JP4696111B2 - 伝送方法及び伝送システム - Google Patents

伝送方法及び伝送システム Download PDF

Info

Publication number
JP4696111B2
JP4696111B2 JP2007510460A JP2007510460A JP4696111B2 JP 4696111 B2 JP4696111 B2 JP 4696111B2 JP 2007510460 A JP2007510460 A JP 2007510460A JP 2007510460 A JP2007510460 A JP 2007510460A JP 4696111 B2 JP4696111 B2 JP 4696111B2
Authority
JP
Japan
Prior art keywords
phase
transmission
symbol
signal
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007510460A
Other languages
English (en)
Other versions
JPWO2006104054A1 (ja
Inventor
秀樹 中原
均 高井
宏一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007510460A priority Critical patent/JP4696111B2/ja
Publication of JPWO2006104054A1 publication Critical patent/JPWO2006104054A1/ja
Application granted granted Critical
Publication of JP4696111B2 publication Critical patent/JP4696111B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0678Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different spreading codes between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は、無線通信の分野における、複数の送信アンテナを用いて信号を送信する送信ダイバーシチを用いた伝送方法及び伝送システムに関するものである。
無線通信には、複数のアンテナを用いて信号を送受信することで伝送特性を改善する、アンテナダイバーシチ技術がある。このアンテナダイバーシチには、送信側が複数の送信アンテナを用いて信号を送信する送信ダイバーシチと、受信側が複数の受信アンテナで信号を受信する受信ダイバーシチとがある。送信ダイバーシチは、送受信間で互いに相関が低い伝搬路を複数形成することにより、受信側での伝送特性の改善を図る技術である。受信ダイバーシチは、各受信アンテナで受信される複数信号を選択又は合成することにより、受信特性を改善する技術である。特に、受信アンテナを1本にして送信ダイバーシチだけで伝送する方法は、受信機のアンテナ配置の面でサイズ及びコストを増やすことなく特性改善を図れるので、基地局に比べて携帯端末の方に制約が多くなるセルラー系の移動体通信システム等において有効である。
ところが、送信ダイバーシチによる無線伝送においては、受信側における位相関係によって複数の受信信号が互いに打ち消し合って消失してしまい、結果として伝送特性が劣化するという問題がある。なお、本明細書では、送信アンテナから送信される信号を「送信信号」と、この送信信号が伝搬路を介して受信アンテナで受信される信号を「到来信号」という。
図21は、2つの到来信号A及びBが受信端で合成されるときの位相関係を示した図である。図21の(a)に示すように、受信波は、到来信号Aと到来信号Bとが位相差αで合成される。このため、α=180度(逆相)の場合には、到来信号Aと到来信号Bとが互いに打ち消し合って受信波が消失してしまう(図21の(b))。特に、1シンボル内の位相が一定である通常の位相変調方式を無線通信に用いた場合には、シンボル期間の全体に渡って到来信号が打ち消し合って検波出力が無くなるので伝送誤りを招いてしまう。図22は、この通常の位相変調方式における位相差α=180度である場合の、2つの到来信号A及びBの位相関係を示す概略図である。
従来、通常の位相変調方式による送信ダイバーシチを用いた伝送方法では、例えば非特許文献1に示されるように、時間インターリーブと誤り訂正符号とを用いて送信データを符号化し、2本の送信アンテナのうち片方の送信アンテナから送信する信号に位相掃引を与えて送信する方法がある。図23は、この非特許文献1に記載された従来の送信ダイバーシチを用いた伝送システムの構成を示す図である。なお、変調方式には、通常のQDPSK(Quaternary Differential Phase Shift Keying)方式を用いている。
図23において、分配器301は、送信機300から送信される送信信号310を2つの送信信号311及び312に分けて、2つのアンテナ系統にそれぞれ分配する。発振器303は、所定の位相掃引信号313を生成する。位相シフタ302は、片方のアンテナ系統に設けられ、位相掃引信号313を送信信号312に付加した送信信号314を、アンテナ305から送信する。ここで、付加される位相掃引信号313の時間関数は、シンボル長よりも長い変動で、誤り訂正符号の符号長や時間インターリーブ長よりも短い変動が選ばれる。留意すべきは、この変動はシンボル周期に非同期で、後述する特許文献1に記載されるようなシンボル長の時間内で所定の位相遷移をするものではない。そして、当該構成による送信ダイバーシチ形態に加え、送信データが誤り訂正符号を用いて符号化される。
このように、非特許文献1に記載された従来の送信ダイバーシチを用いた伝送方法では、予め送信側で位相に変動を与えて送信することで、図22で述べたような2つの送信アンテナからの到来信号が打ち消し合う状況が持続する期間を短くし、誤りが生じても、時間インターリーブと誤り訂正処理とによって訂正できるようにしている。
また、シンボル波形(シンボル内の位相波形)に着目した特許文献1に記載された伝送方法の変調方式は、シンボル波形の位相についてシンボル周期Tに同期させた凸型の位相遷移を有し、遅延検波によって検波出力を得る方法で、マルチパスによって検波出力が消失してしまう状況を回避し、逆にパスの合成効果を得て伝送特性を改善することができる。この改善効果は、原理的に遅延波の遅延量τが所定の範囲(0<τ<T)において効果を発揮する。
図24は、特許文献1に記載されたシンボル波形の位相遷移を示す概略図である。図24において、この位相遷移は、1シンボルの時間長(シンボル長)Tでの遷移幅を最大位相遷移量φMAXで規定し、下記式(1)に示す関数に基づいて放物線状に位相を変化させる。
Figure 0004696111
図25は、特許文献1に記載された伝送信号生成回路700の構成を示す図である。図25に示すように、伝送信号生成回路700は、差動符号化回路701と、波形発生回路702と、直交変調器704と、発振器703とを備える。そして、伝送信号生成回路700は、送信データを差動符号化回路701で差動符号化し、波形発生回路702で凸型の位相冗長性を有するシンボル波形を用いて変調し、直交変調器704で搬送波周波数帯の信号に変換する。
次に、このような凸型の位相冗長性を持たせたシンボル波形を用いる場合の到来信号間の位相関係について示す。
図26は、凸型の位相冗長性を持たせたシンボル波形を用いる場合における2つの到来信号A及びBの位相関係を示す概略図である。図26において、位相差αを180度とすると、到来信号間に遅延が生じる場合でも位相が凸状に遷移するので、有効区間(正しい受信データが得られる区間)内で打ち消し合って受信波が消失する区間(図26のb点)があっても、打ち消し合わずに受信波が残存する区間(図26のa点及びc点)がある。この到来信号A及びBを遅延検波と低域通過フィルタとの組み合わせによって処理することで、有効な検波出力を得ることができる、よって、結果的にパスダイバーシチ効果を得て伝送特性が改善される。
図27は、特許文献1に記載される変調方式による送信ダイバーシチを用いた従来の伝送システムの構成を示す模式図である。図27に示すように、伝送信号生成回路700と第1及び第2空中線904及び905との間に遅延器901を設け、第1及び第2空中線904及び905から送信する信号間に遅延を挿入する。このとき、パスダイバーシチ効果が良好に発揮される遅延量に設定して送信することで、伝送特性の改善が図られる。
