JP6413254B2 - Method for manufacturing electrode for secondary battery - Google Patents

Method for manufacturing electrode for secondary battery Download PDF

Info

Publication number
JP6413254B2
JP6413254B2 JP2014024976A JP2014024976A JP6413254B2 JP 6413254 B2 JP6413254 B2 JP 6413254B2 JP 2014024976 A JP2014024976 A JP 2014024976A JP 2014024976 A JP2014024976 A JP 2014024976A JP 6413254 B2 JP6413254 B2 JP 6413254B2
Authority
JP
Japan
Prior art keywords
active material
insulating tape
impulse
current collector
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014024976A
Other languages
Japanese (ja)
Other versions
JP2015153539A (en
Inventor
杉山 雅彦
雅彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014024976A priority Critical patent/JP6413254B2/en
Publication of JP2015153539A publication Critical patent/JP2015153539A/en
Application granted granted Critical
Publication of JP6413254B2 publication Critical patent/JP6413254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池に代表されるような二次電池の正極または負極として用いられる電極の製造方法に関する。   The present invention relates to a method for producing an electrode used as a positive electrode or a negative electrode of a secondary battery represented by a lithium ion secondary battery.

例えばラミネートフィルム外装体を使用した薄型リチウムイオン二次電池として、正極電極と負極電極をセパレータとともに複数組積層した電極積層体をラミネートフィルム外装体の内部に格納したものが知られている。そして、正極電極および負極電極は共にアルミニウムその他の金属箔からなる集電体であって、リード部となる活物質未塗布部(集電体露出部)を残して、正極電極については集電体上に正極活物質を塗布することで正極活物質層が、負極電極については集電体上に負極活物質を塗布することで負極活物質層がそれぞれ形成されている。   For example, as a thin lithium ion secondary battery using a laminate film outer package, an electrode laminate in which a plurality of sets of positive electrodes and negative electrodes are laminated together with a separator is stored inside the laminate film outer package. Both of the positive electrode and the negative electrode are current collectors made of aluminum or other metal foil, and the current collector is not applied to the active material (current collector exposed portion) to be a lead portion. A positive electrode active material layer is formed by applying a positive electrode active material thereon, and a negative electrode active material layer is formed by applying a negative electrode active material on a current collector for the negative electrode.

この場合において、ラミネートフィルム外装体を使用した薄型二次電池ではないものの、例えば特許文献1には、二次電池用電極の活物質未塗布部(集電体露出部)と活物質層とに跨って、短絡防止を目的とした絶縁テープを貼り付けるようにした技術が記載されている。   In this case, although it is not a thin secondary battery using a laminate film outer package, for example, in Patent Document 1, an active material uncoated portion (current collector exposed portion) and an active material layer of an electrode for a secondary battery are disclosed. A technique is described in which an insulating tape for the purpose of preventing a short circuit is applied across the board.

特開2006−019199号公報JP 2006-0119199 A

しかしながら、特許文献1に代表されるような従来の技術では、絶縁テープとして熱溶着性のものが使用されていて、電極の所定位置に絶縁テープを配置した状態で、いわゆる熱プレス法にて熱圧着させることにより活物質未塗布部(集電体露出部)と活物質層とに跨るかたちで貼り付けるようにしているため、活物質未塗布部(集電体露出部)および活物質層共に均一な接着強度で確実に貼り付けることが困難であった。   However, in the conventional technique represented by Patent Document 1, a heat-welding tape is used as the insulating tape, and the heat is applied by a so-called hot press method with the insulating tape disposed at a predetermined position of the electrode. Since the active material is not applied to the active material uncoated part (current collector exposed part) and the active material layer, the active material uncoated part (current collector exposed part) and the active material layer are both bonded. It was difficult to reliably apply with uniform adhesive strength.

特に活物質未塗布部では集電体や絶縁テープに過熱によるダメージを与えてしまうおそれがあり、例えば貼り付け後の絶縁テープにいわゆる「熱しわ」が発生し、それによってテープ貼り付け部の品質低下が危惧される。   In particular, the active material uncoated part may damage the current collector or insulating tape due to overheating, for example, so-called "thermal wrinkles" occur on the insulating tape after application, which causes the quality of the tape application part. The decline is feared.

本発明はこのような課題に着目してなされたものであり、電極の活物質塗布領域と活物質未塗布領域との境界部に両者に跨るかたちで貼り付けられる絶縁テープについて、電極の活物質塗布領域であるか活物質未塗布領域であるかにかかわらず均一な接着強度で貼り付けることができるようにした二次電池用電極の製造方法を提供するものである。   The present invention has been made paying attention to such a problem, and for an insulating tape that is attached to a boundary portion between an active material application region and an active material non-application region of an electrode, The present invention provides a method for producing an electrode for a secondary battery that can be applied with a uniform adhesive strength regardless of whether it is a coated region or an active material uncoated region.

本発明は、集電体の表面に活物質を塗布した活物質塗布領域と活物質を塗布していない活物質未塗布領域とが形成されていて、それらの活物質塗布領域と活物質未塗布領域との境界部が両者に跨る絶縁テープにて被覆されている二次電池用電極の製造方法である。   In the present invention, an active material application region in which an active material is applied to a surface of a current collector and an active material non-application region in which no active material is applied are formed. It is a manufacturing method of the electrode for secondary batteries by which the boundary part with an area | region is coat | covered with the insulating tape which straddles both.

そして、上記集電体の表面の活物質塗布領域と活物質未塗布領域との境界部に両者に跨るかたちで熱溶着性の絶縁テープを配置し、上記集電体に対し絶縁テープを加熱型にて押圧することにより当該絶縁テープを熱溶着にて集電体に貼り付けるものとする。   Then, a heat-welding insulating tape is disposed across the boundary between the active material application area and the active material non-application area on the surface of the current collector, and the insulating tape is heated to the current collector. The insulating tape is attached to the current collector by heat welding.

その上で、上記加熱型は、型本体の表層部のうち活物質塗布領域に対応して設けられた第1のインパルスヒータと、活物質未塗布領域に対応して設けられた第2のインパルスヒータと、を備えていて上記第1,第2のインパルスヒータは個別に電流が供給されることで発熱する電流制御型のヒータとなっている。そして、上記第2のインパルスヒータに供給される電流を第1のインパルスヒータに供給される電流よりも小さくすることで、加熱型のうち活物質未塗布領域に対応する部分の温度を活物質塗布領域に対応する部分の温度よりも低くすることを特徴とする。 In addition, the heating die includes a first impulse heater provided corresponding to the active material application region in the surface layer portion of the die body, and a second impulse provided corresponding to the active material non-application region. comprise a heater, a, the first, second impulse heater has a current-controlled heater that generates heat by being supplied with current individually. Then, the current supplied to the second impulse heater is made smaller than the current supplied to the first impulse heater, so that the temperature of the portion corresponding to the active material non-application region in the heating type is applied to the active material. The temperature is lower than the temperature of the portion corresponding to the region.

本発明によれば、活物質塗布領域と活物質未塗布領域との両者に跨るかたちで絶縁テープが貼り付けられることになるが、活物質が塗布されていることによって大きな熱容量を有している活物質塗布領域では加熱型により投与される熱温度が相対的に高く、逆に活物質が塗布されていないために熱容量が小さな活物質未塗布領域では加熱型により投与される熱温度が相対的に低いため、活物質塗布領域であるか活物質未塗布領域であるかにかかわらず、均一な接着強度をもって確実に絶縁テープを貼り付けることができるほか、特に活物質未塗布領域では集電体や絶縁テープへの過熱によるダメージを回避することができる。   According to the present invention, the insulating tape is applied so as to straddle both the active material application region and the active material non-application region, but has a large heat capacity due to the application of the active material. In the active material application area, the heat temperature applied by the heating mold is relatively high. Conversely, since the active material is not applied, the heat temperature applied by the heating mold is relatively low in the active material uncoated area where the heat capacity is small. Therefore, it is possible to reliably apply an insulating tape with uniform adhesive strength regardless of whether it is an active material application region or an active material non-application region. And damage to the insulating tape due to overheating can be avoided.

本発明に係る電極の製造方法の第1の実施の形態を示す図で、絶縁テープ貼り付け工程の概略説明図。The figure which shows 1st Embodiment of the manufacturing method of the electrode which concerns on this invention, and is schematic explanatory drawing of an insulating tape sticking process. 図1の長手方向に沿った断面説明図。Cross-sectional explanatory drawing along the longitudinal direction of FIG. 図1,2の電極シートから切り出される電極の平面説明図。Plane explanatory drawing of the electrode cut out from the electrode sheet of FIGS. 本発明に係る電極の製造方法の第2の実施の形態を示す図で、図2と同等部位の断面説明図。FIG. 5 is a view showing a second embodiment of the electrode manufacturing method according to the present invention, and is a cross-sectional explanatory view of the same portion as FIG. 2. 本発明に係る電極の製造方法の第3の実施の形態を示す図で、図2と同等部位の断面説明図。FIG. 9 is a diagram showing a third embodiment of an electrode manufacturing method according to the present invention, and is a cross-sectional explanatory view of the same portion as FIG. 2.

図1,2は本発明に係る二次電池用電極の製造方法を実施するためのより具体的な第1の形態を示していて、図1は絶縁テープの貼り付け工程の概略を、図2は図1の長手方向に沿った断面図をそれぞれ示している。   1 and 2 show a more specific first embodiment for carrying out the method for manufacturing an electrode for a secondary battery according to the present invention. FIG. FIG. 1 shows a cross-sectional view along the longitudinal direction of FIG.

図1,2に示すように、電極シート1は長尺な箔状の集電体2の表裏両面に活物質層3a,3bが長手方向に沿って間歇的に定着形成されているものであり、図示しない巻き取りロールから繰り出されるようにして矢印方向aから貼り付け工程Sに順次供給される。図1,2の例では、電極1の母体となる集電体2の表裏両面に活物質層3a,3bが間歇的に形成されている故に、長手方向では活物質塗布領域としての活物質層3a,3bと活物質が塗布されていない活物質未塗布領域4とが交互に位置していることになる。なお、活物質未塗布領域4は活物質が塗布されていない故に母体となる集電体2がそのまま外部に露出している集電体露出部とみなすことができる。   As shown in FIGS. 1 and 2, the electrode sheet 1 is formed by intermittently fixing active material layers 3 a and 3 b along the longitudinal direction on both front and back surfaces of a long foil-like current collector 2. Then, the sheet is sequentially supplied to the attaching step S from the arrow direction a so as to be fed out from a winding roll (not shown). In the example of FIGS. 1 and 2, the active material layers 3 a and 3 b are intermittently formed on the front and back surfaces of the current collector 2 that is the base of the electrode 1, so that the active material layer as an active material application region in the longitudinal direction. 3a, 3b and the active material non-application area | region 4 in which the active material is not apply | coated are located alternately. Note that the active material non-applied region 4 can be regarded as a current collector exposed portion where the base current collector 2 is exposed to the outside as it is because no active material is applied.

ここで、図1,2の貼り付け工程Sでは、電極シート1の表面側において、活物質層3aとそれに隣接する活物質未塗布領域4との境界部を両者に跨る絶縁テープ5にて被覆するべく、熱溶着性のある所定幅の絶縁テープ5を熱溶着にて所定の接着強度で貼り付けることを目的としている。そのために、後述するように電極シート1が所定位置にて位置決めされると、活物質層3aとそれに隣接する活物質未塗布領域4との境界部にそれら両者に跨るかたちで所定幅の絶縁テープ5が電極シート1の全幅にわたり配置される。   1 and 2, on the surface side of the electrode sheet 1, the boundary between the active material layer 3 a and the active material uncoated region 4 adjacent to the active material layer 3 a is covered with the insulating tape 5 across the both. In order to do so, an object is to stick the insulating tape 5 having a predetermined width having heat welding property with a predetermined adhesive strength by heat welding. Therefore, when the electrode sheet 1 is positioned at a predetermined position as will be described later, an insulating tape having a predetermined width is formed at the boundary between the active material layer 3a and the active material uncoated region 4 adjacent thereto. 5 is arranged over the entire width of the electrode sheet 1.

なお、ここでは、以下において電極シート1の長手方向(図1及び図2における矢印a方向に沿う方向)を電極シートの長手方向、この長手方向に直交する方向を電極幅方向とそれぞれ定義する。   Here, hereinafter, the longitudinal direction of the electrode sheet 1 (the direction along the direction of arrow a in FIGS. 1 and 2) is defined as the longitudinal direction of the electrode sheet, and the direction orthogonal to the longitudinal direction is defined as the electrode width direction.

また、電極シート1は図3のような個々の電極1Aに裁断される前の幅広で且つ長尺な電極母材とも言うべきもので、電極シート1は、図1,2の貼り付け工程Sを経た後に、表面側の活物質層3aと絶縁テープ5および活物質未塗布領域4の三つの領域が直列に並んだものを所定サイズの一枚の電極として裁断された上で、例えばさらなる細切断工程を経て図3のような電極1Aとして仕上げられる。この場合、集電体露出部でもある活物質未塗布領域4は、いわゆるタブまたはリード部として図示しない別の端子(他の電極シートの集電体、あるいは電池外部に導出される電極端子)との接続部として機能することになる。   The electrode sheet 1 should also be referred to as a wide and long electrode base material before being cut into individual electrodes 1A as shown in FIG. After passing through the above, the active material layer 3a on the surface side, the insulating tape 5 and the active material non-applied region 4 are arranged in series and cut into one electrode of a predetermined size. The electrode 1A as shown in FIG. 3 is finished through the cutting process. In this case, the active material uncoated region 4 that is also the current collector exposed portion is a so-called tab or lead portion and another terminal (not shown) (current collector of another electrode sheet or electrode terminal led out of the battery). It will function as a connection part.

図1,2の貼り付け工程Sには、電極シート1をはさんで絶縁テープ5と同等幅寸法の上部加熱型6と下部加熱型7とを上下方向で対向配置してある。双方の加熱型6,7は、型本体6a,7aのうち電極シート1と対向する表層部側に発熱体であるヒータとして二つ一組のインパルスヒータ8,9、すなわち第1のインパルスヒータ8と第2のインパルスヒータ9とを並べて配置してある。これらの二つ一組のインパルスヒータ8,9はその全幅をもって絶縁テープ5の全幅をカバーし得るように設定してある。   1 and 2, an upper heating die 6 and a lower heating die 7 having the same width as the insulating tape 5 are disposed opposite to each other across the electrode sheet 1 in the vertical direction. Both heating dies 6 and 7 have two sets of impulse heaters 8 and 9 as heaters that are heating elements on the surface layer side facing the electrode sheet 1 of the die bodies 6 a and 7 a, that is, the first impulse heater 8. And the second impulse heater 9 are arranged side by side. These two sets of impulse heaters 8 and 9 are set so as to cover the entire width of the insulating tape 5 with the entire width.

同時に、それらの二つ一組のインパルスヒータ8,9のうち第1のインパルスヒータ8は電極シート1の活物質層3a,3bに対応していて、もう一方の第2のインパルスヒータ9は活物質層3a,3bに隣接する活物質未塗布領域4に対応している。そして、第2のインパルスヒータ9の発熱温度が第1のインパルスヒータ8の発熱温度よりも低くなるように予め設定してある。   At the same time, the first impulse heater 8 of the two sets of impulse heaters 8 and 9 corresponds to the active material layers 3a and 3b of the electrode sheet 1, and the other second impulse heater 9 is activated. This corresponds to the active material uncoated region 4 adjacent to the material layers 3a and 3b. The heat generation temperature of the second impulse heater 9 is set in advance so as to be lower than the heat generation temperature of the first impulse heater 8.

これは、熱溶着性のある均一厚みの絶縁テープ5を電極シート1の活物質層3aとそれに隣接する活物質未塗布領域4との双方に跨るように貼り付けることを前提とした場合に、活物質層3aではその活物質層3aの厚み分だけ熱容量が大きく母体である集電体2側に熱が逃げ易いという特性がある一方で、活物質未塗布領域4では活物質が塗布されておらず集電体2そのものが露出しているために熱容量が小さくその集電体2側に熱が逃げ難いという特性に基づいている。   This is based on the premise that the insulating tape 5 having a uniform thickness with heat-welding property is applied so as to straddle both the active material layer 3a of the electrode sheet 1 and the active material uncoated region 4 adjacent thereto. The active material layer 3a has a characteristic that the heat capacity is large by the thickness of the active material layer 3a and heat is easily escaped to the current collector 2 side, which is the base material, while the active material is not applied in the active material uncoated region 4. Since the current collector 2 itself is exposed, the heat capacity is small, and this is based on the characteristic that heat does not easily escape to the current collector 2 side.

ここで、第1,第2のインパルスヒータ8,9はリボン状のものであると同時に、瞬間的に低電圧・高電流を流して発熱させる方式のもので、きわめて短時間のうちに所定温度まで昇温できる利点がある。そして、第1,第2のインパルスヒータ8,9は、それぞれに独立して通電電圧および電流を制御することで発熱温度を任意に調整することが可能である。先の第1,第2のインパルスヒータ8,9の例では、第2のインパルスヒータ9への通電電流を第1のインパルスヒータ8のそれよりも予め小さく設定してある。   Here, the first and second impulse heaters 8 and 9 are ribbon-shaped, and at the same time, generate a heat by flowing a low voltage and high current instantaneously. There is an advantage that the temperature can be increased up to. The first and second impulse heaters 8 and 9 can arbitrarily adjust the heat generation temperature by controlling the energization voltage and current independently of each other. In the example of the first and second impulse heaters 8 and 9, the energization current to the second impulse heater 9 is set in advance smaller than that of the first impulse heater 8.

なお、図1,2では、活物質層3a,3bおよび絶縁テープ5の厚み寸法のほか、第1,第2のインパルスヒータ8,9の厚み寸法を誇張して描いてある。   1 and 2, the thickness dimensions of the first and second impulse heaters 8 and 9 are exaggerated in addition to the thickness dimensions of the active material layers 3a and 3b and the insulating tape 5.

したがって、図1,2に示した貼り付け工程Sでは、双方の加熱型6,7同士が離間している状態で、それら両者の間に位置している電極シート1が矢印a方向に所定量ピッチずつ間歇的に送られることから、電極シート1が1ピッチ分だけ送られると、双方の加熱型6,7同士の間には活物質塗布層3a,3bとそれに隣接する活物質未塗布領域4との境界部が位置決めされる。そして、この位置決めを待って、図示しないテープ供給手段により表面側の活物質層3aと活物質未塗布領域4との境界部にそれら両者に跨るようにして、電極シート1の全幅にわたって絶縁テープ5が供給される。熱溶着性の絶縁テープとしては例えばポリプロピレン製のものが使用される。   Accordingly, in the attaching step S shown in FIGS. 1 and 2, the electrode sheets 1 positioned between the two heating dies 6 and 7 are separated from each other by a predetermined amount in the direction of the arrow a. When the electrode sheet 1 is fed by one pitch intermittently, the active material coating layers 3a and 3b and the active material uncoated region adjacent to the heating dies 6 and 7 are disposed between the heating dies 6 and 7 because the electrode sheet 1 is fed by pitch. 4 is positioned. Then, after this positioning, the insulating tape 5 is stretched over the entire width of the electrode sheet 1 so as to straddle the boundary between the active material layer 3a on the surface side and the active material uncoated region 4 by a tape supply means (not shown). Is supplied. As the heat-welding insulating tape, for example, polypropylene is used.

絶縁テープ5の供給に続いて、双方の加熱型6,7同士が接近動作してそれらの加熱型6,7が電極シート1とともに絶縁テープ5を加圧拘束すると、それと相前後して第1,第2のインパルスヒータ8,9に通電されて、これらの第1,第2のインパルスヒータ8,9が瞬間的に発熱することになる。これにより、活物質層3aと活物質未塗布領域4との境界部近傍のほかそれに重合配置されている絶縁テープ5は、上下にある第1,第2のインパルスヒータ8,9からの熱の投与を受けることになり、絶縁テープ5はいわゆる熱溶着による接着接合をもって表面側の活物質層3aと活物質未塗布領域4との境界部に貼り付けられることになる。   Subsequent to the supply of the insulating tape 5, the two heating dies 6, 7 move closer to each other and the heating dies 6, 7 pressurize and restrain the insulating tape 5 together with the electrode sheet 1. The second impulse heaters 8 and 9 are energized, and the first and second impulse heaters 8 and 9 instantaneously generate heat. Thereby, the insulating tape 5 superposed on the boundary portion between the active material layer 3a and the active material uncoated region 4 in addition to the vicinity of the boundary between the active material layer 3a and the active material layer 3a As a result, the insulating tape 5 is adhered to the boundary portion between the active material layer 3a on the surface side and the active material uncoated region 4 by adhesive bonding by so-called thermal welding.

この場合において、活物質層3a,3b側では熱容量が大きく、母体である集電体2側に熱が逃げ易く、他方、活物質未塗布領域4側では熱容量が小さく、母体である集電体2側に熱が逃げ難いという特性があることから、これらの点を考慮して第1のインパルスヒータ8の発熱温度よりも第2のインパルスヒータ9の発熱温度の方が低くなるように予め設定してあることは先に述べたとおりである。   In this case, the heat capacity is large on the active material layers 3a and 3b side, and heat easily escapes to the current collector 2 side which is the parent body, while the heat capacity is small on the active material uncoated region 4 side, and the current collector which is the mother body. Since the heat does not easily escape on the second side, the heat generation temperature of the second impulse heater 9 is set in advance so as to be lower than the heat generation temperature of the first impulse heater 8 in consideration of these points. It is as described above.

そのため、活物質未塗布領域4側において集電体2や絶縁テープ5に過熱によるダメージを与えてしまうことがなく、「熱しわ」の発生を未然に防止することができるとともに、活物質層3aとそれに隣接する活物質未塗布領域4の双方において、均一な接着強度をもって絶縁テープ5を確実に且つ均質に貼り付けることができる。その結果として、絶縁テープ5の貼り付け品質が均一且つ安定したものとなる。   Therefore, the current collector 2 and the insulating tape 5 are not damaged due to overheating on the active material uncoated region 4 side, so that generation of “thermal wrinkles” can be prevented and the active material layer 3a. In addition, the insulating tape 5 can be reliably and uniformly attached with uniform adhesive strength in both the active material uncoated region 4 adjacent thereto. As a result, the affixing quality of the insulating tape 5 is uniform and stable.

ここで、上部加熱型6側の第1のインパルスヒータ8の発熱温度よりも下部加熱型7側の第1のインパルスヒータ8の発熱温度を低く設定するとともに、同様に上部加熱型6側の第2のインパルスヒータ9の発熱温度よりも下部加熱型7側の第2のインパルスヒータ9の発熱温度を低く設定した上で、下部加熱型7を上部加熱型6に先行して電極シート1に押し当てて、実質的に下部加熱型7を予備加熱型として機能させることもできる。   Here, the heat generation temperature of the first impulse heater 8 on the lower heating mold 7 side is set lower than the heat generation temperature of the first impulse heater 8 on the upper heating mold 6 side, and the first heating heater on the upper heating mold 6 side is similarly set. The heat generation temperature of the second impulse heater 9 on the lower heating mold 7 side is set lower than the heat generation temperature of the second impulse heater 9, and the lower heating mold 7 is pushed against the electrode sheet 1 prior to the upper heating mold 6. It is possible to make the lower heating mold 7 function substantially as a preheating mold.

図4は本発明に係る二次電池用電極の製造方法を実施するためのより具体的な第2の形態を示す図で、先の第1の実施の形態である図2と共通する部分には同一符号を付してある。   FIG. 4 is a diagram showing a more specific second embodiment for carrying out the method for manufacturing an electrode for a secondary battery according to the present invention, in a portion common to FIG. 2 which is the previous first embodiment. Are given the same reference numerals.

この第2の実施の形態では、上部加熱型6と下部加熱型7の双方について、型本体6a,7aと第2のインパルスヒータ9との間に、型本体6a,7aよりも熱伝導率の小さな低熱伝導率部材として断熱材10を介装してある。   In the second embodiment, the thermal conductivity of both the upper heating mold 6 and the lower heating mold 7 is higher than that of the mold bodies 6a and 7a between the mold bodies 6a and 7a and the second impulse heater 9. A heat insulating material 10 is interposed as a small low thermal conductivity member.

この第2の実施の形態によれば、双方の加熱型6,7における型本体6a,7aと第2のインパルスヒータ9とが断熱材10の存在により熱的に断絶されているので、第2のインパルスヒータ9の発熱温度が第1のインパルスヒータ8の発熱温度の影響を受けにくく、その第1のインパルスヒータ8の発熱温度と第2のインパルスヒータ9の発熱温度を個別的により緻密にコントロールすることが可能となる。これによって、活物質層3aと活物質未塗布領域4とにおける絶縁テープ5の接着強度の均一化をはじめとした絶縁テープ5の貼り付け品質が一段と向上することになる。   According to the second embodiment, the mold bodies 6a and 7a and the second impulse heater 9 in both the heating molds 6 and 7 are thermally disconnected due to the presence of the heat insulating material 10, so that the second The heat generation temperature of the first impulse heater 9 is not easily affected by the heat generation temperature of the first impulse heater 8, and the heat generation temperature of the first impulse heater 8 and the heat generation temperature of the second impulse heater 9 are individually and more precisely controlled. It becomes possible to do. As a result, the attaching quality of the insulating tape 5 including the uniform bonding strength of the insulating tape 5 in the active material layer 3a and the active material uncoated region 4 is further improved.

図5は本発明に係る二次電池用電極の製造方法を実施するためのより具体的な第3の形態を示す図で、先の第2の実施の形態である図4と共通する部分には同一符号を付してある。   FIG. 5 is a diagram showing a more specific third embodiment for carrying out the method for manufacturing an electrode for a secondary battery according to the present invention, and is in a portion common to FIG. 4 which is the previous second embodiment. Are given the same reference numerals.

この第3の実施の形態は、電極シート1の表面側だけでなく裏面側にも同時に絶縁テープ5を貼り付ける場合の例であり、表面側の絶縁テープ5と正対するように電極シート1をはさんでその裏面側にも絶縁テープ15が配置される。そして、双方の加熱型6,7同士を接近動作させて、電極シート1とともに表裏両面の絶縁テープ5,15を加圧拘束すれば、電極シート1の表裏両面側において活物質層3a,3bと活物質未塗布領域4との境界部にそれらの両者に跨るようにしてそれぞれに絶縁テープ5,15が熱溶着にて貼り付けられることになる。   This third embodiment is an example in the case where the insulating tape 5 is applied to the back surface side as well as the front surface side of the electrode sheet 1, and the electrode sheet 1 is placed so as to face the insulating tape 5 on the front surface side. The insulating tape 15 is also arranged on the back side of the gap. Then, if both heating dies 6 and 7 are moved closer to each other and the insulating tapes 5 and 15 on both the front and back sides are pressed and restrained together with the electrode sheet 1, the active material layers 3a and 3b and Insulating tapes 5 and 15 are bonded to the boundary portion with the active material uncoated region 4 by thermal welding so as to straddle both of them.

そして、電極シート1の表裏両面側において二枚の絶縁テープ5,15を同時に貼り付けることから、先の第1,第2の実施の形態のように電極シート1の表面側のみに絶縁テープ5を貼り付ける場合と比べて、必然的に必要とされる熱的条件が異なることになる。このような異なる熱的条件の要求に対しては、上部加熱型6および下部加熱型7の双方において、第1,第2のインパルスヒータ8,9の発熱温度を個別に調整するべく、それらの第1,第2のインパルスヒータ8,9への通電電流を制御するものとする。   And since the two insulating tapes 5 and 15 are affixed simultaneously in the front and back both surfaces side of the electrode sheet 1, the insulating tape 5 is provided only on the surface side of the electrode sheet 1 as in the first and second embodiments. As compared with the case of pasting, the necessary thermal conditions are different. In response to the requirement of such different thermal conditions, in both the upper heating mold 6 and the lower heating mold 7, the heating temperatures of the first and second impulse heaters 8 and 9 are individually adjusted. The energization current to the first and second impulse heaters 8 and 9 is controlled.

したがって、この第3の実施の形態によれば、一枚の絶縁テープ5を貼り付ける場合と同等の貼り付け品質をもって二枚の絶縁テープ5,15を同時に貼り付けることができることにより、工程の短縮化が図れるほか、加熱型の数や消費電力の削減を図ることができる利点がある。   Therefore, according to the third embodiment, the two insulating tapes 5 and 15 can be applied at the same time with the same attachment quality as when one insulating tape 5 is attached, thereby shortening the process. In addition, the number of heating dies and power consumption can be reduced.

1…電極シート
1A…電極
2…集電体
3a,3b…活物質層(活物質塗布領域)
4…活物質未塗布領域
5…絶縁テープ
6…上部加熱型
6a…型本体
7…下部加熱型
7a…型本体
8…第1のインパルスヒータ(第1の発熱体)
9…第2のインパルスヒータ(第2の発熱体)
10…断熱材(低熱伝導率部材)
15…絶縁テープ
S…貼り付け工程
DESCRIPTION OF SYMBOLS 1 ... Electrode sheet 1A ... Electrode 2 ... Current collector 3a, 3b ... Active material layer (active material application area | region)
4 ... Active material uncoated region 5 ... Insulating tape 6 ... Upper heating mold 6a ... Mold body 7 ... Lower heating mold 7a ... Mold body 8 ... First impulse heater (first heating element)
9: Second impulse heater (second heating element)
10 ... Insulating material (low thermal conductivity member)
15 ... Insulating tape S ... Paste process

Claims (4)

集電体の表面に活物質を塗布した活物質塗布領域と活物質を塗布していない活物質未塗布領域とが形成されていて、それらの活物質塗布領域と活物質未塗布領域との境界部が両者に跨る絶縁テープにて被覆されている二次電池用電極の製造方法であって、
上記集電体の表面の活物質塗布領域と活物質未塗布領域との境界部に両者に跨るかたちで熱溶着性の絶縁テープを配置し、
上記集電体に対し絶縁テープを加熱型にて押圧することにより当該絶縁テープを熱溶着にて集電体に貼り付けるようになっていて、
上記加熱型は、型本体の表層部のうち活物質塗布領域に対応して設けられた第1のインパルスヒータと、活物質未塗布領域に対応して設けられた第2のインパルスヒータと、を備えていて
上記第1,第2のインパルスヒータは個別に電流が供給されることで発熱する電流制御型のヒータであり、
上記第2のインパルスヒータに供給される電流を第1のインパルスヒータに供給される電流よりも小さくすることで、加熱型のうち活物質未塗布領域に対応する部分の温度を活物質塗布領域に対応する部分の温度よりも低くすることを特徴とする二次電池用電極の製造方法。
An active material application region where an active material is applied to the surface of the current collector and an active material non-application region where no active material is applied are formed, and the boundary between the active material application region and the active material non-application region A method for producing an electrode for a secondary battery in which a part is covered with an insulating tape straddling both,
Place a heat-welding insulating tape across the boundary between the active material application area and the active material non-application area on the surface of the current collector,
By pressing the insulating tape against the current collector with a heating die, the insulating tape is attached to the current collector by heat welding,
The heating mold includes a first impulse heater provided corresponding to the active material application region in a surface layer portion of the die body, and a second impulse heater provided corresponding to the active material non-application region. equipped,
The first and second impulse heaters are current-controlled heaters that generate heat when individually supplied with current,
By making the current supplied to the second impulse heater smaller than the current supplied to the first impulse heater, the temperature of the portion corresponding to the active material uncoated region in the heating type is changed to the active material coated region. The manufacturing method of the electrode for secondary batteries characterized by making it lower than the temperature of a corresponding part.
上記加熱型の型本体と第2のインパルスヒータとの間には、型本体よりも熱伝導率の小さな低熱伝導率部材を設けてあることを特徴とする請求項1に記載の二次電池用電極の製造方法。 2. The secondary battery according to claim 1, wherein a low thermal conductivity member having a smaller thermal conductivity than that of the mold body is provided between the heating mold body and the second impulse heater . Electrode manufacturing method. 上記集電体をはさんで対向配置された上部加熱型と下部加熱型とで集電体とともに絶縁テープを加圧挟持することにより当該絶縁テープを熱溶着にて貼り付けるようになっていて、
上記上部加熱型と下部加熱型は、型本体の表層部のうち活物質塗布領域に対応して設けられた第1のインパルスヒータと、活物質未塗布領域に対応して設けられた第2のインパルスヒータと、を備えていて
上記第1,第2のインパルスヒータは個別に電流が供給されることで発熱する電流制御型のヒータであり、
上記第2のインパルスヒータに供給される電流を第1のインパルスヒータに供給される電流よりも小さくすることで、双方の加熱型のうち活物質未塗布領域に対応する部分の温度を活物質塗布領域に対応する部分の温度よりも低くすることを特徴とする請求項1または2に記載の二次電池用電極の製造方法。
The insulating tape is attached by thermal welding by press-clamping the insulating tape together with the current collector between the upper heating mold and the lower heating mold disposed opposite to each other,
The upper heating mold and the lower heating mold include a first impulse heater provided corresponding to the active material application area in the surface layer portion of the mold main body and a second impulse heater provided corresponding to the active material non-application area. An impulse heater ,
The first and second impulse heaters are current-controlled heaters that generate heat when individually supplied with current,
The current supplied to the second impulse heater is made smaller than the current supplied to the first impulse heater, so that the temperature of the portion corresponding to the active material non-application region of both heating types is applied to the active material. The method for manufacturing an electrode for a secondary battery according to claim 1 or 2, wherein the temperature is lower than a temperature of a portion corresponding to the region .
上記集電体の表裏両面に活物質を塗布した活物質塗布領域と活物質を塗布していない活物質未塗布領域とがそれぞれに形成されていて、
上記集電体の表裏両面の活物質塗布領域と活物質未塗布領域との境界部に両者に跨るかたちで熱溶着性の絶縁テープをそれぞれに配置し、
上記集電体に対し表裏両面の絶縁テープを上部加熱型と下部加熱型にて押圧することにより当該絶縁テープを集電体の表裏両面に熱溶着にて貼り付けることを特徴とする請求項3に記載の二次電池用電極の製造方法。
An active material application region where an active material is applied to both the front and back surfaces of the current collector and an active material uncoated region where no active material is applied are formed respectively.
A heat-welding insulating tape is arranged on each of the boundary portions between the active material application region and the active material non-application region on both sides of the current collector,
Claim, characterized in that pasting the insulating tape by hot welding on both sides of the current collector by pressing the front and rear surfaces of the insulating tape at top heating type and a lower heated mold to the collector 3 The manufacturing method of the electrode for secondary batteries as described in 2 ..
JP2014024976A 2014-02-13 2014-02-13 Method for manufacturing electrode for secondary battery Active JP6413254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024976A JP6413254B2 (en) 2014-02-13 2014-02-13 Method for manufacturing electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024976A JP6413254B2 (en) 2014-02-13 2014-02-13 Method for manufacturing electrode for secondary battery

Publications (2)

Publication Number Publication Date
JP2015153539A JP2015153539A (en) 2015-08-24
JP6413254B2 true JP6413254B2 (en) 2018-10-31

Family

ID=53895604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024976A Active JP6413254B2 (en) 2014-02-13 2014-02-13 Method for manufacturing electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP6413254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063734A1 (en) * 2021-10-13 2023-04-20 주식회사 엘지에너지솔루션 Electrode for lithium secondary battery to which adhesive coating part is added, and method for manufacturing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6574122B2 (en) * 2015-09-28 2019-09-11 東レフィルム加工株式会社 Thermal transfer laminate film and secondary battery constructed using the same
KR102703303B1 (en) * 2018-07-11 2024-09-05 삼성에스디아이 주식회사 Method for manufacturing secondary battery and secondary battery using the same
CN112490402A (en) * 2019-09-12 2021-03-12 比亚迪股份有限公司 Battery, battery module, battery pack and automobile
KR20240018933A (en) * 2022-08-03 2024-02-14 에스케이온 주식회사 Electrode for secondary battery and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850812U (en) * 1981-09-24 1983-04-06 三井化学株式会社 Seal bar in heat sealer
JP3143059B2 (en) * 1996-03-22 2001-03-07 株式会社フジシール Blister package and its packaging method
JP4666131B2 (en) * 2003-10-03 2011-04-06 日本電気株式会社 LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP5277818B2 (en) * 2008-09-12 2013-08-28 日産自動車株式会社 Electrode material drying apparatus and electrode material drying method
CN103190028B (en) * 2010-10-27 2016-01-20 东丽薄膜先端加工股份有限公司 Secondary cell and manufacture method thereof and secondary cell thermal bonding dielectric film
JP5806622B2 (en) * 2012-02-06 2015-11-10 富士インパルス株式会社 Impulse heat sealer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063734A1 (en) * 2021-10-13 2023-04-20 주식회사 엘지에너지솔루션 Electrode for lithium secondary battery to which adhesive coating part is added, and method for manufacturing same

Also Published As

Publication number Publication date
JP2015153539A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6413254B2 (en) Method for manufacturing electrode for secondary battery
JP6913818B2 (en) Densely arranged solar cell strings, manufacturing methods and their modules, systems
JP2015079638A (en) Terminal with adhesive tape, method of manufacturing terminal with adhesive tape, and thin battery
WO2016197382A1 (en) Secondary battery cell
JP2017517094A5 (en)
KR100553968B1 (en) Heater wire
JP4612066B2 (en) Chip fuse and manufacturing method thereof
CN112951937A (en) Solar cell string and preparation method thereof
JP2014143051A (en) Manufacturing method of tab lead member
JP6902731B2 (en) Battery manufacturing method
JP3178499U (en) Lead material
KR101782048B1 (en) Apparatus for heating blank portion used for manufacturing electrode of secondary battery
JP2013207112A (en) Solar battery module manufacturing apparatus and manufacturing method
JPWO2019017341A1 (en) Electrode crimping device
JP2016152411A (en) Photovoltaic module and manufacturing method for the same
JP2019029256A (en) Manufacturing method of electrode
WO2014178238A1 (en) Laminate-type secondary battery manufacturing device and manufacturing method
JP5320238B2 (en) Solar cell module manufacturing apparatus and manufacturing method thereof
JP2013118111A (en) Adhesive application method and adhesive application apparatus
JP2007273132A (en) Planer heating element
JP6138985B2 (en) Electrode adhesion method for flexible battery
JP3203763U (en) Electrode plate and battery including it
JP2020047393A5 (en)
JP2011249115A (en) Method and apparatus for manufacturing lead member
JP2008300659A (en) Manufacturing method of electric double-layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6413254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250