JP2006114406A - Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell - Google Patents

Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell Download PDF

Info

Publication number
JP2006114406A
JP2006114406A JP2004302080A JP2004302080A JP2006114406A JP 2006114406 A JP2006114406 A JP 2006114406A JP 2004302080 A JP2004302080 A JP 2004302080A JP 2004302080 A JP2004302080 A JP 2004302080A JP 2006114406 A JP2006114406 A JP 2006114406A
Authority
JP
Japan
Prior art keywords
battery
sheet material
power generation
generation element
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004302080A
Other languages
Japanese (ja)
Inventor
Koji Oshita
浩司 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004302080A priority Critical patent/JP2006114406A/en
Publication of JP2006114406A publication Critical patent/JP2006114406A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To regulate the outer shape of a sheet type battery by a simple constitution. <P>SOLUTION: The sheet type battery is equipped with a sheet material case 12 forming the outer shape by molding a laminated film, a battery power generating element 14 housed in the sheet material case 12, an electrode terminal 16 connected to an electrode body of the battery power generating element 14 and taken out to the outside of the sheet material case 12, and a reinforcing material 30 of the sheet material case 12 formed by resin molding. The reinforcing material 30 is comprised of a frame-shaped frame 32 in the peripheral part of the sheet material case 12, and a plurality of ribs 34 connecting facing sides of the frame 32. The outer dimension accuracy of the sheet type battery containing the reinforcing material 30 is decided by the accuracy of a molding die that resin-molds the ribs 34. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材の端部を封止して形成されるシート材型電池の製造方法、シート材型電池及びシート材型単電池を組み合わせる組電池に関する。   The present invention relates to a sheet material type battery manufacturing method and sheet material mold formed by enclosing a battery power generation element with a sheet material, drawing both electrodes from the battery power generation element to the outside, and sealing the end of the sheet material The present invention relates to an assembled battery in which a battery and a sheet material type battery are combined.

近年、種々の電子機器の発達に伴い、電子機器の小型化、省スペースのニーズが高まって、これに用いる電池にも薄型化や可撓性が求められている。そこで、シート状のラミネート材を用いて電池用発電要素を気密に封止することが行われる。例えば、シート状のラミネート材として、ポリエチレン層とアルミニウム箔層とポリエチレン層との3層構造のものを用い、発電要素を内部に収納し、電極を外に引き出してリチウムイオン電池やニッケル水素電池等を形成することが行われる。   In recent years, with the development of various electronic devices, there has been an increasing need for downsizing and space saving of electronic devices, and the batteries used therefor are also required to be thin and flexible. Therefore, the battery power generation element is hermetically sealed using a sheet-like laminate material. For example, as a sheet-like laminate material, a three-layer structure of a polyethylene layer, an aluminum foil layer, and a polyethylene layer is used. The power generation element is housed inside, the electrode is drawn out, and a lithium ion battery or a nickel metal hydride battery Is formed.

これらの電池をシート材型電池と呼ぶことにすれば、シート型電池は、形状の自由度を有し、小型軽量に適しているが、シート状のラミネート材を用いるため、剛性が余り高くなく、電池の外形寸法の精度はあまりよくない。また、例えば電池用発電要素の内部反応により外形の膨張を起こしやすい。特許文献1には、電池パックとしての剛性を高めるため、合成樹脂を用いて形成されたパック筐体に金属製の補強板を貼り付け、その筐体内にラミネート製の電池ケースを格納することが開示される。   If these batteries are referred to as sheet material type batteries, the sheet type batteries have a degree of freedom in shape and are suitable for small size and light weight, but since the sheet-like laminate material is used, the rigidity is not so high. The accuracy of the external dimensions of the battery is not so good. In addition, for example, the outer shape of the battery power generation element tends to expand due to an internal reaction. In Patent Document 1, in order to increase the rigidity as a battery pack, a metal reinforcing plate is attached to a pack housing formed using a synthetic resin, and a battery case made of laminate is stored in the housing. Disclosed.

特開2001−307703号公報JP 2001-307703 A

シート材型電池1つでは電力が不足のときは、ラミネート材型単電池を複数整列配置等で積層し、直列又は並列等の接続を用いて組電池とすることが行われる。例えば車両用電源として用いるときは、数十個の単電池を積層して用いられる。   When power is insufficient in one sheet material type battery, a plurality of laminate material type cells are stacked in an aligned arrangement or the like, and an assembled battery is formed using a connection such as series or parallel. For example, when used as a power source for vehicles, several tens of single cells are stacked.

このような場合、ラミネート材型単電池の外形寸法がばらつくと、組電池の外形に影響を及ぼす。1例で計算すると、80個の単電池を整列配置する場合、各単電池の寸法がそれぞれ0.1mmずつ変化したとすると、組電池では8mmもの変化となる。電池用発電要素の内部反応による外形の膨張は0.1mmより大きいこともあるので、単電池をそのまま積層するだけでは組電池が車両等の所定の設置場所に納まらないことが起こる。   In such a case, if the outer dimensions of the laminate type unit cell vary, the outer shape of the assembled battery is affected. In one example, when 80 unit cells are arranged and arranged, if the size of each unit cell changes by 0.1 mm, the assembled cell changes by as much as 8 mm. Since the expansion of the outer shape due to the internal reaction of the battery power generation element may be larger than 0.1 mm, the assembled battery may not fit in a predetermined installation place such as a vehicle by simply stacking the cells.

特許文献1のように補強板付パック筐体にラミネート材型単電池をそれぞれ収納することも考えられるが、補強板付パック筐体の製造が複雑で、コストがかかる。また、組電池全体を外側から拘束板及び拘束帯等で拘束し、電池用発電要素の内部反応による外形の膨張を抑えることも行われているが、拘束構造が複雑となる。このように、従来技術においては、シート材型電池の外形の規制が困難である。   Although it is conceivable to store the laminate material type cells in the pack housing with the reinforcing plate as in Patent Document 1, the manufacture of the pack housing with the reinforcing plate is complicated and costly. In addition, the entire assembled battery is constrained from the outside by a restraint plate, a restraint band, or the like to suppress the expansion of the outer shape due to the internal reaction of the battery power generation element, but the restraint structure is complicated. Thus, in the prior art, it is difficult to regulate the outer shape of the sheet material type battery.

本発明の目的は、簡単な構成で電池外形の規制を行うことができるシート材型電池の製造方法、シート材型電池及びシート材型単電池を組み合わせる組電池を提供することである。   The objective of this invention is providing the assembled battery which combines the manufacturing method of the sheet material type battery which can regulate a battery external shape with simple structure, a sheet material type battery, and a sheet material type cell.

本発明に係るシート材型電池製造方法は、シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材の端部を気密に封止して収納し、略扁平矩形の電池体を形成する工程と、電池体を補強材成形金型の中に配置し、電池体の矩形周辺に沿って気密封止端部を挟み込む枠体部と、枠体部の向かい合う辺を電池体の扁平面に沿って結ぶリブ部とからなる補強材を樹脂成形するとともに、電池体の扁平面で、樹脂成形が行われない部分を金型内壁で加圧して寸法成形する工程と、を備えることを特徴とする。   A sheet material type battery manufacturing method according to the present invention wraps a battery power generation element with a sheet material, draws both electrodes from the battery power generation element to the outside, hermetically seals and stores the ends of the sheet material, The step of forming a flat rectangular battery body, and the frame body part that is arranged in the reinforcing material molding die and sandwiches the hermetic sealing end along the periphery of the battery body, and the frame body part face each other A step of resin-molding a reinforcing material composed of a rib portion that connects the sides along the flat surface of the battery body, and press-molding a portion of the flat surface of the battery body that is not resin-molded with the inner wall of the mold. And.