特許第2506747号明細書 アキラ・ヒロイケ、「コンバインド・エフェクツ・オブ・フェーズ・スウィーピング・トランスミッタ・ダイバーシチ・アンド・チャネル・コーディング」、アイ・トリプルイー・トランザクションズ・オン・ヴィーキュラ・テクノロジ(Akira Hiroike, "Combined Effects of Phase Sweeping Transmitter Diversity and Channel Coding", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY)、VOL.41,NO.2、1992年5月、IEEE、USA,170−176頁
しかしながら、非特許文献1に記載の従来の伝送方法は、シンボル長に対して遅延分散性が無視できるような伝搬路において効果を有するが、遅延分散性が無視できない場合は1シンボル内の位相が一定の通常の差動位相変調方式を用いるので、到来信号Aと到来信号Bとの位相関係によっては、検波出力が得られず伝送特性の劣化が生じる。図28は、通常の位相変調方式における到来する2波の信号が受信端で合成されるときの位相関係を示した模式図である。図28のように到来信号Aと到来信号Bとの間の遅延量が0.25Tの場合、α=180度(逆相)では、互いに打ち消し合って到来信号の同じシンボル区間で正しい受信データが得られる区間(有効区間)の全体に渡って受信波が消失してしまう。このように、2つの送信アンテナからの到来信号の一部が互いに打ち消し合う状況では、たとえ送信アンテナ間に位相変動を与えても、伝搬路での到来信号間の位相関係は改善されないので、検波出力は回復せず伝送誤りが生じる。
また、特許文献1に記載されたシンボルに同期した位相遷移を有する変調方式を遅延の挿入なしで送信ダイバーシチに適用した伝送方法では、遅延分散性が無視できる伝搬路の場合、たとえ複数の送信アンテナからの到来波のレベルが確保されても、2つの到来信号間の位相関係が逆相になると打ち消し合ってパスダイバーシチ効果が発揮されない。
図29は、特許文献1に記載された変調方式において到来信号の位相関係が逆相の場合を示した模式図である。図29に示すように、たとえ位相遷移が凸状であっても2つの到来信号間に遅延がない場合、逆相になってしまうと検波出力が無くなってしまい、改善効果を失ってしまう。
図30は、2波到来モデルにおいて、特許文献1に記載された伝送方式のビット誤り率と遅延量τとの関係を模式的に示したものである。図30において、横軸は2波到来モデルの到来信号間の遅延量、縦軸はビット誤り率を示す。到来波間の遅延量τが少ないと、図29で述べたように、2波の位相が逆相で到来した場合に改善効果が失われて、誤り率が劣化する。遅延量τが相対的に大きくなるにつれて改善され、シンボル長Tに近づくにつれて有効区間が短くなり、最終的には消滅して再度誤り率は劣化する。
特許文献1には、送信信号に意図的な所定遅延を挿入することで、送信ダイバーシチを構成する方法が記載されている(図27)。遅延器901で挿入する遅延量は、給電線を含め伝搬路での行路差、加えて各々行路内での遅延分散が相加することを想定して、例えば、図30のτSで示すように、誤り率特性曲線の底(良好な誤り率の区間)の中央に設定することになる。しかし、この従来の送信ダイバーシチだと、伝搬路で生じる遅延分散に対する耐性(遅延耐性)の観点で見るならば、「良好な誤り率の区間」で示された本来の方式の能力に対して、送信側で比較的大きな遅延τSを予め挿入しなければならないために、耐遅延量は大幅に目減りしてしまう問題があった。
それ故に、本発明の目的は、従来の課題を解決するもので、伝搬路の遅延分散性の有無にかかわらず、また、遅延分散性伝搬路に対してより大きな遅延耐性を有し、パスダイバーシチ効果によるより大きな誤り率改善が得られる送信ダイバーシチによる伝送方法及び伝送システムを提供することである。
本発明は、同じ送信データに基づいて変調された変調信号を、複数の送信アンテナを用いて送信側から受信側へ伝送する伝送方法に向けられている。そして、上記目的を達成するために、本発明の伝送方法は、送信側で、送信データから同一時間のシンボルにおいて相互に異なるシンボル波形となる複数の変調信号を生成し、生成した複数の変調信号を複数の送信アンテナからそれぞれ送信する。そして、受信側で、複数の送信アンテナから送信された複数の到来信号を任意の1本の受信アンテナで受信し、受信した信号を検波し、検波によって得られた検波信号を復号して受信データを得る。
典型的には、送信側は、所定のシンボル数だけ離れた任意の2つのシンボルのシンボル波形が、送信データにかかわらず同一であり、かつ、当該任意の2つのシンボルの位相差が、送信データに基づいて決定される変調信号を生成する。ここで、所定のシンボル数を1として、変調信号を生成してもよい。また、位相差は、2πを2の累乗の数で均等に分割した角度のいずれかであることが好ましい。さらに、隣接シンボル毎にさらに一定量右回りか左回りにシフト(いわゆる対称配置)するものであっても良く、送信データに応じて、さらに振幅方向にも情報を載せても良い。また、受信側は、遅延検波によって検波信号を得ることが望ましい。
そして、送信側が複数の送信信号を生成する際に基とするシンボル波形には、1シンボル期間において、位相の時間変化の2次微係数が常時ゼロではなく、かつ、その位相の変化が送信系統毎に異なれば、如何なる位相遷移の組み合わせを用いてもよい。
具体的には、例えば、1シンボル期間において、位相が時間に対し増加傾向で、かつ位相の時間変化の2次微係数が常時ゼロではない位相遷移を有する第1シンボル波形と、位相が時間に対し減少傾向で、かつ位相の時間変化の2次微係数が常時ゼロではない位相遷移を有する第2シンボル波形のように、相互に異なる変化となる波形を選ぶことが好ましい。さらに、第1及び第2シンボル波形は、1シンボル期間の所定点までは位相の時間変化量(1次微係数)が減少(又は増加)し、かつ当該所定点以降は位相の時間変化量が増加(又は減少)する位相遷移が好ましい。
また、例えば、1シンボル期間において、位相が時間に対し増加した後、所定点で減少に転じ、かつ位相の時間変化の2次微係数が常時ゼロではない位相遷移を有する第1シンボル波形と、位相が時間に対し減少した後、所定点で増加に転じ、かつ位相の時間変化の2次微係数が常時ゼロではない位相遷移を有する第2シンボル波形のように、相互に異なる変化となる波形を選ぶことが好ましい。この場合、1シンボル期間の全てで位相の時間変化量が減少(又は増加)する位相遷移が好ましい。
ここで、上記所定点を1シンボル期間の中心点とし、中心点以前の位相と中心点以後の位相とが対称的に変化する位相遷移であればなお良い。
また、本発明は、同じ送信データに基づいて変調された変調信号を、複数の送信アンテナを用いて送信する送信装置と、当該装置から送信された変調信号を1本の受信アンテナで受信する受信装置とで、構成される伝送システムに向けられている。そして、上記目的を達成するために、本発明の伝送システムは、送信装置が、送信データを差動符号化して差動符号化信号を生成する差動符号化部と、差動符号化信号を予め記憶する複数のシンボル波形でそれぞれ変調して、同一時間のシンボルにおいて互いに異なるシンボル波形を有する複数の変調信号を生成する複数の波形生成部と、複数の変調信号をそれぞれ直交変調して、搬送波帯域の信号に変換する複数のRF直交変調部と、帯域変換された複数の変調信号をそれぞれ送信する複数の送信アンテナとを備える。そして、受信装置は、複数の送信アンテナから送信された信号を受信する受信アンテナと、受信された信号に遅延検波処理及び低域濾過処理を施して、検波信号を生成する遅延検波部と、検波信号をデータ判定して受信データを出力するデータ判定部とを備える。
上記の本発明によれば、1つの送信データ系列に対して差動符号化し、異なるシンボル波形で変調して、複数の送信アンテナから信号を送信するので、各送信アンテナからの送信信号間に意図的な遅延を挿入するタイミング調整なしで、伝搬路での遅延分散性の有無にかかわらず、遅延分散があったとしてもより大きな耐遅延量を有し、さらに伝搬路が高速に変動する高速フェージング環境においても、受信側でパスダイバーシチ効果を発揮して伝送特性を改善することができる。
本発明は、複数の送信アンテナによる送信ダイバーシチを用い、かつ2のべき乗の位相数によって差動符号化を行う伝送システムに利用が可能である。以下、2つの送信アンテナによって4相で差動符号化を行う場合を一例に挙げて、本発明を説明する。なお、隣接シンボル毎にさらに一定量右回りか左回りにシフト(いわゆる対称配置)するものであっても良く、送信データに応じて、さらに振幅方向にも情報を載せる差動振幅位相変調(DAPSK)を用いてもよい。
