JP4687052B2 - Sheet material type battery manufacturing method and sheet material type battery - Google Patents

Sheet material type battery manufacturing method and sheet material type battery Download PDF

Info

Publication number
JP4687052B2
JP4687052B2 JP2004283382A JP2004283382A JP4687052B2 JP 4687052 B2 JP4687052 B2 JP 4687052B2 JP 2004283382 A JP2004283382 A JP 2004283382A JP 2004283382 A JP2004283382 A JP 2004283382A JP 4687052 B2 JP4687052 B2 JP 4687052B2
Authority
JP
Japan
Prior art keywords
sheet material
battery
type battery
material type
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004283382A
Other languages
Japanese (ja)
Other versions
JP2006100064A (en
Inventor
浩司 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004283382A priority Critical patent/JP4687052B2/en
Publication of JP2006100064A publication Critical patent/JP2006100064A/en
Application granted granted Critical
Publication of JP4687052B2 publication Critical patent/JP4687052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

本発明は、シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材の端部を封止して形成されるシート材型電池の製造方法及びシート材型電池に関する。   The present invention relates to a sheet material type battery manufacturing method and sheet material mold formed by enclosing a battery power generation element with a sheet material, drawing both electrodes from the battery power generation element to the outside, and sealing an end of the sheet material It relates to batteries.

近年、種々の電子機器の発達に伴い、電子機器の小型化、省スペースのニーズが高まって、これに用いる電池にも薄型化や可撓性が求められている。そこで、シート状のラミネート材を用いて電池用発電要素を気密に封止することが行われる。例えば、シート状のラミネート材として、ポリエチレン層とアルミニウム箔層とポリエチレン層との3層構造のものを用い、発電要素を内部に収納し、電極を外に引き出してリチウムイオン電池やニッケル水素電池等を形成することが行われる。   In recent years, with the development of various electronic devices, there has been an increasing need for downsizing and space saving of electronic devices, and the batteries used therefor are also required to be thin and flexible. Therefore, the battery power generation element is hermetically sealed using a sheet-like laminate material. For example, as a sheet-like laminate material, a three-layer structure of a polyethylene layer, an aluminum foil layer, and a polyethylene layer is used. The power generation element is housed inside, the electrode is drawn out, and a lithium ion battery, a nickel metal hydride battery, etc. Is formed.

これらの電池をシート材型電池と呼ぶことにすれば、シート型電池は、形状の自由度を有し、小型軽量に適しているが、電解液を用いるので、シート材の合わせ目を気密に封止する必要がある。また、発電要素はその性質上、高温にさらされると劣化を起こすので、封止に際しては、発電要素に熱負荷がかからないようにしなければならない。   If these batteries are called sheet-type batteries, the sheet-type batteries have a degree of freedom in shape and are suitable for small size and light weight. However, since an electrolyte is used, the joints of the sheet materials are airtight. It is necessary to seal. Moreover, since the power generation element deteriorates when exposed to a high temperature due to its property, it is necessary to prevent the power generation element from being subjected to a heat load during sealing.

特許文献1には、シート材の合わせ目の間に熱溶融性の接着材を挟み、加熱されたプレス板で合わせ目の部分を熱溶着することが開示されている。また、特許文献2には、電気自動車等の電源として用いるため、シート材型電池の封止された合わせ目が開いたり、あるいは合わせ目から水分が侵入しないように、凹部形状を有する防水性のキャップを電池外周縁部に嵌合して取り付けることが述べられている。   Patent Document 1 discloses that a hot-melt adhesive is sandwiched between seams of sheet material, and the seam portion is thermally welded with a heated press plate. Further, in Patent Document 2, since it is used as a power source for an electric vehicle or the like, a waterproof material having a concave shape is formed so that a sealed seam of the sheet material type battery is not opened or moisture does not enter from the seam. It is described that the cap is fitted and attached to the outer peripheral edge of the battery.

特開2000−348695号公報JP 2000-348695 A 特開2004−79434号公報JP 2004-79434 A

シート材型電池では、電極をシート材の外側に引き出す必要があるため、シート材の合わせ目を封止する際に、この電極付近がきちんと気密に封止できるかが問題となる。例えば、特許文献1の加熱されたプレス板を用いるものでは、電極付近のシート材の合わせ目は、電極のないところに比べ、電極の厚み分の段差が生じ、電極端子の寸法形状のバラツキにより、固定形状の加熱プレス板では電極付近の溶着状態にバラツキが生ずる。特許文献1に提案されているように、段差にあわせたプレス板や、ゴム板を併用すること等も考えられるが、封止装置が複雑高価なものとなる。   In the sheet material type battery, since it is necessary to pull out the electrode to the outside of the sheet material, it becomes a problem whether the vicinity of the electrode can be sealed tightly when sealing the joint of the sheet material. For example, in the case where the heated press plate of Patent Document 1 is used, the seam of the sheet material near the electrode has a step difference corresponding to the thickness of the electrode as compared with the place without the electrode, and due to variations in the size and shape of the electrode terminal. In the fixed shape hot press plate, the welding state in the vicinity of the electrode varies. As proposed in Patent Document 1, it is conceivable to use a press plate or a rubber plate in accordance with the level difference, but the sealing device is complicated and expensive.

また、封止状態のバラツキを補強し、防水性を高めるため、特許文献2では、電池外周縁部に凹部形状を有する防水性のキャップを嵌合して取り付けているが、例えば矩形形状のシート材型電池であれば4辺のそれぞれに一々、キャップを嵌合して取り付けなければならない。また、この場合でも電極を引き出すところは、電極を通すための溝を有する防水性のキャップを準備しなければならない。さらに、その溝に電極を通してキャップを嵌合して電池外周縁部に取り付ける作業も必要である。   Moreover, in order to reinforce the variation in a sealing state and improve waterproofness, in patent document 2, although the waterproof cap which has a recessed part shape is fitted and attached to the battery outer periphery part, for example, a rectangular-shaped sheet | seat In the case of a material type battery, a cap must be fitted and attached to each of the four sides. In this case as well, a waterproof cap having a groove for passing the electrode must be prepared for drawing out the electrode. Furthermore, the operation | work which fits a cap through an electrode through the groove | channel and it attaches to a battery outer periphery part is also required.

このように、従来技術においては、シート材型電池の封止、特に電極付近における溶着にバラツキが生じやすく、これを補強するには別部材や追加作業等を要している。   Thus, in the prior art, variations in sealing of sheet-type batteries, particularly welding in the vicinity of the electrodes, are likely to occur. To reinforce this, another member or additional work is required.

本発明の目的は、シート材の合わせ目の溶着、特に電極付近における溶着のバラツキを抑制できるシート材型電池の製造方法及びシート材型電池を提供することである。また、他の目的は、シート材の合わせ目の封止の補強を容易なものとするシート材型電池の製造方法及びシート材型電池を提供することである。   An object of the present invention is to provide a method for manufacturing a sheet material type battery and a sheet material type battery capable of suppressing the welding of the joint of the sheet material, in particular, the dispersion of the welding in the vicinity of the electrode. Another object of the present invention is to provide a sheet material type battery manufacturing method and a sheet material type battery that can easily reinforce sealing of a seam of a sheet material.

本発明に係るシート材型電池の製造方法は、シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材が向かい合う端部の合わせ目の間に加熱により溶融する接着材を挟み込んで半完成電池を形成する工程と、半完成電池を気密封止用金型の中に配置し、電池用発電要素が配置される金型部分を冷却し、半完成電池のシート材の端部にのみ加熱加圧流体を印加して、シート材の端部の接着材を溶融し気密に封止する工程と、を備えることを特徴とする。   The sheet material type battery manufacturing method according to the present invention wraps a battery power generation element with a sheet material, draws both electrodes from the battery power generation element to the outside, and melts by heating between the joints at the end where the sheet material faces. A step of forming a semi-finished battery by sandwiching an adhesive material to be placed, placing the semi-finished battery in a hermetic sealing mold, cooling a mold portion where the power generation element for the battery is placed, And applying a heated and pressurized fluid only to the end portion of the sheet material to melt and hermetically seal the adhesive material at the end portion of the sheet material.

また、本発明に係るシート材型電池の製造方法において、加熱加圧流体は、金型の中で加圧された溶融樹脂であることが好ましい。   Moreover, in the manufacturing method of the sheet material type battery which concerns on this invention, it is preferable that a heating pressurization fluid is the molten resin pressurized in the metal mold | die.

また、本発明に係るシート材型電池の製造方法において、シート材の端部を封止した溶融樹脂を金型内で架橋反応させ電池の補強材として成形する工程を備えることが好ましい。   Moreover, in the manufacturing method of the sheet material type battery according to the present invention, it is preferable to include a step of cross-linking the molten resin in which the end portion of the sheet material is sealed in the mold to form as a battery reinforcing material.

また、本発明に係るシート材型電池の製造方法において、電池の補強材は、電池の周辺の気密封止端部に沿った枠形状に成形されることが好ましい。   Moreover, in the manufacturing method of the sheet material type battery according to the present invention, the battery reinforcing material is preferably formed into a frame shape along the hermetic sealing end portion around the battery.

また、本発明に係るシート材型電池の製造方法において、補強材は、電池の周辺に沿ってシート材端部の上下面のそれぞれに枠形状に成形され、さらに電池の周辺の少なくとも一部において、シート材の端部の上下面とともに側面を覆ってシート材端面を挟み込むように成形されることが好ましい。   Further, in the method for manufacturing a sheet material type battery according to the present invention, the reinforcing material is formed into a frame shape on each of the upper and lower surfaces of the end portion of the sheet material along the periphery of the battery, and further in at least a part of the periphery of the battery. The sheet material is preferably formed so as to cover the side surface together with the upper and lower surfaces of the end portion of the sheet material and sandwich the end surface of the sheet material.

