FIG. 13 is a plan view of the power generator shown in FIG.
 なお、以下の説明では、図12および図13中の上側を「上」または「上方」と言い、図12および図13中の下側を「下」または「下方」と言う。また、図12中の紙面左手前側および図13中の左側を「先端」と言い、図12中の紙面右奥側および図13中の右側を「基端」と言う。 In the following description, the upper side in FIGS. 12 and 13 is referred to as “upper” or “upper”, and the lower side in FIGS. 12 and 13 is referred to as “lower” or “lower”. Further, the left front side in FIG. 12 and the left side in FIG. 13 are referred to as “tip”, and the right back side in FIG. 12 and the right side in FIG. 13 are referred to as “base ends”.
 以下、第3実施形態の発電装置について、前記第1および第2実施形態の発電装置との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the power generation device of the third embodiment will be described focusing on the differences from the power generation devices of the first and second embodiments, and description of similar matters will be omitted.
 第3実施形態の発電装置1では、図12に示すように、第1のループ形成部材7および第2のループ形成部材8の構成が異なること以外は、前記第2実施形態の発電装置1と同様である。 As shown in FIG. 12, the power generator 1 of the third embodiment is different from the power generator 1 of the second embodiment except that the configurations of the first loop forming member 7 and the second loop forming member 8 are different. It is the same.
 以下、第1のループ形成部材7および第2のループ形成部材8の構成について説明する。 Hereinafter, the configuration of the first loop forming member 7 and the second loop forming member 8 will be described.
 第1のループ形成部材7は、図12および図13に示すように、基部74と、各磁歪棒2の基端部21を固定する固定部77と、基部74の両側部と固定部77の下端部とを連結する一対の連結部76とを備え、これらが一体的に形成されている。また、基部74は、その先端側に短手方向(図12中、左右方向)に張り出した一対の張出部(ブラケット部)741を備えている。 As shown in FIGS. 12 and 13, the first loop forming member 7 includes a base portion 74, a fixing portion 77 that fixes the base end portion 21 of each magnetostrictive rod 2, both side portions of the base portion 74, and the fixing portion 77. A pair of connecting portions 76 that connect the lower end portions are provided, and these are integrally formed. Further, the base portion 74 includes a pair of protruding portions (bracket portions) 741 protruding in the short side direction (left and right direction in FIG. 12) on the distal end side.
 本実施形態では、第1のループ形成部材7を構成する基部74、連結部76および固定部77が一体的に形成されている。 In this embodiment, the base 74, the connecting portion 76, and the fixing portion 77 constituting the first loop forming member 7 are integrally formed.
 第1のループ形成部材7は、磁性材料で構成された略T字状の板材を用意し、例えば、プレス加工、曲げ加工または鍛造加工等により、基部74に対して各連結部76および各固定部77を互いに同じ方向に屈曲させ、固定部77同士が連結するように、板材を屈曲させることにより形成することができる。このような第1のループ形成部材7は、1つの板材をプレス加工等により屈曲させて形成されるため、部材同士を固定するための部品点数および組立工数を少なくすることができる。また、基部74の先端部もプレス加工等により屈曲されている。 As the first loop forming member 7, a substantially T-shaped plate material made of a magnetic material is prepared. For example, the connecting portions 76 and the fixed portions are fixed to the base portion 74 by pressing, bending, forging, or the like. It can be formed by bending the plate 77 so that the portions 77 are bent in the same direction and the fixing portions 77 are connected to each other. Since the first loop forming member 7 is formed by bending one plate material by press working or the like, the number of parts and the number of assembly steps for fixing the members can be reduced. Further, the distal end portion of the base portion 74 is also bent by press working or the like.
 また、固定部77の先端側には、その厚さ方向の略中央に幅方向に沿って形成された上下2つのスリット771、772が設けられており、各スリット771、772に各磁歪棒2の基端部21が挿入され、接着剤による接着、またはカシメ等により固定されている。すなわち、本実施形態では、固定部77が磁歪素子10の第1のブロック体を構成している。 Further, on the distal end side of the fixing portion 77, two upper and lower slits 771 and 772 formed along the width direction are provided in the approximate center in the thickness direction, and each magnetostrictive rod 2 is provided in each slit 771 and 772. The base end portion 21 is inserted and fixed by bonding with an adhesive or caulking. In other words, in the present embodiment, the fixing portion 77 constitutes the first block body of the magnetostrictive element 10.
 第2のループ形成部材8は、前述した第2実施形態における第2のループ形成部材8と同様に、底板部84と、底板部84の先端側において、その両側部から底板部84を介して鉛直上方に立設した一対の側板部85とを備え、本実施形態では、これらが一体的に形成されている。 Similarly to the second loop forming member 8 in the second embodiment described above, the second loop forming member 8 is connected to the bottom plate portion 84 and the tip side of the bottom plate portion 84 from both sides thereof via the bottom plate portion 84. And a pair of side plate portions 85 provided vertically above, and in the present embodiment, these are integrally formed.