図1は、本発明の一実施形態に係る伝送システムの構成を示す図である。図1に示す本実施形態の伝送システムは、送信装置100が無線伝搬路を介して受信装置140と通信を行う構成である。送信装置100は、差動符号化部101と、第1波形生成部102と、第2波形生成部103と、発振器106と、RF直交変調部104及び105と、増幅器107及び108と、送信アンテナ109及び110とを備える。受信装置140は、受信アンテナ141と、増幅器142と、RF部143と、遅延検波部144と、データ判定部145とを備える。なお、波形生成部、RF直交変調部、増幅器及び送信アンテナで構成される送信系統は、図1で示した2系統に限られず、3系統以上で構成されてもよい(図20)。また、発振器106は、送信系統毎に専用に設けられていてもよい。
まず、上記構成による本実施形態の伝送システムの送信装置100について説明する。
差動符号化部101には、入力ビット系列をシリアルパラレル変換によってシンボル形式に直された送信データ120が入力される。差動符号化部101は、送信データ120に差動符号化を施して、各シンボルの同相軸信号I及び直交軸信号Qを求める。具体的には、差動符号化部101は、第kシンボル(kは0以上の整数)の同相軸信号Ik及び直交軸信号Qkを、Mシンボル前(Mは1以上の整数)である第k−Mシンボルの同相軸信号Ik-Mと直交軸信号Qk-Mとを用いて、下記式(2)に従って求める。なお、Δθkは位相回転量である。
Figure 0004696111
図2は、本発明の一実施形態に係る伝送システムの差動符号化規則の一例及び信号空間ダイアグラムを示す図である。まず、図2の(a)に従って、送信データ120の連続する2ビットの組(シンボル形式)X1(k)及びX2(k)の位相回転量Δθkが決まる。次に、第kシンボルの信号点Sk(Ik、Qk)の信号ダイアグラムは、初期値S0(I0、Q0)が決まれば式(2)によって決まるが、図示すると図2の(b)のように表せる。そして、図2の(b)の信号点Sk(1、0)、Sk(0、1)、Sk(−1、0)及びSk(0、−1)から、図2の(c)に従って差動符号化信号(D1(k)、D2(k))を求める。
第1波形生成部102は、所定の第1シンボル波形を記憶しており、差動符号化部101が出力する差動符号化信号121に応じたベースバンド変調信号122及び123を出力する。第2波形生成部103は、所定の第2シンボル波形を記憶しており、差動符号化部101が出力する差動符号化信号121に応じたベースバンド変調信号124及び125を出力する。この第1シンボル波形と第2シンボル波形とは異なっており、ベースバンド変調信号122及び123の位相遷移とベースバンド変調信号124及び125の位相遷移とは異なる。
図3は、第1波形生成部102の構成の一例を示す図である。図3において、第1波形生成部102は、それぞれ、クロック発振器1801と、L分周器1802と、Lカウンタ1803と、Mカウンタ1804と、シフトレジスタ1805及び1806と、波形記憶部1807と、D/A変換器1808及び1809と、低域通過フィルタ1810及び1811とを備える。なお、第2波形生成部103の構成も同様であるので省略する。
図4は、第1波形生成部102及び第2波形生成部103が生成するベースバンド変調信号122〜125の基本となる、第1及び第2シンボル波形の位相遷移の様々な例を示したものである。第1及び第2シンボル波形の条件としては、その変化の2次微係数がシンボル内において常時ゼロ「0」でないことである。例えば、図4の(a)において、第1シンボル波形が実線で示される位相遷移を有し、第2シンボル波形が点線で示される位相遷移を有する場合である。なお、図4の(a)〜(e)は、位相遷移の一例に過ぎず、上記条件を満足すれば他の位相遷移であっても構わない。また、第1シンボル波形の位相遷移と第2シンボルの位相遷移とが対称的である必要はなく、図4の(a)〜(e)において実線と点線との全ての組み合わせや、実線同士や点線同士の組み合わせであってもよい。
また、シンボル波形は、1つの送信系統について最大M種類のものを用いることができる。このM種類のシンボル波形の中には、同じものが繰り返し含まれても良く、M=1の場合は、送信系統あたり1種類のシンボル波形となる。ただし、異なる送信系統の同じ送信データに対応するシンボルで用いるシンボル波形は、互いに異ならせる必要がある。
第1波形生成部102が生成するベースバンド変調信号のm番目(1≦m≦M)のシンボル波形の位相遷移ΦA m(t)、及び第2波形生成部103が生成するベースバンド変調信号のm番目のシンボル波形の位相遷移ΦB m(t)は、シンボル長Tにおけるシンボル内(0<t<T)では、図4の(a)のような波形の組み合わせを選んだ場合、例えば下記式(3)及び式(4)のように表される。
Figure 0004696111
Figure 0004696111
ここで、差動符号化を介した送信データを表す位相θ(t)は、第qシンボル(qは整数)について図2の(b)における信号点の位相をθqとすると、ステップ関数U(t)を用いて下記式(5)のように表される。
Figure 0004696111
位相遷移ΦA m(t)が0<t<Tでのみ定義され、これ以外の区間では0とすると、ベースバンド変調信号の位相遷移ΨA(t)は、下記式(6)で表される。
Figure 0004696111
従って、ベースバンド変調信号の位相遷移ΨA(t)から、同相変調信号YA I(t)及び直交変調信号YA Q(t)は、下記式(7)で表される。
Figure 0004696111
基本的には、これらの信号で搬送波を直交変調することでRF帯域の変調信号が得られる。なお、このままでは信号が広帯域になるので、帯域制限フィルタで帯域制限を行ってもよい。この場合、帯域制限フィルタのインパルス応答をh(t)として、帯域制限後の同相変調信号YA I(t)と直交変調信号YA Q(t)は、上記式(7)ではなく下記式(8)を用いて表される。
Figure 0004696111
また、同様に、第2波形生成部103についても、図4の(a)に示すシンボル波形の位相遷移ΦB m(t)に基づいて、ベースバンド変調信号の位相遷移ΨB(t)は、下記式(9)で表される。
Figure 0004696111
そして、同相変調信号YA I(t)及び直交変調信号YA Q(t)は、下記式(10)で表される。
Figure 0004696111
なお、上記式(8)及び式(10)の積分範囲−t0〜t0は、インパルス応答h(t)の広がりの範囲である。また、帯域制限フィルタは、低域通過型であればよく、様々な特性(コサインロールオフ、ルートナイキスト、ガウス等)及びパラメータ(カットオフ、ロールオフ率等)を用いることができる。ここでは、一例として、カットオフ角周波数ω0、ロールオフ係数γのコサインロールオフフィルタのインパルス応答h(t)を、下記式(11)に示す。
Figure 0004696111
さて、波形記憶部1807には、上記式(8)に従って、同相変調信号YA I(t)及び直交変調信号YA Q(t)が記憶される。図3に示す第1波形生成部102では、一例として、帯域制限フィルタのインパルス応答h(t)の広がりの範囲−t0〜t0を前後1シンボルとした場合で説明している。この場合、波形記憶部1807には、現在及び前後1シンボルの全ての送信データパターン分について計算して、各々変調信号の素片が記憶されている。入力された差動符号化信号121は、シフトレジスタ1805又は1806で遅延され、第kシンボルを中心に前後の第k−1シンボル及び第k+1シンボルを含めて、変調信号の素片の選択信号として波形記憶部1807に入力される。
クロック発振器1801は、シンボル周波数Fsのクロック信号を発振し、各シフトレジスタ1805又は1806に動作クロックとして入力される。Mカウンタ1804は、シンボル周波数Fsで動作して、M通りの波形選択信号1823を波形記憶部1807に入力する。これにより、波形記憶部1807は、Mシンボルを1周期として複数のシンボル波形の選択が可能となる。波形記憶部1807は、シンボル毎の変調信号素片の波形テーブルを記憶したメモリであるが、その各変調信号素片は1シンボル当たりLサンプルで記憶されている。L分周器1802が出力する周波数L・Fsのクロックを読み出しクロックとし、カウンタ信号1822を読み出しアドレスとして、シンボル内の信号点を順次読み出し動作する。両軸の変調信号は、それぞれD/A変換器1808及び1809でアナログ値に変換され、低域通過フィルタ1810及び1811で折り返し成分が除去されて、同相変調信号122及び直交変調信号123として出力される。第2波形生成部103も、記憶されている波形は異なるものの、構成動作は全く同じである。
なお、上記式(7)で示したように、帯域制限を行わない場合は、シフトレジスタ1805及び1806は不要であり、差動符号化信号121は、波形記憶部1807に直接入力される。また、1シンボル遅延の差動符号化が行われる場合(M=1)又はシンボル波形が1種類の場合は、Mカウンタ1804は不要である。