また、本発明に係るシート材型電池の製造方法において、補強材は、電池の周辺に沿ってシート材端部の上下面のそれぞれに枠形状に成形され、さらに電池の周辺の少なくとも一部において、シート材端部の貫通穴の部分で上下枠形状材が一体に接続されて成形されることが好ましい。   Further, in the method for manufacturing a sheet material type battery according to the present invention, the reinforcing material is formed into a frame shape on each of the upper and lower surfaces of the end portion of the sheet material along the periphery of the battery, and further in at least a part of the periphery of the battery. In addition, it is preferable that the upper and lower frame-shaped materials are integrally connected and molded at the through hole portion at the end of the sheet material.

また、本発明に係るシート材型電池は、シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材が向かい合う端部を気密に封止して収納する電池において、電池の周辺に沿ってシート材端部の上下面のそれぞれに枠形状に成形され、さらに電池の周辺の少なくとも一部において、シート材端部の貫通穴の部分で上下枠形状材が一体に接続されるように樹脂成形された補強材と、樹脂成形された補強材により挟み込まれたシート材端部の合わせ目の間に配置され、樹脂成形の加熱により溶融された接着材と、を含み、溶融された接着材によりシート材の端部が気密に封止されていることを特徴とする。   In addition, the sheet material type battery according to the present invention is a battery that encloses a battery power generation element with a sheet material, draws both electrodes from the battery power generation element to the outside, and hermetically seals and stores the opposite ends of the sheet material In this case, the upper and lower frame-shaped members are formed in a frame shape on the upper and lower surfaces of the sheet material end along the periphery of the battery. A resin-molded reinforcement material connected to the resin-molded reinforcement material, and an adhesive material disposed between the joints of the sheet material end portions sandwiched by the resin-molded reinforcement material and melted by the resin molding heating, In addition, the end of the sheet material is hermetically sealed with the molten adhesive material.

上記構成により、シート材の合わせ目に加熱溶融型の接着材を配置した半完成電池を形成したのち、それを金型の中に配置し、電池用発電要素が配置される金型部分を冷却し、シート材の合わせ目である端部にのみ、加熱加圧流体を印加するので、加熱に弱い電池用発電要素に熱を加えることなく、シート材の合わせ目のところのみを加熱加圧できる。また、シート材の合わせ目の加熱加圧は、流体を用いるので、電極の引き出し部のように、シートの合わせ目に段差が生じやすいところでも、電極の厚みに倣って加熱加圧が行われる。したがって、電極部分の寸法形状にバラツキがあっても、そのバラツキ形状寸法に倣って加熱加圧が行われ、電極付近における溶着のバラツキを抑制できる。   With the above configuration, after forming a semi-finished battery in which a heat-melt type adhesive is placed at the joint of the sheet material, it is placed in the mold and the mold part where the battery power generation element is placed is cooled. In addition, since the heating and pressurizing fluid is applied only to the end portion that is the joint of the sheet material, it is possible to heat and press only the joint portion of the sheet material without applying heat to the battery power generation element that is vulnerable to heating. . In addition, since fluid is used for heat and pressure at the joint of the sheet material, heating and pressurization is performed in accordance with the thickness of the electrode even where a difference in level is likely to occur at the joint of the sheet, such as an electrode lead-out portion. . Therefore, even if there is variation in the dimensional shape of the electrode portion, heating and pressurization are performed following the variation shape size, and variation in welding in the vicinity of the electrode can be suppressed.

また、加熱加圧流体は金型の中で加圧された溶融樹脂とするので、一般的な樹脂成型技術を応用し、電池用発電要素が配置される金型部分を冷却して、シート材の合わせ目に配置された接着材による溶融封止を行うことができる。溶融樹脂のほか、加熱加圧のオイル等の媒体を用いることもできる。   In addition, since the heated and pressurized fluid is a molten resin pressurized in the mold, a sheet material is obtained by applying a general resin molding technique to cool the mold part where the battery power generation element is arranged. It is possible to perform melt sealing with an adhesive disposed at the joint. In addition to the molten resin, a medium such as heat-pressed oil can also be used.

また、溶融樹脂を金型内で架橋反応させ、そのままシート材の合わせ目のところに残し、補強材とするので、いわゆるインサートモールドの技術を応用し、電池用発電要素が配置される金型部分を冷却して、シート材の合わせ目に配置された接着材による溶融封止を加圧溶融樹脂で行い、その溶融に用いた樹脂を成形してシート材の合わせ目を補強できる。したがって、加圧加熱樹脂を、形状に倣った溶着封止と、封止部分に完全密着した補強とに用いることができ、しかも1つの金型で連続的な工程で行うことができ効率的である。   In addition, the molten resin is subjected to a crosslinking reaction in the mold and is left as it is at the joint of the sheet material to be used as a reinforcing material. Therefore, the mold part where the power generation element for the battery is arranged by applying so-called insert molding technology Is cooled, melt sealing with an adhesive disposed at the joint of the sheet material is performed with a pressurized molten resin, and the joint of the sheet material can be reinforced by molding the resin used for the melting. Therefore, the pressure-heated resin can be used for welding sealing according to the shape and reinforcement that is completely adhered to the sealing portion, and moreover, it can be performed in a continuous process with one mold. is there.

また、補強材は、電池の周辺の端部に沿った枠形状に成形されるので、シート材の合わせ目の封止の補強を、電池の周辺に渡って、容易に行うことができる。   Further, since the reinforcing material is formed in a frame shape along the peripheral edge of the battery, the sealing of the seam of the sheet material can be easily reinforced over the periphery of the battery.

また、補強材は、電池の周辺に沿った上下枠形状であって、電池の周辺の少なくとも一部においては、シート材端面を挟み込むように成形されるので、上枠部分と下枠部分とが挟み込み部分で接続され、電池のシート材の合わせ目をその両側から確実に抑えることができ、合わせ目の封止の補強を確実なものとできる。   Further, the reinforcing material has a shape of an upper and lower frame along the periphery of the battery, and at least a part of the periphery of the battery is formed so as to sandwich the end face of the sheet material. Connected at the sandwiched portion, the joint of the battery sheet material can be reliably suppressed from both sides, and the sealing of the joint can be reliably reinforced.

また、補強材は、電池の周辺の少なくとも一部において、シート材端部の貫通穴の部分で上下枠形状材が一体に接続されて成形されるので、上枠部分と下枠部分とがこの接続部分で接続され、電池のシート材の合わせ目をその両側から確実に抑えることができ、合わせ目の封止の補強を確実なものとできる。   Further, since the reinforcing material is formed by integrally connecting the upper and lower frame-shaped materials at the through hole portion at the end of the sheet material at least in the periphery of the battery, the upper frame portion and the lower frame portion are Connected at the connecting portion, the joint of the battery sheet material can be reliably suppressed from both sides, and the sealing of the joint can be reliably reinforced.

以上のように、本発明に係るシート材型電池の製造方法及びシート材型電池によれば、シート材の合わせ目の溶着、特に電極付近における溶着のバラツキを抑制できる。また、シート材の合わせ目の封止の補強を容易なものとすることができる。   As described above, according to the method for manufacturing a sheet material type battery and the sheet material type battery according to the present invention, it is possible to suppress the welding of the joint of the sheet material, particularly the welding variation in the vicinity of the electrode. Further, it is possible to easily reinforce the sealing of the joint of the sheet material.

以下に図面を用いて、本発明に係る実施の形態につき詳細に説明する。以下では、シート材型電池としてリチウムイオン電池について説明するが、シート材を用いて電池を形成するものであれば、これ以外の電池でもよく、例えばニッケル水素電池、あるいはキャパシタを電池として用いるものであってもよい。また、電池用発電要素の構成は2枚の電極体の間にセパレータをはさんで重ね合わせ、これをロール状に巻いたものとして説明するが、これらを平板状に積層する構成のものでもよい。また、シート材として、プラスチックフィルムと金属箔とプラスチックフィルムの3層ラミネートシート材について説明するが、電池の構成によってはプラスチックフィルム層を適当に省略することができる。また、シート材及びシート材の合わせ目に配置される接着材の材質、厚み等は、例示であって、他の材質、厚みであってもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a lithium ion battery will be described as a sheet material type battery. However, any other battery may be used as long as the battery is formed using a sheet material. For example, a nickel metal hydride battery or a capacitor is used as the battery. There may be. Moreover, although the structure of the battery power generation element is described as a structure in which a separator is sandwiched between two electrode bodies and this is wound in a roll shape, a structure in which these are stacked in a flat plate shape may be used. . Further, as a sheet material, a three-layer laminate sheet material of a plastic film, a metal foil, and a plastic film will be described, but the plastic film layer can be appropriately omitted depending on the configuration of the battery. In addition, the material, thickness, and the like of the sheet material and the adhesive disposed at the joint of the sheet material are examples, and other materials and thicknesses may be used.

また、シート型電池は、車両用に用いられるものとするが、電極を外部に引き出し、シート材の合わせ目に配置された熱溶融型の接着材により封止するものであれば、車両以外の用途、例えば、家電製品に用いられてもよく、あるいは産業用装置に用いられてもよい。   In addition, the sheet type battery is used for a vehicle. However, as long as the electrode is drawn out and sealed with a hot-melt adhesive disposed at the joint of the sheet material, It may be used in applications such as home appliances or industrial equipment.

図1は、シート状のラミネート材を用いて電池用発電要素を気密に封止するシート材型電池10の平面図及び側面図である。平面図においては、一部を破断し、シート材型電池10の内部構造を示している。シート材型電池10は、ラミネートフィルムを成形して電池の外形とするシート材ケース12と、シート材ケース12の内部に収納される電池用発電要素14と、電池用発電要素14の電極体に接続され、シート材ケース12の外側に引き出される電極端子16と、シート材ケース12の周辺端部に樹脂成形による枠形状の補強材30とを備える。   FIG. 1 is a plan view and a side view of a sheet material type battery 10 that hermetically seals a battery power generation element using a sheet-like laminate material. In the plan view, a part is broken, and the internal structure of the sheet material type battery 10 is shown. The sheet material type battery 10 includes a sheet material case 12 which forms a laminate film to form an outer shape of the battery, a battery power generation element 14 housed in the sheet material case 12, and an electrode body of the battery power generation element 14. The electrode terminal 16 connected and drawn out of the sheet material case 12 is provided, and a frame-shaped reinforcing material 30 formed by resin molding is provided at the peripheral end of the sheet material case 12.

