JP4699689B2 - マルチ空気調和器 - Google Patents

マルチ空気調和器 Download PDF

Info

Publication number
JP4699689B2
JP4699689B2 JP2003403091A JP2003403091A JP4699689B2 JP 4699689 B2 JP4699689 B2 JP 4699689B2 JP 2003403091 A JP2003403091 A JP 2003403091A JP 2003403091 A JP2003403091 A JP 2003403091A JP 4699689 B2 JP4699689 B2 JP 4699689B2
Authority
JP
Japan
Prior art keywords
refrigerant
tube
indoor unit
port
distributor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003403091A
Other languages
English (en)
Other versions
JP2004219059A (ja
Inventor
ジン ソブ ソン
セ ドン チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2004219059A publication Critical patent/JP2004219059A/ja
Application granted granted Critical
Publication of JP4699689B2 publication Critical patent/JP4699689B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は空気調和器に関し、特に多数のルームを個別的に冷房または暖房することのできるマルチ空気調和器に関する。
一般に、空気調和機は、住居空間、レストラン、又は事務室などの室内空間を冷房又は暖房するための装置である。
最近、多数のルームに区画された室内空間をより効率的に冷房又は暖房するためのマルチ空気調和機の開発が持続的に行われている。
かかるマルチ空気調和機は、通常、一台の室外機に多数台の室内機が連結され、それぞれの室内機が各ルームに設けられる形態からなり、暖房と冷房のいずれかの運転モードで作動しながら室内を暖房または冷房する。
しかしながら、室内に区画されたルームのうち何れかは暖房が必要で、何れかは冷房が必要な場合においても、冷房モード又は暖房モードで一律に運転されるため、上記した要求に適切に対応できないという限界がある。
例えば、ビルなどでは、ルームの位置や時間に応じて温度差が発生するが、ビルの北側のルームは暖房を必要とする反面、南側のルームは陽光のため冷房を必要とする場合、一つのモードで運転される従来のマルチ空気調和機では上記した要求に適切に対応し難い。また、電算室を備えた場合、夏だけでなく、冬でも電算設備の発熱負荷を解決するために冷房が必要とされるが、このような要求に機器が適切に対応できないという限界がある。
結局、上記した必要性に応じて各ルームを同時に、個別的に空気調和させ得るマルチ空気調和機が必要になった。即ち、暖房を要するルームではこれに設けられた室内機が暖房モードで運転され、同時に冷房を要する他のルームでは、これに設けられた室内機が冷房モードで運転され得る、冷/暖房同時型マルチ空気調和機の開発が要求されている。
そこで、本発明の目的は、多数のルームを個別的に暖房または冷房することができ、稼動しない室内機で発生する冷媒流動騒音を防止できるマルチ空気調和器を提供することにある。
本発明の他の目的として、多数台の室内機のうち稼動しないものに連結された冷媒管内に冷媒が停滞することを防止できるマルチ空気調和器を提供する。
上記目的を達成するための本発明の一実施形態では、圧縮器、室外熱交換機、前記圧縮器から吐き出された冷媒の流動流路を制御する流路制御弁、そして、室外チューブを含めてなる室外機;室内機膨張装置、室内熱交換機、そして、室内機チューブを含めてなる多数個の室内機;前記室外機から流入した冷媒を各運転モードにしたがって前記各室内機に選択的に分配して流動させた後、再び前記室外機に送る分配器;前記各室内機に連結されるチューブに設けられ、機器の作動時に稼動しない室内機に冷媒が流入することを遮断することで、前記稼動しない室内機で冷媒流動騒音が発生することを防止する騒音防止手段を含めてなるマルチ空気調和器を提供する。
前記騒音防止手段は前記室内熱交換機に連結され、前記分配器が設置されるチューブに前記分配器と別に設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第1弁を含み、前記各室内機に連結されるチューブに設けられ、前記騒音防止手段により停滞した冷媒を、該当室内機を迂回させ循環させるバイパス手段をさらに含めてなる。
前記騒音防止手段は、前記室内膨張装置に連結されるチューブに設けられ、前記稼動しない室内機に冷媒が供給されることを遮断するように前記室内膨張装置と別に設けられる第2弁を含めてなる。
前記騒音防止手段は、前記稼動しない室内機に冷媒が供給されることを遮断できるよう閉鎖可能に構成された前記室内機膨張装置を含めてなる。
前記騒音防止手段は、前記稼動しない室内機に冷媒が供給されることを遮断できるよう閉鎖可能に構成された前記室内機膨張装置をさらに含めてなる。
本発明によるマルチ空気調和器は、また、前記各室内機に連結されるチューブに設けられ、前記騒音防止手段により停滞した冷媒を、該当室内機を迂回させ循環させるバイパス手段をさらに含めてなる。
この場合、前記バイパス手段は、前記各室内機に冷媒が流入、かつ吐き出し可能なように連結される二つのチューブを連結するバイパス管;前記バイパス管に設けられ、そのバイパス管を開閉するバイパス弁を含めてなる。
ここで、前記バイパス弁は最少量の冷媒のみを迂回させるように、前記バイパス管の流路断面積より小さい開放断面積を有することが好ましい。
一方、流路制御弁は、前記圧縮器のアウトレットと連通する第1ポート、前記室外熱交換機と連通する第2ポート、前記圧縮器のインレットと連通する第3ポート、閉鎖管に連結されるか、それ自体が閉鎖された第4ポートを含めてなる。
そして、前記室外機チューブは、前記圧縮器のアウトレットと前記第1ポートとを連結する第1チューブ、前記第2ポートと前記室外機の第1ポートとを連結し、その間に前記室外熱交換機が設けられる第2チューブ、前記第1チューブと前記室外機の第2チューブとを連結する第3チューブ、前記第3ポートと前記圧縮器のインレットとを連結し、その間が前記室外機の第3ポートに連結される第4チューブを含めてなる。