 第2のループ形成部材8は、磁性材料で構成され、平面視においてT字状の板材を用意し、例えば、プレス加工、曲げ加工または鍛造加工等により、底板部84に対して各側板部85を互いに同じ方向に、板材を屈曲させることにより形成することができる。このような第2のループ形成部材8は、1つの板材をプレス加工等により屈曲させて形成するため、部材同士を固定、連結するための部品点数および組立工数を少なくすることができる。底板部84の基端部もプレス加工等により屈曲されている。 The second loop forming member 8 is made of a magnetic material, and a T-shaped plate material is prepared in a plan view. For example, each side plate portion 85 with respect to the bottom plate portion 84 is formed by pressing, bending, forging, or the like. Can be formed by bending the plate material in the same direction. Since the second loop forming member 8 is formed by bending one plate material by pressing or the like, the number of parts and assembly man-hours for fixing and connecting the members can be reduced. The base end portion of the bottom plate portion 84 is also bent by pressing or the like.
 かかる第1のループ形成部材7および第2のループ形成部材8を構成する各板材の構成材料としては、それぞれ、前述した第1および第2実施形態の各ループ形成部材7、8を構成する各種磁性材料と同様の材料を用いることができる。 As the constituent materials of the plate members constituting the first loop forming member 7 and the second loop forming member 8, various materials constituting the loop forming members 7 and 8 of the first and second embodiments described above, respectively. The same material as the magnetic material can be used.
 かかる第3実施形態の発電装置1によっても、前記第1および2実施形態の発電装置1と同様の作用・効果を生じる。 The power generator 1 according to the third embodiment produces the same operation and effect as the power generator 1 according to the first and second embodiments.
 <第4実施形態>
 次に、本発明の発電装置の第4実施形態について説明する。
<Fourth embodiment>
Next, a fourth embodiment of the power generator of the present invention will be described.
 図14(a)は、本発明の発電装置の第4実施形態に対して上方向に外力を付与した状態を模式的に示す図である。図14(b)は、本発明の発電装置の第4実施形態に対して下方向に外力を付与した状態を模式的に示す図である。 FIG. 14 (a) is a diagram schematically showing a state in which an external force is applied in the upward direction to the fourth embodiment of the power generator of the present invention. FIG.14 (b) is a figure which shows typically the state which provided the external force downward with respect to 4th Embodiment of the electric power generating apparatus of this invention.
 なお、以下の説明では、図14(a),(b)中の上側を「上」または「上方」と言い、図14(a),(b)中の下側を「下」または「下方」と言う。また、図14(a),(b)中の左側を「先端」と言い、図14(a),(b)中の右側を「基端」と言う。 In the following description, the upper side in FIGS. 14A and 14B is referred to as “upper” or “upper”, and the lower side in FIGS. 14A and 14B is referred to as “lower” or “lower”. " Further, the left side in FIGS. 14A and 14B is referred to as a “tip”, and the right side in FIGS. 14A and 14B is referred to as a “base end”.
 以下、第4実施形態の発電装置について、前記第1~第3実施形態の発電装置との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the power generation device of the fourth embodiment will be described focusing on differences from the power generation devices of the first to third embodiments, and description of similar matters will be omitted.
 第4実施形態の発電装置1では、第1のループ形成部材7および磁歪素子10が備える第1のブロック体4の構成が異なること以外は、前記第2実施形態の発電装置1と同様である。 The power generation device 1 of the fourth embodiment is the same as the power generation device 1 of the second embodiment except that the configuration of the first block body 4 included in the first loop forming member 7 and the magnetostrictive element 10 is different. .
 以下、第1のループ形成部材7および第1のブロック体4の構成について説明する。
 第1のブロック体4は、図14(a),(b)に示すように、前述した第2実施形態の第1のブロック体4よりも先端から基端までの長さが長くなるように構成されている以外は、第2実施形態における第1のブロック体4と同様の構成を有している。また、本実施形態では、貫通孔43が、第1のブロック体4の基端部付近に設けられており、各スリット41、42から貫通孔43までの長さが、第1実施形態における各スリット41、42から貫通孔43までの長さよりも長くなるように構成されている。
Hereinafter, the configuration of the first loop forming member 7 and the first block body 4 will be described.
As shown in FIGS. 14A and 14B, the first block body 4 has a longer length from the distal end to the proximal end than the first block body 4 of the second embodiment described above. Except for being configured, it has the same configuration as the first block body 4 in the second embodiment. Moreover, in this embodiment, the through-hole 43 is provided in the base end part vicinity of the 1st block body 4, and the length from each slit 41 and 42 to the through-hole 43 is each in 1st Embodiment. It is configured to be longer than the length from the slits 41 and 42 to the through hole 43.