シート材ケース12の内部に収納される電池用発電要素14は、シート材型電池10の機能部分であるので、これについて最初に説明し、次に、電池用発電要素14および電極端子16を気密に封止する補強材30を含めたシート材ケース12の封止構造を詳述する。   The battery power generation element 14 housed in the sheet material case 12 is a functional part of the sheet material type battery 10, and will be described first. Next, the battery power generation element 14 and the electrode terminal 16 are hermetically sealed. The sealing structure of the sheet material case 12 including the reinforcing material 30 to be sealed will be described in detail.

電池用発電要素14は、リチウムイオン電池として知られている発電構造を実現する要素で、活物質が塗布された2枚の電極体の間にセパレータをはさんで重ね合わせ、これをロール状に巻き、これに電解液を浸み込ませたものである。2枚の電極体のうち、一方の電極体はアルミニウム箔が下地材料で、その表面にコバルト酸リチウム等のリチウム含有複合化合物である活物質が塗布され、他方の電極体は銅箔が下地材料で、その上にリチウムイオンを吸蔵させた炭素材等の活物質が塗布される。セパレータは溶媒で可塑化されたポリマー電解質が用いられる。そして、電解液を注入して一方の電極体とセパレータと他方の電極体との間に浸み込ませることで、リチウムイオン電池の発電要素としての機能を発揮するようになる。電解液には、LiClO4、LiPF6等のリチウム塩を溶解した有機溶媒が用いられる。なお、2種類の電極体及びセパレータをロール状に巻く方法の他に、これらをシート状のまま積層する構成としてもよい。 The power generation element 14 for a battery is an element that realizes a power generation structure known as a lithium ion battery. The battery power generation element 14 is overlapped by sandwiching a separator between two electrode bodies coated with an active material, and is formed into a roll shape. It is wound and impregnated with an electrolyte. Of the two electrode bodies, one electrode body has an aluminum foil as a base material, and an active material that is a lithium-containing composite compound such as lithium cobalt oxide is applied to the surface of the electrode body, and the other electrode body has a copper foil as a base material Then, an active material such as a carbon material occluded with lithium ions is applied thereon. As the separator, a polymer electrolyte plasticized with a solvent is used. And by inject | pouring electrolyte solution and making it immerse between one electrode body, a separator, and the other electrode body, it comes to show the function as an electric power generation element of a lithium ion battery. As the electrolytic solution, an organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used. In addition to the method of winding two types of electrode bodies and separators in a roll shape, these may be laminated in the form of a sheet.

電極端子16は、電池用発電要素14の2枚の電極体にそれぞれ接続される導電端子で、電池用発電要素14から電力を外部に引き出す機能を有する。具体的には、電池用発電要素14において、一方の電極体のアルミニウム箔に正の電極端子が溶接等で接続され、他方の電極体の銅に負の電極端子が溶接等で接続される。電極端子16の厚みは、例えば1mm程度とすることができる。   The electrode terminal 16 is a conductive terminal connected to each of the two electrode bodies of the battery power generation element 14 and has a function of drawing power from the battery power generation element 14 to the outside. Specifically, in the battery power generation element 14, a positive electrode terminal is connected to the aluminum foil of one electrode body by welding or the like, and a negative electrode terminal is connected to copper of the other electrode body by welding or the like. The thickness of the electrode terminal 16 can be about 1 mm, for example.

次に、補強材30を含めたシート材ケース12の封止構造について説明する。図2は、シート材型電池10の封止部分を典型的に示すものとして、図1のA−A線に沿って電極端子16近傍の断面構造を示す図である。   Next, the sealing structure of the sheet material case 12 including the reinforcing material 30 will be described. FIG. 2 is a diagram showing a cross-sectional structure in the vicinity of the electrode terminal 16 along the line AA in FIG. 1 as a typical example of the sealing portion of the sheet material type battery 10.

シート材ケース12は、ラミネートフィルム20を電池用発電要素14の外形に概略倣うような形状に成形したもので、具体的には1枚のラミネートフィルム20の素材を折り返して上下2つの面を有するシートのようにし、上面側のシートには電池用発電要素14の上面形状に倣うような凹面形状を成形し、下面側のシートには電池用発電要素14の下面形状に倣うような凹面形状を成形し、上面側のシートの周辺端部と下面側のシートの周辺端部とを向かい合わせ、その一対の凹面形状の間に電池用発電要素14を配置できるように合わせる。そして、合わせ目に適当な封止代を取って、外形を切断等により成形する。このようにして封止前のシート材ケース12を得ることができる。勿論、ラミネートフィルム20からなる複数のシートを適当な凹面形状と封止代を有するように成形し、それらを組み合わせて、シート材ケース12とすることもできる。   The sheet material case 12 is formed by forming the laminate film 20 into a shape that roughly follows the outer shape of the battery power generation element 14, and specifically has two upper and lower surfaces by folding the material of one laminate film 20. Like the sheet, the upper surface sheet is formed with a concave shape that follows the upper surface shape of the battery power generation element 14, and the lower surface sheet is formed with a concave surface shape that follows the lower surface shape of the battery power generation element 14. Molding is performed so that the peripheral edge of the upper surface sheet and the peripheral edge of the lower surface sheet face each other so that the battery power generation element 14 can be disposed between the pair of concave shapes. Then, an appropriate sealing allowance is taken at the joint, and the outer shape is formed by cutting or the like. In this way, the sheet material case 12 before sealing can be obtained. Of course, it is also possible to form a plurality of sheets made of the laminate film 20 so as to have an appropriate concave shape and sealing allowance, and to combine them into the sheet material case 12.

すなわち、シート材ケース12は、その中央部に、一対の凹部を向かい合わせ、外形でいえば一対の凸部となるふくらみ部11を有し、そのふくらみ部11の周辺にラミネートフィルム20の上下シートが向かい合う鍔部13を有する外形を備える。このふくらみ部11の内部空間が電池用発電要素14の収納空間となり、鍔部13がラミネートフィルム20の上面側シートと下面側シートとを互いに接着して気密封止する部分となる。そして、この気密封止には、後に詳述するが、金型内での溶融樹脂による加熱加圧が利用され、気密封止に用いられた溶融樹脂を架橋反応により成形してそのまま封止部に完全密着した補強材30とし、鍔部13の補強に用いられるのである。   That is, the sheet material case 12 has a pair of concave portions facing each other at the center thereof, and has a bulge portion 11 that becomes a pair of convex portions in terms of outer shape, and the upper and lower sheets of the laminate film 20 around the bulge portion 11. Is provided with an outer shape having a flange 13 facing each other. The internal space of the bulge portion 11 is a storage space for the battery power generation element 14, and the flange portion 13 is a portion that adheres the upper surface side sheet and the lower surface side sheet of the laminate film 20 to each other and hermetically seals them. As will be described in detail later, this hermetic sealing utilizes heating and pressurization with a molten resin in the mold, and the molten resin used for the hermetic sealing is molded by a crosslinking reaction and directly sealed. The reinforcing material 30 is in close contact with the flange portion 13 and is used for reinforcing the flange portion 13.

図2に示すように、ラミネートフィルム20は、表面保護用のプラスチックフィルム22と、ガスバリア層として金属箔24と、内部保護用のプラスチックフィルム26を3層に積層したものである。具体的には、約30μm厚さのポリプロピレンフィルムと、約60μm厚さのアルミニウム箔と、約15μm厚さのナイロンフィルムを密着積層したものを用いることができる。ここで、ポリプロピレンフィルム層は表面保護用のプラスチックフィルム22としてシート材ケース12の外表面側となり、ナイロンフィルムは内部保護用のプラスチックフィルム26として電池用発電要素14側となるように配置される。   As shown in FIG. 2, the laminate film 20 is formed by laminating a plastic film 22 for surface protection, a metal foil 24 as a gas barrier layer, and a plastic film 26 for internal protection in three layers. Specifically, a polypropylene film having a thickness of about 30 μm, an aluminum foil having a thickness of about 60 μm, and a nylon film having a thickness of about 15 μm can be used. Here, the polypropylene film layer is disposed on the outer surface side of the sheet material case 12 as the plastic film 22 for surface protection, and the nylon film is disposed on the battery power generation element 14 side as the plastic film 26 for internal protection.

ラミネートフィルム20のナイロンフィルム側には、さらに熱溶着性の接着材28の層が設けられる。具体的には、厚さ約30μmのポリプロピレンを用いることができる。この厚みのポリプロピレンは、例えば、220℃、50atmの高温高圧を印加することで、数秒程度で溶融し、2つのプラスチックの間に挟んで溶融させることで、この2つのプラスチックと一体となって強固に接着することができる。接着材28は、ラミネートフィルム20の全面に渡って設けてもよいが、少なくともシート材ケース12の周辺の端部において気密封止を行うラミネートフィルム20の合わせ目に設けられる。すなわち、シート材ケース12の鍔部13にそって、周辺ぐるりに、内部保護用プラスチックフィルム26であるナイロンフィルムの表面に、接着材28が配置される。   On the nylon film side of the laminate film 20, a layer of a heat-weldable adhesive material 28 is further provided. Specifically, polypropylene having a thickness of about 30 μm can be used. Polypropylene of this thickness melts in about a few seconds by applying a high temperature and high pressure of, for example, 220 ° C. and 50 atm, and is sandwiched between two plastics to be melted together. Can be glued to. The adhesive 28 may be provided over the entire surface of the laminate film 20, but is provided at the joint of the laminate film 20 that performs hermetic sealing at least at the peripheral edge of the sheet material case 12. That is, the adhesive 28 is disposed on the surface of the nylon film, which is the internal protective plastic film 26, around the periphery along the flange 13 of the sheet material case 12.