前記室外機は、前記第4チューブのうち前記室外機の第3ポートと、前記圧縮器のインレットとの間の地点に提供されるアキュムレータをさらに含めてなる。
前記室外機は、前記第2チューブのうち前記室外熱交換機と、前記室外機の第1ポートとの間の地点に提供されるチェック弁、前記第2チューブにチェック弁と並列に提供される室外機膨張装置をさらに含めてなる。
ここで、前記チェック弁は冷媒を前記室外熱交換機側から前記第1ポート側にのみ流動させる。
本発明によるマルチ空気調和器において、前記室外機の第1ポートは前記分配器の第1ポートに連結され、前記室外機の第2ポートは前記分配器の第2ポートに連結され、前記室外機の第3ポートは前記分配器の第3ポートに連結される。
一方、前記分配器は、前記室外機から流入した冷媒を室内機に案内し、前記室内機から流入した冷媒を前記室外機に案内する分配器チューブ、前記分配器チューブ内を流れる冷媒の流れを前記各運転モードに適合させて制御できるように前記分配器チューブに設けられる弁部を含めてなる。
ここで、前記分配器チューブは、前記分配器の第1ポートに連結される液相冷媒管、前記液相冷媒管からそれぞれ分岐し、前記各室内機膨張装置に連結される多数個の液相冷媒分岐管、前記分配器の第2ポートに連結される気相冷媒管、前記気相冷媒管からそれぞれ分岐し、前記各室内熱交換機に連結される多数個の第1気相冷媒分岐管、前記各気相冷媒分岐管からそれぞれ分岐する多数個の第2気相冷媒分岐管、前記各第2気相冷媒分岐管を全て連結させ、前記分配器の第3ポートと連通するリターン管を含めてなる。
前記弁部は、前記各第1及び第2気相冷媒分岐管にそれぞれ設けられる多数の開閉弁を含めてなる。
前記分配器は、前記圧縮器から吐き出された後、前記第3チューブに満たされた冷媒が液化することを防止する手段をさらに含めてなる。
ここで、前記液化防止手段は、前記リターン管と前記気相冷媒管とを連結するバイパス管、前記バイパス管に設けられる分配器膨張装置を含めてなる。
一方、上記目的を達成するための本発明の他の一実施形態では、圧縮器と室外熱交換機とを含めてなる室外機;前記室外機と直接に連結され、室内機膨張装置と室内熱交換機とを含めてなる多数個の室内機;前記各室内機に連結されるチューブに設けられ、作動時に稼動しない室内機に冷媒が流入することを遮断して、前記稼動しない室内機で冷媒流動騒音が発生することを防止する騒音防止手段;前記各室内機に連結されるチューブに設けられ、前記騒音防止手段により停滞した冷媒を、該当室内機を迂回させ循環させるバイパス手段をさらに含めてなるマルチ空気調和器を提供する。
ここで、前記騒音防止手段は、前記室内熱交換機に連結されるチューブに設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第1弁、前記室内機膨張装置に連結されるチューブに設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第2弁を含めてなる。
前記騒音防止手段は、前記室内熱交換機に連結されるチューブに設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第1弁、前記稼動しない室内機に冷媒が供給されることを遮断できるよう閉鎖可能に構成された前記室内機膨張装置を含めてなる。
前記バイパス手段は、前記各室内機に冷媒が流入、かつ吐き出し可能なように連結される二つのチューブを連結するバイパス管、前記バイパス管に設けられ、そのバイパス管を開閉するバイパス弁を含めてなる。
この場合、前記バイパス弁は最少量の冷媒のみ迂回させるように、前記バイパス管の流路断面積より小さい開放断面積を有することが好ましい。
以下で説明するように、本発明によるマルチ空気調和器は次のような効果が得られる。
第一に、多数個のルームをそれぞれ独立的に冷房、又は暖房可能であるので、各ルームの環境に合わせた最適な空気調和機能を提供することができる。
第二に、空気調和器が稼動するときに騒音防止手段が未運転室内機への冷媒の流入を防止することで、未稼動室内機で冷媒流動騒音が発生することを完全に防止できる。
第三に、未稼動室内機に連結された冷媒管内にある冷媒をバイパス手段が迂回させ流動させるので、冷媒の停滞現象、及び冷媒不足現象を防止できる。
したがって、空気調和器の性能が低下することを防止できる。
以下、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。
本発明による空気調和器は、図1に示すように、室外機A、分配器B、及び多数の室内機C,C1,C2,C3を含めてなる。前記室外機Aには圧縮器1、室外熱交換機2、流路制御弁6、そして、室外機チューブなどが設けられ、前記分配器Bには分配器チューブ20、弁部30などが設けられる。そして、各室内機Cには室内熱交換機62と室内機膨張装置61とがそれぞれ設けられる。
このように構成された空気調和器は、第1運転モード−全室を冷房する運転、第2運転モード−全室を暖房する運転、第3運転モード−多数室を冷房し、かつ少数室を暖房する運転、第4運転モード−多数室を暖房し、かつ少数室を冷房する運転の各運転モードにしたがって各室内機C,C1,C2,C3が設けられた各ルームの内部空間を独立的にそれぞれ冷房または暖房するように構成される。ここで、前記各運転モードで運転されるとき、何れか一つの室内機、又はそれ以上の室内機は未運転状態を維持することもできる。
以下では前記空気調和器の一実施形態の詳細な構成を図1に基づいて説明する。
説明の便宜上後述する符号22は22a,22b,22cを、24は24a,24b,24cを、25は25a,25b,25cを、31は31a,31b,31cを、32は32a,32b,32cを、61は61a,61b,61cを、62は62a,62b,62cを、71は71a,71b,71cを、81は81a,81b,81cを、82は82a,82b,82cを、CはC1,C2,C3を示す。そして、各ルームの個数が変動することに伴い、室内機Cの個数、及びそれに連関した各構成要素の個数もが変動することは当然であり、本発明では説明の便宜上3つのルームを有する場合、つまり、室内機Cが3つである場合を仮定して説明する。
まず、室外機Aの構成について詳細に説明する。図1を参照すると、圧縮器1のアウトレットには第1チューブ3が連結される。そして、前記第1チューブ3は流路制御弁6に連結されるが、前記流路制御弁6は各運転モードにしたがって前記圧縮器1から吐き出された気相冷媒の流動流路を制御する。
前記流路制御弁6は4つのポートを有し、第1ポート6aに前記第1チューブ3が連結される。