 第1のループ形成部材7は、基部74と、基部74の基端側の上面に設けられ、第1のブロック体4を収容する収容部75と、基部74の長手方向の略中央において、その両側部から鉛直上方に立設する一対の側板部78とを備えている。図14(a),(b)に示すように、本実施形態の第1のループ形成部材7は、基部74の長手方向の長さが、前述した第2実施形態の基部74よりも長く、かつ、上記のような一対の側板部78を備えている以外は、第2実施形態の第1のループ形成部材7と同様の構成を有している。 The first loop forming member 7 is provided on the base 74, the upper surface of the base 74 on the base end side, the housing portion 75 that houses the first block body 4, and the longitudinal center of the base 74 at its center. And a pair of side plate portions 78 provided vertically from both side portions. As shown in FIGS. 14A and 14B, the first loop forming member 7 of the present embodiment has a length in the longitudinal direction of the base 74 longer than the base 74 of the second embodiment described above. And it has the same structure as the 1st loop formation member 7 of 2nd Embodiment except having provided a pair of side plate part 78 as mentioned above.
 一対の側板部78は、帯状(長尺の平板状)をなしており、基部74よりも肉薄に構成されている。この一対の側板部78は、基部74と溶接等により連結した構成であってもよいが、一体的に形成されているのが好ましい。なお、このような側板部78も、基部74および収容部75と同じ材料(上述した各種磁性材料)で構成される。 The pair of side plate portions 78 has a strip shape (long plate shape) and is configured to be thinner than the base portion 74. The pair of side plate portions 78 may be connected to the base portion 74 by welding or the like, but are preferably formed integrally. Such a side plate portion 78 is also made of the same material (the above-described various magnetic materials) as the base portion 74 and the accommodating portion 75.
 このような一対の側板部78同士の間の距離は、第1のブロック体4の幅よりも大きく設計されており、磁歪素子10の基端部(第1のブロック体4)は、各側板部78から離間した状態で、これらの間に位置している。このような構成により、磁歪素子10の先端部が基端部(第1のブロック体4)に対して上下方向に変位した際に、これらと接触しないように構成されている。すなわち、磁歪素子10の先端部が基端部に対して上下方向に変位した際に、一対の側板部78は、磁歪素子10と干渉することがないように構成されている。 The distance between such a pair of side plate portions 78 is designed to be larger than the width of the first block body 4, and the base end portion (first block body 4) of the magnetostrictive element 10 is arranged on each side plate. In a state of being separated from the portion 78, it is located between them. With such a configuration, when the distal end portion of the magnetostrictive element 10 is displaced in the vertical direction with respect to the proximal end portion (first block body 4), the magnetostrictive element 10 is configured not to come into contact therewith. That is, the pair of side plate portions 78 is configured not to interfere with the magnetostrictive element 10 when the distal end portion of the magnetostrictive element 10 is displaced in the vertical direction with respect to the proximal end portion.
 本実施形態の発電装置1では、永久磁石6が発生した磁力線が、第2のループ形成部材8、磁歪素子10、および第1のループ形成部材7の一対の側板部78、基部74(側板部78よりも先端側)を通過して永久磁石6に戻るような、時計回りの磁界ループが形成される。すなわち、本実施形態では、第1のループ形成部材7の収容部75の代わりに一対の側板部78を磁力線が通過するように構成されている。 In the power generation device 1 of the present embodiment, the lines of magnetic force generated by the permanent magnet 6 are the second loop forming member 8, the magnetostrictive element 10, and the pair of side plate portions 78 and base portions 74 (side plate portions) of the first loop forming member 7. A clockwise magnetic field loop is formed so as to pass back to the permanent magnet 6 after passing through the front end (78). That is, in the present embodiment, the magnetic lines of force pass through the pair of side plate portions 78 instead of the accommodating portion 75 of the first loop forming member 7.