シート材ケース12の鍔部13において、電極端子16の部分に設けられる介在層18は、金属材料である電極端子16とラミネートフィルム20との間に設けられ、その間の気密封止を十分にする機能を有する。すなわち、熱溶着性のポリプロピレンは、プラスチック材料同士の接着には好適であるが、金属材料とプラスチック材料との間の接着にはそのままでは不十分となる。そこで介在層を用い、金属材料−介在層18−接着材28−ナイロンの構造とし、介在層18と接着材28とを加熱溶融することで、これらの相乗効果で金属材料とナイロンとの間の気密封止を確保するものである。かかる介在層18としては、加熱加圧下で溶融し、接着材との適合性によいプラスチックフィルムが好ましく、具体的には、変性ポリプロピレンを用いて、電極端子16の根元部の周囲をくるむように配置することができる。   In the collar portion 13 of the sheet material case 12, an intervening layer 18 provided in the electrode terminal 16 portion is provided between the electrode terminal 16 which is a metal material and the laminate film 20, and sufficient airtight sealing therebetween is provided. It has a function. In other words, heat-weldable polypropylene is suitable for bonding between plastic materials, but is not sufficient as it is for bonding between metal materials and plastic materials. Therefore, an intervening layer is used to form a structure of metal material-intervening layer 18-adhesive 28-nylon, and the intervening layer 18 and the adhesive 28 are heated and melted, so that a synergistic effect between the metal material and the nylon is obtained. This is to ensure hermetic sealing. The intervening layer 18 is preferably a plastic film that melts under heat and pressure and has good compatibility with the adhesive. Specifically, the intervening layer 18 is disposed using a modified polypropylene so as to surround the base portion of the electrode terminal 16. can do.

補強材30は、シート材ケース12の鍔部13に沿って完全密着して枠形状に成形された樹脂製の部材である。この補強材30は、シート材ケース12等と別に成形されて準備されるものではなく、電池用発電要素14を内蔵するシート材ケース12を射出成形金型にセットし、いわゆるインサートモールド技術を用い、シート材ケース12の鍔部13に沿って完全密着した枠形状に成形して一体化したものである。この枠形状は、シート材ケース12の鍔部13の側面のところで上下がつながっている。すなわち、シート材ケース12の周辺の端部において気密封止を行うラミネートフィルム20の合わせ目において、その上下面及び側面を覆うように成形される。つまり、シート材ケース12の周辺に突き出すラミネートフィルム20の合わせ目を挟み込むような形で、補強材30が成形される。補強材30の材質としては、ポリプロピレンを用いることができる。   The reinforcing member 30 is a resin member that is formed in a frame shape by being in close contact with the flange portion 13 of the sheet material case 12. The reinforcing material 30 is not prepared by being molded separately from the sheet material case 12 or the like, but the sheet material case 12 containing the battery power generation element 14 is set in an injection mold and a so-called insert molding technique is used. The sheet material case 12 is molded and integrated into a frame shape that is completely adhered along the flange 13. This frame shape is connected to the upper and lower sides at the side surface of the flange portion 13 of the sheet material case 12. That is, it is formed so as to cover the upper and lower surfaces and the side surfaces at the joint of the laminate film 20 that is hermetically sealed at the peripheral edge of the sheet material case 12. That is, the reinforcing material 30 is formed in such a manner as to sandwich the seam of the laminate film 20 protruding around the periphery of the sheet material case 12. As a material of the reinforcing material 30, polypropylene can be used.

図3は、かかる構成のシート材型電池10の製造方法についてその手順を示すフローチャートである。このフローチャートを用いて、シート材型電池10の封止構造形成の手順、すなわちシート材ケース12の封止構造形成の手順を詳細に説明する。   FIG. 3 is a flowchart showing the procedure of the method of manufacturing the sheet material type battery 10 having such a configuration. The procedure of forming the sealing structure of the sheet material type battery 10, that is, the procedure of forming the sealing structure of the sheet material case 12 will be described in detail using this flowchart.

発電要素形成工程(S10)は、上記のように、活物質が塗布された2枚の電極体の間にセパレータをはさんで重ね合わせ、これをロール状に巻き、電解液をまだ浸みこませていない電池用発電要素14を形成する工程である。電極接続工程(S12)は、2つの電極体にそれぞれアルミニウム、銅の電極端子16を溶接等で接続し、電池用発電要素14から外部に引き出す工程である。   In the power generation element forming step (S10), as described above, the separator is sandwiched between the two electrode bodies coated with the active material, wound in a roll shape, and the electrolyte is still soaked. This is a step of forming a battery power generation element 14 that is not. The electrode connecting step (S12) is a step of connecting aluminum and copper electrode terminals 16 to the two electrode bodies by welding or the like and pulling them out from the battery power generation element 14 to the outside.

次に、シート材に接着材をセットする工程(S14)は、予め準備してあるシート材ケース12に、熱溶着性の接着材を配置する工程である。こうして、シート材ケース12は、上記のように、電池用発電要素14を収納するためのふくらみ部11と、封止のための鍔部13と、少なくとも、鍔部13の合わせ目に配置された熱溶融性の接着材28を有することとなる。   Next, the step (S14) of setting an adhesive on the sheet material is a step of arranging a heat-welding adhesive on the sheet material case 12 prepared in advance. Thus, the sheet material case 12 was disposed at the joint of the bulge portion 11 for housing the battery power generation element 14, the flange portion 13 for sealing, and at least the flange portion 13 as described above. The heat-meltable adhesive 28 is provided.

発電要素等をセットする工程(S16)は、接着材18がセットされたシート材ケース12に、電極端子付き発電要素をセットする工程で、これに先立ち、電極端子16には介在層18が設けられる。この工程は、次のようにして進められる。まず、シート材ケース12を開いた状態で、例えば下側のふくらみ部11の内部に電池用発電要素14の下側の外形を合わせて挿入する。このとき、電極端子16は鍔部13に介在層18がかかる様にして外側にはみ出させる。そして電池用発電要素14の上側の外形に合わせるように、シート材ケース12の上側のふくらみ部11をかぶせ、シート材ケース12を閉じる。   The step (S16) of setting the power generation element or the like is a step of setting the power generation element with electrode terminals on the sheet material case 12 on which the adhesive 18 is set. Prior to this, an intervening layer 18 is provided on the electrode terminal 16. It is done. This process proceeds as follows. First, with the sheet material case 12 open, for example, the lower outer shape of the battery power generation element 14 is inserted into the lower bulge portion 11. At this time, the electrode terminal 16 protrudes to the outside in such a manner that the intervening layer 18 covers the flange 13. Then, the upper bulge portion 11 of the sheet material case 12 is covered so as to match the outer shape of the battery power generation element 14, and the sheet material case 12 is closed.

その様子を図4に示す。ここではシート材ケース12が開かれた状態で示されている。なお、熱溶融性の接着材28は、シート材ケース12の上下折り返しのそれぞれの鍔部13の周辺ぐるりに配置される。あるいは、上下折り返しの一方側、例えば下側の鍔部13全部と、他方側、この場合上側の鍔部13の介在層18の配置位置に対応するところに、熱溶融性の接着材28を配置するようにしてもよい。そして、介在層18が根元に巻かれた電極端子16を有する電池用発電要素14が、図4で白抜き矢印で示されるように、シート材ケース12の下側のふくらみ部11の中の凹部に挿入される。そして、図4の円弧矢印で示される方向に、シート材ケース12が上下折り返しのところを中心に折り返され、上側のふくらみ部11が電池用発電要素14の上側を覆う。   This is shown in FIG. Here, the sheet material case 12 is shown in an opened state. In addition, the heat-meltable adhesive 28 is disposed around the periphery of each flange 13 of the sheet material case 12 that is folded up and down. Alternatively, the heat-meltable adhesive 28 is disposed at a position corresponding to the arrangement position of the interposition layer 18 on one side of the upper and lower folded portions, for example, the lower ridge portion 13 and the other side, in this case, the upper ridge portion 13 in this case. You may make it do. Then, the battery power generation element 14 having the electrode terminal 16 around which the intervening layer 18 is wound is a recess in the bulge portion 11 on the lower side of the sheet material case 12 as shown by a white arrow in FIG. Inserted into. Then, the sheet material case 12 is folded back in the direction indicated by the circular arc arrow in FIG. 4, and the upper bulge portion 11 covers the upper side of the battery power generation element 14.

このようにして、ラミネートフィルム20からなるシート材ケース12で電池用発電要素14を包み込み、電池用発電要素14から両電極端子16を外部に引き出し、ラミネートフィルム20が向かい合う端部の合わせ目の間に加熱により溶融する接着材28を挟み込んで半完成電池を得る(S18)ことができる。半完成というのは、気密封止がまだ行われていず、また電解液が注入されていないためである。なお、S14とS16は、その順序を入れ替えるものとしてもよい。   In this way, the battery power generation element 14 is wrapped with the sheet material case 12 made of the laminate film 20, the both electrode terminals 16 are drawn out from the battery power generation element 14, and the gap between the joints at the ends of the laminate film 20 facing each other. A semi-finished battery can be obtained by sandwiching an adhesive 28 that melts by heating (S18). Semi-finished is because hermetic sealing has not yet been performed and no electrolyte has been injected. Note that S14 and S16 may be switched in order.

