JP4693205B2 - 末梢脈管構造の最適なイメージングのための方法及び装置 - Google Patents

末梢脈管構造の最適なイメージングのための方法及び装置 Download PDF

Info

Publication number
JP4693205B2
JP4693205B2 JP2000112827A JP2000112827A JP4693205B2 JP 4693205 B2 JP4693205 B2 JP 4693205B2 JP 2000112827 A JP2000112827 A JP 2000112827A JP 2000112827 A JP2000112827 A JP 2000112827A JP 4693205 B2 JP4693205 B2 JP 4693205B2
Authority
JP
Japan
Prior art keywords
magnetic resonance
scanning station
resonance imaging
station
test bolus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000112827A
Other languages
English (en)
Other versions
JP2000308627A5 (ja
JP2000308627A (ja
Inventor
トーマス・クオック−ファー・フー
ビンセント・ビー・ホー
レベッカ・アン・マッキャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2000308627A publication Critical patent/JP2000308627A/ja
Publication of JP2000308627A5 publication Critical patent/JP2000308627A5/ja
Application granted granted Critical
Publication of JP4693205B2 publication Critical patent/JP4693205B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/281Means for the use of in vitro contrast agents

Description

【0001】
【発明の属する技術分野】
本発明は一般的には、血液及び他の体液を運ぶ動脈又は類似の管の磁気共鳴(MR)イメージングであるMRアンジオグラフィに関する。より具体的には、本発明は、患者の末梢脈管構造に沿って隔設された一定数の走査位置又は走査ステーションの各々においてMRデータを取得する方法に関する。造影剤の初期テスト用ボーラス(bolus)が患者に注入された後にデータが取得され、ボーラスが血管又は他の導管に沿ってステーションからステーションへ走行する時間を計る。ボーラスの走行時間が既知になった後に、検査用ボーラスを注入し、各々の走査ステーションにおいて、ボーラスがこのステーションに位置している間にMRデータが取得される。
【0002】
【従来の技術】
MRアンジオグラフィでは、血管に沿って流動する血液内に、ガドリニウム・キレート等の一定体積の造影剤を注入することは周知の技術である。この一定体積又は一定量の造影剤は、「ボーラス」と呼ばれており、血液のT1 時間を短縮する効果を有する。このようにしてファスト・グラディエント(高速勾配)エコー法又は類似の手法によって取得された血液のMR画像は、血管構造に隣接した静止組織に対して極めて良好に際立って表示される。又、比較的長い血管をイメージングする際に、血管に沿って間隔を空けて配置された所与の数のステーション又は走査位置で患者からMRデータを取得することも周知である。特定のステーションにおいてMRデータを取得するために、患者は、典型的には患者テーブルを移動させることにより、MRスキャナに関して選択的に配置される。次いで、この特定の走査位置又はステーションにおいて、患者の領域又は区画を通して得られる一連のスライスからデータが取得される。この後に、他の走査ステーションにおいて患者の他の区画からデータを取得することができるように、患者をスキャナに対して移動させる。この手順を造影剤ボーラスの注入と組み合わせて用いるMRアンジオグラフィをボーラス追跡式末梢MRアンジオグラフィと呼ぶこともある。
【0003】
【発明が解決しようとする課題】
現時点では、造影剤を末梢MRアンジオグラフィ検査と組み合わせて用いるときには、第1の走査ステーションは、関心のある血管に沿ってボーラスが最初に到達する患者の区画となるように選択される。第1のステーションでの走査が完了すると、取得は通常、次の走査ステーションへ移動する。しかしながら、次のステーションへ移動するのに最も適切な時刻は、正確にはわからない。例えば、遅い血流の場合には、次の走査ステーションに位置する遠位の(distal)脈管構造は、造影剤物質で充填されるのに十分な時間を有していない可能性がある。他方、流速が予測よりも速ければ、造影剤は、データ取得が開始する前に次の走査ステーションに隣接する静止組織に移動しかけている可能性がある。いずれの場合でも、移動する流体と静止した血管組織との間のコントラストは、次の走査ステーションでは著しく低下する可能性がある。更に、過度に遅い又は過度に速い流速のいずれに起因するにせよ、イメージングが後続の各走査ステーションへ進行するにつれて、又、走査ステーションの総数が増大するにつれて、望ましくない影響が次第に悪化する傾向を示す可能性がある。
【0004】
更に、造影剤物質の最大安全投与量を超過してはならないので、イメージングされ得る走査区画又はステーションの数は制限され、造影剤画像の流れ方に対して過度に速い又は過度に遅いのいずれかで画像が取得されるならば、検査の反復精度はこの最大安全投与量によって制限される。又、駆動状態にあるコイル要素がイメージングされている走査ステーションの領域内に存在するように、コイルを手動で改めて配置するか又は切り換えるかしなければならない。この結果、従来の末梢MRA検査を完了するのに必要な時間は、1.5時間乃至2.5時間程度となっている。
【0005】
従って、テーブルの移動及びコイル選択に対するコンピュータ制御を含んでおり、末梢脈管構造を最適にイメージングすることの可能な方法及び装置を提供し、造影剤ボーラスが存在しているとわかっている位置の画像を得ることが望ましい。
【特許文献1】
国際公開特許WO96104567
【特許文献2】
米国発行特許5746208号
【非特許文献1】
TH.K.F. FOO ET AL.: "Automated Detection of Bolus Arrival ...", RADIOLOGY, vol. 203, 1997, pages 275-280, XP000921005
【0006】
【課題を解決するための手段】
本発明は、末梢脈管構造の最適なイメージングのための方法及び装置を提供するものであり、この方法及び装置は、所定の数の走査位置の各々において信号対ノイズ比(S/N)を最適化し得るような患者テーブルの移動及びコイルの選択に対するコンピュータ制御を含んでおり、上述の問題を解決する。テーブル移動との協働によって、様々な走査位置の正確な再現性が可能になり、これにより、造影剤ボーラスが導入された後に得られる画像からの造影剤注入前の画像マスクの最適な減算が可能になる。所載の方法は、大動脈から下って下肢部の動脈に到るまでボーラス注入の経過を追跡して、動脈相の画像を取得するように設計されている。又、後に行われる画像取得及びマスク減算によって、静脈相画像を形成するためのデータの後処理も可能になる。
【0007】
本発明の一面によれば、患者の末梢脈管構造をMRイメージングする方法が、患者の末梢脈管構造に沿ってその各々が配置されている所与の数の走査ステーションを画定し、比較的少量の造影剤を患者に初期注入して患者の末梢脈管構造を通じてのテスト用ボーラスの通過を開始することを含んでいる。次いで、患者の脈管構造を通じてのテスト用ボーラスの通過を1つの走査ステーションから次のステーションへ追跡し、患者をMRイメージング装置内で前後に移動させて、テスト用ボーラスの通過に基づいてMRイメージング装置の視野(FOV)の範囲内に所望の走査ステーションが位置するように患者を配置する。この方法は又、テスト用ボーラスが所与の数の走査ステーションの各々を通過して走行するのに掛かる走行時間を決定し、この後に、追加の造影剤を注入して、患者の末梢脈管構造を通じて検査用ボーラスを形成すると共に通過させることを含んでいる。各々の走査ステーション毎にテスト用ボーラスの走行時間を用いることにより、患者の末梢脈管構造を通じての検査用ボーラスの通過を追跡することが可能になり、検査用ボーラスが存在している時間中に各々の走査ステーションにおいてデータを取得することが可能になる。
【0008】
本発明の好ましい実施態様では、先ず、各々のステーションへのテスト用ボーラスの走行時間が決定される。MR検査の正規の画像取得段階中に、各々のステーションへのテスト用ボーラス走行時間によって決定される時間内に、各々のステーションにおいて、予め画定された中央k空間データ・ブロックが取得される。テスト用ボーラス走行時間が各々のステーションで完全なデータを得るための時間を上回っているならば、k空間のより高い空間周波数でエンコードされた追加データを取得して空間分解能を高めるか、又は画像信号対ノイズ比(SNR)を高めるために中央k空間の低い空間周波数のデータを再び取得するかのいずれかによって、更なる時間を活用する。各々のステーションにおいて欠落したk空間データがもし存在するならば、これらの欠落したデータは走査の終盤に取得される。
【0009】
本発明のもう1つの面によれば、患者の末梢脈管構造のイメージングを最適化することが可能なMRシステムが開示され、このMRシステムは、分極磁場を印加するマグネットのボア(中孔)の周囲に配置されている所定の数の勾配コイルと、RF信号をRFコイル・アセンブリへ送信するRF送受信システムと、パルス制御モジュールによって制御されるRF変調器とを有していて、MR画像を取得するMRI装置を含んでいる。本発明のMRIシステムは又、コンピュータを含んでおり、コンピュータは、MRI装置内で、予め画定された所与の数の走査ステーションのうち第1の走査ステーションへの可動式患者テーブルの配置を確実にするようにプログラムされていると共に、テスト用ボーラスが患者の所与の走査ステーションに入ったとの指示があったときに、この所与の走査ステーションを通過するテスト用ボーラスを追跡し、この所与の走査ステーションを通過するテスト用ボーラスの走行時間を記録し、次いで、次に続く走査ステーションへの患者テーブルの移動を開始するようにプログラムされている。これらの工程は、各々の後続の走査ステーション毎に繰り返され、一旦完了すると、コンピュータは、患者テーブルを第1の走査ステーションへ復帰させる。また、検査用ボーラスが患者に入ったとの指示があったときには、コンピュータは、MRI装置を起動し、走査ステーションの各々において、テスト用ボーラスを用いて前段で記録されたこの特定の走査ステーションについてのテスト用ボーラス走行時間に実質的に等しい時間にわたって、患者の少なくとも中央のk空間MRIデータを取得する。
【0010】
従って、本発明の方法及び装置を用いて、1つの走査ステーションからもう1つの走査ステーションへテーブル位置を制御すると共に患者を移動させ、コイル要素選択を制御し、受信器及びボディ・コイル送信器のゲイン・パラメータを設定して、各々の走査ステーション毎に画像のS/Nを最適化する。加えて、コンピュータは、各々のステーションにおいて取得マトリクス・サイズ又は画像取得の視野(FOV)を調節して、ステーション毎に画像分解能を最適化することができる。
【0011】
好ましい実施態様のもう1つの特徴は、一旦、ボーラスが患者の体内に導入されたら、自動ボーラス検出及びトリガ制御を用いて走査にトリガを与え、第1の走査ステーションについての走査の設定確立を支援することができることである。第1の走査ステーションでのデータ取得の後に、コンピュータは、患者テーブルの次のステーションへの移動を開始し、適当な受信器を選択して、この特定の走査ステーションに適当な送信器及び受信器のゲイン設定を調節することができる。次いで、予めプログラムされた走査ステーションの各々についてこの手順を繰り返す。加えて、テスト用ボーラスを用いて各々のステーションにおいて利用可能な最大イメージング時間を決定することにより、取得されるMRデータは、動脈相を効率的に視覚化するように最適化される。利用可能な時間を活用して、次に続くステーションに移動しなければならないよりも前に各々のステーションにおいて可能な限り多くのk空間線を取得する。尚、中央(低空間周波数)k空間エンコード線が最初に取得される。一旦、十分なk空間線が取得されたら、又は特定のステーションにおけるデータ取得が完了したら、システムは、時間が許せば追加のk空間線を取得するために前のステーションに復帰することも可能であるし、又は必要なテーブル移動パラメータ及び適当なRFコイル要素の起動を用いて、次のステーションに移動してMRデータを取得することも可能であることに留意されたい。
【0012】
更に、末梢血行状態(run-off)MRAの場合には、腎動脈のレベル又はこれよりも高いレベルの大動脈から下って、足を含めた下肢部に到るまでの末梢動脈脈管構造をイメージングすることが望ましいことに留意されたい。ここに記載した本発明は、胸部大動脈、腹部大動脈及び大動脈回腸部を含めた大動脈の包括的な評価に用いることもできる。従来のMRイメージング・システムが典型的には、最大で40cm〜48cmの画像FOVを提供する所を、本発明は、約100cm〜150cmのFOVを有する有効撮像領域を提供する。
【0013】
本発明の他の様々な特徴、目的及び利点は、以下の詳細な記述及び図面から明らかとなろう。
【0014】
【発明の実施の形態】
図面は、本発明を実行するのに現状で想到される最良の態様を示している。
【0015】
先ず図1について説明すると、本発明の実施に適した形式の磁気共鳴(MR)イメージング・システム8が示されており、該システム8は、パルス制御モジュール12を介して勾配コイル電力増幅器14を制御するコンピュータ10を含んでいる。パルス制御モジュール12及び勾配増幅器14は共に、スピン・エコー、グラディエント・リコールド・エコー、ファスト・スピン・エコー又はその他の形式のパルス・シーケンスのいずれかに適正な勾配波形Gx 、Gy 及びGz を発生する。勾配波形は、マグネット34のボアの周囲に配置されている勾配コイル16に接続され、勾配Gx 、Gy 及びGz がそれぞれの軸に沿って、マグネット34からの分極磁場B0 上に印加されるようにしている。
【0016】
パルス制御モジュール12は又、RF送受信システムの一部である無線周波数合成器18を制御する。尚、RF送受信システムの各部は、破線ブロック36で囲まれている。パルス制御モジュール12は又、無線周波数合成器18の出力を変調するRF変調器20を制御する。結果として得られたRF信号は、電力増幅器22によって増幅されて、送受信(T/R)スイッチ24を介してRFコイル26に印加され、このRF信号を用いて、撮像対象(図示されていない)の核スピンを励起する。
【0017】
撮像対象の励起された核からのMR信号は、RFコイル26によって捕獲されて、送受信スイッチ24を介して前置増幅器28に供給され、そこで増幅された後に、直交位相検波器30によって処理される。検波された信号は、高速A/D変換器32によってディジタル化されて、コンピュータ10に印加されて処理され、撮像対象のMR画像を形成する。コンピュータ10は又、シム・コイル電源38を制御して、シム・コイル・アセンブリ40に電力を供給する。
【0018】
本発明は、以上に述べたMRIシステム、又はMR画像を得る任意の類似したシステム若しくは同等のシステムと共に用いられるMRIアンジオグラフィのための方法及びシステムを含んでいる。
【0019】
図2について説明すると、図には、コンピュータで制御される可動式テーブル52に支持されている患者50が図示されており、テーブル52は、MR装置8のマグネット34内で矢印54によって示すように前後に摺動する又は並進(平行移動)することができる。これにより、患者50を主マグネット16のボア内に選択的に配置することができる。テーブルの移動は、コンピュータの制御下にあり、マグネット・ボアの軸54に沿ったテーブルの位置は、精密に制御することができ、再現性がある。
【0020】
より詳しく述べると、図2の示す所によれば、患者50は、大動脈、大腿動脈又はその他の動脈のようにかなりの長さを有する血管64を有しており、血管64は、被検体の腹部区域から下肢部まで伸びている。血管64の全体としてのMR画像データを取得することが望ましい。しかしながら、血管64にはかなりの長さがあるので、患者50の長さに沿って、MRシステムの各構成要素の内部で複数の走査位置又は走査ステーション56、58及び60を確立することによりデータを得る必要がある。各々の走査ステーション56、58及び60は、患者50の予め画定された区画を含んでいる。例えば、走査ステーション56は、患者50の胴体上部区域を含んでおり、走査ステーション58は胴体下部区域を含んでおり、走査ステーション60は患者50の下肢部を含んでいる。特定の走査ステーションに関連したMRデータを取得するために、可動式テーブル52は、軸54に沿って前後に移動させられて、特定の走査ステーションを主マグネット16と特定の関係に配置する。例えば、図2は、走査ステーション56の中央点がマグネット16のアイソセンタ(isocenter) 62に配置されている所を示している。
【0021】
従来構成では、走査ステーション56内に位置する血管64の区画に関するMRデータ集合の全体が、この走査ステーションが図2に示す位置にある間に取得されている。次いで、テーブル52は、図2で見た場合に左方向に患者50を並進させ、走査ステーション58の中央点をアイソセンタ62に配置する。走査ステーション58内の血管64の区画に関するデータ集合の全体を走査した後に、患者50は更に並進させられて、走査ステーション60の中央点をアイソセンタ62に配置する。次いで、走査ステーション60に関するMRデータの集合が走査されて、データ取得手順を完了する。尚、隣接する走査ステーションの間には一定量の重なり66及び68が生じ得ることに留意されたい。このことは、各々のステーションからの画像を、撮像領域の範囲全体を網羅するすべてのステーションからの単一の合成画像として効率的に組み合わせることを可能にするのに望ましく、又、必要でもある。
【0022】
MRアンジオグラフィでは通常、血管64を流れる血液70に20cc〜40ccのガドリニウム・キレート等の造影剤を静脈注射することが行われており、造影剤は、血流70を流れるボーラス72を形成する。血管64は、患者50の上体から下肢部まで血液を運んでいるので、図2で見た場合には流れの方向は左から右となる。肺系統74に到達した後に、ボーラス72は、走査ステーション56に先ず到達し、次いで走査ステーション58に到達し、最後に走査ステーション60に到達する。
【0023】
SMARTPREP(登録商標)として商業的に公知のGeneral Electic Company社による従来技術によれば、Radiology誌、1997年、第203号、第273頁〜第280頁のFoo TKL、Saranathan M、Prince MR及びChenevert TLによる論文「高速3次元ガドリニウム強調型MRアンジオグラフィにおける自動的なボーラス到達の検出及びデータ取得の開始(Automated Detection of Bolus Arrival and Initiation of Data Acquisition in Fast, Three Dimensional, Gadolinium-Enhanced MR Angiography)」にも詳述されているように、血管64の至近で且つ走査ステーション56に相当する視野に関して動脈血流の上流側に、モニタ76が配置される。この実例を図2に示す。モニタ76の厳密な位置は重要ではないが、好ましくは、関連する走査ステーションの最初の25%の範囲内に位置するようにする。モニタ76は、血管64の小体積又は小領域において励起されたMR信号を周期的に検出する。検出されたMR信号は、造影剤が走査ステーション56内に位置する血管64の部分又は区画に入ったときに所定の閾値レベルに到達し、この時点で、ステーション56の走査が開始する。走査が完了したときに、MR装置は、後続の走査ステーション58及び60からデータを取得するように順次進行する。
【0024】
前述したように、従来技術のMRA法では、ボーラス72が1つの走査ステーションから次の走査ステーションへ走行するのに必要な時間は既知ではなく、又、この時間は患者ごとに異なるものであるので、このような走行時間を知ると有利である。過去には、このことは、従来の走査手法における造影剤利用の利点を大幅に損なう可能性があり、又は増大した量若しくは投与量のガドリニウム・キレート造影物質の利用を要求する。従って、従来技術におけるこれらの不利益を克服するために、本発明の一実施例によれば、走査ステーション58及び60の血管64を対象とするモニタ78及び80が設けられる。すると、モニタ78及び80はそれぞれ、走査ステーション58及び60内へのボーラス72の到達を検出することができる。モニタ78及び80の動作及び構造は、モニタ76の動作及び構造と同様である。
【0025】
本発明によれば、好ましい実施例に従ってMR画像取得を完遂する2つの主要なアルゴリズムが存在する。第1のアルゴリズムは、図3に示すように、テスト用ボーラス走行時間決定アルゴリズム82であり、第2のアルゴリズムは、図4に示すように、図3のテスト用ボーラス走行時間決定を用いたMR画像取得84である。
【0026】
図3について説明する。テスト用ボーラス走行時間決定アルゴリズム82の第1段階は、開始86の後に、すべての走査ステーションについて監視空間位置及びベースライン・データを得るものである(ブロック88)。ベースライン・データは、アンジオグラフィ検査の画像データの取得の前に、造影剤を存在させずに各々のモニタから得られる。これらのデータを元に、各々のモニタ毎に閾値レベルをリセットして、対応する走査ステーションへのボーラスの到達を指示することができる。これらの局限された走査を典型的にはスカウト・ビュー(scout view)と呼ぶ。次いで、システムを第1の走査ステーションにリセットして(ブロック90)、正規の検査用ボーラスと同じ流速で注入される少量、典型的には1ml〜5mlの造影剤を注入することによりテスト用ボーラスを出発させる(ブロック92)。テスト用ボーラスは、患者の末梢脈管構造を通過し始め、同時に、アルゴリズムは、出発時刻を記録して、ボーラス監視を開始する(ブロック94)。尚、監視空間76、78及び80は、各々のステーション内の画像視野の範囲内で任意の位置に配置することができ、好ましくは、所望の視野の範囲内で関心区域に関して正確に配置することができることに留意されたい。この時点で、監視されているMR信号は、予め設定されている閾値に対して比較され(ブロック96)、監視されている信号が予め設定されている閾値を上回っていなければ(ブロック98)、出発時刻をリセットして、ボーラス監視をブロック94から再開する。監視されている信号が予め設定されている閾値を上回っていれば(ブロック100)、ボーラスがこの走査ステーションについて検出された時刻を記憶する(ブロック102)。カレントの走査ステーションが所定の最後の走査ステーションでない限り、患者テーブルを次の又は続く走査ステーションへ移動させる(ブロック104及び106)。次いで、監視空間を調節して、次の監視空間位置におけるデータを取得し(ブロック108)、この時点で、システムは復帰して、ブロック94においてこの特定の監視空間でのボーラス監視及び出発時刻の記録を開始し、次いで、ブロック104及び110において最後の走査ステーションが検出されるまで、ループを続行して所与の数の走査ステーションの各々を通過するテスト用ボーラスの走行時間を取得する。次いで、ブロック112において、正規の検査用ボーラスにおけるイメージングを取得するのに有効な時間を各々のステーション毎にTavail として記憶すると、システムは、正規のMR画像取得に移る準備ができた状態になる(ブロック114)。
【0027】
図4について説明する。同図には、画像取得アルゴリズム84が示されており、開始116の後に、すべての走査ステーションについて監視空間位置及びベースライン・データが取得される(ブロック118)。次いで、システムをリセットして、患者テーブルを第1の走査ステーションに戻し(ブロック120)、正規の検査用ボーラスを患者に注入する(ブロック122)。次いで、ボーラス監視が開始し(ブロック124)、この間に、第1の走査ステーションについての監視空間を監視する。監視されている信号は、予め設定されている閾値に対して比較され(ブロック126)、信号が予め設定されている閾値を上回っていなければ(ブロック128)、監視されている信号が予め設定されている閾値を上回る(ブロック130)まで、モニタはボーラスの存在を再度チェックし(ブロック124)、上回った時点で、タイマ(tn )が起動されて(ブロック132)、MR装置は、先ず、中央k空間データの取得から始めて画像取得を開始する(ブロック134)。次いで、この特定のステーションについてのタイマをテスト用ボーラス走行時間と比較し(ブロック136)、カレントのデータ取得時間がテスト用ボーラス走行時間に到っておらず(ブロック136)、且つデータ取得が完了していない限り(ブロック140及び142)、システムはデータの取得を続行する(ブロック144)。一旦、この特定の走査ステーションについてのデータ取得時間がテスト用ボーラス走行時間と等しくなるか若しくは上回るかのいずれかとなる(ブロック136及び146)、又はシステムが十分なデータを取得した(ブロック140及び148)ならば、システムが現在最後の走査ステーションにない限り(ブロック150及び152)、患者テーブルを次の走査ステーションに調節する。この後に、システムは、次の監視空間位置におけるデータの取得に切り換わり(ブロック154)、ブロック124においてボーラス監視を再開する。次いで、システムは、データが取得されるか又はシステムが最後の走査ステーションについて時間切れとなるまで(ブロック156)、上述のようにループする。次いで、システムは、十分なk空間データ集合が取得されていない任意の走査ステーションに復帰して、欠落したk空間データを取得する(ブロック158)。一旦、すべての走査ステーションについてすべてのk空間データが取得されたら、画像取得アルゴリズムは完結する(ブロック160)。
【0028】
図2は、3つの走査ステーション56、58及び60を示しているが、他の実施例では、走査ステーションの数nは好ましい実施例に示したよりも大きくてもよいし小さくてもよいことが容易に明らかとなろう。更に、図4から容易に明らかになるように、各々の走査ステーションにおける最初のデータ取得は中央k空間データ、即ち低空間周波数を有するk空間データを取得するものと限定して記載されている。この取得は、時間が許すならばより高い空間周波数のk空間データを取得するように拡張することができる。但し、画像再構成においてはより低い空間周波数のk空間データが最も重要であり、約5秒〜10秒で有用なだけ取得し得ることが理解されよう。
【0029】
図5は、図1に示すようなMR装置8及び可動式患者テーブル52に接続されているコンピュータ10の作用ブロック図を示している。この制御部は、ボーラス検出部172に対してテスト用ボーラス及び/又は検査用ボーラスの出発を指示するのに用いることのできる入力170を有する。加えて、又は代替的には、ボーラス検出は、前述の監視空間手順によって行うこともでき、この一例は、前述のGeneral Electric Company社から市販されているSMARTPREP(登録商標)である。ボーラス検出部172には記憶装置174が接続されており、記憶装置174は、監視空間からの監視されている信号と比較するための予め設定されている閾値を受け取る。予め設定されている閾値は信号比較器176において、監視されている信号と比較され、この比較の出力をMRI取得制御部178においてタイマ180の出力と共に用いて、ボーラスの位置をMRI装置8を用いてチェックする。MRI取得制御部178は又、テーブル移動制御部184を介して患者テーブル52を制御する走査ステーション制御部182に接続されている。走査ステーション制御部182は又、手順が最初に開始したときに患者テーブルを第1の走査ステーションにリセットするためにボーラス検出部172に接続されている。タイマ180は又、記憶装置174に接続されており、テスト用ボーラスが所与の走査ステーションを通過して走行するのに掛かる最大走行時間を記憶する。タイマ180は又、信号比較器176とMRI取得制御部178との間に接続されており、このタイマ180を画像取得の際に用いて、カレントのMRI取得の時間を計ると共に、この時間を時間比較器186において記憶装置174から検索された最大テスト用ボーラス走行時間と比較する。画像取得を最適化するために、テスト用ボーラス走行時間について各々の走査ステーション毎に記憶されている値をMRI取得制御部178において用いて、MRI装置8における最も望ましいコイル要素を選択すると共に、MRI装置8における最適な受信器及びボディ・コイル送信器のゲイン・パラメータを設定する(ブロック188)。
【0030】
従って、本発明は、患者の末梢脈管構造をイメージングするMRイメージング・システムを含んでおり、このMRイメージング・システムは、MR画像を取得する手段8と、患者の脈管構造に沿って配置された一連の走査ステーションを通過するテスト用ボーラスを追跡する手段172とを含んでいる。MR画像を取得する手段8の内部で所望の走査ステーションに患者を選択的に配置する手段184及び52は、テスト用ボーラスを追跡する手段172に応答する。加えて、各々の走査ステーションを通過するテスト用ボーラスの最大走行時間を決定すると共に記憶する手段174、180及び186を制御手段178と共に用いて、各々の走査ステーションについての最大走行時間中にMR画像を取得する。
【0031】
本発明のMRイメージング・システムは又、最大走行時間を検索する手段174及び186を含んでいると共に、タイマ180を用いてMR画像取得時間を追跡する。比較器186を用いて、MR画像取得時間を最大走行時間と比較する。制御手段178は先ず、最大走行時間内に中央k空間MRデータを取得し、次いで、最大走行時間が満了していなければ、制御手段178は、残り時間でより高い空間周波数のMRデータを取得する。このシステムは又、各々の走査ステーション内で監視空間のデータを取得すると共にこのデータに応答してテスト用ボーラスの追跡を開始する手段172を含んでいる。このMRイメージング・システムは又、患者及び所望の走査ステーションの位置、並びにこの特定の走査ステーションを通過するテスト用ボーラスの最大走行時間に応じて、所望の数のコイルのみを選択すると共に、MR画像を取得する手段8におけるコイル送信器のゲイン・パラメータを設定する手段188を含んでおり、予備走査を行うと共に、ボーラスの存在を指示する監視されている信号を取得する。
【0032】
本発明を好ましい実施例によって記載してきたが、明示的に述べられたもの以外の均等構成、代替構成及び改変が可能であり、これらは特許請求の範囲内に含まれることを理解されたい。
【図面の簡単な説明】
【図1】本発明を実施するのに用いられるMRシステムの基本的な構成要素を示す概略図である。
【図2】本発明に従って末梢MRアンジオグラフィ検査を行うための構成を示す概略図である。
【図3】本発明の一実施例を示す流れ図である。
【図4】本発明の一実施例を示す流れ図である。
【図5】本発明の一実施例のブロック図である。
【符号の説明】
52 可動式テーブル
54 テーブル移動方向
56、58、60 走査ステーション
62 アイソセンタ
64 血管
66、68 走査ステーション間の重なり
70 血液
72 ボーラス
74 肺系統
76、78、80 モニタ

Claims (12)

  1. 磁気共鳴画像を取得する画像取得手段と、
    血管中の血液内に注入される大量の造影剤からなるテスト用ボーラス(72,94)が、患者の脈管構造(64)に沿って定義されている一連の走査ステーション(56,58,60)を通過するのを追跡する追跡手段と、
    該テスト用ボーラスを追跡する前記追跡手段に応答して、前記画像取得手段の内部の所望の選択した走査ステーション(56.58,60)位置に患者(50,52)を配置する位置決め手段であって、夫々の走査ステーションが、前記テスト用ボーラスの通過に基づいて前記画像取得手段の視野の範囲内に位置決めされ、且つ、前記血管に沿って所定間隔で離間するように配置された、ところの位置決め手段と、
    所与の走査ステーション(56, 58, 60)について前記テスト用ボーラス(72)が前記患者の前記脈管構造(64)を通過するのに要する通過時間を決定し記憶する手段と、
    を具備し、このシステムは、さらに、
    各走査ステーションで利用可能な最大イメージング時間を前記テスト用ボーラスを用いて決定する手段であって、前記テスト用ボーラスの前記末梢脈管構造(64)前記通過時間の最大値を、検査ボーラスの前記末梢脈管構造(64)の通過を追跡するのに使用する手段、
    とを備え、
    所与の走査ステーションについて、前記末梢脈管構造を通過する前記テスト用ボーラスの最大通過時間を決定して記憶する手段(10,102)と、
    各々の走査ステーションについての前記最大通過時間中に磁気共鳴画像を取得する制御手段と、前記被検体(50)の末梢脈管構造のMR画像を最適化する目的で、前記検査用ボーラスが、前記被検体について決定された前記テストボーラス通過時間の最大値に実質的に等しい時間期間に前記末梢脈管構造を通過している間にMRデータを取得する制御手段と、
    を有していることを特徴とする磁気共鳴イメージング・システム。
  2. 前記最大通過時間を検索する手段(136,174)と、磁気共鳴画像取得時間を追跡するタイマ(180)と、前記磁気共鳴画像取得時間を前記最大通過時間と比較する比較器(156)とを更に含んでおり、
    前記制御手段(178)は、前記最大通過時間内に中央k空間データを先ず取得し(134)、次いで、前記最大通過時間が満了していなければ(138)、より高い空間周波数の磁気共鳴データを取得することを特徴とする請求項に記載の磁気共鳴イメージング・システム。
  3. 各々の走査ステーション内で監視空間データ(172)を取得すると共に、該データに応答して前記テスト用ボーラスの前記追跡を開始する手段を更に含んでいることを特徴とする請求項に記載の磁気共鳴イメージング・システム。
  4. 前記磁気共鳴画像を取得する手段における所望の数のコイル(188)のみを選択すると共に、前記患者(52,184)及び前記所望の走査ステーションの位置、並びに該走査ステーションを通過する前記テスト用ボーラスの前記最大通過時間に応答して、前記磁気共鳴画像を取得する手段におけるコイル送信器のゲイン・パラメータを設定する手段を更に含んでいることを特徴とする請求項に記載の磁気共鳴イメージング・システム。
  5. 予備走査を行うと共に、ボーラスの存在を指示する監視されている信号(172,178)を取得する手段と、
    予め決定されている閾値を記憶する手段(174)と、
    前記予め決定されている閾値を前記取得された監視されている信号と比較すると共に、前記取得された監視されている信号が所与の走査ステーションについての前記予め決定されている閾値を上回った後にのみ磁気共鳴データ取得を開始する手段とを更に含んでいることを特徴とする請求項に記載の磁気共鳴イメージング・システム。
  6. 前記最大通過時間内に磁気共鳴データ取得が完了したならば、前記制御手段に割り込む手段を更に含んでいることを特徴とする請求項に記載の磁気共鳴イメージング・システム。
  7. さらに、
    分極磁場を印加するマグネット(34)のボアの周囲に配置された複数の勾配コイル(16)と、RF信号をRFコイル・アセンブリへ送信するRF送受信システム(36)と、パルス制御モジュール(12)により制御されるRF変調器(20)とを有して、磁気共鳴画像を取得する磁気共鳴イメージング装置(8)と、
    コンピュータ(10)とを具備し、
    前記コンピュータが、
    (a)該磁気共鳴イメージング装置内で、所与の数の走査ステーションのうち第1の走査ステーション(56)内での患者テーブル(52)の配置を確実に行い、
    (b)テスト用ボーラス(72)が所与の走査ステーション(56,58,60)に入ったとの指示があったときに、該所与の走査ステーションを通過する前記テスト用ボーラスを追跡し、
    (c)前記第1の走査ステーション(56)を通過する前記テスト用ボーラス(72)の通過時間を記録し(102)、
    (d)次に続く走査ステーションへの患者テーブル(52)の移動(54)を開始し、
    (e)前記の段階(b)、(c)及び(d)を各々の後続の走査ステーション(58,60)毎に繰り返し、
    (f)前記患者テーブル(52)を前記第1の走査ステーション(56)へ復帰させ、
    (g)検査用ボーラスが前記患者(50)に注入されたとの指示があったときに、前記磁気共鳴イメージング装置(8)を起動して、各々の走査ステーション内で、該走査ステーションについて前段で記録された各々のテスト用ボーラス通過時間にわたって、前記患者の少なくとも中央のk空間磁気共鳴イメージング・データ(134)を取得するようにプログラムされているコンピュータと、を具備したことを特徴とする請求項に記載の磁気共鳴イメージング・システム。
  8. 前記コンピュータ(10)は、テスト用ボーラスが所与の走査ステーション(56,58,60)に入ったとの前記指示を自動検出システム(170,172)から受け取ることを特徴とする請求項に記載の磁気共鳴イメージング・システム。
  9. 前記コンピュータは、テスト用ボーラスが所与の走査ステーションに入ったとの前記指示を外部入力(170)から受け取ることを特徴とする請求項7または8に記載の磁気共鳴イメージング・システム。
  10. 前記コンピュータは、各々の走査ステーション毎に前記テスト用ボーラス(72,122)の最大通過時間を記録し、また、前記コンピュータは、前記検査用ボーラスが指示された後(126,130)に、各々の走査ステーション内で、該走査ステーション(102)についての前記最大ボーラス通過時間にわたって磁気共鳴イメージング・データ(134)を取得すると共に、前記患者テーブル(52,150)の次の走査ステーションへの移動を開始して、各々の走査ステーションにおいて磁気共鳴イメージング・データ(134)を取得し、これにより、完全な動脈相画像(144)を形成することを特徴とする請求項7乃至9のいずれかに記載の磁気共鳴イメージング・システム。
  11. 前記コンピュータは、前記テスト用ボーラスの前記最大通過時間中に中央k空間領域の磁気共鳴イメージング・データを先ず取得し、次いで、各々の走査ステーションについて少なくとも前記中央k空間領域(134)の磁気共鳴イメージング・データが取得された後に(140,148)、前記コンピュータは、各々の走査ステーションへ前記患者テーブルを復帰させて、各々の走査ステーションにおいて完全な磁気共鳴イメージング・データ集合を取得することを特徴とする請求項10に記載の磁気共鳴イメージング・システム。
  12. 前記コンピュータは、各々の走査ステーション毎に、前記完全な磁気共鳴イメージング・データ集合から(158)前記中央k空間領域のデータのマスク減算を行って、静脈相画像を形成する(178)ことを特徴とする請求項11に記載の磁気共鳴イメージング・システム。
JP2000112827A 1999-04-15 2000-04-14 末梢脈管構造の最適なイメージングのための方法及び装置 Expired - Lifetime JP4693205B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/292,548 US6425864B1 (en) 1999-04-15 1999-04-15 Method and apparatus for optimal imaging of the peripheral vasculature
US09/292548 1999-04-15

Publications (3)

Publication Number Publication Date
JP2000308627A JP2000308627A (ja) 2000-11-07
JP2000308627A5 JP2000308627A5 (ja) 2009-10-01
JP4693205B2 true JP4693205B2 (ja) 2011-06-01

Family

ID=23125138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112827A Expired - Lifetime JP4693205B2 (ja) 1999-04-15 2000-04-14 末梢脈管構造の最適なイメージングのための方法及び装置

Country Status (4)

Country Link
US (2) US6425864B1 (ja)
EP (1) EP1045255B1 (ja)
JP (1) JP4693205B2 (ja)
DE (1) DE60045726D1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6425864B1 (en) * 1999-04-15 2002-07-30 General Electric Company Method and apparatus for optimal imaging of the peripheral vasculature
US6580937B2 (en) 2000-12-30 2003-06-17 Ge Medical Systems Global Technology Co., Llc Method for optimal imaging of the peripheral vasculature emphasizing distal arterial visualization in a multi-station examination
US6640126B2 (en) * 2001-02-26 2003-10-28 Toshiba America Mri, Inc. Acoustic gating monitor for magnetic resonance imaging system
JP3858194B2 (ja) * 2001-04-04 2006-12-13 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
US6738501B2 (en) * 2001-04-13 2004-05-18 Ge Medical Systems Global Technology Co., Llc Adaptive data differentiation and selection from multi-coil receiver to reduce artifacts in reconstruction
US6724923B2 (en) * 2001-04-13 2004-04-20 Ge Medical Systems Global Technology Co., Llc Automatic coil selection of multi-receiver MR data using fast prescan data analysis
US7349130B2 (en) * 2001-05-04 2008-03-25 Geodigm Corporation Automated scanning system and method
DE10163815A1 (de) * 2001-12-22 2003-07-03 Philips Intellectual Property Paralleles MR-Bildgebungsverfahren
US6963768B2 (en) * 2002-05-16 2005-11-08 General Electric Company Whole body MRI scanning with moving table and interactive control
WO2003101294A1 (fr) * 2002-05-31 2003-12-11 Hitachi Medical Corporation Dispositif d'imagerie par resonnance magnetique et procede ce-mra multistation
JP4509932B2 (ja) * 2003-03-14 2010-07-21 株式会社日立メディコ 磁気共鳴イメージング装置
JP2006526450A (ja) * 2003-06-03 2006-11-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 造影を強化された可動式台及び中央k空間の確率論的な試料を有するMR動脈造影法
EP1528126A1 (en) * 2003-10-30 2005-05-04 Vandenborre Hydrogen Systems N.V. An integrated electrolyser module with an internal gas/liquid separator
US8357351B2 (en) * 2004-04-21 2013-01-22 Ananth Annapragada Nano-scale contrast agents and methods of use
US7713517B2 (en) 2004-04-21 2010-05-11 Marval Biosciences, Inc. Compositions and methods for enhancing contrast in imaging
CN104656046A (zh) * 2004-05-03 2015-05-27 皇家飞利浦电子股份有限公司 磁共振成像系统和方法
JP4912154B2 (ja) * 2004-10-29 2012-04-11 株式会社日立メディコ 核磁気共鳴撮像装置
DE102005006657A1 (de) * 2005-02-14 2006-08-31 Siemens Ag Verfahren zur Vorhersage des Kontrastmittelflusses in einem lebenden Körper
US7656155B2 (en) 2005-10-31 2010-02-02 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and imaging method in the same
JP4987423B2 (ja) * 2005-10-31 2012-07-25 株式会社東芝 磁気共鳴イメージング装置
DE102007009185A1 (de) * 2007-02-26 2008-08-28 Siemens Ag Verfahren zur Planung einer angiographischen Messung
CN104274840A (zh) * 2007-12-05 2015-01-14 马维尔生物科学公司 纳米级对比剂和使用方法
JP5202939B2 (ja) * 2007-12-25 2013-06-05 株式会社日立メディコ 磁気共鳴イメージング装置
WO2009152445A1 (en) * 2008-06-13 2009-12-17 Marval Biosciences, Inc. Imaging of atherosclerotic plaques using liposomal imaging agents
DE102009005903B4 (de) * 2009-01-23 2012-03-08 Siemens Aktiengesellschaft Verfahren zum Verfolgen eines Kontrastmittels bei einer Magnetresonanztomographieuntersuchung
JP5971684B2 (ja) * 2012-02-15 2016-08-17 東芝メディカルシステムズ株式会社 磁気共鳴撮像装置
KR101643286B1 (ko) 2014-09-04 2016-07-29 삼성전자주식회사 의료 영상 장치 및 그 제어방법
EP3093678A1 (de) * 2015-05-13 2016-11-16 Bayer Pharma Aktiengesellschaft Verfahren zur optimierung der vorbestimmung des zeitlichen verlaufes einer kontrastmittelkonzentration bei der diagnostischen bildgebung mit einem magnetresonanzsystem
US10349909B2 (en) * 2015-06-30 2019-07-16 General Electric Company Systems and methods for flow rate compensated acquisition parameters for medical imaging
EP3413073A1 (de) * 2017-06-07 2018-12-12 Siemens Healthcare GmbH Kontrastmittelunterstützte mr-angiographie mit ermittlung der flussgeschwindigkeit des kontrastmittels
EP4235201A1 (en) * 2022-02-24 2023-08-30 Siemens Healthcare GmbH Computer-implemented method for parametrizing a magnetic resonance measurement sequence or supporting the planning of the magnetic resonance measurement sequence, medical imaging device, computer program and computer-readable storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512956A (ja) * 1996-07-01 1999-11-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mr画像化装置
JP2000079107A (ja) * 1998-07-17 2000-03-21 General Electric Co <Ge> 末梢mrアンジオグラフィ方法及び装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272335A (ja) * 1986-11-18 1988-11-09 Toshiba Corp 磁気共鳴イメ−ジング装置
US4739268A (en) * 1987-01-21 1988-04-19 Kabushiki Kaisha Toshiba RF pulse control system for a magnetic resonance imaging transmitter
JP3212753B2 (ja) * 1993-04-30 2001-09-25 ジーイー横河メディカルシステム株式会社 Mri装置を用いた撮像装置
US5417213A (en) 1993-06-07 1995-05-23 Prince; Martin R. Magnetic resonance arteriography with dynamic intravenous contrast agents
US5590654A (en) * 1993-06-07 1997-01-07 Prince; Martin R. Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent
US5515863A (en) * 1994-01-07 1996-05-14 Fonar Corporation Gastrointestinal magnetic resonance imaging
US5685305A (en) 1994-08-05 1997-11-11 The United States Of America As Represented By The Department Of Health And Human Services Method and system for MRI detection of abnormal blood flow
JP3694558B2 (ja) * 1996-01-29 2005-09-14 株式会社日立メディコ 高周波コイル及びそれを用いた磁気共鳴検査装置
US5713358A (en) * 1996-03-26 1998-02-03 Wisconsin Alumni Research Foundation Method for producing a time-resolved series of 3D magnetic resonance angiograms during the first passage of contrast agent
US6167293A (en) * 1996-04-19 2000-12-26 General Electric Company Method for performing magnetic resonance angiography using a contrast agent
JPH10192252A (ja) * 1996-12-30 1998-07-28 Shimadzu Corp Mrイメージング装置
US5928148A (en) * 1997-06-02 1999-07-27 Cornell Research Foundation, Inc. Method for performing magnetic resonance angiography over a large field of view using table stepping
US5924987A (en) * 1997-10-06 1999-07-20 Meaney; James F. M. Method and apparatus for magnetic resonance arteriography using contrast agents
US6425864B1 (en) * 1999-04-15 2002-07-30 General Electric Company Method and apparatus for optimal imaging of the peripheral vasculature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512956A (ja) * 1996-07-01 1999-11-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mr画像化装置
JP2000079107A (ja) * 1998-07-17 2000-03-21 General Electric Co <Ge> 末梢mrアンジオグラフィ方法及び装置

Also Published As

Publication number Publication date
US6425864B1 (en) 2002-07-30
JP2000308627A (ja) 2000-11-07
EP1045255A1 (en) 2000-10-18
EP1045255B1 (en) 2011-03-16
US6643534B2 (en) 2003-11-04
US20020091316A1 (en) 2002-07-11
DE60045726D1 (de) 2011-04-28

Similar Documents

Publication Publication Date Title
JP4693205B2 (ja) 末梢脈管構造の最適なイメージングのための方法及び装置
JP3845714B2 (ja) コントラスト剤を使用して磁気共鳴血管造影法を実行する方法
EP1047952B1 (en) System for performing magnetic resonance angiography with dynamic k-space sampling
JP3538595B2 (ja) コントラスト増幅型磁気共鳴血管造影法におけるコントラストの検出および誘導される再構築
US7383075B2 (en) Real-time localization monitoring, triggering, and acquisition of 3D MRI
US6580937B2 (en) Method for optimal imaging of the peripheral vasculature emphasizing distal arterial visualization in a multi-station examination
Ho et al. Optimization of Gadolinium-Enhanced Magnetic Resonance Angiography Using an Automated Bolus-Detection Algorithm (MR SmartPrep) y
US20020165449A1 (en) Magnetic resonance imaging utilizing a microcoil
JP2001000417A (ja) マルチ・スラブ及びマルチ・ウィンドウでの心臓の磁気共鳴イメージング法
JP4354578B2 (ja) 末梢mrアンジオグラフィ装置
US20060064002A1 (en) Method for monitoring thermal heating during magnetic resonance imaging
JP2006519677A (ja) 連続的テーブル移動を用いて時間分解mr画像を取得する方法
US6201986B1 (en) Synchronized K-space sampling in magnetic resonance angiography
WO2004080302A1 (ja) 磁気共鳴イメージング装置
WO2003103491A1 (ja) 磁気共鳴イメージング装置
JP4349647B2 (ja) 磁気共鳴イメージング装置
JP3847519B2 (ja) 磁気共鳴イメージング装置
CN108652629A (zh) 用于执行血管造影术测量并且创建血管造影片的方法
JP4201089B2 (ja) 磁気共鳴イメージング装置及びマルチステーションce−mra方法
JP4155769B2 (ja) 磁気共鳴イメージング装置
JP2007167283A (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090813

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090813

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term