 このように、本実施形態の発電装置1では、第2のループ形成部材8(一対の側板部85)および第1のループ形成部材7の一対の側板部78と磁歪素子10(第1のブロック体4、第2のブロック体5)とが、ともに接触しないように構成されている。かかる構成では、発電装置1の磁界ループを形成する可動側(第2のループ形成部材8および第2のブロック体5)の磁気抵抗と、固定側(第1のループ形成部材7および第1のブロック体4)の磁気抵抗とがほぼ等しくなる。これにより、永久磁石6、第2のループ形成部材8、磁歪素子10および第1のループ形成部材7からなる磁気回路中の磁束密度のバランスが良好となり、発電装置1の固定側と可動側とでバイアス磁界の強度分布がより均一になる。これにより、磁歪棒2全体にわたってより均一なバイアス磁界が印加されるため、磁歪棒2が変形した際に、磁歪棒2の軸方向全体にわたってより均一な磁束密度変化が生じ、発電効率がさらに向上する。 As described above, in the power generation device 1 of the present embodiment, the second loop forming member 8 (the pair of side plate portions 85), the pair of side plate portions 78 of the first loop forming member 7, and the magnetostrictive element 10 (first block). The body 4 and the second block body 5) are configured not to contact each other. In such a configuration, the magnetic resistance of the movable side (the second loop forming member 8 and the second block body 5) that forms the magnetic field loop of the power generation device 1 and the fixed side (the first loop forming member 7 and the first block 5). The magnetic resistance of the block body 4) is substantially equal. Thereby, the balance of the magnetic flux density in the magnetic circuit which consists of the permanent magnet 6, the 2nd loop formation member 8, the magnetostrictive element 10, and the 1st loop formation member 7 becomes favorable, and the fixed side and movable side of the electric power generating apparatus 1 are Thus, the intensity distribution of the bias magnetic field becomes more uniform. As a result, a more uniform bias magnetic field is applied across the entire magnetostrictive rod 2, so that when the magnetostrictive rod 2 is deformed, a more uniform change in magnetic flux density occurs across the entire axial direction of the magnetostrictive rod 2, thereby further improving power generation efficiency. To do.
 なお、第1のループ形成部材7の一対の側板部78は、第2のループ形成部材8と同様に、変位する磁歪素子10と完全に離間した状態を維持している構成であることはもちろんのこと、変位する磁歪素子10と接触した状態となっているが、磁歪素子10の変位が一対の側板部78により阻害されないような構成であってもよい。 It should be noted that the pair of side plate portions 78 of the first loop forming member 7 is of a configuration that maintains a state of being completely separated from the displacing magnetostrictive element 10 like the second loop forming member 8. Although it is in the state which contacted the magnetostrictive element 10 to displace, the structure that the displacement of the magnetostrictive element 10 is not inhibited by a pair of side-plate part 78 may be sufficient.
 後者の場合、磁歪素子10が変位する際に、第1のブロック体4が各側板部78に摺接しつつ変位する。したがって、各側板部78は、第1のブロック体4の上下方向への変位をガイドするガイド部として機能して、他の方向(左右方向)に変位するのを防止することができる。このため、付与された外力によって、確実に磁歪素子10の先端部を上下方向に変位させることができるとともに、その変形量をより大きくすることができる。その結果、発電装置1の発電効率をより向上させることができる。 In the latter case, when the magnetostrictive element 10 is displaced, the first block body 4 is displaced while being in sliding contact with the side plate portions 78. Accordingly, each side plate portion 78 functions as a guide portion that guides the displacement of the first block body 4 in the vertical direction, and can be prevented from being displaced in the other direction (left-right direction). For this reason, the tip of the magnetostrictive element 10 can be reliably displaced in the vertical direction by the applied external force, and the amount of deformation can be further increased. As a result, the power generation efficiency of the power generation device 1 can be further improved.
 かかる第4実施形態の発電装置1によっても、前記第1~第3実施形態の発電装置1と同様の作用・効果を生じる。 The power generator 1 according to the fourth embodiment produces the same operations and effects as the power generator 1 according to the first to third embodiments.
 以上、本発明の発電装置を図示の実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、各構成は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、任意の構成のものを付加することができる。 As mentioned above, although the electric power generating apparatus of this invention was demonstrated based on embodiment of illustration, this invention is not limited to this, Each structure is substituted with the arbitrary things which can exhibit the same function. Or an arbitrary configuration can be added.
 例えば、本発明では、前記第1~第4実施形態の任意の構成を組み合わせることもできる。 For example, in the present invention, any configuration of the first to fourth embodiments can be combined.
 また、前記各実施形態において、磁歪棒は、いずれも、その横断面形状が長方形状をなしているが、例えば、円形状、楕円形状、三角形状、正方形状、六角形状のような多角形状であってもよい。 In each of the above embodiments, each of the magnetostrictive rods has a rectangular cross-sectional shape, for example, a circular shape, an elliptical shape, a triangular shape, a square shape, a polygonal shape such as a hexagonal shape. There may be.
 また、永久磁石の形状は、前述した円柱状、四角柱状に限定されず、平板状、三角柱状をなしていてもよい。 Further, the shape of the permanent magnet is not limited to the above-described columnar shape or quadrangular prism shape, and may be a flat plate shape or a triangular prism shape.
 次に、本発明を実施例に基づいて説明するが、本発明はこれに限定されるものではない。 Next, the present invention will be described based on examples, but the present invention is not limited thereto.
 (実施例1~10)
 図2に示す構成の発電装置1において、永久磁石6として、ネオジム磁石を用いて、磁歪棒2のコイル3が巻回された領域の軸方向の長さA[mm]、永久磁石6の着磁方向の長さ(直列に配列された2つの永久磁石6の配列方向の長さ)B[mm]、および磁歪棒2のコイル3が巻回された領域から永久磁石6までの距離X[mm]を下記表1および表2のように設定した。
(Examples 1 to 10)
In the power generation apparatus 1 having the configuration shown in FIG. 2, a neodymium magnet is used as the permanent magnet 6, and the axial length A [mm] of the region around which the coil 3 of the magnetostrictive rod 2 is wound is attached. The length in the magnetic direction (the length in the arrangement direction of the two permanent magnets 6 arranged in series) B [mm], and the distance X [from the region where the coil 3 of the magnetostrictive rod 2 is wound to the permanent magnet 6 mm] was set as shown in Table 1 and Table 2 below.
 (実施例11~13)
 図2に示す構成の発電装置1において、永久磁石6として、フェライト磁石を用いて、上記A[mm]、B[mm]、およびX[mm]を下記表3のように設定した。なお、実施例11~13の発電装置では、永久磁石6の端面の表面積が、上記実施例1~10における永久磁石6の端面の表面積の3倍程度となるように構成した。
(Examples 11 to 13)
In the power generator 1 having the configuration shown in FIG. 2, ferrite magnets were used as the permanent magnets 6 and the above A [mm], B [mm], and X [mm] were set as shown in Table 3 below. In the power generators of Examples 11 to 13, the surface area of the end surface of the permanent magnet 6 was configured to be about three times the surface area of the end surface of the permanent magnet 6 in Examples 1 to 10.
 図15および図16は、各実施例の発電装置において、磁歪棒2に付与した応力(90MPaの伸長応力または90MPaの収縮応力)に応じた、磁歪棒2の軸方向におけるバイアス磁界の強度を示すグラフである。また、表1~3には、各グラフに示される磁歪棒2の軸方向におけるバイアス磁界の強度分布の標準偏差σ[A/m]および各実施例の発電装置の発電量を示す。 15 and 16 show the intensity of the bias magnetic field in the axial direction of the magnetostrictive rod 2 according to the stress (90 MPa elongation stress or 90 MPa contraction stress) applied to the magnetostrictive rod 2 in the power generation apparatus of each example. It is a graph. Tables 1 to 3 show the standard deviation σ [A / m] of the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod 2 shown in each graph and the power generation amount of the power generator of each example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~13は、いずれも、磁歪棒2の軸方向におけるバイアス磁界の強度分布の標準偏差が比較的小さく、磁歪棒2の軸方向全体にわたって一様なバイアス磁界が印加されていることが分かる(表1~3)。 In all of Examples 1 to 13, the standard deviation of the intensity distribution of the bias magnetic field in the axial direction of the magnetostrictive rod 2 is relatively small, and a uniform bias magnetic field is applied over the entire axial direction of the magnetostrictive rod 2. You can see (Tables 1-3).
 特に、実施例1~4と実施例5との比較から、永久磁石6の着磁方向の長さをB≦0.6Aなる関係を満足するように調整することにより、磁歪棒2の軸方向全体にわたって、より一様なバイアス磁界が印加されることが分かる。したがって、上記関係を満足する実施例1~4では、上記関係を満足しない実施例5に比べて、より発電効率が高く、その発電量も十分に高くすることができる。なお、実施例6~9と実施例10との比較、および実施例11、12と実施例13との比較からも、同様のことが言える。 In particular, from the comparison between Examples 1 to 4 and Example 5, the axial direction of the magnetostrictive rod 2 is adjusted by adjusting the length of the magnetization direction of the permanent magnet 6 so as to satisfy the relationship of B ≦ 0.6A. It can be seen that a more uniform bias field is applied throughout. Therefore, in Examples 1 to 4 that satisfy the above relationship, compared with Example 5 that does not satisfy the above relationship, the power generation efficiency is higher and the power generation amount can be sufficiently increased. The same can be said from the comparison between Examples 6 to 9 and Example 10 and the comparison between Examples 11 and 12 and Example 13.
 また、実施例6~9と実施例10との比較から、磁歪棒2の長さを変更した場合でも、永久磁石6の着磁方向の長さと磁歪棒2の長さ(コイル3が巻回された領域の軸方向の長さ)との好ましい比率の関係は変わらないことが分かる。 Further, from comparison between Examples 6 to 9 and Example 10, even when the length of the magnetostrictive rod 2 is changed, the length of the permanent magnet 6 in the magnetization direction and the length of the magnetostrictive rod 2 (the coil 3 is wound) It can be seen that the preferred ratio relationship with the axial length of the region is not changed.