RF直交変調部104は、第1波形生成部102から出力される変調信号を用いて搬送波信号126を変調して、RF帯変調信号127を生成する。また、RF直交変調部105は、第2波形生成部103から出力される変調信号を用いて搬送波信号126を変調して、RF帯変調信号128を生成する。図5は、RF直交変調部104及び105の詳細な構成を示す図である。
図5において、RF直交変調部104及び105は、それぞれ、90度移相器1503と、平衡変調器1501及び1502と、合成器1504とを備える。RF直交変調部104において、発振器106から供給される搬送波信号126は、平衡変調器1501において第1波形生成部102から出力される同相変調信号122で変調され、同相被変調信号1510となる。また、搬送波信号126は、90度移相器1503で90度シフトされた後、平衡変調器1502において第1波形生成部102から出力される直交変調信号123で変調され、直交被変調信号1511となる。そして、直交被変調信号1511と同相被変調信号1510とが合成器1504で合成されて、RF帯変調信号127が生成される。RF直交変調部105についても同様に、第2波形生成部103を用いてRF帯変調信号128が生成される。
RF直交変調部104及び105で生成されたRF帯変調信号127及び128は、増幅器107及び108でそれぞれ増幅された後、送信アンテナ109及び110を介して送信される。
次に、上記構成による本実施形態の伝送システムの受信装置140について図1を用いて説明する。
送信装置100から送信される複数の送信信号は、受信アンテナ141で受信されて、RF帯受信信号150として増幅器142に入力される。増幅器142は、受信したRF帯受信信号150を増幅する。RF部143は、増幅器142で増幅されたRF帯受信信号150の周波数を、RF帯域からベースバンド帯域に変換する。遅延検波部144は、ベースバンド帯域に変換された受信信号151を、互いに直交する2軸について遅延検波遅延検波して、検波信号152を得る。データ判定部145は、遅延検波部144から出力される検波信号152を判定して、1シンボルにつき2ビットの受信データ153を出力する。
図6は、遅延検波部144の詳細な構成を示す図である。図6において、遅延検波部144は、Mシンボル遅延器1601と、乗算器1602及び1603と、−45度移相器1604と、+45度移相器1605と、低域通過フィルタ1606及び1607とを備える。Mシンボル遅延器1601は、受信信号をMシンボル長だけ遅延させる。なお、搬送波の位相は、入力と出力とで同相である。低域通過フィルタ1606及び1607は、乗算器1602及び1603で生じる搬送波の2倍の周波数成分を除去するだけでなく、後述する複数の検波出力を合成する役割も果たす。なお、図6において、遅延検波部144は、前段のRF部143でベースバンド帯域に変換された受信信号151を処理するが、RF帯受信信号150が直接入力されて処理するものであってもよい。
次に、上記構成による本実施形態の伝送システムで行われる伝送方法が、ダイバーシチ効果を発揮する原理について、ベースバンド変調信号を生成する基本となる第1及び第2シンボル波形を中心に詳細に説明する。
はじめに、伝搬路の遅延分散が無視できる場合を説明する。具体的には、各送信アンテナ109及び110から送信される信号が、伝搬路でそれぞれのマルチパス(多重経路伝搬)が発生するものの、それらのマルチパス波間の相対的な遅延がシンボル長に対して無視できる場合である。到来信号Aと到来信号Bとがそれぞれ独立なレイリー変動をする場合等がこれに相当し、これは伝送帯域内での伝搬路周波数特性が一様なフラットフェージングと呼ばれる。そして、位相差αは、送信アンテナ109及び110と受信アンテナ141との距離関係にも依存するパラメータである。
図7は、送信アンテナ109及び110から送信された送信信号A及びBを受信アンテナ141で受信した到来信号A及びBの位相を、シンボル毎に示した模式図である。図7は、第k−Mシンボル、第k−M+1シンボル、第kシンボル、及び第k+1シンボルの位相を示す。なお、送信データに応じた信号点の位相をθkと、送信信号Aの第mシンボル波形の位相遷移をΦA m(t)と、送信信号Bの第mシンボル波形の位相遷移をΦB m(t)とする。
到来信号Aは、第kシンボルにおいて、シンボル内で一定の位相θkを起点に、シンボル波形の位相遷移ΦA m(t)が加わる。同様に、到来信号Bは、第kシンボルにおける信号点の位相θkと到来信号間の位相関係αとの合成位相を起点に、シンボル波形の位相遷移ΦB m(t)が加わる。第kシンボルよりMシンボル前の第k−Mシンボルには、信号点の位相θk-Mを起点に、第kシンボルと同じシンボル波形の位相遷移ΦA m(t)又はΦB m(t)が加わる。そして、遅延検波部144では、第kシンボルと第k−Mシンボルとで遅延検波が行われる。
図8は、到来信号Aと到来信号Bとの位相関係及びシンボル間の位相関係を模式的に示した位相遷移図である。なお、この例では、送信信号A(到来信号A)及び送信信号B(到来信号B)のシンボル波形が、図4の(a)に示した位相遷移をする場合を示す。
図8において、第k−Mシンボルにおける到来信号Aの位相は、位相遷移a1のように変化し、到来信号Bの位相は、位相遷移a1の起点に対して位相差αだけシフトした位相値を起点に位相遷移b1のように変化する。そして、第kシンボルにおいて、到来信号Aの位相は第k−Mシンボルの位相遷移a1の起点より差動符号化による位相Δθkだけシフトした位相値を起点に位相遷移a2のように変化し、到来信号Bの位相は位相遷移a2の起点に対して位相差αだけシフトした位相値を起点に位相遷移b2のように変化する。よって、第k−Mシンボルの位相遷移a1及びb1と第kシンボルの位相遷移a2及びb2との関係は、差動符号化による位相Δθkだけシフトしたものとなる。従って、第kシンボルを第k−Mシンボルで遅延検波すれば、差動符号化による位相Δθkが得られるので、データを復調できる。
さらに、到来信号Aと到来信号Bとの間の位相関係をベクトル図で説明する。
今、図9に示すように、到来信号Aの信号レベルを1、到来信号Bの信号レベルをρとし、到来信号間の位相差がαであるとする。
この場合、図10に示すように、第k−Mシンボルでは、到来信号BのベクトルS1Bは、到来信号AのベクトルS1Aに対してαだけ位相が異なる。到来信号Aは、ベクトルS1Aを起点に時間と共にΦA m(t)に応じて位相が変化し、任意の時刻tにおいてベクトルS1A'であるとする。到来信号Bは、ベクトルS1Bを起点に時間と共にΦB m(t)に応じて位相が変化し、時刻tにおいてベクトルS1B'であるとする。このとき、時刻tにおける受信波のベクトルはVk-Mとなる。
同様に、第kシンボルでは、到来信号AのベクトルS2Aは、ベクトルS1Aに対してΔθkだけ位相が異なり(ここでは、検波対象とするシンボル間の位相差Δθkがπとなる場合を示している)、到来信号BのベクトルS2Bは、ベクトルS2Aに対してαだけ位相が異なる。到来信号Aは、ベクトルS2Aを起点に時間と共にΦA m(t)に応じて位相が変化し、任意の時刻tにおいてベクトルS2A'であるとする。到来信号Bは、ベクトルS2Bを起点に時間と共にΦB m(t)に応じて位相が変化し、ある時刻tにおいてベクトルS2B'であるとする。このとき、時刻tにおける受信波ベクトルはVkとなる。
このように、到来信号A及び到来信号Bについて、第k−Mシンボルと第kシンボルとは、それぞれシンボル内で同じように位相が遷移するので、2つの受信波ベクトルVkとVk-Mとの位相関係も任意の時刻tにおいて常にΔθkとなる。
次に、検波出力が有効に得られるシンボル波形の位相遷移について説明する。
図10から、任意の時刻tにおける受信波ベクトルVk-M(t)とVk(t)とは、第k−M及び第kシンボルにおける信号点をそれぞれSk-M及びSkとすると、下記式(12)で表される。
Figure 0004696111
従って、遅延検波による検波出力Dk(t)は、下記式(13)で表される。なお、*は複素共役を示す。
Figure 0004696111
ここで、ΦA m(t)=u及びΦB m(t)+α=vとおくと、上記式(12)は、下記式(14)のように表される。
Figure 0004696111
従って、Dk(t)は、下記式(15)のように表現される。
Figure 0004696111
この式(15)において、exp(j・Δθk)の項は、送信データを担う位相Δθkに対応する検波信号を示しており、|Sk|2及び{1+ρ2+2ρ・COS(ΦA m(t)−ΦB m(t)−α)}の項は、常に非負であるから、常に正しい検波出力が得られることを示している。式(15)がゼロになるのは、第3項の{1+ρ2+2ρ・COS(ΦA m(t)−ΦB m(t)−α)}がゼロになる時であるが、それは、ρ=1かつcosの項が−1になる時の瞬間に限られる。この第3項は、2つのシンボル波形の位相差ΦA m(t)−ΦB m(t)が時間間隔0<t<Tにおいて変化する限り、任意のρ、αについて、一瞬ゼロになったとしても常にゼロにならない。すなわち、到来信号Aと到来信号Bとが合成された検波出力が完全に消失することはなく、ダイバーシチ効果が得られることを意味する。なお、変化量が大きくなるほど、シンボル内の0<t<Tにおいて有効な検波出力が複数得られ、より高いパスダイバーシチ効果が得られるが、好ましくは2π以上に変化すれば、COS(ΦA m(t)−ΦB m(t)−α)が必ず1になり、検波出力が最大になるtが必ず存在することになる。
従って、本実施形態に係る伝送装置における第1波形生成部102と第2波形生成部103とが記憶する第1及び第2シンボル波形としては、例えば図4の(a)に示した位相遷移ΦA及びΦBのような、同じ時間領域で位相遷移の増減方向が互いに異なるようなものにすれば、受信側で高いダイバーシチ効果が得られる。
次に、受信装置140における到来信号Aと到来信号Bとの位相関係によって、検波信号が変化する様子を説明する。
図11は、伝搬路の遅延分散性が無視できる場合に受信アンテナで受信された到来信号A及びBの位相関係を示した模式図である。図11の(a)〜(d)は、それぞれα=0度、90度、180度及び270度の場合における到来信号A及びBのシンボル波形の位相関係を示す。図11の縦軸は、図8における第kシンボルの位相を、到来信号Aの位相遷移a2の起点を0度として0〜360度の範囲で示したもので、上記式(3)及び式(4)においてφMAX=720度とした場合である。また、到来信号Aと到来信号Bとの位相が逆相になる逆相点を×印で示し、同相になる同相点を○印で示している。
図11の(a)に示すように、伝搬路に遅延がない場合、到来信号Aと到来信号Bとがベクトル合成された受信波の振幅が打ち消し合ってゼロになる逆相点は、αの大きさにかかわらず1シンボル内で一瞬である。よって、この到来信号A及びBを遅延検波することで、検波振幅は受信波の2乗に比例し、ほぼ同様の形となる。この様子を図示したものが、図12の実線で示した曲線である。図12の実線に示すように、極性(図12では正極性となる例)が送信データに対して常に正しい有効な検波出力が得られる。また、図12の点線は、低域通過フィルタ1810及び1811通過後の検波出力を示している。低域通過フィルタ1810及び1811を通すことで、一瞬ゼロとなって欠損したとしても、シンボル内で複数の時間位置で得られる有効な出力を合成した検波出力が得られて、ダイバーシチ効果が発揮される。
次に、伝搬路の遅延分散が無視できない場合を説明する。
ここでは、説明を容易にするために、図13に示すような2つの送信アンテナからの到来信号が2波となる2波到来モデルで考える。まず、送信信号Aの直接波と遅延波とが受信される場合、及び送信信号Bの直接波と遅延波とが受信される場合をそれぞれ考察し、その後に全ての4つの到来波が受信される状況を考察する。
図14Aは、送信信号Aの直接波と遅延波との位相の変化をシンボル毎に示した模式図である。ここで、直接波と遅延波との各々の搬送波同士の受信点における位相差をβAとする。遅延波の位相は、第k番目のシンボルでは、送信データに応じた信号点の位相θkと信号間の位相差βAとの合成位相を起点に、直接波に対してτだけ遅延した送信信号Aのシンボル波形の位相遷移ΦA m(t-τ)が加わる。同様に、遅延波の位相は、第k−Mシンボルにおいては、信号点の位相θk-Mを起点に、第kシンボルと同じ送信信号Aの位相遷移ΦA m(t-τ)が加わる。
従って、第kシンボルと第k−Mシンボルとで遅延検波を行う際に、正しい検波極性が得られてかつ正しい復調データが得られる有効区間は、第kシンボルにおける領域(ii)又は第k−Mシンボルにおける領域(ii)'である。その前後の領域(i)、(iii)、(i)'及び(iii)'は、隣接シンボルの異なるデータ信号が混入するためにシンボル間干渉が生じ、必ずしも正しい復調データが得られない領域である。
図14Bは、送信信号Bの直接波と遅延波との位相の変化をシンボル毎に示した模式図である。送信信号Bについては、上記の説明中、直接波と遅延波との各々の搬送波同士の受信点における位相差をβBと、直接波に対してτだけ遅延した送信信号Bのシンボル波形の位相遷移をΦB m(t-τ)と置き換えることで、原理は全く同じである。なお、ここでは、送信信号Aに関する直接波と遅延波との遅延差と、送信信号Bに関する直接波と遅延波との遅延差とを、共に同じτとしているが、これらは異なっていても同様の改善効果が得られる。
図15は、送信信号A及びBの直接波及び遅延波について、各々の搬送波の受信点での位相関係を示した図である。上述のβA及びβBに加えて、送信信号Aの直接波と送信信号Bの直接波との各々搬送波間の位相差をα'としている。また、送信信号A及びBの各直接波に対する遅延波の振幅をρA及びρBとした。直接波同士の振幅については、この後の動作・改善効果の説明には差は無いので、ここでは簡単のために同じとしている。
図16Aは、送信信号Aの直接波と遅延波との位相関係及びシンボル間の位相関係を模式的に示した位相遷移図である。なお、送信信号Aのシンボル波形として図4の(a)に示すΦAを用いた場合を示す。図16Aにおいて、第k−Mシンボルにおける直接波の位相は、位相遷移a1のように変化し、遅延波の位相は、位相遷移a1の起点に対してβAだけシフトした位相値を起点に位相遷移c1のように遷移する。そして、第kシンボルにおいて、直接波の位相は第k−Mシンボルの位相遷移a1の起点より差動符号化によるΔθkだけシフトした位相値を起点に位相遷移a2のように遷移し、遅延波の位相は、位相遷移a2の起点に対してβAだけシフトした位相値を起点に位相遷移c2のように遷移する。よって、第k−Mシンボルの位相遷移a1及びc1と第kシンボルの位相遷移a2及びc2との関係は、差動符号化によるΔθkだけシフトしたものとなる。従って、第kシンボルを第k−Mシンボルで遅延検波すれば、差動符号化によるΔθkが得られるので、データを復調できる。この関係は、図16Bに示す、送信信号Bの直接波と遅延波との位相関係及びシンボル間の位相関係を模式的に示した位相遷移図でも同様である。
次に、送信信号Aの直接波と遅延波との間の位相関係をベクトル図で説明する。
図17Aは、送信信号Aの直接波と遅延波との位相遷移をベクトルで表した模式図である。ここでは、図14Aにおける有効区間(ii)又は(ii)'についてのみ考える。図17Aは、送信データを表し、検波対象となるMシンボルだけ離れた2つのシンボル間の位相差Δθkがπとなる場合を一例として示しており、第k−Mシンボルの信号点をS1Aと、第kシンボルの信号点をS2Aとする。
第k−Mシンボルでは、直接波のベクトルS1Aに対し、遅延波のベクトルS1AdはβAだけ位相が異なる。直接波は、ベクトルS1Aを起点に時間と共にΦA m(t)に応じて位相が変化し、任意の時刻tにおいてベクトルS1A’で表される。遅延波は、ベクトルS1Adを起点に時間と共にΦA m(t-τ)に応じて位相が変化し、時刻tにおいてベクトルS1Ad’で表される。このとき、時刻tにおける受信波のベクトルはVA k-Mとなる。
同様に、第kシンボルについて、直接波のベクトルS2AはベクトルS1Aに対してΔθkだけ異なり、遅延波のベクトルS2AdはベクトルS2Aに対してβAだけ位相が異なる。そして、直接波はベクトルS2Aを起点に時間と共にΦA m(t)に応じて位相が変化し、任意の時刻tにおいてベクトルS2A’で表される。遅延波は、ベクトルS2Adを起点に時間と共に、ΦA m(t-τ)に応じて位相が変化し、ある時刻tにおいてベクトルS2Ad’で表される。このとき、時刻tにおける受信波ベクトルはVA kとなる。
このように、送信信号Aの直接波及び遅延波について、第k−Mシンボルと第kシンボルとは、それぞれシンボル内で同じように位相が遷移するので、2つの受信波ベクトルVA kとVA k-Mとの位相関係も任意の時刻tにおいて常にΔθkとなる。
図17Bは、送信信号Bの直接波と遅延波との位相遷移をベクトルで表した模式図である。ここでも、図14Bにおける有効区間(ii)又は(ii)'についてのみ考える。図17Bも、送信データを表し、検波対象となるMシンボルだけ離れたシンボル間の位相差Δθkがπとなる場合を一例として示している。送信信号Aの第k−Mシンボルの信号点S1Aから位相差α’だけ回った所に、送信信号Bの信号点S1Bがあり、さらに、Δθkだけ回転した所に、第kシンボルの信号点をS2Bがある。
第k−Mシンボルでは、直接波のベクトルS1Bに対し、遅延波のベクトルS1BdはβBだけ位相が異なる。直接波は、ベクトルS1Bを起点に時間と共にΦB m(t)に応じて位相が変化し、任意の時刻tにおいてベクトルS1B'で表される。遅延波は、ベクトルS1Bdを起点に時間と共にΦB m(t-τ)に応じて位相が変化し、時刻tにおいてベクトルS1Bd'で表される。このとき、時刻tにおける受信波のベクトルはVB k-Mとなる。
同様に第kシンボルについて、直接波のベクトルS2BはベクトルS1Bに対してΔθkだけ異なり、遅延波のベクトルS 2Bd はベクトルS2Bに対してβBだけ位相が異なる。そして、直接波はベクトルS2Bを起点に時間と共にΦB m(t)に応じて位相が変化し、任意の時刻tにおいてベクトルS2B'で表される。遅延波は、ベクトルS2Bdを起点に時間と共に、ΦB m(t-τ)に応じて位相が変化し、ある時刻tにおいてベクトルS2Bd'で表される。このとき、時刻tにおける受信波ベクトルはVB kとなる。このように、送信信号Bの直接波と遅延波について、第k−Mシンボルと第kシンボルとは、それぞれシンボル内で同じように位相が遷移するので、2つの受信波ベクトルVB kとVB k-Mとの位相関係も任意の時刻tにおいて常にΔθkとなる。
結局、図13に示す4つ全ての到来波がある場合、図18に示すように、第k−MシンボルではVA k-MとVB k-Mとのベクトル和VAB k-Mが、第kシンボルではVA kとVB kのベクトル和VAB kが、結局受信されることになるが、両者の位相差は、やはり有効区間内の任意の時刻tにおいて常にΔθkとなる。このことは、この受信信号から遅延検波した検波出力は、両ベクトルVA kとVB k(又はVA k-MとVB k-M)が打ち消し合うか、2つのアンテナからの各々直接波と遅延波が同時に打ち消し合って両ベクトルVA kとVB k(又はVA k-MとVB k-M)とが同時に消失するかしない限り、つまり一瞬消失するようなことがあったとしても、その他では、送信データに対応した、常に正しい極性の出力が得られることを意味する。つまり、図11及び図12で説明した通り、一瞬はゼロになる場合があったとしてもそれ以外ではゼロにはならない検波出力が得られ、さらに低域通過フィルタを通すことで、一部がゼロとなって欠損したとしてもシンボル内の有効区間内で複数の時間位置で得られる有効な出力を合成した検波出力が得られて、パスダイバーシチ効果が発揮される。
以上のように、本発明の一実施形態に係る伝送方法及び伝送システムは、送信装置100において、同じ送信データを差動符号化して異なるシンボル波形で変調し、それぞれを別々の送信アンテナで送信し、受信装置140において、遅延検波によって検波する。これにより、伝搬路の行路差による遅延差や遅延分散が存在する場合でも、誤り率の改善効果が得られる。
図19は、図30と同様に、本発明の伝送方法によるビット誤り率と遅延量τとの関係を模式的に示した図である。遅延量τがシンボル長T(又は−T)に近づくにつれて有効区間が短くなり、最終的には消滅して誤り率が劣化する所は同じだが、遅延量τが0付近でも誤り率が改善される所が異なる。従って、本発明では、特許文献1のように、送信信号に意図的な所定遅延を挿入することは必ずしも必要でなく、むしろ設定遅延量τsを0に設定する、つまり遅延を挿入しないことで最大の遅延耐性が得られる。図19には、この様子を図示しているが、図30と比べると、大きく遅延耐性が改善されることが分かる。
なお、図13の2波到来波モデルにおいて、各送信信号A及びBからの直接波と遅延波との遅延時間差がτで同じ場合の特殊な構成として図27があるので、もちろん図27の構成、つまり意図的に遅延を挿入してもよい。各アンテナからの伝搬路の間に、設置構成上等の理由から、行路差による定常的な遅延差が生じるならば、むしろ遅延を挿入して打ち消すことにより、その他の要因から来る遅延差・遅延分散に対して、最大の耐性を発揮させることができる。しかも、受信側で伝搬路推定やその追従処理等が一切不要なので、高速移動体等の伝搬路が高速に変動する環境でも効果を維持することができる。
本発明は、複数の送信アンテナを用いて信号を送信する送信ダイバーシチを用いた伝送システム等に利用可能であり、特に、受信端末の大きさや処理能力に制限があり、伝搬路特性が高速に変動するような電波伝搬環境で使用される場合等に有用である。例えば、無線ICタグシステムや、高速移動体に対する通信を含む路車間通信、車車間通信及び車人間通信システム等である。
本発明の一実施形態に係る伝送システムの構成を示す図 本発明の一実施形態に係る伝送システムの差動符号化規則の一例及び信号空間ダイアグラムを示す図 第1波形生成部102の構成の一例を示す図 第1波形生成部102及び第2波形生成部103が記憶するシンボル波形の位相遷移の一例を示す模式図 RF直交変調部104及び105の詳細な構成を示す図 遅延検波部144の詳細な構成を示す図 2つの送信アンテナ109及び110からの送信信号A及びBの位相をシンボル毎に示した模式図 到来信号Aと到来信号Bとの位相関係及びシンボル間の位相関係を模式的に示した位相遷移図 到来信号Aと到来信号Bとの間の位相関係をベクトルで表した図 到来信号Aと到来信号Bとの間の位相遷移をベクトルで表した図 伝搬路の遅延分散性が無視できる場合に受信アンテナで受信された到来信号A及びBの位相関係を示した模式図 図11に示す到来信号A及びBの低域通過フィルタ1810及び1811通過後の検波出力を示す図 2つの送信アンテナを用いた2波到来モデルの概念図 送信信号Aの直接波と遅延波との位相の変化をシンボル毎に示した模式図 送信信号Bの直接波と遅延波との位相の変化をシンボル毎に示した模式図 送信信号A及びBの直接波及び遅延波について、各々の搬送波の受信点での位相関係を示した図 送信信号Aの直接波と遅延波との位相関係及びシンボル間の位相関係を模式的に示した位相遷移図 送信信号Bの直接波と遅延波との位相関係及びシンボル間の位相関係を模式的に示した位相遷移図 送信信号Aの直接波と遅延波との位相遷移をベクトルで表した模式図 送信信号Bの直接波と遅延波との位相遷移をベクトルで表した模式図 全ての到来波の位相遷移をベクトルで表した模式図 本発明の伝送方法によるビット誤り率と遅延量τとの関係を模式的に示した図 複数の波形生成部及び送信アンテナを有する伝送システムの一例を示す図 2つの到来信号A及びBが受信端で合成されるときの位相関係を示した模式図 この通常の位相変調方式における位相差α=180度である場合の、2つの到来信号A及びBの位相関係を示す概略図 従来の伝送システムの構成を示す図 従来のシンボル波形の位相遷移を示す概略図 図27に示した伝送信号生成回路700の構成を示す図 遅延を伴う場合の到来信号A及びBの位相関係を示す概略図 従来の伝送システムの構成を示す模式図 通常の位相変調方式における到来する2波の信号が受信端で合成されるときの位相関係を示した模式図 従来の変調方式において到来信号の位相関係が逆相の場合を示した模式図 従来の伝送方法によるビット誤り率と遅延量τとの関係を模式的に示した図
符号の説明
100 送信装置
101、701 差動符号化部(回路)
102、103 波形生成部
104、105 RF直交変調部
106、303、703、1801 発振器
107、108、142 増幅器
109、110、141、304〜306 アンテナ
140 受信装置
143 RF部
144 遅延検波部
145 データ判定部
300 送信機
301 分配器
302 位相シフタ
307 受信機
700 伝送信号生成回路
702 波形発生回路
704 直交変調器
901、1601 遅延器
902、903 レベル調整器
904、905 空中線
1501、1502 平衡変調器
1503、1604、1605 移相器
1504 合成器
1606、1607、1810、1811 低域通過フィルタ
1602、1603 乗算器
1802 L分周器
1803、1804 カウンタ
1805、1806 シフトレジスタ
1807 波形記憶部
1808、1809 D/A変換器

Claims (17)

  1. 同じ送信データに基づいて変調された変調信号を、複数の送信アンテナを用いて送信側から受信側へ伝送する伝送方法であって、
    前記送信側は、
    前記送信データから、同一時間のシンボルにおいて、位相の時間変化について2次微係数が常時ゼロではなく、前記複数の送信アンテナの間で相互に異なるシンボル波形となる複数の変調信号を生成し、
    前記生成した複数の変調信号を前記複数の送信アンテナからそれぞれ送信し、
    前記受信側は、
    前記複数の送信アンテナから送信された前記複数の変調信号を任意の1本の受信アンテナで受信し、
    前記受信した変調信号を検波し、
    前記検波によって得られた検波信号を復号して受信データを得る、伝送方法。
  2. 前記送信側は、所定のシンボル数だけ離れた任意の2つのシンボルのシンボル波形が、送信データにかかわらず同一であり、かつ、当該任意の2つのシンボルの位相差が、送信データに基づいて決定される前記変調信号を生成することを特徴とする、請求項1に記載の伝送方法。
  3. 前記送信側は、前記所定のシンボル数を1として、前記変調信号を生成することを特徴とする、請求項2に記載の伝送方法。