ここで気密封止を行うための金型の説明をする。図5は、気密封止用の金型40の断面図で、説明の便宜のため、半完成電池がセットされた状態を示してある。金型40は、パーティションライン41で分かれる下金型42と上金型44とから構成される。そして、それぞれは中央部46とその周囲の樹脂成形部48からなる。そして、上金型44の樹脂成形部48のところに、成形用樹脂の注入口50が設けられる。   Here, a mold for hermetic sealing will be described. FIG. 5 is a cross-sectional view of a hermetic sealing mold 40 and shows a state where a semi-finished battery is set for convenience of explanation. The mold 40 includes a lower mold 42 and an upper mold 44 that are separated by a partition line 41. And each consists of the center part 46 and the resin molding part 48 of the circumference | surroundings. A molding resin injection port 50 is provided at the resin molding portion 48 of the upper mold 44.

下金型42と上金型44において、中央部46は、凹部52を有し、その中に半完成電池の電池用発電要素14に相当する部分が収納される。但し、この中央部46では樹脂成形は行われない。中央部46の周囲の樹脂成形部48は、注入口50から樹脂が注入されるキャビティ54を有し、キャビティ54は、半完成電池のシート材ケース12の鍔部13に沿ってその上下及び側面に設けられる。なお、キャビティ54には、シート材ケース12の鍔部13の位置を保持するための補助ピン56が設けられることが好ましい。   In the lower mold 42 and the upper mold 44, the central portion 46 has a recess 52 in which a portion corresponding to the battery power generation element 14 of the semi-finished battery is accommodated. However, resin molding is not performed in the central portion 46. The resin molding portion 48 around the central portion 46 has a cavity 54 into which resin is injected from the injection port 50, and the cavity 54 is vertically and laterally along the flange portion 13 of the sheet material case 12 of the semi-finished battery. Provided. The cavity 54 is preferably provided with an auxiliary pin 56 for holding the position of the flange portion 13 of the sheet material case 12.

このように、樹脂成形は、樹脂成形部48でのみ行われるが、樹脂成形による熱が電池用発電要素14に影響を及ぼさないよう、中央部46の部分は水冷が行われる。具体的には、中央部46には図示されていない水冷パイプが外周あるいは金型内部に設けられ、図示されていない冷却装置からの冷却水が供給される。つまり、気密封止用の金型40は、周辺部における樹脂成形部48で樹脂成形が行われ、その部分の温度は高くなるが、中央部46は水冷が行われ、例えば常温に保たれる。   As described above, the resin molding is performed only at the resin molding portion 48, but the central portion 46 is water-cooled so that the heat generated by the resin molding does not affect the battery power generation element 14. Specifically, a water cooling pipe (not shown) is provided at the outer periphery or inside the mold in the central portion 46, and cooling water from a cooling device (not shown) is supplied. That is, the mold 40 for hermetic sealing is resin-molded by the resin molding part 48 in the peripheral part, and the temperature of the part becomes high, but the central part 46 is water-cooled, for example, kept at room temperature. .

再び図3に戻り、半完成電池が気密封止用の金型の中に配置される(S20)。その様子を図6、図7に示す。図6は金型を開いて、下金型42に半完成電池32をセットする様子を示し、図7はその上に上金型44を合わせて、内部に半完成電池32がセットされた一体の射出成形金型40を構成したときの様子を示す図である。なお、先ほどの図5は、図7のB−B線に沿った断面図に相当するものである。図6に示されるように、樹脂成形用のキャビティ54は、半完成電池32の鍔部13に沿ってぐるりと設けられ、図5で説明したように、キャビティ54はシート材ケース12の鍔部13に沿ってその上下及び側面に設けられる。したがって、樹脂成形後の形状は、半完成電池32の鍔部13を完全密着して挟み込む枠形状となる。   Returning again to FIG. 3, the semi-finished battery is placed in a hermetic sealing mold (S20). This is shown in FIGS. FIG. 6 shows a state in which the mold is opened and the semi-finished battery 32 is set in the lower mold 42, and FIG. 7 shows an integrated structure in which the upper mold 44 is aligned thereon and the semi-finished battery 32 is set inside. It is a figure which shows a mode when the injection mold 40 of this is comprised. 5 corresponds to a cross-sectional view taken along the line BB in FIG. As shown in FIG. 6, the resin molding cavity 54 is provided around the collar 13 of the semi-finished battery 32, and as described with reference to FIG. 5, the cavity 54 is the collar of the sheet material case 12. 13 along the top and bottom and side surfaces. Therefore, the shape after the resin molding is a frame shape in which the collar portion 13 of the semi-finished battery 32 is completely adhered and sandwiched.

そして、金型40の中央部46が冷却される(S22)。冷却は上記のように水冷が用いられ、例えば水温20℃の冷却水が供給される。S20とS22はいずれを先に行っても構わない。そして、樹脂注入が行われる(S24)。具体的には、図示されていない樹脂源から注入口50に溶融樹脂が注入され、加圧される。必要があれば、樹脂成形部48の部分が成形に適した温度に制御される。溶融樹脂としては、ポリプロピレンが用いられる。この樹脂成形の樹脂注入量、加圧、温度等のシーケンスは、図示されていない射出成形制御部の制御の下で実行される。一例を上げると、溶融樹脂温度を220℃、加圧を50atm、注入時間を5sec、注入時間も含めた加圧時間を15sec等とすることができる。   And the center part 46 of the metal mold | die 40 is cooled (S22). As described above, water cooling is used for cooling, for example, cooling water having a water temperature of 20 ° C. is supplied. Either S20 or S22 may be performed first. Then, resin injection is performed (S24). Specifically, molten resin is injected into the injection port 50 from a resin source (not shown) and pressurized. If necessary, the resin molding portion 48 is controlled to a temperature suitable for molding. Polypropylene is used as the molten resin. The resin injection amount, pressurization, temperature, and other sequences for this resin molding are executed under the control of an injection molding control unit (not shown). For example, the molten resin temperature can be 220 ° C., the pressure can be 50 atm, the injection time can be 5 seconds, and the pressure time including the injection time can be 15 seconds.

そして、金型40のキャビティ54に溶融樹脂が加圧充填されるので、半完成電池32の鍔部13では、ラミネートフィルム20の合わせ目の間に配置された熱溶融性の接着材28が、溶融樹脂によって加熱加圧され、溶融し、ラミネートフィルム20の合わせ目を接着する。より詳細には、電極端子16のないラミネートフィルム20の合わせ目においては、上下ラミネートフィルム20同士が接着材18により接着され、電極端子16の周りに配置された介在層18があるラミネートフィルム20の合わせ目では、介在層18と接着材28によって電極端子16と上下ラミネートフィルム20とが接着される。   Then, since the molten resin is pressure-filled into the cavity 54 of the mold 40, the heat-melt adhesive 28 disposed between the seams of the laminate film 20 is formed in the collar portion 13 of the semifinished battery 32. It is heated and pressurized by the molten resin, melted, and the seam of the laminate film 20 is bonded. More specifically, at the joint of the laminate film 20 without the electrode terminal 16, the upper and lower laminate films 20 are bonded together by the adhesive 18, and the laminate film 20 having the intervening layer 18 disposed around the electrode terminal 16 is provided. At the joint, the electrode terminal 16 and the upper and lower laminate films 20 are bonded by the intervening layer 18 and the adhesive 28.

加圧された溶融樹脂は、加熱加圧流体であるので、電極端子16のように硬い物質を挟み込んだラミネートフィルム20の部分でも、電極端子16の厚み、形状に倣ってラミネートフィルム20、介在層18、接着材28の積層を押し付け、介在層18、接着材28を電極端子16の厚み、形状に倣うように溶融させる。したがって、接着後は、電極端子16の厚み、形状に倣った滑らかな形状とすることができる。   Since the pressurized molten resin is a heated and pressurized fluid, the laminated film 20 and the intervening layer follow the thickness and shape of the electrode terminal 16 even in the portion of the laminated film 20 that sandwiches a hard substance such as the electrode terminal 16. 18, the laminate of the adhesive 28 is pressed, and the intervening layer 18 and the adhesive 28 are melted so as to follow the thickness and shape of the electrode terminal 16. Therefore, after bonding, the electrode terminal 16 can have a smooth shape following the thickness and shape.

こうして、接着材28を加圧加熱流体である溶融加圧ポリプロピレンにより溶融し、半完成電池32の鍔部13を接着により封止することができる。そして、溶融加圧ポリプロピレンを金型40の中で架橋反応により成形することで、鍔部13の上下側面を樹脂によって完全密着して挟み込むことができる(S26)。接着・挟み込みが十分行われれば、金型40から接着・挟み込みが行われた電池を取り出す型外し(S28)が行われる。型外しが行われた電池は、完成までにあと電解液の注入を残すだけで、その外形は、図1と同じである。   In this way, the adhesive 28 can be melted by the melt-pressed polypropylene that is a pressurized heating fluid, and the flange 13 of the semi-finished battery 32 can be sealed by bonding. Then, by molding the melt-pressed polypropylene in the mold 40 by a cross-linking reaction, the upper and lower side surfaces of the flange portion 13 can be sandwiched completely with resin (S26). If the bonding / clamping is sufficiently performed, the mold is removed from the mold 40 to remove the battery that has been bonded / clamped (S28). The battery that has been removed from the mold has the same external shape as that shown in FIG.

そして、次に電解液注入が行われる(S30)。電解液注入は、シート材ケース12のふくらみ部11に連通する注入穴を設けて行われる。図8はその様子を示す図で、気密封止済みで電解注入前の完成直前電池34に対し、シート材ケース12の上下シートの折り返しのところに連通する穴を設け、これをふくらみ部11に連通する注入穴36とする。そして、この注入穴36を介し、外部の電解液注入器38より所定の電解液が電池用発電要素14に対し注入される。電解液注入が終わった後、注入穴36はしっかり封止される。こうして、図1に示すシート材型電池が出来上がる(S32)。   Next, electrolyte injection is performed (S30). The electrolyte solution injection is performed by providing an injection hole communicating with the bulge portion 11 of the sheet material case 12. FIG. 8 is a diagram showing the situation. A hole 34 is formed in the bulging portion 11 so as to communicate with the folded portion of the upper and lower sheets of the sheet material case 12 in the battery 34 that is hermetically sealed and immediately before completion of electrolytic injection. The injection hole 36 is in communication. Then, a predetermined electrolytic solution is injected from the external electrolytic solution injector 38 into the battery power generation element 14 through the injection hole 36. After the electrolyte injection is finished, the injection hole 36 is tightly sealed. Thus, the sheet material type battery shown in FIG. 1 is completed (S32).