 また、実施例1および4と、実施例11および12との比較から、永久磁石6として、ネオジム磁石等の希土類磁石に比べて保持力の低いフェライト磁石を用いた場合でも、本発明によれば、磁歪棒2の軸方向全体にわたって一様なバイアス磁界を印加することができる。その結果、永久磁石6としてフェライト磁石を用いた場合でも、発電効率を向上して、十分な発電量を得ることができる。 Further, from the comparison between Examples 1 and 4 and Examples 11 and 12, even when a ferrite magnet having a lower holding power than a rare earth magnet such as a neodymium magnet is used as the permanent magnet 6, according to the present invention. A uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod 2. As a result, even when a ferrite magnet is used as the permanent magnet 6, the power generation efficiency can be improved and a sufficient power generation amount can be obtained.
 本発明によれば、磁歪棒の軸方向全体にわたって、一様なバイアス磁界を印加することができる。これにより、磁歪棒が変形した際の磁束密度の変化量は、磁歪棒の軸方向全体にわたって均一となり、その結果、発電装置の発電効率の向上を図ることができる。したがって、本発明は産業上の利用可能性を有する。 According to the present invention, a uniform bias magnetic field can be applied over the entire axial direction of the magnetostrictive rod. Thereby, the amount of change in the magnetic flux density when the magnetostrictive rod is deformed is uniform over the entire axial direction of the magnetostrictive rod, and as a result, the power generation efficiency of the power generator can be improved. Therefore, the present invention has industrial applicability.

Claims (17)

  1.  磁歪材料で構成され、磁力線を軸方向に通過させる磁歪棒と、該磁歪棒の外周側に巻回され、前記磁力線の密度の変化に基づいて電圧が発生するコイルとを備え、一端部が他端部に対して前記磁歪棒の軸方向とほぼ垂直な方向に相対的に変位可能な磁歪素子と、
     前記磁力線を発生し、着磁方向を前記磁歪棒の軸方向として、前記磁歪素子から離間するように前記磁歪棒と併設された永久磁石とを有し、
     前記永久磁石の着磁方向の長さが、前記磁歪棒の前記コイルが巻回された領域の前記軸方向の長さよりも短く、かつ、前記永久磁石が、前記領域の前記軸方向の途中に対応するよう設けられていることを特徴とする発電装置。
    A magnetostrictive rod made of a magnetostrictive material and passing a line of magnetic force in the axial direction; and a coil that is wound around the outer periphery of the magnetostrictive bar and generates a voltage based on a change in density of the line of magnetic force. A magnetostrictive element that is relatively displaceable in a direction substantially perpendicular to the axial direction of the magnetostrictive rod with respect to the end; and
    Generating the lines of magnetic force, having the magnetization direction as the axial direction of the magnetostrictive rod, and having a permanent magnet attached to the magnetostrictive rod so as to be separated from the magnetostrictive element;
    The length of the permanent magnet in the magnetizing direction is shorter than the length in the axial direction of the region where the coil of the magnetostrictive rod is wound, and the permanent magnet is in the middle of the region in the axial direction. A power generator characterized by being provided.
  2.  前記領域の前記軸方向の長さをA[mm]とし、前記永久磁石の着磁方向の長さをB[mm]としたとき、B≦0.6Aなる関係を満足する請求項1に記載の発電装置。 2. The relationship of B ≦ 0.6A is satisfied, where A is the length in the axial direction of the region, and B is the length in the magnetization direction of the permanent magnet. Power generator.
  3.  当該発電装置は、さらに、磁性材料で構成され、前記永久磁石が発生した前記磁力線が前記永久磁石に戻るようなループを、前記磁歪素子とともに形成する少なくとも2つのループ形成部材を有し、
     前記少なくとも2つのループ形成部材は、前記磁歪素子の前記一端部側に設けられた第1のループ形成部材と、前記永久磁石を介して、前記第1のループ形成部材とは反対側に設けられた第2のループ形成部材とを含む請求項1または2に記載の発電装置。
    The power generation apparatus further includes at least two loop forming members that are formed of a magnetic material and that form a loop such that the lines of magnetic force generated by the permanent magnet return to the permanent magnet together with the magnetostrictive element,
    The at least two loop forming members are provided on a side opposite to the first loop forming member via the first loop forming member provided on the one end side of the magnetostrictive element and the permanent magnet. The power generator according to claim 1, further comprising a second loop forming member.
  4.  前記永久磁石は、前記第1のループ形成部材および前記第2のループ形成部材を介して前記磁歪素子に固定されている請求項3に記載の発電装置。 The power generation device according to claim 3, wherein the permanent magnet is fixed to the magnetostrictive element via the first loop forming member and the second loop forming member.