また、本発明に係るシート材型電池製造方法において、電池体は、充放電使用により扁平面を外側に膨張するように変形し、両電極の引き出し方向に沿った変形よりも両電極の引き出し方向に直交する方向に沿った変形が大きく、リブ部は、両電極の引き出し方向に直交する方向に沿って配置されることが好ましい。   Further, in the sheet material type battery manufacturing method according to the present invention, the battery body is deformed so that the flat surface expands outward by use of charging / discharging, and both electrodes are pulled out more than along the direction in which both electrodes are pulled out. It is preferable that the deformation along the direction orthogonal to the ribs is large, and the rib portion is arranged along the direction orthogonal to the lead-out direction of both electrodes.

また、本発明に係るシート材型電池製造方法において、樹脂成形に用いられる樹脂は、ガラス繊維強化樹脂であることが好ましい。   In the sheet material type battery manufacturing method according to the present invention, the resin used for resin molding is preferably a glass fiber reinforced resin.

また、本発明に係るシート材型電池は、シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材の端部を気密に封止して収納する略扁平矩形の電池体と、電池体の矩形周辺に沿って気密封止端部を挟み込む枠体部と、枠体部の向かい合う辺を電池体の扁平面に沿って結ぶリブ部とを一体として樹脂成形により形成された補強材と、を備えることを特徴とする。   Also, the sheet material type battery according to the present invention is a substantially flat material that encloses the battery power generation element with the sheet material, draws both electrodes from the battery power generation element to the outside, and hermetically seals and stores the ends of the sheet material. Resin molding of a rectangular battery body, a frame body part that sandwiches the hermetic sealing end along the periphery of the battery body, and a rib part that connects opposite sides of the frame body along the flat surface of the battery body And a reinforcing material formed by the method described above.

また、本発明に係るシート材型単電池を組み合わせる組電池は、略扁平矩形の単電池を、扁平面が互いに向かい合うように複数整列配置する組電池であって、単電池は、シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材の端部を気密に封止して収納する略扁平矩形の電池体と、電池体の扁平面に平行に電池体の矩形周辺に沿って気密封止端部を挟み込む枠体部と、枠体部の向かい合う辺を電池体の扁平面に沿って結ぶリブ部とを一体として樹脂成形により形成された補強材と、を備え、樹脂成形により寸法が管理される補強材の外形寸法の積算により全体の寸法が決まることを特徴とする。   In addition, the assembled battery combining the sheet material type cells according to the present invention is an assembled battery in which a plurality of substantially flat rectangular unit cells are arranged and arranged so that the flat surfaces face each other. A battery body having a substantially flat rectangular shape that encloses the power generation element for the battery, draws both electrodes out of the power generation element for the battery, and hermetically seals and stores the ends of the sheet material, and the battery body parallel to the flat surface of the battery body A reinforcing member formed by resin molding integrally with a frame body portion sandwiching the hermetic sealing end along the rectangular periphery of and a rib portion connecting the opposite sides of the frame body portion along the flat surface of the battery body; The overall dimensions are determined by integrating the external dimensions of the reinforcing material whose dimensions are controlled by resin molding.

上記構成により、電池体は、金型の中に配置されて、電池体の周りに補強材が樹脂成形され、樹脂成形が行われない電池体の扁平面は金型内壁で加圧されて寸法成形される。つまり、金型の内壁および樹脂成形の際の加圧により電池体の外形が規制され、その状態で枠体部とリブ部とが補強材として一体成形される。したがって、一体化した補強材で電池体の外形の膨張等を効果的に抑制するとともに、補強材を含めたシート材型電池の外形寸法は精度の高い金型精度で定まる補強材の外形寸法となるので、簡単な構成で電池外形の規制を行うことができる。   With the above configuration, the battery body is placed in the mold, the reinforcing material is resin-molded around the battery body, and the flat surface of the battery body that is not subjected to resin molding is pressed by the inner wall of the mold to be dimensioned. Molded. That is, the outer shape of the battery body is regulated by the inner wall of the mold and the pressure applied during resin molding, and in this state, the frame body portion and the rib portion are integrally molded as a reinforcing material. Accordingly, the expansion of the outer shape of the battery body is effectively suppressed by the integrated reinforcing material, and the external dimensions of the sheet material type battery including the reinforcing material are the same as the external dimensions of the reinforcing material determined by high-precision mold accuracy. Therefore, the battery outer shape can be regulated with a simple configuration.

また、リブ部は、電池体の変形の大きい方向に沿って配置されるので、電池体の外形の膨張等をより効果的に抑制できる。また、樹脂はガラス繊維強化樹脂とするので、補強材の剛性をより高めることができる。   Moreover, since the rib portion is disposed along the direction in which the battery body is largely deformed, expansion of the outer shape of the battery body can be more effectively suppressed. Moreover, since resin is glass fiber reinforced resin, the rigidity of a reinforcing material can be improved more.

また、組電池は、補強材を含めた外形寸法が精度の高い金型精度で定まる補強材の外形寸法となるシート材型単電池を複数整列配置するので、組電池全体の寸法精度を高めることができる。   In addition, the assembled battery has a plurality of sheet material type cells that are aligned with the outer dimensions of the reinforcing material whose outer dimensions including the reinforcing material are determined with high precision of the mold accuracy, so that the dimensional accuracy of the entire assembled battery can be improved. Can do.

以下に図面を用いて、本発明に係る実施の形態につき詳細に説明する。以下では、シート材型電池としてリチウムイオン電池について説明するが、シート材を用いて電池を形成するものであれば、これ以外の電池でもよく、例えばニッケル水素電池、あるいはキャパシタを電池として用いるものであってもよい。また、電池用発電要素の構成は2枚の電極体の間にセパレータをはさんで重ね合わせ、これをロール状に巻いたものとして説明するが、これらを平板状に積層する構成のものでもよい。また、シート材として、プラスチックフィルムと金属箔とプラスチックフィルムの3層ラミネートシート材について説明するが、電池の構成によってはプラスチックフィルム層を適当に省略することができる。また、シート材及びシート材の合わせ目に配置される接着材の材質、厚み等は、例示であって、他の材質、厚みであってもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, a lithium ion battery will be described as a sheet material type battery. However, any other battery may be used as long as the battery is formed using a sheet material. For example, a nickel metal hydride battery or a capacitor is used as the battery. There may be. Moreover, although the structure of the battery power generation element is described as a structure in which a separator is sandwiched between two electrode bodies and this is wound in a roll shape, a structure in which these are stacked in a flat plate shape may be used. . Further, as a sheet material, a three-layer laminate sheet material of a plastic film, a metal foil, and a plastic film will be described, but the plastic film layer can be appropriately omitted depending on the configuration of the battery. In addition, the material, thickness, and the like of the sheet material and the adhesive disposed at the joint of the sheet material are examples, and other materials and thicknesses may be used.