  4. 前記送信側は、前記位相差に、2πを2の累乗の数で均等に分割した角度のいずれかを用いることを特徴とする、請求項2に記載の伝送方法。
  5. 前記受信側は、遅延検波によって前記検波信号を得ることを特徴とする、請求項1に記載の伝送方法。
  6. 同じ送信データに基づいて変調された変調信号を、複数の送信アンテナを用いて送信側から受信側へ伝送する伝送方法であって、
    前記送信側は、
    前記送信データから、同一時間のシンボルにおいて相互に異なるシンボル波形となる複数の変調信号を生成し、
    前記生成した複数の変調信号を前記複数の送信アンテナからそれぞれ送信し、
    前記受信側は、
    前記複数の送信アンテナから送信された前記複数の変調信号を任意の1本の受信アンテナで受信し、
    前記受信した変調信号を検波し、
    前記検波によって得られた検波信号を復号して受信データを得て、
    前記送信側は、1シンボル期間において、位相が時間方向に増加し、かつ位相の時間変化の2次微係数が常時ゼロではない位相遷移を有する第1シンボル波形と、位相が時間方向に減少し、かつ位相の時間変化の2次微係数が常時ゼロではない位相遷移を有する第2シンボル波形とを、少なくとも生成することを特徴とする、伝送方法。
  7. 前記送信側は、1シンボル期間の所定点までは位相の時間変化量が減少し、かつ当該所定点以降は位相の時間変化量が増加する位相遷移を有する、前記第1シンボル波形及び前記第2シンボル波形を生成することを特徴とする、請求項6に記載の伝送方法。
  8. 前記送信側は、前記所定点を1シンボル期間の中心点とし、中心点以前の位相と中心点以後の位相とが対称的に変化する位相遷移を有する、前記第1シンボル波形及び前記第2シンボル波形を生成することを特徴とする、請求項7に記載の伝送方法。
  9. 前記送信側は、1シンボル期間の所定点までは位相の時間変化量が増加し、かつ当該所定点以降は位相の時間変化量が減少する位相遷移を有する、前記第1シンボル波形及び前記第2シンボル波形を生成することを特徴とする、請求項6に記載の伝送方法。
  10. 前記送信側は、前記所定点を1シンボル期間の中心点とし、中心点以前の位相と中心点以後の位相とが対称的に変化する位相遷移を有する、前記第1シンボル波形及び前記第2シンボル波形を生成することを特徴とする、請求項9に記載の伝送方法。
  11. 前記送信側は、1シンボル期間の全てで位相の時間変化量が減少する位相遷移を有する前記第1シンボル波形及び前記第2シンボル波形を生成することを特徴とする、請求項6に記載の伝送方法。
  12. 前記送信側は、1シンボル期間の全てで位相の時間変化量が増加する位相遷移を有する前記第1シンボル波形及び前記第2シンボル波形を生成することを特徴とする、請求項6に記載の伝送方法。
  13. 同じ送信データに基づいて変調された変調信号を、複数の送信アンテナを用いて送信側から受信側へ伝送する伝送方法であって、
    前記送信側は、
    前記送信データから、同一時間のシンボルにおいて相互に異なるシンボル波形となる複数の変調信号を生成し、
    前記生成した複数の変調信号を前記複数の送信アンテナからそれぞれ送信し、
    前記受信側は、
    前記複数の送信アンテナから送信された前記複数の変調信号を任意の1本の受信アンテナで受信し、
    前記受信した変調信号を検波し、
    前記検波によって得られた検波信号を復号して受信データを得て、
    前記送信側は、1シンボル期間の所定点までは位相が時間方向に増加し、当該所定点以降は減少に転じ、かつ位相の時間変化の2次微係数が常時ゼロではない位相遷移を有する第1シンボル波形と、1シンボル期間の所定点までは位相が時間方向に減少し、当該所定点以降は増加に転じ、かつ位相の時間変化の2次微係数が常時ゼロではない位相遷移を有する第2シンボル波形とを、少なくとも生成することを特徴とする、伝送方法。
  14. 前記送信側は、前記所定点を1シンボル期間の中心点とし、中心点以前の位相と中心点以後の位相とが対称的に変化する位相遷移を有する、前記第1シンボル波形及び前記第2シンボル波形を生成することを特徴とする、請求項13に記載の伝送方法。
  15. 同じ送信データに基づいて変調された変調信号を、複数の送信アンテナを用いて送信する送信装置と、当該装置から送信された変調信号を任意の1本の受信アンテナで受信する受信装置とで、構成される伝送システムであって、
    前記送信装置は、
    前記送信データを差動符号化して、差動符号化信号を生成する差動符号化部と、
    前記差動符号化信号を予め記憶する複数のシンボル波形でそれぞれ変調して、同一時間のシンボルにおいて、位相の時間変化について2次微係数が常時ゼロではなく、前記複数の送信アンテナの間で互いに異なるシンボル波形を有する複数の変調信号を生成する複数の波形生成部と、
    前記複数の変調信号をそれぞれ直交変調して、搬送波帯域の信号に変換する複数のRF直交変調部と、
    前記帯域変換された前記複数の変調信号をそれぞれ送信する複数の送信アンテナとを備え、
    前記受信装置は、
    前記複数の送信アンテナから送信された信号を受信する受信アンテナと、
    前記受信された信号に遅延検波処理及び低域濾過処理を施して、検波信号を生成する遅延検波部と、
    前記検波信号をデータ判定して受信データを出力するデータ判定部とを備える、伝送システム。
  16. 同じ送信データに基づいて変調された変調信号を、複数の送信アンテナを用いて送信側から受信側へ送信する送信方法であって、
    前記送信側は、
    前記送信データから、同一時間のシンボルにおいて、位相の時間変化について2次微係数が常時ゼロではなく、前記複数の送信アンテナの間で相互に異なるシンボル波形となる複数の変調信号を生成し、
    前記生成した複数の変調信号を前記複数の送信アンテナからそれぞれ送信する、送信方法。
  17. 同じ送信データに基づいて変調された変調信号を、複数の送信アンテナを用いて送信する送信装置であって、
    前記送信データを差動符号化して、差動符号化信号を生成する差動符号化部と、
    前記差動符号化信号を複数のシンボル波形でそれぞれ変調して、同一時間のシンボルにおいて、位相の時間変化について2次微係数が常時ゼロではなく、前記複数の送信アンテナの間で互いに異なるシンボル波形を有する複数の変調信号を生成する複数の波形生成部とを備える、送信装置。
JP2007510460A 2005-03-28 2006-03-24 伝送方法及び伝送システム Active JP4696111B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510460A JP4696111B2 (ja) 2005-03-28 2006-03-24 伝送方法及び伝送システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005090889 2005-03-28
JP2005090889 2005-03-28
JP2007510460A JP4696111B2 (ja) 2005-03-28 2006-03-24 伝送方法及び伝送システム
PCT/JP2006/306003 WO2006104054A1 (ja) 2005-03-28 2006-03-24 伝送方法及び伝送システム

Publications (2)

Publication Number Publication Date
JPWO2006104054A1 JPWO2006104054A1 (ja) 2008-09-04
JP4696111B2 true JP4696111B2 (ja) 2011-06-08

Family

ID=37053312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007510460A Active JP4696111B2 (ja) 2005-03-28 2006-03-24 伝送方法及び伝送システム

Country Status (6)

Country Link
US (1) US8170130B2 (ja)
EP (1) EP1860790A1 (ja)
JP (1) JP4696111B2 (ja)
KR (1) KR20070118252A (ja)
CN (1) CN101160748B (ja)
WO (1) WO2006104054A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170138B2 (en) * 2007-07-24 2012-05-01 John Pinkney Signal generator and method
EP2432075B1 (en) * 2009-05-14 2018-11-14 Nec Corporation Phase shifter, wireless communication apparatus, and phase shift control method
WO2015131342A1 (zh) 2014-03-05 2015-09-11 华为技术有限公司 信息传输方法、装置及设备
JP6269834B2 (ja) * 2014-07-22 2018-01-31 日本電気株式会社 無線送信装置及び無線送信方法
CN110557118B (zh) * 2018-05-31 2022-12-27 华为技术有限公司 一种锁相装置及锁相方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214743A (ja) * 1986-03-14 1987-09-21 Matsushita Electric Ind Co Ltd デジタル信号伝送方法
JPS63260244A (ja) * 1987-04-16 1988-10-27 Matsushita Electric Ind Co Ltd デイジタル信号伝送方法
JP2001102976A (ja) * 1999-08-24 2001-04-13 Samsung Electronics Co Ltd 次世代移動体通信システムにおける閉ループ送信アンテナダイバーシチ方法及びその方法を用いる基地局装置並びに移動局装置
JP2004165784A (ja) * 2002-11-11 2004-06-10 Kddi Corp 時空間送信ダイバーシチ方式を適用したmc−ds/cdma方式の送信装置及び受信装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856025A (en) 1985-12-26 1989-08-08 Matsushita Electric Industrial Co., Ltd. Method of digital signal transmission
JP2506748B2 (ja) 1987-04-16 1996-06-12 松下電器産業株式会社 デイジタル信号伝送方法
US5289499A (en) 1992-12-29 1994-02-22 At&T Bell Laboratories Diversity for direct-sequence spread spectrum systems
JP3183747B2 (ja) * 1993-04-14 2001-07-09 松下電器産業株式会社 ディジタル信号伝送方法およびディジタル信号伝送装置ならびにディジタル信号伝送波形
US6996191B1 (en) * 1999-09-30 2006-02-07 Skyworks Solutions, Inc. Efficient accurate controller for envelope feedforward power amplifiers
CN1112774C (zh) * 1999-11-10 2003-06-25 深圳市中兴通讯股份有限公司 一种应用于wcdma接收机中的信道估计方法
US7366272B2 (en) * 2000-10-21 2008-04-29 Samsung Electronics Co., Ltd Method and device for transmitting packet data in mobile communication system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8229015B2 (en) * 2006-03-17 2012-07-24 Panasonic Corporation Wireless transmission system, wireless transmitting method, and wireless station and transmitting station used therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214743A (ja) * 1986-03-14 1987-09-21 Matsushita Electric Ind Co Ltd デジタル信号伝送方法
JPS63260244A (ja) * 1987-04-16 1988-10-27 Matsushita Electric Ind Co Ltd デイジタル信号伝送方法
JP2001102976A (ja) * 1999-08-24 2001-04-13 Samsung Electronics Co Ltd 次世代移動体通信システムにおける閉ループ送信アンテナダイバーシチ方法及びその方法を用いる基地局装置並びに移動局装置
JP2004165784A (ja) * 2002-11-11 2004-06-10 Kddi Corp 時空間送信ダイバーシチ方式を適用したmc−ds/cdma方式の送信装置及び受信装置

Also Published As

Publication number Publication date
WO2006104054A1 (ja) 2006-10-05
US20080212706A1 (en) 2008-09-04
KR20070118252A (ko) 2007-12-14
CN101160748A (zh) 2008-04-09
JPWO2006104054A1 (ja) 2008-09-04
CN101160748B (zh) 2012-07-04
US8170130B2 (en) 2012-05-01
EP1860790A1 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
EP0232626B1 (en) Method of digital signal transmission having a low error rate in the presence of multipath transmission
JP5058974B2 (ja) 無線伝送システム及び無線伝送方法、並びにそれらに用いられる無線局及び送信局
JP4696111B2 (ja) 伝送方法及び伝送システム
US8675759B2 (en) Wireless transmission system, and wireless station and method used for same
JP2572765B2 (ja) 送信パスダイバ−シチ伝送方式
US20120314800A1 (en) Transmitter
JP3183747B2 (ja) ディジタル信号伝送方法およびディジタル信号伝送装置ならびにディジタル信号伝送波形
JP2506748B2 (ja) デイジタル信号伝送方法
US5504786A (en) Open loop phase estimation methods and apparatus for coherent combining of signals using spatially diverse antennas in mobile channels
JP2007081504A (ja) Ofdm受信機における伝送路特性補間方法及びその装置
JP2506747B2 (ja) デイジタル信号伝送方法
JP2003198436A (ja) ダイバシティー受信用ベクトル結合器およびベクトル結合方法
JP2506756B2 (ja) ディジタル信号伝送方法
JP4098745B2 (ja) ディジタル復調器
JP3091634B2 (ja) ダイバーシチ装置
JP2506754B2 (ja) ディジタル信号伝送方法
US20240121142A1 (en) Multi-phase vector synthesis demodulation method and apparatus
JPH0746799B2 (ja) デジタル信号伝送方法
JPS63260246A (ja) デイジタル信号伝送方法
JPH09214461A (ja) ディジタル多重無線の交差偏波伝送受信機
JP2021083061A (ja) 無線受信装置
Kiviranta et al. Receiver structure and estimation of the modulation index for tamed frequency modulated (TFM) signals
JPS6282739A (ja) 無線デ−タ伝送装置
JP2004153584A (ja) 位相変調器

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4696111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150