前記流路制御弁6の第2ポート6bは第2チューブ7に連結される。ここで、前記第2チューブ7はその一端が前記流路制御バルブ6の第2ポート6bに連結され、他端は図1に示すように前記室外機Aの第1ポートA1に連結される。
前記第2チューブ7の中間には、図1に示すように、前記室外熱交換機2が設けられる。
前記流路制御弁6の第3ポート6cは第4チューブ5に連結される。ここで、前記第4ポート5の一端は前記第3ポート6cに連結され、他端は前記圧縮器1のインレットに連結される。そして、前記第4チューブ5の所定の一地点は前記室外機Aの第3ポートA3と連通する。一方、前記第4チューブ5の所定の一地点、より詳細には、前記圧縮器1のインレットと前記室外機Aの第3ポートA3との間に位置した地点にはアキュムレータ9が提供される。
前記流路制御弁6の第4ポート6dは、図1に示すように、その一端が閉鎖管6eに連結される。しかしながら、前記第4ポート6dは別途の管に連結されずにそれ自体が閉鎖した形態からなることもある。
上記のように構成された流路制御弁6は、マルチ空気調和器が第1及び第3運転モードで運転されるときに前記第1ポート6aと第2ポート6bとを連通させながら、同時に前記第3ポート6cと第4ポート6dとを連通させる。
そして、第2及び第4運転モードで運転されるときに前記第1ポート6aと第4ポート6dとを連通させながら、同時に前記第2ポート6bと第3ポート6cとを連通させる。このように制御される流路制御弁6による冷媒の流れについては以後に詳述する。
一方、前記第1チューブ3の中間には第3チューブ4の一端が連結される。そして、前記第3チューブ4の他端は前記室外機Aの第2ポートA2に連結される。前記第2チューブ7の所定の地点、より詳細には、前記室外熱交換機2と前記室外機Aの第1ポートA1との間の地点にはチェック弁7aが提供される。ここで、前記チェック弁7aは前記室外熱交換機2に隣接して提供されることが好ましい。そして、前記第2チューブ7にはチェック弁7aと並列に室外機膨張装置7cが設けられる。このために、両端部がそれぞれ前記チェック弁7aのインレット側とアウトレット側とに連結される並列管7bが提供され、前記並列管7bに前記室外機膨張装置7cが設けられる。
上記のように設けられるチェック弁7aは前記室外熱交換機2を通過した後、前記室外機Aの第1ポートA1側に流動する冷媒は通過させ、前記室外機Aの第1ポートA1を通過した後、前記室外熱交換機2側に流動する冷媒は通過させない。したがって、前記室外機Aの第1ポートA1を通過した後前記室外熱交換機2側に流動する冷媒は、前記チェック弁7aの案内に従って前記並列管7bと前記室外機膨張装置7cとを経由して室外熱交換機2に流入する。
上記のように構成された室外機Aは多数個の連結チューブによって前記分配器Bに連結される。このために、前記連結チューブのうち第1連結チューブ11は前記室外機Aの第1ポートA1と、前記分配器Bの第1ポートB1とを連結し、第2連結チューブ12は前記室外機Aの第2ポートA2と、前記分配器Bの第2ポートB2とを連結し、第3連結チューブ13は前記室外機Aの第3ポートA3と、前記分配器Bの第3ポートB3とを連結する。したがって、本発明によるマルチ空気調和器で前記室外機Aと分配器Bは三つの配管を通じて連結される。
一方、分配器Bは運転モードにしたがって室外機Aから流入した冷媒を選択された室内機Cにきちんと案内しなければならない。そして、前記分配器Bと多数台の室内機Cとを連結する多数個の配管を単純化させ、配管作業が容易で、外的な美観性が向上するようにすることが好ましい。上記の事項を考慮して設計された本発明による空気調和器の分配器Bは、図1に示すように、分配器チューブ20、そして、弁部30を含めてなる。
前記分配器チューブ20は前記室外機Aから分配器Bに流入した冷媒を室内機Cに案内し、前記室内機Cを経由して分配器Bに流入した冷媒を前記室外機Cに案内する。このような役割をはたす分配器チューブ20は液相冷媒管21、多数の液相冷媒分岐管22、気相冷媒管23、多数の第1気相冷媒分岐管24、多数の第2気相冷媒分岐管25、そして、リターン管26を含めてなる。
図1を参照すると、前記液相冷媒管21は前記第1連結チューブ11と連通するように分配器Bの第1ポートB1に連結される。そして、前記液相冷媒分岐管22は前記液相冷媒管21から多数個が分岐し、それぞれ前記室内機Cの室内機膨張装置61に連結される。前記気相冷媒管23は前記第2連結チューブ12と連通するように前記分配器Bの第2ポートB2に連結される。
そして、前記第1気相分岐管24は前記気相冷媒管23から多数個が分岐し、それぞれ前記室内機Cの室内熱交換機62に連結される。一方、前記第2気相冷媒分岐管25はそれぞれ前記第1気相冷媒分岐管24の所定の地点から分岐する。そして、リターン管26は、図1に示すように、前記第2気相冷媒分岐管25を全て連結する。ここで、前記リターン管26は所定の一地点が前記分配器Bの第3ポートB3と連通する。
前記分配器Bの弁部30は前記各運転モードにしたがって各ルームの室内機Cに選択的に気相、又は液相の冷媒を流入させ、各室内機Cを経由した気相、又は液相の冷媒を室外機A側に再流入させるよう分配器チューブ20内の冷媒の流れを制御する役割を果たす。このような役割を果たす弁部30は、図1に示すように、各第1気相冷媒分岐管24と、各第2気相冷媒分岐管25の上にそれぞれ設けられ制御される多数個の開閉弁31a,31b,31c,32a,32b,32cを含めてなる。
ここで、前記弁31,32は各運転モードにしたがって前記各第1気相冷媒分岐管24と、各第2気相冷媒分岐管25とをそれぞれ開放または閉鎖することで、冷媒の流動流路を制御する。
一方、各運転モード別に弁部30が具体的に制御される内容は空気調和器の作動過程を説明する際に述べる。
本発明によるマルチ空気調和器で前記分配器Bは、第1運転モードで運転される時に前記第2連結チューブ12内に停滞する高圧の気相冷媒が液化することを防止する液化防止手段27をさらに含めてなりえる。前記分配器Bに前記手段27が提供される理由は、前記第2連結チューブ12に高圧の気体状態の冷媒が停滞して液化する場合、冷房又は暖房を行う冷媒が足りなくなることがあるので、これらを気化することで液化を防止し、最終的に空気調和器の冷媒不足現象を防止するためである。かかる前記手段27は、前記リターン管26と前記気相冷媒管23とを連結するバイパス管27aと、そのバイパス管27aに設けられる分配器膨張装置27bとを含めてなる。このように提供された手段27の具体的な作用については後述する。
一方、前記室内機Cは各ルームにそれぞれ設置され、室内熱交換機62、室内機膨張装置61、そして、室内ファン(図示せず)を含めてなる。各室内熱交換機62は分配器Bの各第1気相冷媒分岐管24に連結され、各室内機膨張装置61は分配器Bの各液相冷媒分岐管22に連結される。そして、各室内熱交換機62と各室内機膨張装置61は冷媒管によって相互に連結される。前記各室内ファンは各室内熱交換機62に送風するように設けられる。