  5.  前記領域の前記軸方向の長さをA[mm]とし、前記領域から前記永久磁石までの距離をX[mm]としたとき、X=0.05A~0.3Aとなる関係を満足する請求項4に記載の発電装置。 The relationship of X = 0.05A to 0.3A is satisfied, where the length in the axial direction of the region is A [mm] and the distance from the region to the permanent magnet is X [mm]. Item 5. The power generation device according to Item 4.
  6.  前記永久磁石は、前記磁歪素子が変位する変位方向とほぼ垂直な方向、かつ、前記磁歪棒の前記軸方向とほぼ垂直な方向に、前記磁歪素子に対して配設される請求項1ないし5のいずれかに記載の発電装置。 6. The permanent magnet is disposed with respect to the magnetostrictive element in a direction substantially perpendicular to a displacement direction in which the magnetostrictive element is displaced and in a direction substantially perpendicular to the axial direction of the magnetostrictive rod. The electric power generating apparatus in any one of.
  7.  少なくとも前記磁歪素子が、前記永久磁石、前記第1のループ形成部材および前記第2のループ形成部材から独立し、かつ、これらに対して相対的に変位するように構成されている請求項3に記載の発電装置。 The at least said magnetostrictive element is independent of the said permanent magnet, the said 1st loop formation member, and the said 2nd loop formation member, and it is comprised so that it may displace relatively with respect to these. The power generator described.
  8.  前記第1および第2のループ形成部材は、それぞれ、前記磁歪素子の前記一端部が前記他端部に対して変位した際に、前記磁歪素子と干渉しないように構成されている請求項7に記載の発電装置。 The first and second loop forming members are configured so as not to interfere with the magnetostrictive element when the one end of the magnetostrictive element is displaced with respect to the other end, respectively. The power generator described.
  9.  前記第1および第2のループ形成部材は、それぞれ、前記磁歪素子と併設された底板部と、前記磁歪素子の前記一端部が前記他端部に対して変位する変位方向に沿って、前記底板部から立設された少なくとも1つの側板部とを備える請求項8に記載の発電装置。 Each of the first and second loop forming members includes a bottom plate portion provided together with the magnetostrictive element, and a bottom plate along a displacement direction in which the one end portion of the magnetostrictive element is displaced with respect to the other end portion. The power generation device according to claim 8, further comprising at least one side plate portion erected from the portion.
  10.  前記底板部と前記側板部とが一体的に形成されている請求項9に記載の発電装置。 The power generator according to claim 9, wherein the bottom plate portion and the side plate portion are integrally formed.
  11.  前記少なくとも1つの側板部は、前記底板部を介して対向し、かつ、前記磁歪素子から離間して配置された2つの前記側板部を含み、
     前記2つの側板部の間で、前記磁歪素子の前記一端部が前記他端部に対して変位するように構成されている請求項9または10に記載の発電装置。
    The at least one side plate portion includes two side plate portions opposed to each other via the bottom plate portion and spaced apart from the magnetostrictive element,
    The power generation device according to claim 9 or 10, wherein the one end portion of the magnetostrictive element is displaced with respect to the other end portion between the two side plate portions.
  12.  各前記側板部と前記磁歪素子の前記一端部との間隔の大きさは、0.01~0.5mmである請求項11に記載の発電装置。 12. The power generator according to claim 11, wherein a distance between each side plate and the one end of the magnetostrictive element is 0.01 to 0.5 mm.
  13.  前記第2のループ形成部材は、前記磁歪素子の前記一端部が前記他端部に対して変位可能に前記磁歪素子を支持する請求項7ないし12のいずれかに記載の発電装置。 The power generator according to any one of claims 7 to 12, wherein the second loop forming member supports the magnetostrictive element so that the one end of the magnetostrictive element is displaceable with respect to the other end.
  14.  前記磁歪素子は、さらに、前記磁歪棒と併設され、前記磁歪棒に応力を付与する機能を有する梁部材を備える請求項1ないし13のいずれかに記載の発電装置。 The power generator according to any one of claims 1 to 13, wherein the magnetostrictive element further includes a beam member that is provided together with the magnetostrictive rod and has a function of applying stress to the magnetostrictive rod.
  15.  前記磁歪素子は、さらに、前記磁歪棒と併設され、前記磁歪棒に応力を付与する機能を有する梁部材と、磁性材料で構成され、前記磁歪棒および前記梁部材の一方の端部同士を連結する第1のブロック体と、磁性材料で構成され、前記磁歪棒および前記梁部材の他方の端部同士を連結する第2のブロック体とを備え、
     前記第2のループ形成部材は、前記第1のブロック体にネジ止めされることにより、前記磁歪素子の前記一端部が前記他端部に対して変位可能に前記磁歪素子を支持する請求項7ないし13のいずれかに記載の発電装置。
    The magnetostrictive element further comprises a beam member that is provided with the magnetostrictive rod and has a function of applying stress to the magnetostrictive rod, and a magnetic material, and connects one end of the magnetostrictive rod and the beam member. A first block body that is made of a magnetic material, and a second block body that connects the other ends of the magnetostrictive rod and the beam member,
    The second loop forming member is screwed to the first block body to support the magnetostrictive element so that the one end of the magnetostrictive element can be displaced with respect to the other end. Thru | or 13 the electric power generating apparatus in any one of.
  16.  前記磁歪素子は、さらに、前記磁歪棒と併設され、前記磁歪棒に応力を付与する機能を有する梁部材と、磁性材料で構成され、前記磁歪棒および前記梁部材の一方の端部同士を連結する第1のブロック体と、磁性材料で構成され、前記磁歪棒および前記梁部材の他方の端部同士を連結する第2のブロック体とを備え、
     前記第2のループ形成部材は、前記第1のブロック体と一体的に形成されることにより、前記磁歪素子の前記一端部が前記他端部に対して変位可能に前記磁歪素子を支持する請求項7ないし13のいずれかに記載の発電装置。
    The magnetostrictive element further comprises a beam member that is provided with the magnetostrictive rod and has a function of applying stress to the magnetostrictive rod, and a magnetic material, and connects one end of the magnetostrictive rod and the beam member. A first block body that is made of a magnetic material, and a second block body that connects the other ends of the magnetostrictive rod and the beam member,
    The second loop forming member is formed integrally with the first block body to support the magnetostrictive element so that the one end of the magnetostrictive element can be displaced with respect to the other end. Item 14. The power generation device according to any one of Items 7 to 13.
  17.  前記梁部材は、磁歪材料で構成された磁歪棒である請求項14ないし16のいずれかに記載の発電装置。 The power generator according to any one of claims 14 to 16, wherein the beam member is a magnetostrictive rod made of a magnetostrictive material.
PCT/JP2014/070647 2013-08-14 2014-08-05 Power generation device WO2015022886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013168735A JP2015037372A (en) 2013-08-14 2013-08-14 Power generator
JP2013-168735 2013-08-14

Publications (1)

Publication Number Publication Date
WO2015022886A1 true WO2015022886A1 (en) 2015-02-19

Family

ID=52468273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070647 WO2015022886A1 (en) 2013-08-14 2014-08-05 Power generation device

Country Status (2)

Country Link
JP (1) JP2015037372A (en)
WO (1) WO2015022886A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707894A (en) * 2019-10-31 2020-01-17 南京理工大学 Vibration energy collector based on multiple magnetic phase change alloys

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290923A (en) * 2008-05-27 2009-12-10 Tdk Corp Magnetostriction actuator
WO2011158473A1 (en) * 2010-06-18 2011-12-22 国立大学法人金沢大学 Power generation element and power generation apparatus provided with power generation element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290923A (en) * 2008-05-27 2009-12-10 Tdk Corp Magnetostriction actuator
WO2011158473A1 (en) * 2010-06-18 2011-12-22 国立大学法人金沢大学 Power generation element and power generation apparatus provided with power generation element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707894A (en) * 2019-10-31 2020-01-17 南京理工大学 Vibration energy collector based on multiple magnetic phase change alloys
CN110707894B (en) * 2019-10-31 2021-10-15 南京理工大学 Vibration energy collector based on multiple magnetic phase change alloys

Also Published As

Publication number Publication date
JP2015037372A (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5645179B2 (en) Power generation element
US20150155472A1 (en) Power generating element
US20100244622A1 (en) Magnetostrictive actuator
JP4649668B2 (en) Vibration type electromagnetic generator
WO2015002069A1 (en) Electricity-generating device
JP6349909B2 (en) Power generator
WO2015162988A1 (en) Electricity generation device
JP2010154749A (en) Oscillating electromagnetic generator
WO2015178053A1 (en) Electricity-generating device
JP6287580B2 (en) Power generator
JP6099538B2 (en) Vibration power generator using magnetostrictive element
WO2015022886A1 (en) Power generation device
WO2014168008A1 (en) Power generation device
JP6155009B2 (en) Power generator
US20220085271A1 (en) Power generation element and power generation apparatus
WO2014168007A1 (en) Power generation device
WO2015178049A1 (en) Base and electricity-generating device
KR101085461B1 (en) Apparatus for small sized actuator using different elastic spring
WO2020241573A1 (en) Power generation element and device using power generation element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836197

Country of ref document: EP

Kind code of ref document: A1