図1は、シート状のラミネート材を用いて電池用発電要素を気密に封止するシート材型電池10の平面図及び側面図である。平面図においては、一部を破断し、シート材型電池10の内部構造を示している。シート材型電池10は、ラミネートフィルムを成形して電池の外形とするシート材ケース12と、シート材ケース12の内部に収納される電池用発電要素14と、電池用発電要素14の電極体に接続され、シート材ケース12の外側に引き出される電極端子16と、樹脂成形によるシート材ケース12の補強材30とを備える。補強材30は、シート材ケース12の周辺部における枠形状の枠体部32と、枠体部32の向かい合う辺を結ぶ複数のリブ部34とからなる。   FIG. 1 is a plan view and a side view of a sheet material type battery 10 that hermetically seals a battery power generation element using a sheet-like laminate material. In the plan view, a part is broken, and the internal structure of the sheet material type battery 10 is shown. The sheet material type battery 10 includes a sheet material case 12 which forms a laminate film to form an outer shape of the battery, a battery power generation element 14 housed in the sheet material case 12, and an electrode body of the battery power generation element 14. The electrode terminal 16 is connected and drawn out to the outside of the sheet material case 12, and the reinforcing material 30 of the sheet material case 12 is formed by resin molding. The reinforcing member 30 includes a frame-shaped frame body portion 32 in the peripheral portion of the sheet material case 12 and a plurality of rib portions 34 that connect opposite sides of the frame body portion 32.

シート材ケース12の内部に収納される電池用発電要素14は、シート材型電池10の機能部分であるので、これについて最初に説明し、次に、シート材ケース12の気密封止構造を、次いで、補強材30の構成について説明する。   Since the battery power generation element 14 housed in the sheet material case 12 is a functional part of the sheet material type battery 10, this will be described first, and then the hermetic sealing structure of the sheet material case 12 will be described. Next, the configuration of the reinforcing material 30 will be described.

電池用発電要素14は、リチウムイオン電池として知られている発電構造を実現する要素で、活物質が塗布された2枚の電極体の間にセパレータをはさんで重ね合わせ、これをロール状に巻き、これに電解液を浸み込ませたものである。2枚の電極体のうち、一方の電極体はアルミニウム箔が下地材料で、その表面にコバルト酸リチウム等のリチウム含有複合化合物である活物質が塗布され、他方の電極体は銅箔が下地材料で、その上にリチウムイオンを吸蔵させた炭素材等の活物質が塗布される。セパレータは溶媒で可塑化されたポリマー電解質が用いられる。そして、電解液を注入して一方の電極体とセパレータと他方の電極体との間に浸み込ませることで、リチウムイオン電池の発電要素としての機能を発揮するようになる。電解液には、LiClO、LiPF等のリチウム塩を溶解した有機溶媒が用いられる。なお、2種類の電極体及びセパレータをロール状に巻く方法の他に、これらをシート状のまま積層する構成としてもよい。 The power generation element 14 for a battery is an element that realizes a power generation structure known as a lithium ion battery. The battery power generation element 14 is overlapped by sandwiching a separator between two electrode bodies coated with an active material, and is formed into a roll shape. It is wound and impregnated with an electrolyte. Of the two electrode bodies, one electrode body has an aluminum foil as a base material, and an active material that is a lithium-containing composite compound such as lithium cobalt oxide is applied to the surface of the electrode body, and the other electrode body has a copper foil as a base material Then, an active material such as a carbon material occluded with lithium ions is applied thereon. As the separator, a polymer electrolyte plasticized with a solvent is used. And by inject | pouring electrolyte solution and making it immerse between one electrode body, a separator, and the other electrode body, it comes to show the function as an electric power generation element of a lithium ion battery. For the electrolytic solution, an organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used. In addition to the method of winding two types of electrode bodies and separators in a roll shape, these may be laminated in the form of a sheet.

なお、電池用発電要素14は、一般的に熱に弱いので、以後の補強材形成工程においては、電池用発電要素14の部分に樹脂成形等の熱が余分に加わらないように配慮することが好ましい。また、耐熱セパレータ等を用いて、電池用発電要素14の耐熱性を向上させることもできる。   In addition, since the battery power generation element 14 is generally vulnerable to heat, in the subsequent reinforcing material forming step, consideration should be given so that excessive heat such as resin molding is not applied to the battery power generation element 14 portion. preferable. Moreover, the heat resistance of the battery power generation element 14 can be improved by using a heat-resistant separator or the like.

電極端子16は、電池用発電要素14の2枚の電極体にそれぞれ接続される導電端子で、電池用発電要素14から電力を外部に引き出す機能を有する。具体的には、電池用発電要素14において、一方の電極体のアルミニウム箔に正の電極端子が溶接等で接続され、他方の電極体の銅に負の電極端子が溶接等で接続される。電極端子16の厚みは、例えば1mm程度とすることができる。   The electrode terminal 16 is a conductive terminal connected to each of the two electrode bodies of the battery power generation element 14 and has a function of drawing power from the battery power generation element 14 to the outside. Specifically, in the battery power generation element 14, a positive electrode terminal is connected to the aluminum foil of one electrode body by welding or the like, and a negative electrode terminal is connected to copper of the other electrode body by welding or the like. The thickness of the electrode terminal 16 can be about 1 mm, for example.

次に、シート材ケース12の封止構造について説明する。図2は、電極端子16が接続された電池用発電要素14をシート材ケース12の中に収納する様子を示す図である。図3は、シート材型電池10の封止部分を典型的に示すものとして、図1のA−A線に沿って電極端子16近傍の断面構造を示す図である。   Next, the sealing structure of the sheet material case 12 will be described. FIG. 2 is a diagram illustrating a state in which the battery power generation element 14 to which the electrode terminal 16 is connected is housed in the sheet material case 12. FIG. 3 is a diagram showing a cross-sectional structure in the vicinity of the electrode terminal 16 along the line AA in FIG.

シート材ケース12は、ラミネートフィルム20を電池用発電要素14の外形に概略倣うような形状に成形したもので、具体的には1枚のラミネートフィルム20の素材を折り返して上下2つの面を有するシートのようにし、上面側のシートには電池用発電要素14の上面形状に倣うような凹面形状を成形し、下面側のシートには電池用発電要素14の下面形状に倣うような凹面形状を成形し、上面側のシートの周辺端部と下面側のシートの周辺端部とを向かい合わせ、その一対の凹面形状の間に電池用発電要素14を配置できるように合わせる。そして、合わせ目に適当な封止代を取って、外形を切断等により成形する。このようにして封止前のシート材ケース12を得ることができる。勿論、ラミネートフィルム20からなる複数のシートを適当な凹面形状と封止代を有するように成形し、それらを組み合わせて、シート材ケース12とすることもできる。   The sheet material case 12 is formed by forming the laminate film 20 into a shape that roughly follows the outer shape of the battery power generation element 14, and specifically has two upper and lower surfaces by folding the material of one laminate film 20. Like the sheet, the upper surface sheet is formed with a concave shape that follows the upper surface shape of the battery power generation element 14, and the lower surface sheet is formed with a concave surface shape that follows the lower surface shape of the battery power generation element 14. Molding is performed so that the peripheral edge of the upper surface sheet and the peripheral edge of the lower surface sheet face each other so that the battery power generation element 14 can be disposed between the pair of concave shapes. Then, an appropriate sealing allowance is taken at the joint, and the outer shape is formed by cutting or the like. In this way, the sheet material case 12 before sealing can be obtained. Of course, it is also possible to form a plurality of sheets made of the laminate film 20 so as to have an appropriate concave shape and sealing allowance, and to combine them into the sheet material case 12.

すなわち、シート材ケース12は、その中央部に、一対の凹部を向かい合わせ、外形でいえば一対の凸部となるふくらみ部11を有し、そのふくらみ部11の周辺にラミネートフィルム20の上下シートが向かい合う鍔部13を有する外形を備える。このふくらみ部11の内部空間が電池用発電要素14の収納空間となり、鍔部13がラミネートフィルム20の上面側シートと下面側シートとを互いに接着して気密封止する部分となり、ふくらみ部11が扁平面となる。そして、鍔部13には、気密封止用の接着材28が配置される。   That is, the sheet material case 12 has a pair of concave portions facing each other at the center thereof, and has a bulge portion 11 that becomes a pair of convex portions in terms of outer shape, and the upper and lower sheets of the laminate film 20 around the bulge portion 11. Is provided with an outer shape having a flange 13 facing each other. The internal space of the bulge portion 11 is a storage space for the battery power generation element 14, and the flange portion 13 is a portion that adheres the upper surface side sheet and the lower surface side sheet of the laminate film 20 to each other and hermetically seals. It becomes a flat surface. Then, an adhesive 28 for hermetic sealing is disposed on the collar portion 13.

ラミネートフィルム20は、図3に示すように、表面保護用のプラスチックフィルム22と、ガスバリア層として金属箔24と、内部保護用のプラスチックフィルム26を3層に積層したものである。具体的には、約30μm厚さのポリプロピレンフィルムと、約60μm厚さのアルミニウム箔と、約15μm厚さのナイロンフィルムを密着積層したものを用いることができる。ここで、ポリプロピレンフィルム層は表面保護用のプラスチックフィルム22としてシート材ケース12の外表面側となり、ナイロンフィルムは内部保護用のプラスチックフィルム26として電池用発電要素14側となるように配置される。   As shown in FIG. 3, the laminate film 20 is obtained by laminating a plastic film 22 for surface protection, a metal foil 24 as a gas barrier layer, and a plastic film 26 for internal protection in three layers. Specifically, a polypropylene film having a thickness of about 30 μm, an aluminum foil having a thickness of about 60 μm, and a nylon film having a thickness of about 15 μm can be used. Here, the polypropylene film layer is disposed on the outer surface side of the sheet material case 12 as the plastic film 22 for surface protection, and the nylon film is disposed on the battery power generation element 14 side as the plastic film 26 for internal protection.

ラミネートフィルム20のナイロンフィルム側には、さらに熱溶着性の接着材28の層が設けられる。具体的には、厚さ約30μmのポリプロピレンを用いることができる。この厚みのポリプロピレンは、例えば、220℃、50atmの高温高圧を印加することで、数秒程度で溶融し、2つのプラスチックの間に挟んで溶融させることで、この2つのプラスチックと一体となって強固に接着することができる。接着材28は、ラミネートフィルム20の全面に渡って設けてもよいが、少なくともシート材ケース12の周辺の端部において気密封止を行うラミネートフィルム20の合わせ目に設けられる。すなわち、シート材ケース12の鍔部13にそって、周辺ぐるりに、内部保護用プラスチックフィルム26であるナイロンフィルムの表面に、接着材28が配置される。   On the nylon film side of the laminate film 20, a layer of a heat-weldable adhesive material 28 is further provided. Specifically, polypropylene having a thickness of about 30 μm can be used. Polypropylene of this thickness melts in about a few seconds by applying a high temperature and high pressure of, for example, 220 ° C. and 50 atm, and is sandwiched between two plastics to be melted together. Can be glued to. The adhesive 28 may be provided over the entire surface of the laminate film 20, but is provided at the joint of the laminate film 20 that performs hermetic sealing at least at the peripheral edge of the sheet material case 12. That is, the adhesive 28 is disposed on the surface of the nylon film, which is the internal protective plastic film 26, around the periphery along the flange 13 of the sheet material case 12.

シート材ケース12の鍔部13において、電極端子16の部分に設けられる介在層18は、金属材料である電極端子16とラミネートフィルム20との間に設けられ、その間の気密封止を十分にする機能を有する。すなわち、熱溶着性のポリプロピレンは、プラスチック材料同士の接着には好適であるが、金属材料とプラスチック材料との間の接着にはそのままでは不十分となる。そこで介在層を用い、金属材料−介在層18−接着材28−ナイロンの構造とし、介在層18と接着材28とを加熱溶融することで、これらの相乗効果で金属材料とナイロンとの間の気密封止を確保するものである。かかる介在層18としては、加熱加圧下で溶融し、接着材との適合性によいプラスチックフィルムが好ましく、具体的には、変性ポリプロピレンを用いて、電極端子16の根元部の周囲をくるむように配置することができる。   In the collar portion 13 of the sheet material case 12, an intervening layer 18 provided in the electrode terminal 16 portion is provided between the electrode terminal 16 which is a metal material and the laminate film 20, and sufficient airtight sealing therebetween is provided. It has a function. In other words, heat-weldable polypropylene is suitable for bonding between plastic materials, but is not sufficient as it is for bonding between metal materials and plastic materials. Therefore, an intervening layer is used to form a structure of metal material-intervening layer 18-adhesive 28-nylon, and the intervening layer 18 and the adhesive 28 are heated and melted, so that a synergistic effect between the metal material and the nylon is obtained. This is to ensure hermetic sealing. The intervening layer 18 is preferably a plastic film that melts under heat and pressure and has good compatibility with the adhesive. Specifically, the intervening layer 18 is disposed using a modified polypropylene so as to surround the base portion of the electrode terminal 16. can do.

したがって、接着材28が配置されたシート材ケース12を開いた状態で、電極端子16付き電池用発電要素14をセットし、シート材ケース12を閉じ、その後、鍔部13を加熱されたプレス板等で加圧加熱し、接着材28及び介在層18を溶融させることで、合わせ目を熱溶着できる。このようにして、電池用発電要素14から電極端子16を外部に引き出し、シート材ケース12を気密に封止できる。その後、電解液注入が行われて、電池としての機能を発揮する。電解液注入は、シート材ケース12に適当な注入口を設け、電解液注入装置を用いて注入口から電解液を電池用発電要素14に向けて注入し、その後注入口をふさぐことで行うことができる。   Therefore, in a state where the sheet material case 12 on which the adhesive material 28 is disposed is opened, the battery power generation element 14 with the electrode terminals 16 is set, the sheet material case 12 is closed, and then the flange portion 13 is heated. The seam can be heat-welded by heating under pressure and the like to melt the adhesive 28 and the intervening layer 18. In this way, the electrode terminal 16 can be pulled out from the battery power generation element 14 and the sheet material case 12 can be hermetically sealed. Then, electrolyte solution injection | pouring is performed and the function as a battery is exhibited. The electrolyte solution injection is performed by providing an appropriate injection port in the sheet material case 12, injecting the electrolyte solution from the injection port toward the battery power generation element 14 using an electrolyte solution injection device, and then closing the injection port. Can do.

補強材30は、後述するように、いわゆるインサートモールドの技術を用い、電池用発電要素14等を含むシート材ケース12と一体となるように樹脂成形されるものである。図4は、シート材ケース12を省略して補強材30のみを抜き出し、部分斜視図で示したものである。このように、補強材30は、シート材ケース12の鍔部13に沿い、その部分を補強する枠形状の枠体部32と、枠体部32の向かい合う辺を接続し、シート材ケース12の上下のふくらみ部11、すなわち上下扁平面をそれぞれ補強する複数のリブ部34とから構成される樹脂成形部材である。補強材30の材質としては、ガラス繊維で強化されたポリプロピレン等を用いることができる。   As will be described later, the reinforcing member 30 is formed by resin molding so as to be integrated with the sheet material case 12 including the battery power generation element 14 and the like by using a so-called insert molding technique. FIG. 4 is a partial perspective view in which the sheet material case 12 is omitted and only the reinforcing material 30 is extracted. In this manner, the reinforcing member 30 is connected to the frame-shaped frame body portion 32 that reinforces the portion along the flange portion 13 of the sheet material case 12 and the opposite sides of the frame body portion 32, and It is a resin molding member comprised from the up-and-down swelling part 11, ie, the some rib part 34 which reinforces an up-and-down flat surface, respectively. As a material of the reinforcing material 30, polypropylene reinforced with glass fiber or the like can be used.

リブ部34は、シート材ケース12のふくらみ部11にそって配置されるが、その配置方向は、シート材型電池10を作動させたときの扁平面の膨張を効果的に抑制できる方向に行われることが好ましい。上記の電池用発電要素14のように、2枚の電極体の間にセパレータをはさんで重ね合わせ、これをロール状に巻くものでは、電池の作動によって、ロールの巻き軸に垂直な方向に扁平面が膨張しやすい。すなわち、電極端子16をロールの巻き軸方向に引き出すものとすれば、電極端子16の引き出し方向に直交する方向に扁平面が膨張しやすいので、リブ部34は、この方向に配置されるのが好ましい。   The rib portion 34 is arranged along the bulging portion 11 of the sheet material case 12, and the arrangement direction thereof is performed in a direction that can effectively suppress the expansion of the flat surface when the sheet material type battery 10 is operated. Are preferred. Like the battery power generation element 14 described above, a separator is overlapped between two electrode bodies, and this is wound into a roll shape. In the direction perpendicular to the winding axis of the roll, the battery operates. The flat surface tends to expand. That is, if the electrode terminal 16 is pulled out in the winding axis direction of the roll, the flat surface easily expands in a direction perpendicular to the pulling-out direction of the electrode terminal 16, and therefore the rib portion 34 is arranged in this direction. preferable.

図5は、かかる構成のシート材型電池10の製造方法についてのフローチャートである。以下に、このフローチャートを用いて、シート材型電池10を製造する手順を説明する。   FIG. 5 is a flowchart of a method for manufacturing the sheet material type battery 10 having such a configuration. The procedure for manufacturing the sheet material type battery 10 will be described below using this flowchart.

発電要素形成工程(S10)は、上記のように、活物質が塗布された2枚の電極体の間にセパレータをはさんで重ね合わせ、これをロール状に巻き、電解液をまだ浸みこませていない電池用発電要素14を形成する工程である。電極接続工程(S12)は、2つの電極体にそれぞれアルミニウム、銅の電極端子16を溶接等で接続し、電池用発電要素14から外部に引き出す工程である。   In the power generation element forming step (S10), as described above, the separator is sandwiched between the two electrode bodies coated with the active material, wound in a roll shape, and the electrolyte is still soaked. This is a step of forming a battery power generation element 14 that is not. The electrode connecting step (S12) is a step of connecting aluminum and copper electrode terminals 16 to the two electrode bodies by welding or the like and pulling them out from the battery power generation element 14 to the outside.

次に、シート材で包み込む(S14)。そして、電池用発電要素14を内部に収納し、電極端子16を外部に引き出した状態で、シート材ケース12を気密に封止する。具体的には、上記のように、接着材28が配置されたシート材ケース12を開いた状態で、電極端子16付き電池用発電要素14をセットし、シート材ケース12を閉じる。そして、鍔部13を加熱されたプレス板等で加圧加熱し、接着材28等を溶融させることで、合わせ目を熱溶着し、気密に封止する。このようにしてまだ補強材30が設けられていない電池体が形成される。なお、電解液注入は、この段階で行ってもよく、あるいは補強材30を形成する以後の工程が終了した後に行ってもよい。   Next, the sheet material is wrapped (S14). And the sheet | seat material case 12 is airtightly sealed in the state which accommodated the electric power generation element 14 for batteries inside, and pulled out the electrode terminal 16 outside. Specifically, as described above, in a state where the sheet material case 12 on which the adhesive material 28 is disposed is opened, the battery power generation element 14 with the electrode terminals 16 is set, and the sheet material case 12 is closed. And the collar part 13 is pressurized and heated with the heated press board etc., the adhesive material 28 grade | etc., Is fuse | melted, a seam is heat-welded, and it seals airtightly. In this way, a battery body not yet provided with the reinforcing material 30 is formed. The electrolyte injection may be performed at this stage, or may be performed after the subsequent steps for forming the reinforcing material 30 are completed.

次に、補強材がまだ設けられていない電池体が、適当な射出成形装置の型の中に配置される(S18)。ここで補強材30を形成するための金型の説明をする。図6は、補強材成形用の金型40の断面図で、金型40は、パーティションライン41で分かれる下金型42と上金型44とから構成される。そして、それぞれは、シート材ケース12のふくらみ部11を受け入れる凹部50を有する。凹部50の大きさは、シート材ケース12のふくらみ部11や鍔部13の外形より小さめに設定される。そして、図示されていない樹脂注入口から注入される樹脂が流れ込むキャビティ52を有する。   Next, the battery body not yet provided with the reinforcing material is placed in a mold of an appropriate injection molding apparatus (S18). Here, a mold for forming the reinforcing member 30 will be described. FIG. 6 is a cross-sectional view of a mold 40 for reinforcing material molding. The mold 40 includes a lower mold 42 and an upper mold 44 that are separated by a partition line 41. And each has the recessed part 50 which receives the swelling part 11 of the sheet | seat material case 12. FIG. The size of the recess 50 is set to be smaller than the outer shape of the bulge portion 11 and the flange portion 13 of the sheet material case 12. And it has the cavity 52 into which the resin inject | poured from the resin injection port which is not shown in figure flows.

キャビティ52は、電池体におけるシート材ケース12の鍔部13に沿ってその上下及び側面に設けられる枠体用キャビティ54と、枠体用キャビティ54の向かい合う辺を接続するリブ用キャビティ56とを含む。凹部50とキャビティ52とは、ともに金型40の内面のくぼみであるが、後者には樹脂が注入されるが、前者には樹脂が注入されない。すなわち、凹部50は図示されていない樹脂注入口とは直接には接続されず、さらに、電池体におけるシート材ケース12のふくらみ部11と凹部50との間の隙間がないので、キャビティ52から樹脂が流れ込むこともないのである。   The cavity 52 includes a frame cavity 54 provided on the upper and lower sides and the side surface of the battery body 12 along the flange portion 13 of the battery body, and a rib cavity 56 that connects opposite sides of the frame cavity 54. . The recess 50 and the cavity 52 are both depressions on the inner surface of the mold 40, but resin is injected into the latter, but resin is not injected into the former. That is, the recess 50 is not directly connected to a resin injection port (not shown), and there is no gap between the bulge 11 of the sheet material case 12 and the recess 50 in the battery body. Does not flow in.

したがって、凹部50は、金型40の内部に電池体を配置し、金型40を閉じたとき、電池体におけるシート材ケース12のふくらみ部11等を金型内壁によって金型の締め付け圧で加圧し、ふくらみ部11等の寸法を規制する寸法成形機能を有する。   Therefore, when the battery body is disposed inside the mold 40 and the mold 40 is closed, the recess 50 applies the bulging portion 11 of the sheet material case 12 in the battery body to the mold inner wall with the mold clamping pressure. It has a dimension forming function that presses and regulates the dimensions of the bulge portion 11 and the like.

図7は金型を開いて、まだ補強材30が設けられていない電池体36を下金型42にセットする様子を示す図である。下金型42の凹部50は、電池体36の図では現れていない下側のふくらみ部11に対応する。枠体用キャビティ54は、電池体36の鍔部13の下面側と側面側に対応して設けられ、リブ用キャビティ56は、凹部50の一部にさらに掘り下げられて設けられている。この下金型42に、図7の白抜き矢印のように、電池体36が置かれ、その上に上金型44がかぶせられ、しっかり締め付けられて金型40の内部に電池体36が配置される。   FIG. 7 is a view showing a state in which the battery body 36 not yet provided with the reinforcing material 30 is set in the lower mold 42 by opening the mold. The recess 50 of the lower mold 42 corresponds to the lower bulge portion 11 that does not appear in the drawing of the battery body 36. The frame cavity 54 is provided corresponding to the lower surface side and the side surface side of the flange 13 of the battery body 36, and the rib cavity 56 is further dug into a part of the recess 50. The battery body 36 is placed on the lower mold 42 as indicated by the white arrow in FIG. 7, and the upper mold 44 is placed on the battery body 36, and the battery body 36 is disposed inside the mold 40 by being firmly tightened. Is done.

再び図5に戻り、補強材30の樹脂成形と、加圧寸法成形が行われる(S20)。具体的には、凹部50の金型内壁によってふくらみ部11等が加圧され、凹部寸法で定まる外形寸法に扁平面が規制され、その状態で、金型40の樹脂注入口から溶融樹脂が注入され、加圧されて、キャビティ52に流れ込む。溶融樹脂も加圧されているので、凹部50の金型内壁によって規制されていないふくらみ部11等も、この加圧溶融樹脂により押し付けられ、余分なふくらみが規制される。そして、キャビティ内で架橋反応を進めることで、キャビティ52の枠体用キャビティ54に対応する部分は、電池体36の鍔部13を挟み込む枠体部32として樹脂成形が行われ、リブ用キャビティ56に対応する部分は、枠体部32の向かい合う辺を結ぶ上下複数のリブ部34として樹脂成形が行われる。   Returning to FIG. 5 again, resin molding and pressure dimension molding of the reinforcing material 30 are performed (S20). Specifically, the bulging portion 11 and the like are pressurized by the inner wall of the mold of the recess 50, and the flat surface is regulated to the outer dimension determined by the recess dimension. In this state, molten resin is injected from the resin injection port of the mold 40. Is pressurized and flows into the cavity 52. Since the molten resin is also pressurized, the bulging portion 11 and the like that are not restricted by the inner wall of the mold of the recess 50 are also pressed by the pressurized molten resin, and excess bulging is restricted. Then, by proceeding with the crosslinking reaction in the cavity, the part corresponding to the frame body cavity 54 of the cavity 52 is subjected to resin molding as the frame body part 32 that sandwiches the flange part 13 of the battery body 36, and the rib cavity 56. The resin molding is performed as a plurality of upper and lower rib portions 34 that connect opposite sides of the frame body portion 32.

この樹脂成形の樹脂注入量、加圧、温度等のシーケンスは、図示されていない射出成形装置における成形制御部の制御の下で実行される。樹脂は上記のように、ガラス繊維強化スチレン樹脂を用いることができる。その場合の成形条件は、一例を上げると、溶融樹脂温度を220℃、加圧を50atm、注入時間を5sec、注入時間も含めた加圧時間を15sec等とすることができる。   The resin injection amount, pressurization, temperature, and other sequences for this resin molding are executed under the control of a molding control unit in an injection molding apparatus (not shown). As described above, a glass fiber reinforced styrene resin can be used as the resin. As an example of the molding conditions in this case, the molten resin temperature can be 220 ° C., the pressurization can be 50 atm, the injection time can be 5 seconds, and the pressurization time including the injection time can be 15 seconds.

こうして、枠体部32と複数のリブ部34とが一体として樹脂成形される。こうして、電池体36の気密封止端部を挟み込んで補強し、さらに電池体36のふくらみ部11、すなわち扁平面のふくらみやすい方向を補強する補強材30が、電池体36と一体化して樹脂成形される。   Thus, the frame portion 32 and the plurality of rib portions 34 are integrally molded with resin. Thus, the hermetically sealed end portion of the battery body 36 is sandwiched and reinforced, and the bulging portion 11 of the battery body 36, that is, the reinforcing member 30 that reinforces the flattened direction of the flat surface is integrated with the battery body 36 and is molded into a resin. Is done.

樹脂成形が十分行われれば、金型40から接着・挟み込みが行われた電池を取り出す型外し(S22)が行われ、補強材30と一体化したシート材型電池が得られる(S24)。こうして、図1に示すシート材型電池が出来上がる。   If the resin molding is sufficiently performed, mold removal (S22) is performed to take out the battery that has been adhered and sandwiched from the mold 40 (S22), and a sheet material type battery integrated with the reinforcing material 30 is obtained (S24). Thus, the sheet material type battery shown in FIG. 1 is completed.

このようにして出来上がったシート材型電池10は、補強材30も含めた外形寸法は、金型40の凹部50及びキャビティ52の寸法で定まる。したがって、金型寸法を精度よくすることで、補強材30を含めたシート材型電池10の外形寸法を、例えば数十分の1mmあるいはμm程度の精度のものとすることができる。   In the sheet material type battery 10 thus completed, the outer dimensions including the reinforcing material 30 are determined by the dimensions of the recess 50 and the cavity 52 of the mold 40. Therefore, by improving the mold dimensions, the outer dimensions of the sheet-type battery 10 including the reinforcing material 30 can be set to an accuracy of, for example, a few tenths of a millimeter or μm.

外形寸法が金型精度で定まるシート材型電池10を用いることで、寸法精度のよい組電池を得ることができる。図8は、図1で説明したシート材型電池10を、扁平面が互いに向かい合うように複数個整列配置した組電池60の一部を示す図である。いま、シート材型電池10の整列配置される方向に沿った寸法をH±Δhとすると、図8の例においては、この寸法は、シート材型電池10のリブ部34の外形寸法で定まる。すなわち、図6で説明した金型40のリブ用キャビティ56の寸法で定まる。   By using the sheet material type battery 10 whose outer dimensions are determined by mold accuracy, an assembled battery with good dimensional accuracy can be obtained. FIG. 8 is a view showing a part of the assembled battery 60 in which a plurality of the sheet material type batteries 10 described in FIG. 1 are arranged and arranged so that their flat surfaces face each other. Now, assuming that the dimension along the direction in which the sheet material type battery 10 is arranged and arranged is H ± Δh, in the example of FIG. 8, this dimension is determined by the outer dimension of the rib portion 34 of the sheet material type battery 10. That is, it is determined by the dimension of the rib cavity 56 of the mold 40 described in FIG.

いま、シート材型電池10をn個整列配置して組電池60を構成すると、組電池60の整列配置される方向の総寸法は、n×(H±Δh)となる。例えば、n=80として、従来技術では、補強材がなく、1つのシート材型電池の寸法精度が動作中も含め、せいぜい±0.05mmであり、組電池の総寸法の精度は、±4mmが精一杯である。これに対し、金型精度は格段によく、補強材30の寸法精度は±数μmに抑えることも可能である。したがって、組電池60の総寸法の精度は、±数分の1mm程度あるいはそれ以下に抑えることができる。   Now, when the assembled battery 60 is configured by arranging n sheet material type batteries 10 in an aligned manner, the total dimension in the direction in which the assembled battery 60 is aligned is n × (H ± Δh). For example, when n = 80, the conventional technique has no reinforcing material, and the dimensional accuracy of one sheet material type battery is ± 0.05 mm at most including the operation, and the total dimensional accuracy of the assembled battery is ± 4 mm. Is the best. On the other hand, the mold accuracy is remarkably good, and the dimensional accuracy of the reinforcing material 30 can be suppressed to ± several μm. Therefore, the accuracy of the total size of the assembled battery 60 can be suppressed to about ± 1 mm or less.

組電池60は、図8に示す直列配置のみならず、直列配置したものをさらに並列配置して用いてもよい。そのような場合等には、組電池の総寸法が枠体部32の寸法精度で定まることにもなるが、いずれにせよ、高精度の外形寸法で組電池を構成できる。   As for the assembled battery 60, not only the series arrangement shown in FIG. 8 but also those arranged in series may be further arranged in parallel. In such a case, the total size of the assembled battery is determined by the dimensional accuracy of the frame body portion 32. In any case, the assembled battery can be configured with a highly accurate external dimension.

本発明に係るシート型電池、およびそれを整列配置させた組電池は、車両用の電源に用いることができる。また、車両以外の用途、例えば、家電製品に用いることができ、あるいは産業用装置に用いることができる。   The sheet type battery according to the present invention and the assembled battery in which the sheet type battery is arranged and arranged can be used as a power source for a vehicle. Moreover, it can use for uses other than a vehicle, for example, household appliances, or can be used for an industrial apparatus.

本発明に係る実施の形態におけるシート材型電池の平面図及び側面図である。It is the top view and side view of a sheet material type battery in an embodiment according to the present invention. 本発明に係る実施の形態において、電極端子が接続された電池用発電要素をシート材ケースの中に収納する様子を示す図である。In embodiment which concerns on this invention, it is a figure which shows a mode that the electric power generation element for batteries to which the electrode terminal was connected is accommodated in a sheet | seat material case. 図1のA−A線に沿った断面の構造図である。FIG. 2 is a structural diagram of a cross section taken along line AA in FIG. 1. 本発明に係る実施の形態において、シート材ケースを省略して補強材のみを示した図である。In embodiment which concerns on this invention, it is the figure which abbreviate | omitted the sheet | seat material case and showed only the reinforcing material. 本発明に係る実施の形態におけるシート材型電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the sheet material type battery in embodiment which concerns on this invention. 本発明に係る実施の形態における補強材成形用金型の断面図である。It is sectional drawing of the metal mold | die for reinforcement material shaping | molding in embodiment which concerns on this invention. 本発明に係る実施の形態において、電池体を下金型にセットする様子を示す図である。In embodiment which concerns on this invention, it is a figure which shows a mode that a battery body is set to a lower metal mold | die. 本発明に係る他の実施の形態において、シート材型電池を複数個整列配置した組電池の一部を示す図である。In other embodiment which concerns on this invention, it is a figure which shows a part of assembled battery which arranged the sheet material type battery in multiple numbers.

符号の説明Explanation of symbols

10 シート材型電池、11 ふくらみ部、12 シート材ケース、13 鍔部、14 電池用発電要素、16 電極端子、18 介在層、20 ラミネートフィルム、22,26 プラスチックフィルム、24 金属箔、28 接着材、30 補強材、32 枠体部、34 リブ部、36 電池体、40 金型、41 パーティションライン、42 下金型、44 上金型、50 凹部、52 キャビティ、54 枠体用キャビティ、56 リブ用キャビティ、60 組電池。   DESCRIPTION OF SYMBOLS 10 Sheet material type battery, 11 Swelling part, 12 Sheet material case, 13 collar part, 14 Power generation element for battery, 16 Electrode terminal, 18 Interposition layer, 20 Laminate film, 22, 26 Plastic film, 24 Metal foil, 28 Adhesive , 30 Reinforcement material, 32 Frame body part, 34 Rib part, 36 Battery body, 40 Mold, 41 Partition line, 42 Lower mold, 44 Upper mold, 50 Recess, 52 cavity, 54 Cavity for frame, 56 Rib Cavity for 60 batteries.

Claims (5)

シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材の端部を気密に封止して収納し、略扁平矩形の電池体を形成する工程と、
電池体を補強材成形金型の中に配置し、電池体の矩形周辺に沿って気密封止端部を挟み込む枠体部と、枠体部の向かい合う辺を電池体の扁平面に沿って結ぶリブ部とからなる補強材を樹脂成形するとともに、電池体の扁平面で、樹脂成形が行われない部分を金型内壁で加圧して寸法成形する工程と、
を備えることを特徴とするシート材型電池製造方法。
Enveloping the battery power generation element with the sheet material, pulling out both electrodes from the battery power generation element to the outside, hermetically sealing and storing the end of the sheet material, and forming a substantially flat rectangular battery body;
The battery body is placed in the reinforcing material molding die, and the frame body part that sandwiches the hermetic sealing end along the rectangular periphery of the battery body and the opposite sides of the frame body part are connected along the flat surface of the battery body. A step of resin-molding a reinforcing material composed of a rib portion and press-molding a portion where resin molding is not performed on the flat surface of the battery body with the inner wall of the mold,
A sheet material type battery manufacturing method comprising:
請求項1に記載のシート材型電池製造方法において、
電池体は、充放電使用により扁平面を外側に膨張するように変形し、両電極の引き出し方向に沿った変形よりも両電極の引き出し方向に直交する方向に沿った変形が大きく、
リブ部は、両電極の引き出し方向に直交する方向に沿って配置されることを特徴とするシート材型電池製造方法。
In the sheet material type battery manufacturing method according to claim 1,
The battery body is deformed so that the flat surface expands outward by use of charge and discharge, and the deformation along the direction orthogonal to the drawing direction of both electrodes is larger than the deformation along the drawing direction of both electrodes,
A rib part is arrange | positioned along the direction orthogonal to the extraction direction of both electrodes, The sheet material type battery manufacturing method characterized by the above-mentioned.
請求項1に記載のシート材型電池製造方法において、
樹脂成形に用いられる樹脂は、ガラス繊維強化樹脂であることを特徴とするシート材型電池製造方法。
In the sheet material type battery manufacturing method according to claim 1,
The resin used for resin molding is a glass fiber reinforced resin.
シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材の端部を気密に封止して収納する略扁平矩形の電池体と、
電池体の矩形周辺に沿って気密封止端部を挟み込む枠体部と、枠体部の向かい合う辺を電池体の扁平面に沿って結ぶリブ部とを一体として樹脂成形により形成された補強材と、
を備えるシート材型電池。
A substantially flat rectangular battery body that encloses the battery power generation element with a sheet material, draws both electrodes from the battery power generation element to the outside, and hermetically seals and stores the end of the sheet material;
Reinforcing material formed by resin molding integrally with a frame body portion that sandwiches the hermetic sealing end along the rectangular periphery of the battery body and a rib portion that connects opposite sides of the frame body along the flat surface of the battery body When,
A sheet material type battery comprising:
略扁平矩形の単電池を、扁平面が互いに向かい合うように複数整列配置する組電池であって、
単電池は、
シート材で電池用発電要素を包み込み、電池用発電要素から両電極を外部に引き出し、シート材の端部を気密に封止して収納する略扁平矩形の電池体と、
電池体の扁平面に平行に電池体の矩形周辺に沿って気密封止端部を挟み込む枠体部と、枠体部の向かい合う辺を電池体の扁平面に沿って結ぶリブ部とを一体として樹脂成形により形成された補強材と、
を備え、樹脂成形により寸法が管理される補強材の外形寸法の積算により全体の寸法が決まることを特徴とするシート材型単電池を組み合わせる組電池。
An assembled battery in which a plurality of substantially flat rectangular cells are arranged and arranged so that the flat surfaces face each other,
Single cell
A substantially flat rectangular battery body that encloses the battery power generation element with a sheet material, draws both electrodes from the battery power generation element to the outside, and hermetically seals and stores the end of the sheet material;
The frame part that sandwiches the hermetic sealing end along the periphery of the battery body parallel to the flat surface of the battery body and the rib part that connects the opposite sides of the frame body along the flat surface of the battery body A reinforcing material formed by resin molding;
An assembled battery combining sheet material type single cells, wherein the overall dimensions are determined by integrating the external dimensions of the reinforcing material whose dimensions are controlled by resin molding.
JP2004302080A 2004-10-15 2004-10-15 Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell Withdrawn JP2006114406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302080A JP2006114406A (en) 2004-10-15 2004-10-15 Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302080A JP2006114406A (en) 2004-10-15 2004-10-15 Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell

Publications (1)

Publication Number Publication Date
JP2006114406A true JP2006114406A (en) 2006-04-27

Family

ID=36382742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302080A Withdrawn JP2006114406A (en) 2004-10-15 2004-10-15 Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell

Country Status (1)

Country Link
JP (1) JP2006114406A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087655A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Battery and its manufacturing method
JP2009176513A (en) * 2008-01-23 2009-08-06 Sony Corp Non-aqueous electrolyte battery and manufacturing method for producing the same
WO2013054816A1 (en) * 2011-10-11 2013-04-18 日産自動車株式会社 Fabrication method for laminated-type secondary battery
WO2013080755A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Thin battery and method for manufacturing thin battery
WO2013100077A1 (en) * 2011-12-29 2013-07-04 日産自動車株式会社 Battery coupling method and battery coupling device
JP5588338B2 (en) * 2008-03-18 2014-09-10 太陽誘電株式会社 Electrochemical devices
JP2016505204A (en) * 2013-04-11 2016-02-18 エルジー・ケム・リミテッド Battery cell including round corner
JP2017168388A (en) * 2016-03-18 2017-09-21 古河機械金属株式会社 Lithium ion battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087655A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Battery and its manufacturing method
JP2009176513A (en) * 2008-01-23 2009-08-06 Sony Corp Non-aqueous electrolyte battery and manufacturing method for producing the same
JP5588338B2 (en) * 2008-03-18 2014-09-10 太陽誘電株式会社 Electrochemical devices
WO2013054816A1 (en) * 2011-10-11 2013-04-18 日産自動車株式会社 Fabrication method for laminated-type secondary battery
US9701056B2 (en) 2011-10-11 2017-07-11 Nissan Motor Co., Ltd. Fabrication method for laminated-type secondary battery
EP2768041A4 (en) * 2011-10-11 2015-04-08 Nissan Motor Fabrication method for laminated-type secondary battery
JPWO2013054816A1 (en) * 2011-10-11 2015-03-30 日産自動車株式会社 Manufacturing method of laminate type secondary battery
EP2768041A1 (en) * 2011-10-11 2014-08-20 Nissan Motor Co., Ltd Fabrication method for laminated-type secondary battery
JP2013114889A (en) * 2011-11-29 2013-06-10 Nissan Motor Co Ltd Thin battery and manufacturing method of the same
CN104094444A (en) * 2011-11-29 2014-10-08 日产自动车株式会社 Thin battery and method for manufacturing thin battery
WO2013080755A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Thin battery and method for manufacturing thin battery
CN104094444B (en) * 2011-11-29 2017-09-22 日产自动车株式会社 The manufacture method of thin battery and thin battery
US10608210B2 (en) 2011-11-29 2020-03-31 Envision Aesc Japan Ltd. Flat battery and method for producing flat battery
JP2013140698A (en) * 2011-12-29 2013-07-18 Nissan Motor Co Ltd Coupling method and coupling apparatus
WO2013100077A1 (en) * 2011-12-29 2013-07-04 日産自動車株式会社 Battery coupling method and battery coupling device
US9461280B2 (en) 2011-12-29 2016-10-04 Nissan Motor Co., Ltd. Battery coupling method and battery coupling device
JP2016505204A (en) * 2013-04-11 2016-02-18 エルジー・ケム・リミテッド Battery cell including round corner
US9741974B2 (en) 2013-04-11 2017-08-22 Lg Chem, Ltd. Battery cell having round corner
JP2017168388A (en) * 2016-03-18 2017-09-21 古河機械金属株式会社 Lithium ion battery

Similar Documents

Publication Publication Date Title
KR102064460B1 (en) Pouch case for secondary battery, pouch type secondary battery and manufacturing method thereof using the same
EP1804315B1 (en) Pouch-type battery case, battery and method of making the same
JP2019537225A (en) Pouch exterior material for secondary battery, pouch type secondary battery using the same, and manufacturing method thereof
US8771866B2 (en) Pouch type secondary battery and the fabrication method thereof
JP4336764B2 (en) Film-clad electrical device and method for manufacturing the same
KR100778982B1 (en) Pouch case and pouch type secondary battery employing the same
KR101471765B1 (en) Sealing method of pouch-type secondary battery, pouch-type secondary battery, and method for manufacturing the same
JP5815793B2 (en) Film-covered electrical device case and method for producing the film-covered electrical device case
WO2005096412A1 (en) Electrical device with film covering, frame member, and housing system for electrical device with film covering
JP7041809B2 (en) Rechargeable battery including injection molded battery case
WO2006067979A1 (en) Case for film jacket electric device
KR20070071252A (en) Battery pack
WO2020203101A1 (en) Power storage module
EP3800690B1 (en) Secondary battery
JP4687052B2 (en) Sheet material type battery manufacturing method and sheet material type battery
JP2006114406A (en) Manufacturing method of sheet type battery, sheet type battery, and battery pack cimbined with sheet type unit cell
JP2000048773A (en) Non-aqueous electrolyte cell
KR20130052524A (en) Manufacturing method of electric device, manufacturing apparatus thereof and electric device
JP7102911B2 (en) Manufacturing method of power storage module
JP2001325926A (en) Manufacturing method of battery with laminated sheet as outer package case
JP2011129668A (en) Power storage module
JP2003331798A (en) Cladding film for sealing electrode body and sealing method of cladding film
JP2001325992A (en) Manufacturing method of cell which uses laminate sheet as packaging case
JP2020087587A (en) Power storage module and manufacturing method of power storage module
JP2019192625A (en) Manufacturing method for power storage module and power storage module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081224