以下では本発明によるマルチ空気調和器に提供される騒音防止手段と、バイパス手段について説明する。まず、前記騒音防止手段とバイパス手段の必要性について簡単に述べる。
本発明による空気調和器の作動時において、各ルームに設置された室内機が全て運転されたり、ある特定の一台、又はそれ以上の室内機が運転されない状態で残りの室内機が運転されたりすることがある。即ち、大きな建物の場合、建物内のルームの位置や日照量、そして、ルームの用途にしたがって冷房が必要なルーム、暖房が必要なルーム、或いは、冷房や暖房が不必要なルームなど、多様な条件のルームが存在しえる。この際、本発明による空気調和器が作動すると、前記冷媒が必要なルームにおける室内機は冷房を行い、前記暖房が必要なルームにおける室内機は暖房を行う。そして、冷房や暖房が不必要なルームにおける室内機は稼動しない。
上記のように空気調和器の稼動中に未運転状態の室内機に少量の冷媒が流入するので、前記未運転状態の室内機では冷媒流動騒音が発生する。このように未運転状態の室内機で流動騒音が発生する場合、ルームの人々に迷惑をかけるだけでなく、前記未運転室内機が運転されているように錯誤を起こし、故障を申告することがある。このため、空気調和システムの信頼性が落ちるという問題がある。したがって、かかる問題を解決するための構造的な改善が要求される。
このために、本発明によるマルチ空気調和器では、図1に示すように、前記稼動しない室内機で冷媒流動騒音が発生することを防止するための騒音防止手段70を提供する。前記騒音防止手段70は、前記室内機に連結されるチューブ、つまり、液相冷媒分岐管22と第1気相冷媒分岐管24のうち何れか一方に設置されるか、両方にそれぞれ設置され、前記稼動しない室内機に流入する冷媒の流動を遮断する弁からなる。
以下では前記第1気相冷媒分枝管24に設けられる弁を第1弁71と称し、前記液相冷媒分岐管22に設けられる弁を第2弁と称する。
前記騒音防止手段70は、前記第1弁71、又は前記第2弁のうち何れか一方のみを含めてなることもある。しかし、システムの信頼性をより高めるために、前記騒音防止手段70は、前記第1弁71と前記第2弁とを共に含めてなることが好ましい。以下では、図1に示すように、前記騒音防止手段70が前記第1弁71と前記第2弁とを共に含めてなる実施形態について説明する。
前記第1弁71は、図1に示すように、第1気相冷媒分岐管24に設置される。前記第1弁71は、例えば、開閉弁からなる。前記第1弁71として開閉弁を採択すると、設備費用を節減できる。かかる第1弁71は、前記第1気相冷媒分岐管24の流路を開放または閉鎖する。したがって、前記第1弁71が閉じられている場合には前記第1気相冷媒分岐管24に流入する冷媒が室内機Cに流入しない。勿論、冷媒が前記液相冷媒分岐管22から前記室内機Cを経由して前記第1気相冷媒分岐管24に流動することもない。これにより、前記室内機Cに冷媒が流動することが防止され、冷媒流動騒音が発生することを防ぐことができる。
前記第2弁は前記液相冷媒分岐管22に設置される。ここで、前記第2弁は、前記第1弁71のように別途に備えれた開閉弁からなりえる。この場合、前記第1弁71と同一の原理で冷媒が前記室内機Cを介して流動することを防止し騒音発生を防ぐ。しかし、前記第2弁は別途に備えられないこともある。この場合、図1に示すように、室内機Cに設置される室内機膨張装置61が前記第2弁の機能を行う。このために、前記室内機膨張装置61は必ずしも前記液相冷媒分岐管22の流路を開放または閉鎖可能であるように構成されなければならない。前記室内機膨張装置61が上記のように構成されると、稼動しない室内機の液相冷媒分岐管の流路を閉鎖できるように、前記第1弁71と同一の機能を行える。
一方、上記のように構成された騒音防止手段70が前記稼動しない室内機に冷媒が流動することを遮断すると、前記第1気相冷媒分岐管24、又は前記液相冷媒分岐管22には前記未稼動室内機に流入しなかった冷媒が停滞しえる。
このように冷媒が停滞する場合、液化しやすく、空気調和器に冷媒が不足する現象を引き起こす。したがって、前記騒音防止手段70によって流動が遮断された冷媒が停滞することを防止するための構造の改善が要求される。
本発明による空気調和器には、上記の要求を満足させるようバイパス手段80がさらに提供されえる。前記バイパス手段80は、図1に示すように、前記第1気相冷媒分岐管24と、前記液相冷媒分岐管22とに設置され、前記騒音防止手段により停滞した冷媒を、前記稼動しない室内機を迂回させ循環させる。
かかる前記バイパス手段80は、バイパス管81とバイパス弁82とを含めてなる。ここで、前記バイパス管81は、その一端が前記第1気相冷媒分岐管24に連通し、他端は前記液相冷媒分岐管22と連通するように設けられる。
そして、前記バイパス弁82は、図1に示すように、前記バイパス管81に設けられ、前記バイパス管81の内部の流路を開閉する。前記バイパス弁82は、構造が簡単で安価の開閉弁からなることが好ましい。
ここで、前記バイパス弁82は、前記騒音防止手段70が冷媒の流動を遮断するときに開放され、前記騒音防止手段70が冷媒の流動を許容するときに閉鎖される。
上記のようにバイパス手段80が備えられると、前記空気調和器の作動時に前記騒音防止手段70によって流動が遮断された冷媒が停滞することを効果的に防止できる。なぜなら、前記第1気相冷媒分岐管24を通じて冷媒が前記室内機C側に移動する場合、前記第1弁71により遮断された冷媒は前記バイパス管81に流入した後、前記バイパス弁82を通過して前記液相冷媒分岐管22側に移動する。そして、前記液相冷媒分岐管22を通じて冷媒が前記室内機C側に移動する場合、前記第2弁、又は前記室内機膨張装置61により遮断された冷媒は前記バイパス管81とバイパス弁82を経由した後、前記第1気相冷媒分岐管24に移動する。これにより、冷媒は停滞せず流動し続けるので、上記の問題を解決することができる。
一方、前記バイパス弁82は、最少量の冷媒のみを迂回させるように、前記バイパス管81の流路断面積より小さい開放断面積を有することが好ましい。
上記のように構成された本発明によるマルチ空気調和器は、圧縮器1から吐き出された気相冷媒が、各運転モードにしたがって、室外器Aでは前記流路制御弁6の制御によって流動流路、及び流動方向が変更し、分配器Bと室外器Cでは前記弁部30の制御によって流動流路、及び流動方向が変更しつつ各ルームを個別的に冷房、又は暖房する。
以下では各運転モード別に前記流路制御弁6と前記弁部30の制御によって冷媒がどのように流動しながら各ルームを冷房、又は暖房するかを具体的に説明する。説明の便宜上、第3運転モードでは2台の室内機C1,C2は冷房を行い、残りの室内機C3は暖房を行うものと仮定する。また、第4運転モードでは2台の室内機C1,C2は暖房を行い、残りの室内機C3は冷房を行うものと仮定する。
図2は前記第1運転モードで空気調和システムの動作状態を示す構成図である。全ての室内機が冷房機能を行う第1運転モードで、前記流路制御弁6は前記第1ポート6aと第2ポート6bとを連通させ、同時に前記第3ポート6cと第4ポート6dとを連通させる。これにより、前記圧縮器1のアウトレットから吐き出された冷媒は殆ど前記第1チューブ3を経て前記第2チューブ7に流入する。そして、図2に示すように、圧縮器1から吐き出された冷媒の一部は、前記第1チューブ3に連結された第3チューブ4に流入する。まず、圧縮器1から吐き出された後、第2チューブ7に流入した冷媒の流れについて説明する。
第2チューブ7に流入した冷媒は前記室外熱交換器2で室外空気と熱交換しながら凝縮する。凝縮した液相の冷媒はチェック弁7a、室外機Aの第1ポートA1、そして、第1連結チューブ11を経由して、分配器Bの液相冷媒管21に流入する。分配器Bの液相冷媒管21に流入した冷媒は各液相冷媒分岐管22を通じて各室内機膨張装置61に流入する。室内機膨張装置61で膨張した冷媒は各室内熱交換機62で熱交換して各室内空間を冷却する。第1運転モードでは、図2に示すように、全てのバイパス弁82が閉鎖されるので、前記第1気相冷媒分岐管24と、前記液相冷媒分岐管22の中をそれぞれ流動する冷媒の流れには影響を与えない。
前記第1運転モードで前記分配器Bの弁部30は第1気相冷媒分岐管24a,24b,24cに設けられた弁31a,31b,31cが閉鎖され、前記第2気相冷媒分岐管25a,25b,25cに設けられた弁32a,32b,32cが開放されるように制御される。したがって、前記室内熱交換機62で室内空気を冷却しながら気化した気相冷媒は、図2に示すように、前記第2気相冷媒分岐管25を通じてリターン管26に流入する。
一方、前記圧縮器1から吐き出された後、第3チューブ4に流入した冷媒は室外機Aの第2ポートA2、第2連結チューブ12、分配器Bの第2ポートB2を経由して、気相冷媒管23に流入する。一方、図2に示すように、前記気相冷媒管23に連結された第1気相冷媒分岐管24に設けられた弁31a,31b,31cは閉鎖されているので、前記気相冷媒管23に流入した気相冷媒はバイパス管27aに案内される。そして、前記分配器膨張装置27bで膨張した後、前記リターン管26に移動する。したがって、前記手段27は、第3チューブ4と第2連結チューブ12との内に満たされた気相冷媒が停滞した状態で液化することを効果的に防止する。
前記リターン管26で合わせられた気相の冷媒は分配器Bの第3ポートB3、第3連結チューブ13、そして、室外器Aの第3ポートA3を経て第4チューブ5に流入する。一方、第1運転モードで前記第4チューブ5の一端が連結される流路制御弁6の第3ポート6cは、閉鎖管6eに連結された第4ポート6dと連通している。したがって、第4チューブ5に流入した冷媒はアキュムレータ9を経由して、前記圧縮器1のインレットに流入する。
図3は第2運転モードで空気調和システムの動作状態を示す構成図である。
全てのルームを暖房する第2運転モードで、前記流路制御弁6は第1ポート6aと第4ポート6dとを連通させ、同時に前記第2ポート6bと第3ポート6cとを連通させる。これにより、前記圧縮器1から吐き出された後、第1チューブ3に流入した冷媒は、図3に示すように、全量が前記第3チューブ4に流入する。
第3チューブ4に流入した気相の冷媒は室外器Aの第2ポートA2、第2連結チューブ12、そして、分配器Bの第2ポートB2を経て気相冷媒管23に流入する。
前記第2運転モードで前記分配器膨張装置27bは閉鎖される。そして、前記第1気相冷媒分岐管24に設けられた弁31a,31b,31cは開放され、前記第2気相冷媒分岐管25に設けられた弁32a,32b,32cは閉鎖される。したがって、前記気相冷媒管23に流入した冷媒は、全量が前記各第1気相冷媒分岐管24に流入する。そして、室内熱交換器62で室内空気と熱交換しながら凝縮する。この際、前記室内熱交換機62は凝縮熱を放出し、室内ファン(図示せず)が前記凝縮熱を室内空間に吐き出すので、室内空間が暖房される。
また、第2運転モードでは、図3に示すように、室内機膨張装置61が開放されるので、前記室内熱交換機62で凝縮した冷媒は液相冷媒分岐管22を通じて液相冷媒管21に流入する。そして、第2運転モードでは、図3に示すように、全てのバイパス弁82が閉鎖されるので、前記第1気相冷媒分岐管24と、前記液相冷媒分岐管22の中をそれぞれ流動する冷媒の流れには影響を与えない。
液相冷媒管21に流入した冷媒は、分配器Bの第1ポートB1、第1連結チューブ11、そして、室外器Aの第1ポートA1を経て第2チューブ7に流入する。第2チューブ7に流入した冷媒はチェック弁7aの案内にしたがって並列管7bに流入した後、室外器膨張装置7cで膨張する。膨張した冷媒は室外熱交換機2で熱交換しながら気化する。そして、前記流路制御弁6の案内によって第4チューブ5に流入した後、アキュムレータ9を経由して前記圧縮器1のインレットに流入する。この際、前記第2気相冷媒分岐管25に設けられた弁32a,32b,32cは閉鎖されているので、前記第4チューブ5に流入した冷媒は圧縮器1側にのみ流入する。勿論、一部の冷媒が前記第3連結チューブ13を経てリターン管26まで流入することがあるが、これは極少量である。
図4は第3運転モードで空気調和器の動作状態を示す構成図である。多数のルームを冷房し、少数のルームを暖房する第3運転モードで、前記流路制御弁6は、前記第1運転モードと同様に、前記第1ポート6aと、前記第2ポート6bとを連通させ、前記第3ポート6cと、第4ポート6dとを連通させる。
したがって、前記圧縮器1から吐き出された冷媒はその一部が前記第2チューブ7に流入し、残りは第3チューブ4に流入する。その過程は前記図2を参照して説明された第1運転モードにおける冷媒の流れと同一であるので、その説明は省略する。
第3運転モードで、前記分配器膨張装置27bは閉鎖される。そして、冷房を行う室内機C1,C2に連結される第1気相冷媒分岐管24a,24bに設けられた弁31a,31bは閉鎖され、第2気相冷媒分岐管25a,25bに設けられた弁32a,32bは開放される。そして、暖房を行う室内機C3に連結される第1気相冷媒分岐管24cに設けられた弁31cは開放され、第2気相冷媒分岐管25cに設けられた弁32cは閉鎖される。したがって、前記第3チューブ4を経て分配器Bの気相冷媒管23に流入した冷媒は、図4に示すように、第1気相冷媒分岐管24cを経由して室内機C3の室内熱交換機62cに流入する。室内熱交換機62cで凝縮熱を発散させながら室内を暖房した後、前記冷媒は液相状態で室内機膨張装置61cを経由して液相冷媒管21に流入する。前記第3運転モードでは、図4に示すように、全てのバイパス弁82が閉鎖されるので、前記第1気相冷媒分岐管24と、前記液相冷媒分岐管22の中をそれぞれ流動する冷媒の流れには影響を与えない
一方、前記圧縮器1から吐き出された後、前記第2チューブ7を経て分配器Bの液相冷媒管21に流入した冷媒は、図4に示すように、前記室内機C3で暖房を行った後、液相冷媒管21に流入した冷媒と合わせられる。そして、合わせられた冷媒は液相冷媒分岐管22a,22bを通じて室内機C1,C2の室内機膨張装置61a,61bに流入する。そして、室内熱交換機62a、62bで気化しながら室内空間を冷房した後、第2気相冷媒分岐管25a,25bを経てリターン管26に流入する。前記リターン管26に流入した冷媒は、前記第3連結チューブ13を通じて第4チューブ5に流入し、前記アキュムレータ9を経由して前記圧縮器1のインレットに流入する。
図5は第4運転モードで空気調和器の作動状態を示す構成図である。多数のルームを暖房し、少数のルームを冷房する第4運転モードで、前記流路制御弁6は前記第1ポート6aと前記第4ポート6dとを連通させ、前記第2ポート6bと第3ポート6dとを連通させる。したがって、前記圧縮器1から吐き出された冷媒は全量が前記第3チューブ4を経由して分配器Bに流入する。
第4運転モードで前記分配器膨張装置27bは閉鎖される。そして、暖房を行う室内機C1,C2に連結された第1気相冷媒分岐管24a,24bに設けられた弁31a,31bは開放され、第2気相冷媒分岐管25a,25bに設けられた弁32a,32bは閉鎖される。また、冷房を行う室内機C3に連結された第1気相冷媒分岐管24cに設けられた弁31cは閉鎖され、前記第2気相冷媒分岐管25cに設けられた弁32cは開放される。したがって、前記第2チューブ7を経て分配器Bの気相冷媒管23に流入した冷媒は第1気相冷媒分岐管24a,24bを通じて室内熱交換機62a,62bに流入する。
そして、室内機C1,C2で暖房を行った後、液相冷媒分枝管22a,22bを通じて液相冷媒管21に移動する。
図5を参照すると、液相冷媒管21に流入した冷媒はその一部が液相冷媒分岐管22cに流入し、残りは第1連結チューブ11側に移動する。ここで、前記第1連結チューブ11に流入した冷媒は、前記第2チューブ7、並列管7b、室外機膨張装置7c、室外熱交換機2、そして、流路制御弁6を経由して第4チューブ5に流入する。そして、前記液相冷媒分岐管22cに流入した冷媒は前記室内機C3の室内機膨張装置61cと、室内熱交換機62とを経つつ室内空間を冷房した後、第2気相冷媒分岐管25c、リターン管26、そして、第3連結チューブ13を経由して第4チューブ5に流入する。
最後に、前記第4チューブ5で合わせられた冷媒は前記アキュムレータ9を経て圧縮器1のインレットに流入する。上記の過程で運転される第4運転モードでは、図5に示すように、全てのバイパス弁82が閉鎖されるので、前記第1気相冷媒分岐管24と、前記液相冷媒分岐管22の中をそれぞれ流動する冷媒の流れには影響を与えない。
前記第1乃至第4運転モードで前記バイパス弁82は全て閉鎖状態を維持する。しかしながら、何れか一台以上の室内機が運転されない状態で本発明によるマルチ空気調和器が稼動する場合には、前記未運転室内機と隣接した前記バイパス弁は開放される。
以下ではこのような場合における冷媒の流れについて図6を参照して説明する。参考までに、図6には二台の室内機C1,C2が冷房を行うように運転され、残りの室内機C3は運転されない状態の実施形態を示す。これは、第1運転モードで一台の室内機C3が運転されない状態と同様である。したがって、図6に基づいた説明で前記室内機と分配器における冷媒の流動に関するものは省略する。
図6を参照すると、運転が停止した室内機C3と隣接して配置された第1弁71cと、室内機膨張装置61cとは閉鎖される。そして、前記室内機C3と隣接して配置されたバイパス弁82は開放される。上記のような状態で前記液相冷媒分岐管22cを通じて室内機C3側に流動する冷媒は、閉鎖された前記室内機膨張装置61cによってバイパス管81cに流入する。前記バイパス管81cに流入した冷媒は前記バイパス弁82cを通過した後、前記第1気相冷媒分岐管24cに流入する。この際、前記第1弁71cが閉鎖されているので、冷媒は前記分配器B側に流動する。
一方、図示してはいないが、第2運転モードで何れかの室内機が稼動しない場合には、冷媒が前記第1気相冷媒分岐管24を通じて室内機側に移動する。
この場合には前記騒音防止手段70とバイパス手段80によって冷媒が前記室内機に流入せず、前記液相冷媒分岐管22に流入した後、分配器Bに移動する。したがって、未稼動室内機には冷媒が流入せず、冷媒管内に冷媒が停滞することを防止できる。
上記では一台の室外機と分配器、そして、多数個の室内機が提供され、多数個のルームをそれぞれ独立的に冷房、又は暖房可能なマルチ空気調和器が説明された。上記で幾つかの実施形態が説明されたが、本発明はその趣旨及びカテゴリーから外れない限り、他にも様々な形態で具体化されえることは該当技術において通常の知識を有するものには自明なことであろう。
例えば、一つの室外機に多数個の室内機が直接に連結されたマルチ空気調和器の場合、多数個のルームを全て冷房するか全て暖房することができる。そして、この場合にも同様にユーザーの設定によって何れか一台以上の室内機が運転されない状態で空気調和器が稼動しえる。これにより、本発明による騒音防止手段とバイパス手段も同一の位置に設けられ、同一の機能が行えることは該当技術分野で通常の知識を有するものには自明なことであろう。
したがって、上述した実施形態は制限的なものでない例示的なものとして認められるべきであり、添付の請求項及び、その同等範囲内の全ての実施形態は本発明のカテゴリー内に含まれるものと云えよう。
本発明の一実施形態によるマルチ空気調和器を示す構成図である。 全室を冷房する運転で図1の動作状態を示す構成図である。 全室を暖房する運転で図1の動作状態を示す構成図である。 多数室を冷房し、少数室を暖房する運転で図1の動作状態を示す構成図である。 多数室を暖房し、少数室を冷房する運転で図1の動作状態を示す構成図である。 一台の室内機の稼動が中止された状態で残りの室内機が冷房運転される場合、図1の動作状態を示す構成図である。
符号の説明
A…室外機
B…分配器
C…室内機
1…圧縮器
2…室外熱交換機
20…分配器配管
30…弁部
61…室内機膨張装置
70…騒音防止手段
80…バイパス手段

Claims (22)

  1. 圧縮器、室外熱交換機、前記圧縮器から吐き出された冷媒の流動流路を制御する流路制御弁、そして、室外チューブを含めてなる室外機;
    室内機膨張装置、室内熱交換機、そして、室内機チューブを含めてなる多数個の室内機;
    前記室外機から流入した冷媒を各運転モードにしたがって前記各室内機に選択的に分配して流動させた後、再び前記室外機に送る分配器;
    前記各室内機に連結されるチューブに設けられ、機器の作動時に稼動しない室内機に冷媒が流入することを遮断することで、前記稼動しない室内機で冷媒流動騒音が発生することを防止する騒音防止手段を含み、
    前記騒音防止手段は前記室内熱交換機に連結され、前記分配器が設置されるチューブのうちの第1気相冷媒分岐管に、前記分配器と別に設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第1弁と、前記チューブのうちの液相冷媒分岐管に設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第2弁とを含み、
    前記各室内機に連結されるチューブに設けられ、前記騒音防止手段により停滞した冷媒を、該当室内機を迂回させ循環させるバイパス手段をさらに含めてなるマルチ空気調和器。
  2. 前記騒音防止手段は、前記室内機膨張装置と別に液相冷媒分岐管に設けられる第2弁を含めてなる請求項1記載のマルチ空気調和器。
  3. 前記騒音防止手段は、前記稼動しない室内機に冷媒が供給されることを遮断できるよう閉鎖可能に構成された前記室内機膨張装置を含めてなる請求項1記載のマルチ空気調和器。
  4. 前記騒音防止手段は、前記室内機膨張装置に連結されるチューブに設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第2弁をさらに含めてなる請求項1記載のマルチ空気調和器。
  5. 前記バイパス手段は、
    前記各室内機に冷媒が流入、かつ吐き出し可能なように連結される二つのチューブを連結するバイパス管;
    前記バイパス管に設けられ、そのバイパス管を開閉するバイパス弁を含めてなる請求項1記載のマルチ空気調和器。
  6. 前記バイパス弁は最少量の冷媒のみを迂回させるように、前記バイパス管の流路断面積より小さい開放断面積を有する請求項5記載のマルチ空気調和器。
  7. 流路制御弁は、
    前記圧縮器のアウトレットと連通する第1ポート、
    前記室外熱交換機と連通する第2ポート、
    前記圧縮器のインレットと連通する第3ポート、
    閉鎖管に連結されるか、それ自体が閉鎖された第4ポートを含めてなる請求項1記載のマルチ空気調和器。
  8. 前記室外機チューブは、
    前記圧縮器のアウトレットと前記第1ポートとを連結する第1チューブ、
    前記第2ポートと前記室外機の第1ポートとを連結し、中間に前記室外熱交換機が設けられる第2チューブ、
    前記第1チューブと前記室外機の第2チューブとを連結する第3チューブ、
    前記第3ポートと前記圧縮器のインレットとを連結し、中間が前記室外機の第3ポートに連結される第4チューブを含めてなる請求項7記載のマルチ空気調和器。
  9. 前記室外機は、前記第4チューブのうち前記室外機の第3ポートと、前記圧縮器のインレットとの間の地点に提供されるアキュムレータをさらに含めてなる請求項8記載のマルチ空気調和器。
  10. 前記室外機は、
    前記第2チューブのうち前記室外熱交換機と、前記室外機の第1ポートとの間の地点に提供されるチェック弁、
    前記第2チューブにチェック弁と並列に提供される室外機膨張装置をさらに含めてなる請求項8記載のマルチ空気調和器。
  11. 前記チェック弁は冷媒を前記室外熱交換機側から前記第1ポート側にのみ流動させる請求項8記載のマルチ空気調和器。
  12. 前記室外機の第1ポートは前記分配器の第1ポートに連結され、前記室外機の第2ポートは前記分配器の第2ポートに連結され、前記室外機の第3ポートは前記分配器の第3ポートに連結される請求項8記載のマルチ空気調和器。
  13. 前記分配器は、
    前記室外機から流入した冷媒を室内機に案内し、前記室内機から流入した冷媒を前記室外機に案内する分配器チューブ、
    前記分配器チューブ内を流れる冷媒の流れを前記各運転モードに適合させて制御できるように前記分配器チューブに設けられる弁部を含めてなる請求項12記載のマルチ空気調和器。
  14. 前記分配器チューブは、
    前記分配器の第1ポートに連結される液相冷媒管、
    前記液相冷媒管からそれぞれ分岐し、前記各室内機膨張装置に連結される多数個の液相冷媒分岐管、
    前記分配器の第2ポートに連結される気相冷媒管、
    前記気相冷媒管からそれぞれ分岐し、前記各室内熱交換機に連結される多数個の第1気相冷媒分岐管、
    前記各気相冷媒分岐管からそれぞれ分岐する多数個の第2気相冷媒分岐管、
    前記各第2気相冷媒分岐管を全て連結させ、前記分配器の第3ポートと連通するリターン管を含めてなる請求項13記載のマルチ空気調和器。
  15. 前記弁部は、
    前記各第1及び第2気相冷媒分岐管にそれぞれ設けられる多数の開閉弁を含めてなる請求項14記載のマルチ空気調和器。
  16. 前記分配器は、前記圧縮器から吐き出された後前記第3チューブに満たされた冷媒が液化することを防止する手段をさらに含めてなる 請求項15記載のマルチ空気調和器。
  17. 前記液化防止手段は、前記リターン管と前記気相冷媒管とを連結するバイパス管、
    前記バイパス管に設けられる分配器膨張装置を含めてなる請求項16記載のマルチ空気調和器。
  18. 圧縮器と室外熱交換機とを含めてなる室外機;
    前記室外機と直接に連結され、室内機膨張装置と室内熱交換機とを含めてなる多数個の室内機;
    前記室外機から流入した冷媒を各運転モードにしたがって前記各室内機に選択的に分配して流動させた後、再び前記室外機に送る分配器;
    前記各室内機に連結されるチューブに設けられ、作動時に稼動しない室内機に冷媒が流入することを遮断して、前記稼動しない室内機で冷媒流動騒音が発生することを防止する騒音防止手段;
    前記各室内機に連結されるチューブに設けられ、前記騒音防止手段により停滞した冷媒を該当室内機を迂回させ循環させるバイパス手段をさらに含んで、
    前記騒音防止手段は前記室内熱交換機に連結され、前記分配器が設置されるチューブのうちの第1気相冷媒分岐管に、前記分配器と別に設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第1弁と、前記チューブのうちの液相冷媒分岐管に設けられ、前記稼動しない室内機に冷媒が供給されることを遮断する第2弁とを含めてなるマルチ空気調和器。
  19. 前記騒音防止手段は、
    前記室内熱交換機に連結されるチューブに設けられ、前記稼動しない室内機に冷媒が供給されることを遮断するように前記室内機膨張装置と別に設けられる第2弁を含めてなる請求項18記載のマルチ空気調和器。
  20. 前記騒音防止手段は、
    前記稼動しない室内機に冷媒が供給されることを遮断できるよう閉鎖可能に構成された前記室内機膨張装置を含めてなる請求項18記載のマルチ空気調和器。
  21. 前記バイパス手段は、
    前記各室内機に冷媒が流入、かつ吐き出し可能なように連結される二つのチューブを連結するバイパス管、
    前記バイパス管に設けられ、そのバイパス管を開閉するバイパス弁を含めてなる請求項18記載のマルチ空気調和器。
  22. 前記バイパス弁は最少量の冷媒のみ迂回させるように、前記バイパス管の流路断面積より小さい開放断面積を有する請求項21記載のマルチ空気調和器。
JP2003403091A 2003-01-13 2003-12-02 マルチ空気調和器 Expired - Fee Related JP4699689B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2003-0002037A KR100499507B1 (ko) 2003-01-13 2003-01-13 멀티공기조화기
KR2003-002037 2003-01-13