このように、通常80℃以下に保つことが要求される電池用発電素子の部分を冷却し、シート材ケースの周辺端部の合わせ目である鍔部のところを樹脂成形することで、溶融樹脂により封止を行い、そのまま架橋反応させて鍔部に完全密着する補強材とすることができる。そして、封止を、加熱加圧流体である溶融樹脂を用いて行うことになるので、例えば電極端子のところなど、形状の変化や段差があるところでも、形状に倣って、ラミネートフィルムを押さえてその間の熱溶融性接着材を溶融して接着を行うので、溶着強度等のばらつきを少なくし、形状的に滑らかな接着を行うことができる。   In this way, the portion of the battery power generation element that is normally required to be kept at 80 ° C. or lower is cooled, and the resin is molded at the collar portion that is the joint of the peripheral edge portion of the sheet material case, so that the molten resin The reinforcing material can be sealed by being subjected to a crosslinking reaction as it is, and can be completely adhered to the heel part. Then, since sealing is performed using a molten resin that is a heated and pressurized fluid, the laminate film is pressed in accordance with the shape even when there is a change in the shape or a step such as the electrode terminal. Since the hot-melt adhesive material is melted and bonded in the meantime, variations in welding strength and the like can be reduced, and the shape can be smoothly bonded.

図9は、補強材の配置を変更したシート材型電池60の平面図及び側面図である。平面図においては、図1と同様に、一部を破断し、シート材型電池60の内部構造を示している。このシート材型電池60においては、補強材62の配置及び形状が図1で説明したシート材型電池10と異なる。その他の要素は図1と同じなので、同様の要素には同一の符号を付し詳細な説明を省略する。このシート材型電池60の補強材62は、枠形状であるが、シート材ケース12の鍔部13の4辺のうち、電極端子16が引き出される2辺と、これと直交する2辺のうち1辺については、図1のシート材型電池10の補強材30と同じように、鍔部13の上下及び側面を囲んでいわば鍔部13を挟んでいる。鍔部13のもう1つの辺については、その上下に枠形状部分が配置されるが、鍔部13の側面には配置されず、鍔部13を挟んでいない。このような構成とすることで、より小型なシート材型電池60とすることができる。   FIG. 9 is a plan view and a side view of the sheet material type battery 60 in which the arrangement of the reinforcing material is changed. In the plan view, like FIG. 1, a part thereof is broken to show the internal structure of the sheet material type battery 60. In the sheet material type battery 60, the arrangement and shape of the reinforcing material 62 are different from those of the sheet material type battery 10 described in FIG. Since the other elements are the same as those in FIG. 1, the same elements are denoted by the same reference numerals and detailed description thereof is omitted. The reinforcing material 62 of the sheet material type battery 60 has a frame shape. Of the four sides of the flange portion 13 of the sheet material case 12, the two sides from which the electrode terminal 16 is drawn out and the two sides orthogonal to the two sides As for one side, like the reinforcing material 30 of the sheet material type battery 10 of FIG. 1, the upper and lower sides and the side surfaces of the flange 13 are surrounded, so to speak. As for the other side of the collar part 13, the frame-shaped parts are arranged above and below, but are not arranged on the side surface of the collar part 13 and do not sandwich the collar part 13. By setting it as such a structure, it can be set as the smaller sheet material type battery 60. FIG.

補強材が鍔部13を挟むようにする目的は、鍔部13の接着した合わせ目を補強し、防水性を向上させ、合わせ目がはがれないようにするため等である。したがって、補強材が鍔部13に沿って配置されるときは、4辺全部において補強材の上下で接続されていなくても、鍔部13の全周を押さえ込むことは可能である。図9は、1辺において補強材62の上下が接続されていない例を示すものである。   The purpose of the reinforcing material to sandwich the collar 13 is to reinforce the seam to which the collar 13 is bonded, to improve waterproofness, and to prevent the seam from being peeled off. Therefore, when the reinforcing material is disposed along the flange portion 13, it is possible to press down the entire periphery of the flange portion 13 even if the reinforcing material is not connected to the upper and lower sides of the reinforcing material on all four sides. FIG. 9 shows an example in which the top and bottom of the reinforcing material 62 are not connected on one side.

図10は、図9の構造のシート材型電池60の組み立ての際の様子を模式的に示す図である。ふくらみ部11と鍔部13a,13bを有するシート材ケース12の中に、電極端子付きの電池用発電要素14が収納され、図10の破線矢印の方向にシート材ケース12が閉じられ、半完成電池が得られる。ここまでは図1のシート材型電池10と同じであるが、次の気密封止用金型が異なる。いま鍔部13を図10のように、ラミネートフィルムの折り返し側の鍔部13aと、その反対側の鍔部13bと区別すると、気密封止金型は、折り返し側の鍔部13aについては、樹脂成形キャビティの内部に全部含むようにし、その反対側の鍔部13bについては、鍔部13bの先端部のみを樹脂成形キャビティの中に含まないようにする。熱溶融性接着材は鍔部13の全周に渡って配置されるので、加圧溶融樹脂による封止は鍔部13の全周に渡って行われるが、補強材62は、折り返し側と反対側の鍔部13bにおいて、その側面を覆っていない。   FIG. 10 is a diagram schematically showing the state of assembling the sheet material type battery 60 having the structure of FIG. A battery power generation element 14 with electrode terminals is housed in a sheet material case 12 having a bulge portion 11 and flange portions 13a and 13b, and the sheet material case 12 is closed in the direction of the broken arrow in FIG. A battery is obtained. The process so far is the same as that of the sheet material type battery 10 of FIG. 1, but the following hermetic sealing mold is different. As shown in FIG. 10, when the collar portion 13 is distinguished from the folded-back flange portion 13a of the laminate film and the opposite-side flange portion 13b, the hermetic sealing mold is formed of a resin for the folded-back flange portion 13a. All of the inside of the molding cavity is included, and for the flange portion 13b on the opposite side, only the tip portion of the flange portion 13b is not included in the resin molding cavity. Since the hot-melt adhesive is disposed over the entire circumference of the flange 13, sealing with the pressurized molten resin is performed over the entire circumference of the flange 13, but the reinforcing material 62 is opposite to the folded side. The side surface of the flange 13b is not covered.

図11は、別の配置および形状の補強材を有するシート材型電池70の平面図及び側面図である。平面図、側面図においては、一部を破断し、シート材型電池60の内部構造を示している。このシート材型電池70においては、補強材72の配置及び形状が図1で説明したシート材型電池10と異なる。その他の要素は図1と同じなので、同様の要素には同一の符号を付し詳細な説明を省略する。   FIG. 11 is a plan view and a side view of a sheet material type battery 70 having a reinforcing material of another arrangement and shape. In the plan view and the side view, a part is broken, and the internal structure of the sheet material type battery 60 is shown. In this sheet material type battery 70, the arrangement and shape of the reinforcing material 72 are different from those of the sheet material type battery 10 described in FIG. Since the other elements are the same as those in FIG. 1, the same elements are denoted by the same reference numerals and detailed description thereof is omitted.

このシート材型電池70の補強材72は、枠形状であるが、その平面外形は、シート材ケース12の鍔部13の平面外形より小さい。つまり、補強材72の枠形状は、シート材ケース12の鍔部13の上面及び下面に配置されるが、鍔部13の側面を覆っていず、鍔部13の先端を挟んでいない。その代わり、鍔部13の4箇所において、貫通穴を設け、その貫通穴において上下枠形状材が接続する接続部74が設けられる。この接続部74により、上下枠形状材は、鍔部13を全周に渡りしっかりと押し付けることができる。このような構成とすることで、さらにより小型なシート材型電池60とすることができる。   The reinforcing material 72 of the sheet material type battery 70 has a frame shape, but the planar outer shape thereof is smaller than the planar outer shape of the flange portion 13 of the sheet material case 12. That is, the frame shape of the reinforcing member 72 is disposed on the upper surface and the lower surface of the flange portion 13 of the sheet material case 12, but does not cover the side surface of the flange portion 13 and does not sandwich the tip of the flange portion 13. Instead, through holes are provided at four locations on the flange 13, and connection portions 74 to which the upper and lower frame-shaped members are connected are provided. By this connection portion 74, the upper and lower frame-shaped material can firmly press the flange portion 13 over the entire circumference. By setting it as such a structure, it can be set as the still smaller sheet material type battery 60. FIG.

接続部74は、シート材ケース12の鍔部13の補強材72が配置される範囲で適当な配置間隔で複数の貫通穴を設けておくことで、樹脂成形の際に、その貫通穴に樹脂が流れ込み、上下枠形状部分が一体となることができる。図11では、鍔部13の4隅に接続部74を配置したが、それ以外の配置でもよい。   The connecting portion 74 is provided with a plurality of through holes at an appropriate arrangement interval within a range in which the reinforcing member 72 of the flange portion 13 of the sheet material case 12 is arranged, so that the resin is inserted into the through holes at the time of resin molding. Flows in and the upper and lower frame-shaped portions can be integrated. In FIG. 11, the connection portions 74 are arranged at the four corners of the collar portion 13, but other arrangements may be used.

上記のシート材型電池10,60,70は、いずれもラミネートフィルムの合わせ目に配置された溶融性接着材を加熱加圧流体である溶融樹脂で溶融して封止し、そのまま架橋反応させて補強材を形成するものである。溶融封止が十分な強度を有するときは、加熱加圧流体を封止の段階で排出してもよい。かかる封止用の加熱加圧流体としては、金型の中の溶融樹脂の他に、金型内の加熱加圧オイル等も用いることができる。   In each of the sheet material type batteries 10, 60, and 70, the meltable adhesive disposed at the joint of the laminate film is melted and sealed with a molten resin that is a heating and pressurizing fluid, and directly subjected to a crosslinking reaction. A reinforcing material is formed. When the melt seal has sufficient strength, the heated and pressurized fluid may be discharged at the sealing stage. As the heat-pressurized fluid for sealing, a heat-pressurized oil or the like in the mold can be used in addition to the molten resin in the mold.

図12は、補強材を用いないシート材型電池80の外形図である。このシート材型電池80は、シート材ケース12の鍔部13の合わせ目に溶融した接着材82があり、一見従来の加熱プレス板等を用いた封止方法によるものと似ている。異なる点の1つは、電極端子16の周囲の封止状態である。加熱プレス板のように固定形状の加熱加圧ジグを用いるものは、電極端子16の周囲の封止形状に機械的な押し付け跡が残り、滑らかな封止形状とならないことが多い。また、ジグの形状が一定であるのに対し電極端子16の形状寸法がばらつくので、電極端子16とシート材ケース12との間の溶着形状や寸法が一定しない。これに対し、加熱加圧流体を用いて封止する方法では、電極端子16の形状寸法に倣ってラミネートフィルムを押し付け、溶融性樹脂を溶融するので、機械的押し付け跡が残らず、また、電極端子16の形状寸法がばらついても、電極端子16とシート材ケース12との間の溶着形状や寸法がばらつかず、滑らかな形状で封止が行われる。   FIG. 12 is an external view of a sheet material type battery 80 that does not use a reinforcing material. This sheet material type battery 80 has an adhesive 82 melted at the joint of the flange portion 13 of the sheet material case 12, and at first glance resembles that by a conventional sealing method using a hot press plate or the like. One of the differences is the sealed state around the electrode terminal 16. In the case of using a heat-pressed jig having a fixed shape such as a heat-pressed plate, a mechanical pressing mark remains in the sealing shape around the electrode terminal 16 and a smooth sealing shape is often not obtained. Further, since the shape of the electrode terminal 16 varies while the shape of the jig is constant, the shape and size of welding between the electrode terminal 16 and the sheet material case 12 are not constant. On the other hand, in the method of sealing using a heated and pressurized fluid, the laminate film is pressed in accordance with the shape and dimension of the electrode terminal 16 and the meltable resin is melted. Even if the shape and size of the terminal 16 vary, the welding shape and size between the electrode terminal 16 and the sheet material case 12 do not vary, and sealing is performed in a smooth shape.

異なる点の2つ目は、溶融した接着材82の状態である。接着材82は、金型のキャビティにおける加熱加圧流体の部分で溶融する。溶融部分には金型が密着していない。従来の加熱プレスでは、溶融部分に加熱プレス板等が密着する。したがって、機械的要素の密着部分が、溶融した接着材82の外側か内側かの相違がある。つまり、機械的な押し付け跡は、従来技術では溶融接着材82の内側に残り、図12の例では、残るとすれば、溶融接着材82の外側に残る。このような観察により、従来技術による封止か、図12に示される加熱加圧流体による封止かを区別することができる。   The second difference is the state of the molten adhesive material 82. The adhesive 82 melts at the heated and pressurized fluid portion in the mold cavity. The mold is not in close contact with the melted portion. In a conventional heating press, a heating press plate or the like is in close contact with the melted portion. Therefore, there is a difference between whether the adhesion portion of the mechanical element is outside or inside the molten adhesive material 82. That is, the mechanical pressing mark remains on the inner side of the molten adhesive material 82 in the conventional technique, and in the example of FIG. By such observation, it is possible to distinguish between sealing by a conventional technique and sealing by a heated and pressurized fluid shown in FIG.

本発明に係る実施の形態におけるシート材型電池の平面図及び側面図である。It is the top view and side view of a sheet material type battery in an embodiment according to the present invention. 図1のA−A線に沿った電極端子近傍の断面構造を示す図である。It is a figure which shows the cross-section of the electrode terminal vicinity along the AA line of FIG. 本発明に係る実施の形態におけるシート材型電池の製造方法についてその手順を示すフローチャートである。It is a flowchart which shows the procedure about the manufacturing method of the sheet material type battery in embodiment which concerns on this invention. 本発明に係る実施の形態におけるシート材型電池の製造のために、発電要素等をセットする工程の様子を示す図である。It is a figure which shows the mode of the process of setting an electric power generation element etc. for manufacture of the sheet material type battery in embodiment which concerns on this invention. 本発明に係る実施の形態において、半完成電池がセットされた気密封止用の金型の断面図である。In embodiment which concerns on this invention, it is sectional drawing of the metal mold | die for airtight sealing in which the semi-finished battery was set. 本発明に係る実施の形態におけるシート材型電池の製造のために、下金型に半完成電池をセットする工程の様子を示す図である。It is a figure which shows the mode of the process of setting a semi-finished battery to a lower metal mold | die for manufacture of the sheet material type battery in embodiment which concerns on this invention. 本発明に係る実施の形態におけるシート材型電池の製造のために、内部に半完成電池をセットし、下金型に上金型を合わせて一体の射出成形金型を構成する様子を示す図である。The figure which shows a mode that a semi-finished battery is set inside for the manufacture of the sheet material type battery in embodiment which concerns on this invention, an upper mold is match | combined with a lower mold, and an integral injection mold is comprised. It is. 本発明に係る実施の形態におけるシート材型電池の製造のために、電解液注入が行われる工程の様子を示す図である。It is a figure which shows the mode of the process by which electrolyte solution injection | pouring is performed for manufacture of the sheet material type battery in embodiment which concerns on this invention. 他の実施の形態におけるシート材型電池平面図及び側面図である。It is the top view and side view of a sheet material type battery in other embodiments. 図9の構造のシート材型電池における組み立ての様子を模式的に示す図である。It is a figure which shows typically the mode of the assembly in the sheet material type battery of the structure of FIG. さらに他の実施の形態におけるシート材型電池の平面図及び側面図である。It is the top view and side view of the sheet material type battery in other embodiment. 別の実施の形態におけるシート材型電池の外形図である。It is an external view of the sheet material type battery in another embodiment.

符号の説明Explanation of symbols

10,60,70,80 シート材型電池、11 ふくらみ部、12 シート材ケース、13,13a,13b 鍔部、14 電池用発電要素、16 電極端子、18 介在層、20 ラミネートフィルム、22,26 プラスチックフィルム、24 金属箔、28,82 接着材、30,62,72 補強材、32 半完成電池、34 完成直前電池、36 注入穴、38 電解液注入器、40 金型、41 パーティションライン、42 下金型、44 上金型、46 中央部、48 樹脂成形部、50 注入口、52 凹部、54 キャビティ、56 補助ピン、74 接続部。   10, 60, 70, 80 Sheet material type battery, 11 Swelling part, 12 Sheet material case, 13, 13a, 13b collar part, 14 Power generation element for battery, 16 Electrode terminal, 18 Intervening layer, 20 Laminate film, 22, 26 Plastic film, 24 Metal foil, 28, 82 Adhesive, 30, 62, 72 Reinforcing material, 32 Semi-finished battery, 34 Battery just before completion, 36 Injection hole, 38 Electrolyte injector, 40 Mold, 41 Partition line, 42 Lower mold, 44 Upper mold, 46 Center part, 48 Resin molding part, 50 Inlet, 52 Recess, 54 Cavity, 56 Auxiliary pin, 74 Connection part.

Claims (7)

シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材が向かい合う端部の合わせ目の間に加熱により溶融する接着材を挟み込んで半完成電池を形成する工程と、
半完成電池を気密封止用金型の中に配置し、電池用発電要素が配置される金型部分を冷却し、半完成電池のシート材の端部にのみ加熱加圧流体を印加して、シート材の端部の接着材を溶融し気密に封止する工程と、
を備えることを特徴とするシート材型電池の製造方法。
A process of forming a semi-finished battery by wrapping a battery power generation element with a sheet material, pulling out both electrodes from the battery power generation element to the outside, and sandwiching an adhesive that melts by heating between the joints of the ends facing the sheet material When,
Place the semi-finished battery in a hermetic sealing mold, cool the mold part where the battery power generation element is placed, and apply heated and pressurized fluid only to the edge of the sheet material of the semi-finished battery. , The step of melting and sealing hermetically the adhesive at the end of the sheet material;
A sheet material type battery manufacturing method comprising:
請求項1に記載のシート材型電池の製造方法において、
加熱加圧流体は、金型の中で加圧された溶融樹脂であることを特徴とするシート材型電池の製造方法。
In the manufacturing method of the sheet material type battery according to claim 1,
The method for producing a sheet material type battery, wherein the heated and pressurized fluid is a molten resin pressurized in a mold.
請求項2に記載のシート材型電池の製造方法において、
シート材の端部を封止した溶融樹脂を金型内で架橋反応させ電池の補強材として成形する工程を備えることを特徴とするシート材型電池の製造方法。
In the manufacturing method of the sheet material type battery according to claim 2,
A method for producing a sheet material type battery, comprising a step of forming a molten resin in which an end portion of a sheet material is subjected to a crosslinking reaction in a mold as a battery reinforcing material.
請求項3に記載のシート材型電池の製造方法において、
電池の補強材は、電池の周辺の気密封止端部に沿った枠形状に成形されることを特徴とするシート材型電池の製造方法。
In the manufacturing method of the sheet material type battery according to claim 3,
A method for manufacturing a sheet material type battery, wherein the battery reinforcing material is formed into a frame shape along a hermetic sealing end portion around the battery.
請求項4に記載のシート材型電池の製造方法において、
補強材は、電池の周辺に沿ってシート材端部の上下面のそれぞれに枠形状に成形され、さらに電池の周辺の少なくとも一部において、シート材の端部の上下面とともに側面を覆ってシート材端面を挟み込むように成形されることを特徴とするシート材型電池の製造方法。
In the manufacturing method of the sheet material type battery according to claim 4,
The reinforcing material is formed into a frame shape on each of the upper and lower surfaces of the end portion of the sheet material along the periphery of the battery, and further covers the side surface together with the upper and lower surfaces of the end portion of the sheet material in at least a part of the periphery of the battery. A method for manufacturing a sheet material type battery, wherein the battery is molded so as to sandwich a material end face.
請求項4に記載のシート材型電池の製造方法において、
補強材は、電池の周辺に沿ってシート材端部の上下面のそれぞれに枠形状に成形され、さらに電池の周辺の少なくとも一部において、シート材端部の貫通穴の部分で上下枠形状材が一体に接続されて成形されることを特徴とするシート材型電池の製造方法。
In the manufacturing method of the sheet material type battery according to claim 4,
The reinforcing material is formed into a frame shape on each of the upper and lower surfaces of the end portion of the sheet material along the periphery of the battery. Further, at least part of the periphery of the battery, the upper and lower frame shape material is formed at the through hole portion at the end of the sheet material A method for manufacturing a sheet material type battery, wherein the two are integrally connected and molded.
シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材が向かい合う端部を気密に封止して収納する電池において、
電池の周辺に沿ってシート材端部の上下面のそれぞれに枠形状に成形され、さらに電池の周辺の少なくとも一部において、シート材端部の貫通穴の部分で上下枠形状材が一体に接続されるように樹脂成形された補強材と、
樹脂成形された補強材により挟み込まれたシート材端部の合わせ目の間に配置され、樹脂成形の加熱により溶融された接着材と、
を含み、溶融された接着材によりシート材の端部が気密に封止されていることを特徴とするシート材型電池。
In a battery that encloses a battery power generation element with a sheet material, draws both electrodes from the battery power generation element to the outside, and hermetically seals and stores the opposite ends of the sheet material,
A frame shape is formed on each of the upper and lower surfaces of the sheet material edge along the periphery of the battery, and the upper and lower frame shape materials are connected together at the through-hole portion of the sheet material edge at least in the periphery of the battery. And a resin-molded reinforcing material,
An adhesive disposed between the joints of the sheet material ends sandwiched by the resin-molded reinforcing material, and melted by heating of the resin molding; and
A sheet material type battery characterized in that an end portion of the sheet material is hermetically sealed with a molten adhesive material.
JP2004283382A 2004-09-29 2004-09-29 Sheet material type battery manufacturing method and sheet material type battery Expired - Fee Related JP4687052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283382A JP4687052B2 (en) 2004-09-29 2004-09-29 Sheet material type battery manufacturing method and sheet material type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283382A JP4687052B2 (en) 2004-09-29 2004-09-29 Sheet material type battery manufacturing method and sheet material type battery

Publications (2)

Publication Number Publication Date
JP2006100064A JP2006100064A (en) 2006-04-13
JP4687052B2 true JP4687052B2 (en) 2011-05-25

Family

ID=36239661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283382A Expired - Fee Related JP4687052B2 (en) 2004-09-29 2004-09-29 Sheet material type battery manufacturing method and sheet material type battery

Country Status (1)

Country Link
JP (1) JP4687052B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980104B1 (en) * 2005-09-28 2010-09-07 주식회사 엘지화학 Apparatus for Manufacturing Secondary Battery
JP2009076351A (en) * 2007-09-21 2009-04-09 Sony Corp Method of manufacturing battery pack
JP4766057B2 (en) 2008-01-23 2011-09-07 ソニー株式会社 Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP2009188253A (en) * 2008-02-07 2009-08-20 Nisshinbo Holdings Inc Energy storage device and its manufacturing method
JP5588338B2 (en) * 2008-03-18 2014-09-10 太陽誘電株式会社 Electrochemical devices
DE102009037063A1 (en) * 2009-08-13 2011-02-17 Behr Gmbh & Co. Kg A method of manufacturing an energy storage device for a vehicle
JP5660619B2 (en) * 2011-04-28 2015-01-28 Necエナジーデバイス株式会社 Film-clad battery and manufacturing method thereof
FR2980305A1 (en) * 2011-09-19 2013-03-22 St Microelectronics Tours Sas METHOD FOR ENCAPSULATING AN ELECTRIC ENERGY ACCUMULATION MEMBER AND BATTERY
US9701056B2 (en) 2011-10-11 2017-07-11 Nissan Motor Co., Ltd. Fabrication method for laminated-type secondary battery
JP5917899B2 (en) * 2011-11-29 2016-05-18 日産自動車株式会社 Thin battery and method of manufacturing thin battery
JP5962012B2 (en) * 2011-12-29 2016-08-03 日産自動車株式会社 Connecting method and connecting device
JP6032233B2 (en) * 2014-03-18 2016-11-24 トヨタ自動車株式会社 Solid battery and manufacturing method thereof, and assembled battery and manufacturing method thereof
DE102015000735A1 (en) * 2015-01-21 2016-07-21 Audi Ag Method for producing a pouch cell
KR102013914B1 (en) 2015-11-12 2019-08-23 주식회사 엘지화학 Curing Die for Preparation of Gel Polymer Electrolyte and Method of Preparing Gel Polymer Battery Cell Using the Same
JP6738271B2 (en) * 2016-12-28 2020-08-12 株式会社エンビジョンAescジャパン A laminate type battery including a resin molding method and a resin member in an outer casing.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267258A (en) * 1985-05-21 1986-11-26 Toshiba Battery Co Ltd Manufacture of flat battery
JPH05283087A (en) * 1992-04-01 1993-10-29 Seiko Electronic Components Ltd Method and device for manufacturing flat battery
JPH10247480A (en) * 1997-02-28 1998-09-14 Yuasa Corp Molded battery and its manufacture
JP2000106154A (en) * 1998-09-28 2000-04-11 Matsushita Electric Ind Co Ltd Whole solid battery and its manufacture
JP2001229890A (en) * 2000-02-16 2001-08-24 Dainippon Printing Co Ltd Seal head for packaging polymer battery and sealing method thereof
JP2002260609A (en) * 2001-02-27 2002-09-13 Kyocera Corp Battery and portable terminal provided therewith
JP2002324528A (en) * 2001-04-24 2002-11-08 Dainippon Printing Co Ltd Film for lead wire of cell and cell packaging material using the same and its manufacturing method
JP2004055151A (en) * 2002-07-16 2004-02-19 Nissan Motor Co Ltd Armor case for layer-built battery
JP2004095471A (en) * 2002-09-03 2004-03-25 Nissan Motor Co Ltd Flat battery with laminated outer package

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267258A (en) * 1985-05-21 1986-11-26 Toshiba Battery Co Ltd Manufacture of flat battery
JPH05283087A (en) * 1992-04-01 1993-10-29 Seiko Electronic Components Ltd Method and device for manufacturing flat battery
JPH10247480A (en) * 1997-02-28 1998-09-14 Yuasa Corp Molded battery and its manufacture
JP2000106154A (en) * 1998-09-28 2000-04-11 Matsushita Electric Ind Co Ltd Whole solid battery and its manufacture
JP2001229890A (en) * 2000-02-16 2001-08-24 Dainippon Printing Co Ltd Seal head for packaging polymer battery and sealing method thereof
JP2002260609A (en) * 2001-02-27 2002-09-13 Kyocera Corp Battery and portable terminal provided therewith
JP2002324528A (en) * 2001-04-24 2002-11-08 Dainippon Printing Co Ltd Film for lead wire of cell and cell packaging material using the same and its manufacturing method
JP2004055151A (en) * 2002-07-16 2004-02-19 Nissan Motor Co Ltd Armor case for layer-built battery
JP2004095471A (en) * 2002-09-03 2004-03-25 Nissan Motor Co Ltd Flat battery with laminated outer package

Also Published As

Publication number Publication date
JP2006100064A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4687052B2 (en) Sheet material type battery manufacturing method and sheet material type battery
KR100879893B1 (en) Secondary Battery Having Safety-improved Sealing Portion
KR100708023B1 (en) Film-packaged electric device and its manufacturing method
JP4916722B2 (en) Secondary battery
JP5815793B2 (en) Film-covered electrical device case and method for producing the film-covered electrical device case
JPWO2007043510A1 (en) Film exterior electrical device storage system
WO2010082532A1 (en) Electrochemical device and process of manufacturing same
KR102334141B1 (en) Secondary Battery Comprising Battery Case Formed by Injection Molding
WO2020203101A1 (en) Power storage module
KR101229228B1 (en) Secondary Battery with Improved Moisture Barrier
KR20120006984A (en) Galvanic cell having a frame and method for the production of said galvanic cell
US20140349175A1 (en) Battery module
KR20120060315A (en) Secondary Battery of Improved Insulating Property
JP2001229889A (en) Battery of film sealing structure and manufacturing method thereof
JP2006164784A (en) Film-armored electric device
JP2000048773A (en) Non-aqueous electrolyte cell
JP4666131B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP2006114406A (en) Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell
EP2975674B1 (en) Fabrication method of battery
JP2006147230A (en) Battery and battery production method
JP2001325926A (en) Manufacturing method of battery with laminated sheet as outer package case
JP4702969B2 (en) Thin battery manufacturing method
JP2017154760A (en) Seal bar, seal bar system, and method of manufacturing bag-like article
JPH10270059A (en) Manufacture of battery
JP2003331798A (en) Cladding film for sealing electrode body and sealing method of cladding film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4687052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees