JP4666131B2 - LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE - Google Patents

LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE Download PDF

Info

Publication number
JP4666131B2
JP4666131B2 JP2003345990A JP2003345990A JP4666131B2 JP 4666131 B2 JP4666131 B2 JP 4666131B2 JP 2003345990 A JP2003345990 A JP 2003345990A JP 2003345990 A JP2003345990 A JP 2003345990A JP 4666131 B2 JP4666131 B2 JP 4666131B2
Authority
JP
Japan
Prior art keywords
heat
film
laminate film
laminate
battery element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003345990A
Other languages
Japanese (ja)
Other versions
JP2005116228A (en
Inventor
牧宏 乙幡
弘志 屋ケ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2003345990A priority Critical patent/JP4666131B2/en
Publication of JP2005116228A publication Critical patent/JP2005116228A/en
Application granted granted Critical
Publication of JP4666131B2 publication Critical patent/JP4666131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、電池要素をラミネートフィルムからなる外装材で気密封止(以下、単に機密封止という)したフィルム外装電池の製造方法、特に、電池要素を封止する際の、リード端子が延出する辺でのラミネートフィルムの熱融着方法に関する。また本発明は、フィルム外装電池用のラミネートフィルムを熱融着するためのラミネートフィルム用熱融着装置に関する。   The present invention relates to a method for manufacturing a film-clad battery in which a battery element is hermetically sealed (hereinafter simply referred to as confidential sealing) with an exterior material made of a laminate film, and in particular, a lead terminal is extended when the battery element is sealed. The present invention relates to a method for heat-sealing a laminate film at a side to be processed. The present invention also relates to a heat sealing apparatus for a laminate film for heat-sealing a laminate film for a film-clad battery.

近年、携帯機器等の電源としての電池は、軽量化、薄型化が強く要求されている。そこで、電池の外装材に関しても、さらなる軽量化、薄型化が可能であり、自由な形状を採ることが可能な外装材として、金属薄膜フィルム、または金属薄膜と熱融着性樹脂フィルムとを積層したラミネートフィルムを用いたものが使用されるようになっている。   In recent years, batteries as power sources for portable devices and the like are strongly required to be light and thin. Therefore, it is possible to further reduce the weight and thickness of the battery packaging material, and as a packaging material that can take any shape, a metal thin film or a metal thin film and a heat-sealable resin film are laminated. The one using the laminated film is used.

電池の外装材として用いられるラミネートフィルムの代表的な例としては、金属薄膜であるアルミニウム薄膜の片面にヒートシール層である熱融着性樹脂フィルムを積層するとともに、他方の面に保護フィルムを積層した3層ラミネートフィルムが挙げられる。   A typical example of a laminate film used as a battery exterior material is to laminate a heat-sealable resin film as a heat seal layer on one side of an aluminum thin film as a metal thin film and a protective film on the other side. Three-layer laminated film.

外装材にラミネートフィルムを用いたフィルム外装電池においては、一般的に、図5に示すように、正極、負極、および電解質等で構成される電池要素106を、熱融着性樹脂フィルムを互いに対向させて2枚のラミネートフィルム103,104で挟み、電池要素106の周囲(図中、斜線で示した領域)でラミネートフィルム103,104を熱融着することによって電池要素106を封止している。   In a film-clad battery using a laminate film as a packaging material, generally, as shown in FIG. 5, a battery element 106 composed of a positive electrode, a negative electrode, an electrolyte, and the like is placed with a heat-fusible resin film facing each other. The battery element 106 is sealed by heat-sealing the laminate film 103, 104 around the battery element 106 (the area shown by hatching in the figure) between the two laminate films 103, 104. .

電池要素106の正極および負極をラミネートフィルム103,104の外部へ引き出すために、正極および負極にはそれぞれ電極材料が塗布されていない金属箔からなる未塗布部が突出して設けられており、これら未塗布部をそれぞれの極ごとにまとめた集電部107a,107bに、リード端子105a,105bをラミネートフィルム103,104から延出させて接続している。また、ラミネートフィルム103,104は、電池要素106を収納し易いように、少なくとも一方が、深絞り成形によって鍔付きの容器状に形成されている。   In order to draw out the positive electrode and the negative electrode of the battery element 106 to the outside of the laminate films 103 and 104, the positive electrode and the negative electrode are each provided with an uncoated portion made of a metal foil to which no electrode material is applied. Lead terminals 105a and 105b are extended from the laminate films 103 and 104 and connected to current collectors 107a and 107b in which the coating portions are grouped for each pole. Further, at least one of the laminate films 103 and 104 is formed into a hooked container shape by deep drawing so that the battery element 106 can be easily stored.

ここで、ラミネートフィルムの熱融着は、図6に示すように、一対の熱融着ヘッド109a,109bでラミネートフィルム103,104を加圧しつつ加熱して行う。この際、熱融着ヘッド109a,109bにより与えられる熱は、ラミネートフィルム103,104の熱融着すべき部位の周囲にも伝わり、熱融着には必要ない領域でも熱融着性樹脂103d,104dが融けてしまうことがある。電池要素106と接触している部分A,Bで熱融着性樹脂103d,104dが融けると、電池要素106がラミネートフィルム103,104の金属薄膜103e,104eと接触し、両者間でショートが発生してしまうおそれがある。   Here, as shown in FIG. 6, the laminate film is heat-sealed by heating the laminate films 103 and 104 while pressing them with a pair of heat-fusing heads 109a and 109b. At this time, the heat given by the heat fusion heads 109a and 109b is also transmitted to the periphery of the portions of the laminate films 103 and 104 where the heat fusion is to be performed. 104d may melt. When the heat-sealable resins 103d and 104d melt at the portions A and B that are in contact with the battery element 106, the battery element 106 comes into contact with the metal thin films 103e and 104e of the laminate films 103 and 104, and a short circuit occurs between them. There is a risk of it.

そこで、特許文献1には、ラミネートフィルムの熱融着される部位およびその近傍に、熱融着性樹脂と同一材質の熱融着性樹脂フィルムを配設し、ショートが発生し得る箇所で実質的に熱融着性樹脂の層の厚みを厚くすることによって、ショートを防止するようにした電池が開示されている。   Therefore, in Patent Document 1, a heat-fusible resin film made of the same material as that of the heat-fusible resin is disposed at and near the portion to be heat-sealed of the laminate film, so that it is substantially at the place where a short circuit can occur. In particular, a battery is disclosed in which a short circuit is prevented by increasing the thickness of the heat-fusible resin layer.

また、特許文献2には、ラミネートフィルムの耐熱性を向上させる技術として、電子要素をラミネートフィルムで封止した後に、ラミネートフィルムの熱融着された領域に電子線を照射することによって熱融着性樹脂に架橋構造を形成し、封止の信頼性を向上させることが開示されている。
特開2001−126678号公報 特開2001−6633号公報
In Patent Document 2, as a technique for improving the heat resistance of a laminate film, an electronic element is sealed with a laminate film, and then heat fusion is performed by irradiating an electron beam to a heat-sealed region of the laminate film. It is disclosed that a cross-linked structure is formed in a functional resin to improve sealing reliability.
JP 2001-126678 A JP 2001-6633 A

しかしながら、特許文献1に開示されたものでは、単に熱融着性樹脂の層の厚みを部分的に厚くするだけであり、電池要素の封止に際しては、熱融着される部位の近傍の、ショートが発生し得る領域においても熱融着性樹脂が融けることには何ら変わりはない。したがって、熱融着性樹脂の層の厚みに応じて熱融着条件を適切に設定しないと、熱融着が十分に行われなかったり、その逆に、熱融着性樹脂が融けすぎて結果的に金属薄膜とのショートが発生したりするおそれがある。   However, in the one disclosed in Patent Document 1, the thickness of the heat-fusible resin layer is merely partially increased, and when sealing the battery element, in the vicinity of the portion to be heat-sealed, There is no change in that the heat-fusible resin melts even in a region where a short circuit can occur. Therefore, if the heat fusion conditions are not set appropriately according to the thickness of the layer of the heat-fusible resin, the heat-fusing resin is not sufficiently performed, or conversely, the heat-fusing resin is melted too much. There is a risk of short circuit with the metal thin film.

特に、リード端子が延出する辺においては、ラミネートフィルム同士が直接熱融着される領域と、ラミネートフィルムの間にリード端子が介在している領域とを有しており、各領域では全体の厚さが異なる。そこで従来は、各領域での熱融着条件を均一にするために、リード端子が介在している部分である導出部に対応する位置に凹部を形成した熱融着ヘッドを用い、ラミネートフィルムを均一な力で加圧するようにしている。   In particular, the side where the lead terminal extends has a region where the laminate films are directly heat-sealed, and a region where the lead terminal is interposed between the laminate films. The thickness is different. Therefore, conventionally, in order to make the heat fusion conditions uniform in each region, a laminate film is used by using a heat fusion head in which a recess is formed at a position corresponding to the lead-out portion where the lead terminal is interposed. The pressure is applied with a uniform force.

しかし、リード端子の導出部では、熱融着ヘッドから与えられた熱がリード端子を伝わって逃げ易く、ラミネートフィルムが十分に加熱されにくいので、リード端子が介在しない辺と比べて高い温度条件で熱融着する必要がある。そのため、リード端子が介在する辺の熱融着は、リード端子が介在する領域では適切に熱融着されるものの、リード端子が介在していない領域では、ラミネートフィルムが過剰に熱せられてしまう。従って、熱融着性樹脂も必要以上に溶融し、結果的には、図6に示した部分A,Bにおいてショートが発生してしまうおそれがあった。   However, in the lead terminal lead-out part, the heat given from the heat fusion head is easily transmitted through the lead terminal, and the laminate film is not easily heated, so the temperature is higher than the side where the lead terminal is not interposed. It is necessary to heat-seal. Therefore, although the heat fusion of the side where the lead terminal is interposed is appropriately heat-sealed in the region where the lead terminal is interposed, the laminate film is excessively heated in the region where the lead terminal is not interposed. Therefore, the heat-fusible resin is also melted more than necessary, and as a result, there is a possibility that a short circuit occurs in the portions A and B shown in FIG.

一方、特許文献2に開示されたものは、ラミネートフィルムの熱融着性樹脂の耐熱性そのものを向上させるものであるが、熱融着後の熱融着部での封止信頼性を向上させるものであり、封止の際に生じる電池要素と金属薄膜とのショートを防止するものではない。   On the other hand, what is disclosed in Patent Document 2 improves the heat resistance itself of the heat-fusible resin of the laminate film, but improves the sealing reliability at the heat-sealed portion after heat-sealing. It does not prevent a short circuit between the battery element and the metal thin film that occurs during sealing.

本発明は、電池要素を熱融着性樹脂層と金属薄膜層とのラミネートフィルムで封止する際に、特にリード端子が延出する辺の熱融着時に与えられる熱で電池要素との接触部で熱融着性樹脂が融けることによる電池要素と金属薄膜とのショートを防止することを目的とする。   In the present invention, when a battery element is sealed with a laminate film of a heat-fusible resin layer and a metal thin film layer, contact with the battery element is particularly caused by heat given at the time of heat-sealing on the side where the lead terminal extends. An object is to prevent a short circuit between the battery element and the metal thin film due to melting of the heat-fusible resin at the portion.

上記目的を達成するための本発明のラミネートフィルムの熱融着方法は、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムを用い、正極および負極のリード端子が接続された電池要素を、リード端子をラミネートフィルムの少なくとも1辺から延出させて封止する際の、リード端子が延出する辺でのラミネートフィルムの熱融着方法であって、ラミネートフィルムを加圧および加熱するためのヘッド本体、および該ヘッド本体のラミネートフィルムを加圧する面の、熱融着時にラミネートフィルムのみと対向する領域の少なくとも一部のみに取り付けられたヘッド本体よりも熱伝導率の低い材料からなる部材を有する熱融着ヘッドを用意する工程と、熱融着性樹脂層を内側にして、ラミネートフィルムで電池要素をリード端子が少なくとも1辺から延出した状態で包囲し、ラミネートフィルムの周縁部において熱融着性樹脂層同士を向き合わせる工程と、リード端子が延出した辺でのラミネートフィルムの周縁部を、熱融着ヘッドで加圧しつつ加熱する工程とを有することを特徴とする。 In order to achieve the above object, the method for heat-sealing a laminate film of the present invention uses a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated, and the lead terminals of the positive electrode and the negative electrode are connected. A method for heat-sealing a laminate film on a side where a lead terminal extends when a battery element is sealed by extending the lead terminal from at least one side of the laminate film, wherein the laminate film is pressurized and head body for heating, and the laminate film pressurizing face of the head main body, a lower thermal conductivity than the head main body attached only to at least a portion of the realm to be opposed to only the laminated film at the time of heat-sealing A process for preparing a heat fusion head having a member made of a material, and a battery element with a laminate film with a heat fusion resin layer inside. And the step of surrounding the heat-fusible resin layers with each other at the peripheral edge of the laminate film, and the peripheral edge of the laminate film at the side where the lead terminal extends. And a step of heating while pressurizing with a heat-fusing head.

ラミネートフィルムのリード端子が延出した辺を熱融着する場合、ラミネートフィルム間にリード端子が介在している領域と、ラミネートフィルムのみの領域とが存在する。ラミネートフィルムのみの領域は、リード端子が介在している領域と比べて、熱融着ヘッドで加圧および加熱したとき、熱融着性樹脂層が溶融し易い。そこで、熱融着ヘッドをヘッド本体とヘッド本体よりも熱伝導率の低い材料からなる部材を含む構成とし、ヘッド本体よりも熱伝導率の低い材料からなる部材を、ヘッド本体のラミネートフィルムを加圧する面の、熱融着時にラミネートフィルムのみと対向する領域の少なくとも一部のみに取り付けることで、ラミネートフィルムのみと対向する領域での熱融着性樹脂層の溶融が緩和される。これにより、熱融着性樹脂層が過剰に溶融することがなくなり、電池要素と金属薄膜層とのショートが防止される。 When the side where the lead terminal of the laminate film extends is heat-sealed, there are a region where the lead terminal is interposed between the laminate films and a region only of the laminate film. Compared with the region where the lead terminal is interposed, the region having only the laminate film is likely to melt the heat-fusible resin layer when pressed and heated by the heat-fusion head. Therefore, the thermal fusion head is configured to include a head body and a member made of a material having a lower thermal conductivity than the head body, and a member made of a material having a lower thermal conductivity than the head body is added to the laminate film of the head body. the pressure surface, by attaching only at least a portion of the realm to be opposed only laminated film during thermal fusion, melting of the heat-fusible resin layer in a region facing only laminated film is relaxed. Thereby, the heat-fusible resin layer is not excessively melted, and a short circuit between the battery element and the metal thin film layer is prevented.

本発明のフィルム外装電池の製造方法は、正極および負極のリード端子が接続された電池要素を、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで、リード端子をラミネートフィルムの少なくとも1辺から延出させた状態で封止したフィルム外装電池の製造方法であって、電池要素を作製する工程と、電池要素をラミネートフィルムで封止する工程とを有し、電池要素を封止する工程は、上記本発明のラミネートフィルムの熱融着方法によってラミネートフィルムのリード端子が延出する辺を熱溶着することを含む。   The method for producing a film-clad battery of the present invention includes a battery element to which positive and negative lead terminals are connected, a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated. A method for producing a film-clad battery sealed in a state extending from at least one side of the battery, comprising a step of producing a battery element, and a step of sealing the battery element with a laminate film. The step of sealing includes heat-welding the side where the lead terminal of the laminate film extends by the method for heat-sealing the laminate film of the present invention.

本発明のフィルム外装電池の製造方法では、リード端子が延出する辺でのラミネートフィルムの熱融着に、上述した本発明のラミネートフィルムの熱融着方法を適用している。これにより、ラミネートフィルムの熱融着時の、電池要素とラミネートフィルムとの接触部での電池要素と金属薄膜層とのショートが防止され、フィルム外装電池の信頼性が向上する。   In the film-clad battery manufacturing method of the present invention, the above-described method of heat-sealing a laminate film of the present invention is applied to the heat-bonding of the laminate film on the side where the lead terminals extend. Thereby, the short circuit between the battery element and the metal thin film layer at the contact portion between the battery element and the laminate film at the time of heat-sealing the laminate film is prevented, and the reliability of the film-covered battery is improved.

本発明のラミネートフィルム用熱融着装置は、正極および負極のリード端子が接続された電池要素が、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムでリード端子をラミネートフィルムの少なくとも1辺から延出させた状態で封止されたフィルム外装電池の、ラミネートフィルムのリード端子が延出した辺を熱溶着するためのラミネートフィルム用熱融着装置であって、ラミネートフィルムを加圧しつつ加熱するための一対の熱融着ヘッドを備え、熱融着ヘッドは、ラミネートフィルムを加圧および加熱するためのヘッド本体と、該ヘッド本体のラミネートフィルムを加圧する面の、熱融着時にラミネートフィルムのみと対向する領域の少なくとも一部のみに取り付けられたヘッド本体よりも熱伝導率の低い材料からなる部材とを有することを特徴とする。 In the heat fusion apparatus for laminate film of the present invention, the battery element to which the positive and negative lead terminals are connected is a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated. A heat-sealing device for a laminated film for heat-welding a side of a laminated film film in which a lead terminal of a laminated film is extended, wherein the laminated film is sealed from at least one side. The heat fusion head includes a head main body for pressurizing and heating the laminate film and a surface of the head main body on which the laminate film is pressed. material having a lower thermal conductivity than the head main body attached only to at least a portion of the realm to be opposed to only the laminated film at the time of wear And having a Ranaru member.

本発明によれば、ラミネートフィルムのリード端子が延出した辺での熱融着時における、ラミネートフィルムの熱融着性樹脂層の過剰な溶融を防止することができる。その結果、電池要素とラミネートフィルムとの接触部での熱融着性樹脂層の溶融による電池要素と金属薄膜とのショートを有効に防止することができ、信頼性の高いフィルム外装電池を製造することができる。   According to the present invention, it is possible to prevent excessive melting of the heat-fusible resin layer of the laminate film at the time of heat-sealing at the side where the lead terminal of the laminate film extends. As a result, a short circuit between the battery element and the metal thin film due to melting of the heat-fusible resin layer at the contact portion between the battery element and the laminate film can be effectively prevented, and a highly reliable film-clad battery is manufactured. be able to.

次に、本発明の実施形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態によるフィルム外装電池の分解斜視図である。本実施形態のフィルム外装電池1は、電池要素6と、電池要素6に設けられた正極集電部7aおよび負極集電部7bと、電池要素6を電解液とともに収納する外装体と、正極集電部7aに接続された正極リード端子5aと、負極集電部7bに接続された負極リード端子5bとを有する。   FIG. 1 is an exploded perspective view of a film-clad battery according to an embodiment of the present invention. The film-clad battery 1 of the present embodiment includes a battery element 6, a positive electrode current collector 7a and a negative electrode current collector 7b provided in the battery element 6, an outer package that houses the battery element 6 together with an electrolyte, and a positive electrode current collector. It has a positive electrode lead terminal 5a connected to the electric part 7a and a negative electrode lead terminal 5b connected to the negative electrode current collector 7b.

電池要素6は、それぞれ電極材料が両面に塗布された複数の正極板と複数の負極板とを、セパレータを介して交互に積層して構成されている。各正極板および各負極板の一辺からはそれぞれ電極材料が塗布されていない金属箔からなる未塗布部が突出して設けられており、正極板の未塗布部同士、および負極板の未塗布部同士がそれぞれ一括して超音波溶接されて、正極集電部7aおよび負極集電部7bが形成される。   The battery element 6 is configured by alternately laminating a plurality of positive plates and a plurality of negative plates each coated with an electrode material on both sides via a separator. From one side of each positive electrode plate and each negative electrode plate, an uncoated portion made of a metal foil to which no electrode material is applied is provided so as to protrude between the uncoated portions of the positive electrode plate and between the uncoated portions of the negative electrode plate Are collectively ultrasonically welded to form the positive electrode current collector 7a and the negative electrode current collector 7b.

リチウムイオン電池などの非水電解質電池の場合、正極リード端子5aとしてはアルミニウム板が用いられ、負極リード端子5bとしてはニッケル板または銅板が用いられる。負極リード端子5bを構成する銅板にはニッケルメッキを施してもよい。   In the case of a nonaqueous electrolyte battery such as a lithium ion battery, an aluminum plate is used as the positive electrode lead terminal 5a, and a nickel plate or a copper plate is used as the negative electrode lead terminal 5b. The copper plate constituting the negative electrode lead terminal 5b may be plated with nickel.

正極リード端子5aおよび負極リード端子5bには、ラミネートフィルム3,4の熱融着に際し、金属板が介在することによる熱融着性の低下を防止するために、樹脂フィルム8が予め熱融着されている。樹脂フィルム8は、少なくとも正極リード端子5aおよび負極リード端子5bの、ラミネートフィルム3,4で挟まれる領域で、正極リード端子5aおよび負極リード端子5bの両面から熱融着される。   The resin film 8 is preliminarily heat-sealed to the positive electrode lead terminal 5a and the negative electrode lead terminal 5b in order to prevent a decrease in heat-fusibility due to the presence of a metal plate when the laminate films 3 and 4 are heat-sealed. Has been. The resin film 8 is heat-sealed from both surfaces of the positive electrode lead terminal 5a and the negative electrode lead terminal 5b in at least a region between the positive electrode lead terminal 5a and the negative electrode lead terminal 5b sandwiched between the laminate films 3 and 4.

外装体は、電池要素6を上下から挟んで包囲する2枚のラミネートフィルム3,4からなり、これらラミネートフィルム3,4の周縁部を熱融着することで、電池要素6が封止される。図1には、ラミネートフィルム3,4の熱融着される領域を封止領域3a,4aとして斜線で示している。   The exterior body is composed of two laminated films 3 and 4 that sandwich and surround the battery element 6 from above and below, and the battery element 6 is sealed by heat-sealing the peripheral portions of the laminated films 3 and 4. . In FIG. 1, regions where the laminate films 3 and 4 are heat-sealed are indicated by hatching as sealing regions 3 a and 4 a.

一方のラミネートフィルム3には、電池要素6を収納する室を形成するために、電池要素6側から見て凹部が形成されるように、鍔付きの容器状に加工されている。この凹部は、例えば深絞り成形によって形成することができる。図1に示した例では一方のラミネートフィルム3に凹部が形成されているが、他方のラミネートフィルム4に形成してもよい。また、電池要素6の厚みによっては両方のラミネートフィルム3,4に凹部を形成してもよいし、凹部を形成せずにラミネートフィルム3,4自身の柔軟性を利用して電池要素6を封止してもよい。   One laminate film 3 is processed into a hooked container shape so that a recess is formed when viewed from the battery element 6 side in order to form a chamber for housing the battery element 6. This recess can be formed by, for example, deep drawing. In the example shown in FIG. 1, the concave portion is formed in one laminate film 3, but it may be formed in the other laminate film 4. Depending on the thickness of the battery element 6, a concave portion may be formed in both the laminate films 3 and 4, or the battery element 6 may be sealed using the flexibility of the laminate films 3 and 4 without forming the concave portion. You may stop.

ラミネートフィルム3,4としては、電解液が漏洩しないように電池要素6を封止できるものであれば、この種のフィルム外装電池に一般に用いられるフィルムを用いることができる。図2に、フィルム外装電池1の封止領域近傍での断面図を示す。   As the laminate films 3 and 4, a film generally used for this type of film-clad battery can be used as long as the battery element 6 can be sealed so that the electrolyte does not leak. In FIG. 2, sectional drawing in the sealing area vicinity of the film-clad battery 1 is shown.

図2に示すように、ラミネートフィルム3,4は、それぞれ少なくとも金属薄膜層3e,4eと熱融着性樹脂層3d,4dとを積層した構造を有している。また、本実施形態では、金属薄膜層3e,4eの、熱融着性樹脂層3d,4dと反対側の面に、ポリエチレンテレフタレートなどのポリエステルやナイロン等のフィルムからなる保護層3f,4fが積層されているが、この保護層3f,4fは、必要に応じて設けられる。   As shown in FIG. 2, the laminate films 3 and 4 each have a structure in which at least metal thin film layers 3e and 4e and heat-fusible resin layers 3d and 4d are laminated. In the present embodiment, protective layers 3f and 4f made of a film of polyester such as polyethylene terephthalate or nylon are laminated on the surface of the metal thin film layers 3e and 4e opposite to the heat-fusible resin layers 3d and 4d. However, the protective layers 3f and 4f are provided as necessary.

金属薄膜層3e,4eとしては、例えば、厚さ10μm〜100μmの、Al、Ti、Ti系合金、Fe、ステンレス、Mg系合金などの箔を用いることができる。熱融着性樹脂層3d,4dに用いられる樹脂としては、熱融着が可能な樹脂であれば特に制限はなく、例えば、ポリプロピレン、ポリエチレン、これらの酸変成物、ポリフェニレンサルファイド、ポリエチレンテレフタレートなどのポリエステル等、ポリアミド、エチレン−酢酸ビニル共重合体などが使用できる。   As the metal thin film layers 3e and 4e, for example, a foil of Al, Ti, Ti-based alloy, Fe, stainless steel, Mg-based alloy having a thickness of 10 μm to 100 μm can be used. The resin used for the heat-sealable resin layers 3d and 4d is not particularly limited as long as it is a resin that can be heat-sealable, and examples thereof include polypropylene, polyethylene, acid modified products thereof, polyphenylene sulfide, and polyethylene terephthalate. Polyester, polyamide, ethylene-vinyl acetate copolymer and the like can be used.

以上のように構成されたフィルム外装電池1は、以下のようにして作製される。   The film-clad battery 1 configured as described above is manufactured as follows.

まず、複数の正極板と複数の負極板とを、セパレータを介して交互に積層し、さらに正極集電部7aおよび負極集電部7bを形成した電池要素6を作製する。正確には、この段階で得られた、正極板、セパレータ、および負極板からなる積層体は、電解液を染み込ませる前の段階では電池要素前駆体とも呼ばれるが、本明細書ではこれらを区別せず単に電池要素6と表す。   First, a battery element 6 in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately laminated via separators and further formed with a positive electrode current collector 7a and a negative electrode current collector 7b is produced. To be precise, the laminate made of the positive electrode plate, the separator, and the negative electrode plate obtained at this stage is also called a battery element precursor in the stage before impregnating the electrolytic solution. It is simply expressed as battery element 6.

次いで、正極集電部7aに正極リード端子5aを接続するとともに、負極集電部7bに負極集電部5bを接続する。正極集電部7aへの正極リード端子5aの接続、および負極集電部7bへの負極リード端子の接続は、製造工程の簡略化のために正極集電部7aおよび負極集電部7bの形成と同時に行ってもよいが、別工程で行ってもよい。   Next, the positive electrode lead terminal 5a is connected to the positive electrode current collector 7a, and the negative electrode current collector 5b is connected to the negative electrode current collector 7b. The positive electrode current collector 7a is connected to the positive electrode lead terminal 5a and the negative electrode current collector 7b is connected to the negative electrode current collector 7b to form the positive electrode current collector 7a and the negative electrode current collector 7b in order to simplify the manufacturing process. Although it may be performed simultaneously, it may be performed in a separate process.

次いで、2枚のラミネートフィルム3,4を、熱融着性樹脂層3d,4dが内側となるように向き合わせて、正極リード端子aおよび負極リード端子5bが接続された電池要素6を挟んで包囲する。この際、電池要素6を挟んだラミネートフィルム3,4の1辺からは、正極リード端子5aおよび負極リード端子5bが延出した状態となっている。これにより、ラミネートフィルム3,4の周縁部(封止領域3a,4a)では、熱融着性樹脂層3d,4d同士が直接向き合う。その後、封止領域3a,4aにおいてラミネートフィルム3,4を熱融着し、電池要素6を封止することによって、フィルム外装電池1が製造される。   Next, the two laminated films 3 and 4 are faced to each other so that the heat-fusible resin layers 3d and 4d are inside, and the battery element 6 to which the positive electrode lead terminal a and the negative electrode lead terminal 5b are connected is sandwiched. Siege. At this time, the positive electrode lead terminal 5a and the negative electrode lead terminal 5b are extended from one side of the laminate films 3 and 4 with the battery element 6 interposed therebetween. Thereby, in the peripheral part (sealing area | region 3a, 4a) of the laminate films 3 and 4, the heat-fusible resin layers 3d and 4d face each other directly. Then, the film-clad battery 1 is manufactured by heat-sealing the laminate films 3 and 4 in the sealing regions 3a and 4a and sealing the battery element 6.

封止に際しては、ラミネートフィルム3,4の3辺を先に熱融着して1辺が開放した袋状としておき、その袋状となったラミネートフィルム3,4の開放している残りの1辺から電解液を注入し、その後、残りの1辺を熱融着する。電解液を注入することによって、電池要素6に電解液が染み込む。電解液の注入前に行う3辺の熱融着は、3辺を一括して行ってもよいし、複数の工程に分けて(例えば1辺ずつ)行ってもよい。また、ラミネートフィルム3,4の熱融着に先立って電池要素6に電解液を含浸させておき、その後、4辺を一括して熱融着することもできる。   At the time of sealing, the three sides of the laminate films 3 and 4 are first heat-sealed to form a bag shape in which one side is opened, and the remaining 1 of the laminate films 3 and 4 in the bag shape is opened. The electrolyte is injected from the side, and then the remaining one side is heat-sealed. By injecting the electrolytic solution, the electrolytic solution penetrates into the battery element 6. The three sides of the heat fusion performed before the injection of the electrolyte may be performed collectively for the three sides, or may be performed in a plurality of steps (for example, one side at a time). In addition, the battery element 6 can be impregnated with an electrolytic solution prior to the thermal fusion of the laminate films 3 and 4, and then the four sides can be thermally fused together.

ここで、正極リード端子5aおよび負極リード端子5bが延出した辺でのラミネートフィルム3,4の熱融着について、図3を参照してさらに詳しく説明する。図3は、図1に示すフィルム外装電池のリード端子が介在する辺の熱融着時の、封止領域でのリード端子が介在する辺に沿った断面図である。   Here, thermal fusion of the laminate films 3 and 4 at the sides where the positive electrode lead terminal 5a and the negative electrode lead terminal 5b extend will be described in more detail with reference to FIG. FIG. 3 is a cross-sectional view along the side where the lead terminal is interposed in the sealing region at the time of heat-sealing the side where the lead terminal of the film-clad battery shown in FIG. 1 is interposed.

ラミネートフィルム3,4の熱融着は、一対の熱融着ヘッド11,12によってラミネートフィルム3,4を挟んで加圧しつつ加熱することで行う。熱融着ヘッド11,12のラミネートフィルム3,4を加圧する面である加圧面は、ラミネートフィルム3,4の間に正極リード端子5a、負極リード端子5bおよび樹脂フィルム8が介在している部分とこれらが介在していない部分があることに起因するラミネートフィルム3,4の表面の凹凸に対応した凹凸を有している。これによって、ラミネートフィルム3,4は、熱融着時にほぼ均一な力で加圧される。   The laminating films 3 and 4 are heat-sealed by heating while pressing the laminating films 3 and 4 between the pair of heat-sealing heads 11 and 12. The pressing surface, which is the surface for pressing the laminate films 3 and 4 of the heat-fusing heads 11 and 12, is a portion where the positive electrode lead terminal 5a, the negative electrode lead terminal 5b and the resin film 8 are interposed between the laminate films 3 and 4. And unevenness corresponding to the unevenness of the surfaces of the laminate films 3 and 4 due to the presence of portions where these are not interposed. Thus, the laminate films 3 and 4 are pressed with a substantially uniform force at the time of heat sealing.

熱融着ヘッド11,12は、ヘッド本体11a,12aと、断熱材11b,12bとを有している。ヘッド本体11a,12aは、ヒータ(不図示)を内蔵し、加圧面が平坦に形成されている。断熱材11b,12bは、熱融着ヘッド11,12の凸の部分を構成するものであり、ヘッド本体11a,12aの加圧面の、熱融着時に正極リード端子5a、負極リード端子5bおよび樹脂フィルム8のいずれも介在していないラミネートフィルム3,4のみと対向する領域に、ヘッド本体11a,12aの加圧面に対する凸状の構造部分として取り付けられている。   The heat fusion heads 11 and 12 have head main bodies 11a and 12a and heat insulating materials 11b and 12b. The head main bodies 11a and 12a incorporate a heater (not shown) and have a flat pressing surface. The heat insulating materials 11b and 12b constitute the convex portions of the heat fusion heads 11 and 12, and the positive electrode lead terminal 5a, the negative electrode lead terminal 5b and the resin at the time of heat fusion of the pressure surfaces of the head main bodies 11a and 12a. In a region facing only the laminate films 3 and 4 where none of the films 8 is interposed, the film 8 is attached as a convex structure portion with respect to the pressure surfaces of the head main bodies 11a and 12a.

断熱材11b,12bは、板状の部材であり、ヘッド本体11a,12aよりも熱伝導率の低い材料で構成される。断熱材11b,12bとしては、セラミックや耐熱性樹脂などを用いることができる。また、ヘッド本体11a,12aがアルミニウムである場合には、断熱材11b,12bとして鉄やステンレスを用いることもできる。   The heat insulating materials 11b and 12b are plate-like members and are made of a material having a lower thermal conductivity than the head main bodies 11a and 12a. As the heat insulating materials 11b and 12b, ceramic, heat resistant resin, or the like can be used. Further, when the head main bodies 11a and 12a are made of aluminum, iron or stainless steel can be used as the heat insulating materials 11b and 12b.

正極リード端子5aおよび負極リード端子5bが介在する辺の熱融着に際しては、他の辺の熱融着の際の温度よりも高い温度で熱融着を行う。このため、ラミネートフィルム3,4が正極リード端子5aまたは負極リード端子5bを挟む領域においては、ヘッド本体11a,12aによる熱が正極リード端子5aおよび負極リード端子5bを伝わって逃げ、さらには樹脂フィルム8が介在していることによって溶融させるべき樹脂の層の厚みが厚くなる状況であっても、ラミネートフィルム3,4は樹脂フィルム8との熱融着に適した温度に加熱される。その結果、ラミネートフィルム3,4の熱融着性樹脂層3d,4dおよび樹脂フィルム8は、両者の熱融着に必要な程度に溶融される。   In the heat fusion of the side where the positive electrode lead terminal 5a and the negative electrode lead terminal 5b are interposed, the heat fusion is performed at a temperature higher than the temperature at the time of heat fusion of the other side. For this reason, in the region where the laminate films 3 and 4 sandwich the positive electrode lead terminal 5a or the negative electrode lead terminal 5b, heat from the head main bodies 11a and 12a is transmitted through the positive electrode lead terminal 5a and the negative electrode lead terminal 5b, and further, the resin film. Even in the situation where the thickness of the resin layer to be melted is increased due to the presence of 8, the laminate films 3 and 4 are heated to a temperature suitable for thermal fusion with the resin film 8. As a result, the heat-fusible resin layers 3d and 4d and the resin film 8 of the laminate films 3 and 4 are melted to the extent necessary for the heat-sealing of both.

一方、ラミネートフィルム3,4の間に正極リード端子5aまたは負極リード端子5bが存在しない領域においては、上述したような樹脂が溶融しにくくなる要因がないので、ヘッド本体11a,12aから与えられる熱はラミネートフィルム3,4にとって過剰なものとなる。しかし、この領域ではヘッド本体11a,12aとラミネートフィルム3,4との間に断熱材11b,12bが存在しており、正極リード端子5aまたは負極リード端子5bが介在している領域と比べて、ラミネートフィルム3,4の温度は低くなる。その結果、この領域においては、ラミネートフィルム3,4同士を熱融着するのに適した温度に加熱され、ラミネートフィルム3,4は、ラミネートフィルム3,4同士の熱融着に必要な程度に溶融される。   On the other hand, in the region where the positive electrode lead terminal 5a or the negative electrode lead terminal 5b does not exist between the laminate films 3 and 4, there is no factor that makes the resin difficult to melt as described above, so the heat applied from the head bodies 11a and 12a. Becomes excessive for the laminated films 3 and 4. However, in this region, the heat insulating materials 11b and 12b exist between the head main bodies 11a and 12a and the laminate films 3 and 4, and compared with the region where the positive electrode lead terminal 5a or the negative electrode lead terminal 5b is interposed, The temperature of the laminate films 3 and 4 is lowered. As a result, in this region, the laminate films 3 and 4 are heated to a temperature suitable for heat fusion, and the laminate films 3 and 4 are heated to the extent necessary for heat fusion between the laminate films 3 and 4. Melted.

以上のように、熱融着ヘッド11,12の一部を他の部分よりも熱伝導率の低い材料で構成し、熱融着する部分の層構造に応じて必要十分な熱量がラミネートフィルム3,4に与えられるようにすることで、熱融着ヘッド11,12により加熱される全ての領域において、熱融着性樹脂層3d,4dが過剰に加熱されることがなくなる。従って、正極リード端子5aおよび負極リード端子5bが介在する部分での熱融着を確実に行いつつ、熱融着性樹脂層3d,4dは必要以上に溶融せず、結果的に、電池要素6とラミネートフィルム3,4との接触部での電池要素6と金属薄膜層3e,4eとのショートを防止し、信頼性の高いフィルム外装電池1を製造することができる。   As described above, a part of the thermal fusion heads 11 and 12 is made of a material having a lower thermal conductivity than the other part, and a necessary and sufficient amount of heat is obtained depending on the layer structure of the thermal fusion part. , 4, the heat-fusible resin layers 3 d, 4 d are not excessively heated in all the regions heated by the heat-fusing heads 11, 12. Therefore, the heat-fusible resin layers 3d and 4d are not melted more than necessary while reliably performing the heat-sealing at the portion where the positive electrode lead terminal 5a and the negative electrode lead terminal 5b are interposed. As a result, the battery element 6 Thus, short circuit between the battery element 6 and the metal thin film layers 3e and 4e at the contact portion between the laminated film 3 and the laminated film 3 and 4 can be prevented, and the highly reliable film-clad battery 1 can be manufactured.

図4に、本発明の他の実施形態による、リード端子が介在する辺の熱融着時の、封止領域でのリード端子が介在する辺に沿った断面図を示す。図4において、フィルム外装電池は前述した実施形態と同様に構成されるので、図3と同じ構成については図3と同じ符号を付している。   FIG. 4 shows a cross-sectional view along the side where the lead terminal is interposed in the sealing region at the time of heat-sealing the side where the lead terminal is interposed, according to another embodiment of the present invention. In FIG. 4, since the film-clad battery is configured in the same manner as in the above-described embodiment, the same components as those in FIG.

図4に示す熱融着ヘッド21,22は、ヘッド本体21a,22aの加圧面自身が、熱融着時にラミネートフィルム3,4のみと対向する領域が凸部として形成されている。そして、この凸部の一部が断熱材21b,22bで置換されている。すなわち、ヘッド本体21a,22aの凸部には凹部が形成され、断熱材21b,22bは、この凹部に埋め込まれ表面を露出させた状態でヘッド本体21a,22aに保持されている。熱融着ヘッド21,22の凸部は、ラミネートフィルム3,4のみが存在する領域を加圧加熱するが、その一部は、断熱板21b,22bではなくヘッド本体21a,22aの一部がラミネートフィルム3,4を加圧加熱する。   In the heat fusion heads 21 and 22 shown in FIG. 4, regions where the pressure surfaces themselves of the head main bodies 21a and 22a face only the laminate films 3 and 4 at the time of heat fusion are formed as convex portions. And a part of this convex part is substituted by the heat insulating materials 21b and 22b. In other words, the convex portions of the head main bodies 21a and 22a are formed with concave portions, and the heat insulating materials 21b and 22b are held by the head main bodies 21a and 22a in a state of being embedded in the concave portions and exposing the surfaces. The convex portions of the heat fusion heads 21 and 22 pressurize and heat the area where only the laminate films 3 and 4 exist, but some of the head main bodies 21a and 22a are not heat insulating plates 21b and 22b. Laminate films 3 and 4 are heated under pressure.

例えば、ラミネートフィルム3,4同士が直接対向している部分と、ラミネートフィルム3,4の間に他の部材(樹脂フィルム8)が介在している部分との境界部では、ラミネートフィルム3,4を十分に加熱して溶融させないと、ラミネートフィルム3,4間に隙間が生じ、フィルム外装電池の内部と外部での気密性が損なわれるおそれがある。また、正極リード端子5aと負極リード端子5bとの間隔が大きく、ラミネートフィルム3,4同士が直接対向している部分の面積が大きい場合、断熱板21b,22bのみを介しての加熱では熱融着性樹脂層3d,4dを十分に溶融させることができないことがある。   For example, at the boundary between the part where the laminate films 3 and 4 directly face each other and the part where the other member (resin film 8) is interposed between the laminate films 3 and 4, the laminate films 3 and 4. If the film is not sufficiently heated and melted, a gap is formed between the laminate films 3 and 4, and the airtightness inside and outside the film-covered battery may be impaired. Further, when the interval between the positive electrode lead terminal 5a and the negative electrode lead terminal 5b is large and the area of the portion where the laminate films 3 and 4 are directly opposed to each other is large, the heat melting only by the heat insulating plates 21b and 22b. The adhesive resin layers 3d and 4d may not be sufficiently melted.

そこで、断熱板21b,22bを熱融着ヘッド21,22の凸部に埋め込む構造とすることで、凸部の加圧面の表面積に対する断熱板21b,22bの表面積の割合を適宜設定することができる。これにより、図3に示した熱融着ヘッド11,12と比較して、凸部からラミネートフィルム3,4により多くの熱を伝え、上述したような場合でもラミネートフィルム3,4同士が直接対向する部分を確実に熱融着することができる。   Therefore, the ratio of the surface area of the heat insulating plates 21b and 22b to the surface area of the pressing surface of the convex portions can be appropriately set by embedding the heat insulating plates 21b and 22b in the convex portions of the heat fusion heads 21 and 22. . As a result, compared with the heat fusion heads 11 and 12 shown in FIG. 3, more heat is transmitted from the convex portions to the laminate films 3 and 4, and even in the case described above, the laminate films 3 and 4 are directly opposed to each other. The part to be heat-sealed can be surely heat-sealed.

凸部の加圧面の表面積に対する断熱板21b,22bの表面積の割合、および凸部の加圧面での断熱板21b,22bの位置(分布)は、熱融着する対象物の構造や材料等に応じて任意に設定することができる。図4に示す熱融着ヘッド21,22では、ラミネートフィルム3,4同士が直接対向している部分と、ラミネートフィルム3,4の間に樹脂フィルム8が介在している部分との境界部で熱融着性樹脂層3d,4dを良好に溶融させるために、凸部の側部でヘッド本体21a,22aがラミネートフィルム3,4を加圧するように、断熱板21b,22bを配置している。   The ratio of the surface area of the heat insulating plates 21b and 22b to the surface area of the pressing surface of the convex part, and the position (distribution) of the heat insulating plates 21b and 22b on the pressing surface of the convex part depend on the structure or material of the object to be heat-sealed. It can be set arbitrarily depending on the situation. In the thermal fusion heads 21 and 22 shown in FIG. 4, at the boundary between the part where the laminate films 3 and 4 directly face each other and the part where the resin film 8 is interposed between the laminate films 3 and 4. In order to melt the heat-fusible resin layers 3d and 4d satisfactorily, the heat insulating plates 21b and 22b are arranged so that the head main bodies 21a and 22a press the laminate films 3 and 4 at the side portions of the convex portions. .

また、断熱板21b,22bをヘッド本体21a,22aに埋め込んで保持することで、断熱板21b,22bの位置ずれを防止することもできる。   Further, the thermal insulation plates 21b and 22b are embedded and held in the head main bodies 21a and 22a, so that the displacement of the thermal insulation plates 21b and 22b can be prevented.

以上、本発明について代表的な幾つかの例を挙げて説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内において適宜変更され得ることは明らかである。   The present invention has been described above with some typical examples. However, the present invention is not limited to these examples, and it is obvious that the present invention can be appropriately modified within the scope of the technical idea of the present invention. .

例えば、上述した例では2枚のラミネートフィルムで電池要素をその厚み方向両側から挟んで周囲の4辺を熱融着したものを示したが、その他にも、1枚のラミネートフィルムを2つ折りにして電池要素を挟み、開放している3辺を熱融着することによって電池要素を封止してもよい。   For example, in the above-mentioned example, the battery element is sandwiched from both sides in the thickness direction by two laminated films and the surrounding four sides are heat-sealed. In addition, one laminated film is folded in two. The battery element may be sealed by sandwiching the battery element and thermally fusing the three open sides.

また、電池要素としては、正極、負極および電解質を含むものであれば、通常の電池に用いられる任意の電池要素が適用可能である。一般的なリチウムイオン二次電池における電池要素は、リチウム・マンガン複合酸化物、コバルト酸リチウム等の正極活物質をアルミニウム箔などの両面に塗布した正極板と、リチウムをドープ・脱ドープ可能な炭素材料を銅箔などの両面に塗布した負極板とを、セパレータを介して対向させ、それにリチウム塩を含む電解液を含浸させて形成される。またこの他に、ニッケル水素電池、ニッケルカドミウム電池、リチウムメタル一次電池あるいは二次電池、リチウムポリマー電池等、他の種類の化学電池の電池要素、さらにはキャパシタ要素等にも本発明は適用可能である。   Moreover, as a battery element, if the positive electrode, the negative electrode, and electrolyte are included, the arbitrary battery elements used for a normal battery are applicable. Battery elements in a typical lithium ion secondary battery include a positive electrode plate in which a positive electrode active material such as lithium-manganese composite oxide and lithium cobaltate is applied on both sides of an aluminum foil, etc., and carbon that can be doped / undoped with lithium. A negative electrode plate coated with a material on both sides of a copper foil or the like is opposed to each other with a separator interposed between them and impregnated with an electrolytic solution containing a lithium salt. In addition, the present invention is applicable to battery elements of other types of chemical batteries such as nickel metal hydride batteries, nickel cadmium batteries, lithium metal primary batteries or secondary batteries, lithium polymer batteries, and capacitor elements. is there.

電池要素の構造についても、上述した例では複数の正極板および負極板を交互に積層した積層型を示したが、正極板、負極板およびセパレータを帯状に形成し、セパレータを挟んで正極板および負極板を重ね合わせ、これを捲回した後、扁平状に圧縮することによって、正極と負極を交互に配置させた捲回型の電池要素であってもよい。   Regarding the structure of the battery element, in the above-described example, a laminated type in which a plurality of positive plates and negative plates are alternately laminated was shown. However, the positive plate, the negative plate, and the separator are formed in a strip shape, and the positive plate and A wound battery element in which the positive electrode and the negative electrode are alternately arranged by stacking the negative electrode plates, winding them, and then compressing them in a flat shape may be used.

さらに、上述した例では正極リード端子5aおよび負極リード端子5bにそれぞれ樹脂フィルム8を予め溶着した例を示したが、熱融着性樹脂層3d,4dを金属との密着性に優れる材料で構成すれば、樹脂フィルム8を介さず正極リード端子5aおよび負極リード端子5bをラミネートフィルム3,4で直接挟み込む構造とすることもでき、この場合でも本発明は適用可能である。また、正極リード端子5aと負極リード端子5bをフィルム外装電池1の同じ辺から延出させたフィルム外装電池1に本発明を適用した例を示したが、これらリード端子がそれぞれ異なる辺、例えば互いに対向する辺から延出させたフィルム外装電池にも本発明は適用可能である。   Further, in the above-described example, the resin film 8 is preliminarily welded to the positive electrode lead terminal 5a and the negative electrode lead terminal 5b. However, the heat-fusible resin layers 3d and 4d are made of a material having excellent adhesion to metal. In this case, the positive electrode lead terminal 5a and the negative electrode lead terminal 5b may be directly sandwiched between the laminate films 3 and 4 without using the resin film 8, and the present invention is applicable even in this case. Moreover, although the example which applied this invention to the film-clad battery 1 which extended the positive electrode lead terminal 5a and the negative electrode lead terminal 5b from the same edge | side of the film-clad battery 1 was shown, these lead terminals are respectively different sides, for example, mutually The present invention can also be applied to a film-clad battery extended from opposite sides.

本発明の一実施形態によるフィルム外装電池の分解斜視図である。It is a disassembled perspective view of the film-clad battery by one Embodiment of this invention. 図1に示すフィルム外装電池の、封止領域近傍での断面図である。It is sectional drawing in the sealing region vicinity of the film-clad battery shown in FIG. 図1に示すフィルム外装電池のリード端子が介在する辺の熱融着時の、封止領域でのリード端子が介在する辺に沿った断面図である。It is sectional drawing along the edge | side where the lead terminal in a sealing area | region at the time of the heat sealing | fusion of the edge | side where the lead terminal of the film-clad battery shown in FIG. 本発明の他の実施形態による、リード端子が介在する辺の熱融着時の、封止領域でのリード端子が介在する辺に沿った断面図である。It is sectional drawing along the edge | side where the lead terminal in a sealing area | region at the time of the heat sealing | fusion of the edge | side where a lead terminal interposes by other embodiment of this invention. 従来のフィルム外装電池の分解斜視図である。It is a disassembled perspective view of the conventional film-clad battery. 図5に示すフィルム外装電池における熱融着時のラミネートフィルムの封止領域近傍での断面図である。It is sectional drawing in the sealing region vicinity of the laminate film at the time of the heat sealing | fusion in the film-clad battery shown in FIG.

符号の説明Explanation of symbols

1 フィルム外装電池
3,4 ラミネートフィルム
3a,4a 封止領域
3d,4d 熱融着性樹脂層
3e,4e 金属薄膜層
3f,4f 保護層
5a 正極リード端子
5b 負極リード端子
6 電池要素
7a 正極集電部
7b 負極集電部
11,12,21,22 熱融着ヘッド
11a,12a,21a,22a ヘッド本体
11b,12b,21b,22b 断熱材
DESCRIPTION OF SYMBOLS 1 Film-clad battery 3, 4 Laminate film 3a, 4a Sealing area 3d, 4d Heat-fusion resin layer 3e, 4e Metal thin film layer 3f, 4f Protective layer 5a Positive electrode lead terminal 5b Negative electrode lead terminal 6 Battery element 7a Positive electrode current collection Part 7b Negative electrode current collector part 11, 12, 21, 22 Heat fusion head 11a, 12a, 21a, 22a Head body 11b, 12b, 21b, 22b

Claims (7)

少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムを用い、正極および負極のリード端子が接続された電池要素を、前記リード端子を前記ラミネートフィルムの少なくとも1辺から延出させて封止する際の、前記リード端子が延出する辺での前記ラミネートフィルムの熱融着方法であって、
前記ラミネートフィルムを加圧および加熱するためのヘッド本体、および該ヘッド本体の前記ラミネートフィルムを加圧する面の、熱融着時に前記ラミネートフィルムのみと対向する領域の少なくとも一部のみに取り付けられた前記ヘッド本体よりも熱伝導率の低い材料からなる部材を有する熱融着ヘッドを用意する工程と、
前記熱融着性樹脂層を内側にして、前記ラミネートフィルムで前記電池要素を前記リード端子が少なくとも1辺から延出した状態で包囲し、前記ラミネートフィルムの周縁部において前記熱融着性樹脂層同士を向き合わせる工程と、
前記リード端子が延出した辺での前記ラミネートフィルムの周縁部を、前記熱融着ヘッドで加圧しつつ加熱する工程とを有することを特徴とするラミネートフィルムの熱融着方法。
Using a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated, a battery element having positive and negative lead terminals connected thereto is extended from at least one side of the laminate film. A method of heat-sealing the laminate film on the side where the lead terminal extends,
Head body for pressurizing and heating the laminate film, and the laminate film pressed surface of the head main body, attached only to at least a portion of the realm of the facing only laminated film during thermal fusion Preparing a heat fusion head having a member made of a material having a lower thermal conductivity than the head body;
The battery element is surrounded by the laminate film with the lead terminals extending from at least one side with the heat-fusible resin layer inside, and the heat-fusible resin layer at the periphery of the laminate film The process of facing each other,
And a step of heating the peripheral edge of the laminate film at the side where the lead terminal extends, while applying pressure with the heat fusion head.
正極および負極のリード端子が接続された電池要素を、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで、前記リード端子を前記ラミネートフィルムの少なくとも1辺から延出させた状態で封止したフィルム外装電池の製造方法であって、
前記電池要素を作製する工程と、
前記電池要素を前記ラミネートフィルムで封止する工程とを有し、
前記電池要素を封止する工程は、請求項に記載の熱融着方法によって前記ラミネートフィルムの前記リード端子が延出する辺を熱溶着することを含むフィルム外装電池の製造方法。
The battery element to which the positive and negative lead terminals are connected is a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated, and the lead terminal is extended from at least one side of the laminate film. A method for producing a film-clad battery sealed in a state,
Producing the battery element;
Sealing the battery element with the laminate film,
The step of sealing the battery element is a method for manufacturing a film-clad battery, which includes thermally welding the side of the laminate film where the lead terminals extend by the heat fusion method according to claim 1 .
前記電池要素は、化学電池要素またはキャパシタ要素である請求項に記載のフィルム外装電池の製造方法。 The method for manufacturing a film-clad battery according to claim 2 , wherein the battery element is a chemical battery element or a capacitor element. 正極および負極のリード端子が接続された電池要素が、少なくとも熱融着性樹脂層と金属薄膜層とが積層されたラミネートフィルムで前記リード端子を前記ラミネートフィルムの少なくとも1辺から延出させた状態で封止されたフィルム外装電池の、前記ラミネートフィルムの前記リード端子が延出した辺を熱溶着するためのラミネートフィルム用熱融着装置であって、
前記ラミネートフィルムを加圧しつつ加熱するための一対の熱融着ヘッドを備え、
前記熱融着ヘッドは、前記ラミネートフィルムを加圧および加熱するためのヘッド本体と、該ヘッド本体の前記ラミネートフィルムを加圧する面の、熱融着時に前記ラミネートフィルムのみと対向する領域の少なくとも一部のみに取り付けられた前記ヘッド本体よりも熱伝導率の低い材料からなる部材とを有することを特徴とするラミネートフィルム用熱融着装置。
The battery element to which the positive and negative lead terminals are connected is a laminate film in which at least a heat-fusible resin layer and a metal thin film layer are laminated, and the lead terminal extends from at least one side of the laminate film. A heat-sealing device for a laminate film for heat-welding the side of the laminate film where the lead terminals of the film-coated battery are sealed,
A pair of heat fusion heads for heating the laminate film while applying pressure;
The heat-fusible head comprises a head main body for pressing and heating the laminated film, the laminated film pressurizing surface of the head body, at least the realm opposed only to the laminate film at heat sealing And a member made of a material having a lower thermal conductivity than that of the head main body, which is attached only to a part thereof.
前記ヘッド本体の前記ラミネートフィルムを加圧する加圧面は平坦な面であり、前記ヘッド本体よりも熱伝導率の低い材料からなる部材は、前記ヘッド本体の加圧面の、熱融着時に前記ラミネートフィルムのみと対向する領域のみに、前記加圧面に対する凸状の構造部分として取り付けられている請求項に記載のラミネートフィルム用熱融着装置。 The pressing surface for pressing the laminate film of the head body is a flat surface, and the member made of a material having a lower thermal conductivity than the head body is the laminate film at the time of thermal fusion of the pressing surface of the head body. The heat sealing apparatus for laminate films according to claim 4 , wherein the apparatus is attached as a convex structure portion with respect to the pressure surface only in a region facing only the film. 前記ヘッド本体の前記ラミネートフィルムを加圧する加圧面は、熱融着時に前記ラミネートフィルムのみと対向する領域が凸部として形成されており、前記凸部の一部が前記ヘッド本体よりも熱伝導率の低い材料からなる部材で置換されている請求項またはに記載のラミネートフィルム用熱融着装置。 The pressure surface for pressing the laminate film of the head main body is formed as a convex portion in a region facing only the laminate film at the time of heat fusion, and a part of the convex portion has a thermal conductivity higher than that of the head main body. The heat sealing apparatus for laminate film according to claim 4 or 5 , wherein the heat sealing apparatus is replaced with a member made of a low-quality material . 前記ヘッド本体よりも熱伝導率の低い材料からなる部材は、前記ヘッド本体の前記凸部に表面を露出させて埋め込まれている請求項に記載のラミネートフィルム用熱融着装置。 The heat sealing apparatus for laminate film according to claim 6 , wherein the member made of a material having a lower thermal conductivity than the head body is embedded with the surface exposed to the convex portion of the head body.
JP2003345990A 2003-10-03 2003-10-03 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE Expired - Lifetime JP4666131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345990A JP4666131B2 (en) 2003-10-03 2003-10-03 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345990A JP4666131B2 (en) 2003-10-03 2003-10-03 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE

Publications (2)

Publication Number Publication Date
JP2005116228A JP2005116228A (en) 2005-04-28
JP4666131B2 true JP4666131B2 (en) 2011-04-06

Family

ID=34539093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345990A Expired - Lifetime JP4666131B2 (en) 2003-10-03 2003-10-03 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE

Country Status (1)

Country Link
JP (1) JP4666131B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510410B2 (en) 2011-08-02 2014-06-04 株式会社Gsユアサ battery
WO2014178238A1 (en) * 2013-05-01 2014-11-06 日産自動車株式会社 Laminate-type secondary battery manufacturing device and manufacturing method
WO2014188774A1 (en) * 2013-05-23 2014-11-27 日産自動車株式会社 Laminated-type secondary battery manufacturing method and manufacturing device
JP6413254B2 (en) * 2014-02-13 2018-10-31 日産自動車株式会社 Method for manufacturing electrode for secondary battery
KR101811482B1 (en) * 2014-03-03 2017-12-21 주식회사 엘지화학 Sealing Apparatus Having Insulator
JP6804382B2 (en) * 2017-05-16 2020-12-23 Ckd株式会社 Sealing device
KR102549539B1 (en) * 2019-03-28 2023-06-29 주식회사 엘지에너지솔루션 Sealing apparatus and method for secondary battery
JP7333000B2 (en) * 2019-11-18 2023-08-24 トヨタ自動車株式会社 Battery manufacturing method
KR20210103282A (en) * 2020-02-13 2021-08-23 주식회사 엘지에너지솔루션 Pressing device and pressing method for secondary battery
JP7232803B2 (en) * 2020-10-29 2023-03-03 プライムプラネットエナジー&ソリューションズ株式会社 Storage cell and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188161A (en) * 1986-02-13 1987-08-17 Matsushita Electric Ind Co Ltd Manufacture of sealed lead-acid battery
WO2000026976A1 (en) * 1998-10-30 2000-05-11 Sony Corporation Non-aqueous electrolytic cell and production method therefor
JP2001006633A (en) * 1999-06-24 2001-01-12 Nec Corp Manufacture of battery
JP2001126678A (en) * 1999-10-28 2001-05-11 Hitachi Maxell Ltd Laminate polymer electrolyte battery
JP2001229890A (en) * 2000-02-16 2001-08-24 Dainippon Printing Co Ltd Seal head for packaging polymer battery and sealing method thereof
JP2004253158A (en) * 2003-02-18 2004-09-09 Ngk Spark Plug Co Ltd Plate type battery and manufacturing method of the same, and heater for manufacturing battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188161A (en) * 1986-02-13 1987-08-17 Matsushita Electric Ind Co Ltd Manufacture of sealed lead-acid battery
WO2000026976A1 (en) * 1998-10-30 2000-05-11 Sony Corporation Non-aqueous electrolytic cell and production method therefor
JP2001006633A (en) * 1999-06-24 2001-01-12 Nec Corp Manufacture of battery
JP2001126678A (en) * 1999-10-28 2001-05-11 Hitachi Maxell Ltd Laminate polymer electrolyte battery
JP2001229890A (en) * 2000-02-16 2001-08-24 Dainippon Printing Co Ltd Seal head for packaging polymer battery and sealing method thereof
JP2004253158A (en) * 2003-02-18 2004-09-09 Ngk Spark Plug Co Ltd Plate type battery and manufacturing method of the same, and heater for manufacturing battery

Also Published As

Publication number Publication date
JP2005116228A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
KR100708023B1 (en) Film-packaged electric device and its manufacturing method
KR101271878B1 (en) Secondary Battery of Improved Sealability
KR100705101B1 (en) Film-covered electric device having pressure release opening
JP4485614B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP5108228B2 (en) Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them
JP4775555B2 (en) Film-clad battery and manufacturing method thereof
KR101216423B1 (en) Process of Improved Productivity for Preparation of Secondary Battery
TW201218483A (en) Sheet-type secondary battery and method of manufacturing same
JP2009224147A (en) Film-coated electric device and battery pack
WO2020203101A1 (en) Power storage module
WO2006095579A1 (en) Multilayer electrode, electric device employing the multilayer electrode, and method for producing them
US10193180B2 (en) Method for manufacturing laminated electrical storage device
JP4666131B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP4636223B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP2006164784A (en) Film-armored electric device
JP2019057473A (en) Electrochemical cell
JP5527717B2 (en) Electrical component, non-aqueous electrolyte battery, lead conductor with insulating coating layer and enclosure used for them
KR101546002B1 (en) electrochemical energy storage device
JP4812173B2 (en) Battery sealing structure, battery and manufacturing method thereof
JP2002190283A (en) Manufacturing method of thin secondary battery and thin secondary battery
JP2005259391A (en) Manufacturing device of film-armored battery, and manufacturing method of film-armored battery
JP3601583B2 (en) Laminated film encapsulated battery and manufacturing method thereof
JP2003086172A (en) Secondary battery and its method of manufacture
JP2017228381A (en) Battery and manufacturing method of battery
JP2016197491A (en) Jacket material for battery and battery using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term