Publications (2)

Publication Number Publication Date
JP2004219059A JP2004219059A (ja) 2004-08-05
JP4699689B2 true JP4699689B2 (ja) 2011-06-15

Family

ID=32501506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403091A Expired - Fee Related JP4699689B2 (ja) 2003-01-13 2003-12-02 マルチ空気調和器

Country Status (5)

Country Link
US (1) US6952933B2 (ja)
EP (1) EP1437559B1 (ja)
JP (1) JP4699689B2 (ja)
KR (1) KR100499507B1 (ja)
CN (1) CN1277088C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782646B1 (ko) 2011-01-12 2017-09-28 엘지전자 주식회사 공기 조화기

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761285B1 (ko) * 2004-12-10 2007-09-27 엘지전자 주식회사 공기조화기
KR100591321B1 (ko) * 2004-12-15 2006-06-19 엘지전자 주식회사 공기조화기
KR100775821B1 (ko) * 2004-12-15 2007-11-13 엘지전자 주식회사 공기조화기 및 그 제어 방법
KR100688171B1 (ko) * 2004-12-29 2007-03-02 엘지전자 주식회사 냉난방 동시형 멀티 공기조화기 및 냉매 회수방법
KR100619775B1 (ko) * 2005-02-15 2006-09-11 엘지전자 주식회사 냉난방 동시형 멀티 에어컨
KR100712483B1 (ko) * 2005-09-16 2007-04-30 삼성전자주식회사 냉장고 및 그 운전제어방법
JP4923794B2 (ja) * 2006-07-06 2012-04-25 ダイキン工業株式会社 空気調和装置
JP4079184B1 (ja) * 2006-10-30 2008-04-23 ダイキン工業株式会社 冷凍装置の熱源ユニット、及び冷凍装置
KR100840940B1 (ko) * 2007-02-12 2008-06-24 삼성전자주식회사 공조시스템 및 그 제어방법
KR100871192B1 (ko) * 2007-02-13 2008-12-01 엘지전자 주식회사 공기조화 시스템의 제어방법
US9322562B2 (en) * 2009-04-01 2016-04-26 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5312616B2 (ja) * 2010-02-10 2013-10-09 三菱電機株式会社 空気調和装置
KR101988034B1 (ko) * 2012-11-19 2019-06-11 엘지전자 주식회사 공기조화기
WO2014120332A1 (en) * 2013-01-31 2014-08-07 Carrier Corporation Multi-compartment transport refrigeration system with economizer
KR101972638B1 (ko) * 2016-08-01 2019-04-25 윤명진 열교환기 교번타입 히트펌프시스템
CN107560092B (zh) * 2017-09-25 2019-10-22 珠海格力电器股份有限公司 多联机运行状态控制方法、系统及热泵多联机
JP6860112B1 (ja) 2019-09-30 2021-04-14 ダイキン工業株式会社 冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134444A (ja) * 1989-10-19 1991-06-07 Mitsubishi Electric Corp 空気調和装置
JPH04187954A (ja) * 1990-11-21 1992-07-06 Hitachi Ltd 空気調和システム
JPH0599526A (ja) * 1991-10-11 1993-04-20 Matsushita Refrig Co Ltd 多室型空気調和機
JPH094940A (ja) * 1995-06-15 1997-01-10 Mitsubishi Heavy Ind Ltd マルチ型ヒートポンプ式空気調和機
JPH09178284A (ja) * 1995-12-27 1997-07-11 Toupure Kk 空気調和装置
JPH11190563A (ja) * 1997-12-26 1999-07-13 Daikin Ind Ltd 空気調和機

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US18083A (en) * 1857-09-01 Improvement in seeding-machines
US3779031A (en) * 1970-08-21 1973-12-18 Hitachi Ltd Air-conditioning system for cooling dehumidifying or heating operations
US4474026A (en) * 1981-01-30 1984-10-02 Hitachi, Ltd. Refrigerating apparatus
JPS57207776A (en) * 1981-06-16 1982-12-20 Nippon Denso Co Freezing refrigerator for automobile
JPS604774A (ja) * 1983-06-22 1985-01-11 株式会社東芝 冷蔵庫
US4643002A (en) 1985-09-26 1987-02-17 Carrier Corporation Continuous metered flow multizone air conditioning system
US4779425A (en) * 1986-05-14 1988-10-25 Sanden Corporation Refrigerating apparatus
AU581569B2 (en) * 1986-06-06 1989-02-23 Mitsubishi Denki Kabushiki Kaisha Multiroom air conditioner
JPS6334459A (ja) * 1986-07-29 1988-02-15 株式会社東芝 空気調和機
JPH0711366B2 (ja) * 1987-11-18 1995-02-08 三菱電機株式会社 空気調和装置
JP2698118B2 (ja) 1988-09-30 1998-01-19 三洋電機株式会社 空気調和装置
JP2823297B2 (ja) 1990-02-23 1998-11-11 東芝エー・ブイ・イー株式会社 空気調和機
KR0147311B1 (ko) 1990-10-31 1998-12-01 김회수 마그네틱 카드 판독용 반도체 성능 검사장치 및 그 방법
JPH0743042A (ja) 1993-05-28 1995-02-10 Mitsubishi Heavy Ind Ltd 空気調和機
SG65545A1 (en) 1993-11-12 1999-06-22 Sanyo Electric Co Air conditioner
JPH09229500A (ja) * 1995-12-27 1997-09-05 Mando Mach Co Ltd 多室エアコン
JPH1194395A (ja) 1997-09-19 1999-04-09 Fujitsu General Ltd 多室形空気調和装置
CN2357243Y (zh) 1998-07-31 2000-01-05 海尔集团公司 一拖多空调器的制冷系统
US6953319B2 (en) 2002-07-25 2005-10-11 Lg Electronics Inc. Centrifugal fan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134444A (ja) * 1989-10-19 1991-06-07 Mitsubishi Electric Corp 空気調和装置
JPH04187954A (ja) * 1990-11-21 1992-07-06 Hitachi Ltd 空気調和システム
JPH0599526A (ja) * 1991-10-11 1993-04-20 Matsushita Refrig Co Ltd 多室型空気調和機
JPH094940A (ja) * 1995-06-15 1997-01-10 Mitsubishi Heavy Ind Ltd マルチ型ヒートポンプ式空気調和機
JPH09178284A (ja) * 1995-12-27 1997-07-11 Toupure Kk 空気調和装置
JPH11190563A (ja) * 1997-12-26 1999-07-13 Daikin Ind Ltd 空気調和機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782646B1 (ko) 2011-01-12 2017-09-28 엘지전자 주식회사 공기 조화기

Also Published As

Publication number Publication date
KR100499507B1 (ko) 2005-07-05
EP1437559A1 (en) 2004-07-14
US20040134214A1 (en) 2004-07-15
CN1517611A (zh) 2004-08-04
US6952933B2 (en) 2005-10-11
EP1437559B1 (en) 2012-03-07
KR20040064455A (ko) 2004-07-19
CN1277088C (zh) 2006-09-27
JP2004219059A (ja) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4699689B2 (ja) マルチ空気調和器
EP1437555B1 (en) Multi-type air conditioner
JP4790974B2 (ja) マルチ空気調和機及びその制御方法
US6735973B2 (en) Multi-type air conditioner
EP1437557B1 (en) Multi-type air conditioner with defrosting device
US7124595B2 (en) Multi-type air conditioner with plurality of distributor able to be shutoff
EP1391660B1 (en) Multi-unit air conditioner and method for controlling operation of outdoor unit fan thereof
JP4331544B2 (ja) 冷暖房同時型マルチ空気調和機
EP1437556B1 (en) Multi-type air conditioner
JP4553761B2 (ja) 空気調和装置
KR20150012498A (ko) 히트 펌프 및 유로 전환 장치
US6817205B1 (en) Dual reversing valves for economized heat pump
KR100791930B1 (ko) 멀티공기조화기용 실외유닛
KR20040094338A (ko) 공기조화장치
JP3791019B2 (ja) 空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees