JP2000106154A - Whole solid battery and its manufacture - Google Patents

Whole solid battery and its manufacture

Info

Publication number
JP2000106154A
JP2000106154A JP10273381A JP27338198A JP2000106154A JP 2000106154 A JP2000106154 A JP 2000106154A JP 10273381 A JP10273381 A JP 10273381A JP 27338198 A JP27338198 A JP 27338198A JP 2000106154 A JP2000106154 A JP 2000106154A
Authority
JP
Japan
Prior art keywords
resin
solid
state battery
pressure
battery element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10273381A
Other languages
Japanese (ja)
Inventor
Kazuya Iwamoto
和也 岩本
Kazunori Takada
和典 高田
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10273381A priority Critical patent/JP2000106154A/en
Publication of JP2000106154A publication Critical patent/JP2000106154A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To do away with swellings, etc., of a battery case when sealing the battery, and to prevent battery characteristics from spoiling, by impressing pressure on a battery elements within a outer package body, and by closely adhering the battery element with the outer package body. SOLUTION: A whole solid battery element 6 is loaded in a resin sealing mold 7 previously set at the resin curing temperature, and a thermosetting resin 9 softened in a resin-melting part 8 heated at the resin-softening temperature is injected from a cavity 10, then it is pressurized by a pressurizing punch 11 of an upper mold of the resin-sealing mold 7, thus the thermosetting resin is cured with the pressure being kept. The impressed pressure in this time is set at 50-10,000 kgf/cm2. When the whole solid battery element 6 is sealed with the thermosetting resin, it is once sealed at low-pressure, then the temperature is raised to the resin-softening temperature, thereafter the pressure of 50-10,000 kgf/cm2 is again impressed at the temperature, to cool and cure. Thus, joining of the interface between the electrodes and the solid electrolyte can be maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は全固体電池とその製
造法に関する。
The present invention relates to an all-solid-state battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の全固体電池は、電池ケース内側の
高さにあわせて成形した正極、固体電解質、負極の3層
からなる電池素子を金属製の電池ケースの中に配し、周
囲をかしめて、コイン型電池としているものが報告され
ている。
2. Description of the Related Art In a conventional all-solid-state battery, a battery element composed of three layers of a positive electrode, a solid electrolyte, and a negative electrode formed in accordance with the height inside a battery case is arranged in a metal battery case. In some cases, coin-type batteries have been reported.

【0003】しかしながら、この「かしめ」による封口
は、封口板あるいは電池ケースが金属製であり、かしめ
はプレス加工により施され、「曲げ」の部分を有するた
め、電池ケースの周囲をかしめた際に応力が「曲げ」の
部分に集中し、電池ケースあるいは封口板中央部に膨れ
が生じ易い。特に全固体電池においては電池素子を構成
する材料はすべて堅い固体であり、従来の液式電池に用
いられる樹脂製のセパレータのような素子にかかる圧力
を緩和する緩衝材がないため、封口時の電池ケースに膨
れが生じ易い。この電池の膨れは電池素子と、集電板を
兼ねる電池ケースまたは封口板との間に隙間を生じ、集
電性が低下し内部抵抗が上昇する結果、電池特性の低下
をきたす。また、コバルト酸リチウムやニッケル酸リチ
ウム、二硫化鉄、二硫化チタン、黒鉛、インジウム、ア
ルミニウム、リチウム−アルミニウム合金などリチウム
二次電池に用いられる多くの電極材料は充放電の際に膨
張収縮を繰り返すことが知られている。これらの電極材
料を用いた全固体電池は、その体積変化によって、電池
素子における電極−固体電解質界面の接合が損なわれ、
接触不良によって電池特性、特に充放電サイクル特性が
著しく低下する。
[0003] However, the sealing by "caulking" is performed when the periphery of the battery case is caulked because the sealing plate or the battery case is made of metal, and the caulking is performed by press working and has a "bent" portion. Stress concentrates on the "bent" portion, and swelling is likely to occur at the center of the battery case or the sealing plate. In particular, in the case of an all-solid battery, the materials constituting the battery element are all solid, and there is no cushioning material to relieve the pressure applied to the element such as a resin separator used in a conventional liquid battery. The battery case is likely to swell. This swelling of the battery creates a gap between the battery element and the battery case or sealing plate which also serves as a current collector plate, which lowers the current collection performance and increases the internal resistance, resulting in lower battery characteristics. Many electrode materials used in lithium secondary batteries such as lithium cobaltate, lithium nickelate, iron disulfide, titanium disulfide, graphite, indium, aluminum, and lithium-aluminum alloy repeat expansion and contraction during charge and discharge. It is known. All-solid-state batteries using these electrode materials, due to the change in volume, the junction of the electrode-solid electrolyte interface in the battery element is damaged,
Due to poor contact, battery characteristics, particularly charge / discharge cycle characteristics, are significantly reduced.

【0004】また、高温硬化型樹脂により封止された全
固体電池が特開平6−275247号公報に記載されて
いる。しかし、単に樹脂で封止した場合には、用いる樹
脂が熱硬化性樹脂あるいは熱可塑性樹脂のいずれの場合
でも硬化時に樹脂の体積収縮が起こる。そのため、電池
素子と樹脂の間に隙間が生じ、電池の充放電時に電極の
膨張・収縮が起こり、粒子間の界面に接合不良が生じ、
サイクル特性の劣化につながる。
[0004] An all-solid-state battery sealed with a high-temperature curing type resin is described in Japanese Patent Application Laid-Open No. 6-275247. However, when the resin is simply sealed with a resin, the resin shrinks in volume when cured, regardless of whether the resin used is a thermosetting resin or a thermoplastic resin. Therefore, a gap is generated between the battery element and the resin, the electrodes expand and contract when the battery is charged and discharged, and a bonding failure occurs at the interface between the particles,
This leads to deterioration of cycle characteristics.

【0005】[0005]

【発明が解決しようとする課題】上記従来の技術より、
電池を封口する際の電池ケースの膨れ、あるいは充放電
に際しての電極の膨張収縮が生じても電池特性が損なわ
れない製造法の開発が要求されている。
SUMMARY OF THE INVENTION From the above prior art,
There is a need to develop a manufacturing method that does not impair the battery characteristics even if the battery case swells when closing the battery or the electrodes expand and contract during charging and discharging.

【0006】本発明は電池を封口する際に電池ケースの
膨れがなく、また、全固体電池素子における電極−固体
電解質界面の接合および全固体電池素子と外装体の密着
性を保ち、電池特性が損なわれない電池を提供すること
を目的とする。
According to the present invention, when the battery is sealed, the battery case does not swell, the junction between the electrode and the solid electrolyte in the all-solid-state battery element, and the adhesion between the all-solid-state battery element and the outer package are maintained. It is an object to provide an intact battery.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の全固体電池は、正極と負極の間に固体電解
質を介在させてなる全固体電池素子を外装体で被覆され
ており、その外装体内部で全固体電池素子に圧力が印加
され、全固体電池素子と外装体の間が密着しているもの
であり、さらには、全固体電池素子を熱硬化性樹脂、ま
たは熱可塑性樹脂を用いて封止する際に、加圧状態で硬
化させ、組み立て時における全固体電池素子と集電板と
の間に隙間を生じないように構成したものである。ま
た、全固体電池素子が充放電によって膨張収縮しようと
した場合には、その力を樹脂で押さえることができるた
め、全固体電池素子を加圧状態にすることができる。
Means for Solving the Problems In order to solve the above problems, an all solid state battery of the present invention comprises an all solid state battery element in which a solid electrolyte is interposed between a positive electrode and a negative electrode, which is covered with an outer package. Pressure is applied to the all-solid-state battery element inside the outer body, and the all-solid-state battery element and the outer body are in close contact with each other. Further, the all-solid-state battery element is thermoset resin or thermoplastic. When sealing with a resin, the resin is cured in a pressurized state so that no gap is formed between the all-solid-state battery element and the current collector plate during assembly. Further, when the all-solid-state battery element attempts to expand and contract due to charge and discharge, the force can be suppressed by the resin, and thus the all-solid-state battery element can be put in a pressurized state.

【0008】これにより集電性は低下せず、優れた電池
特性を有する全固体電池が得られる。
As a result, an all-solid-state battery having excellent battery characteristics without lowering the current collecting property can be obtained.

【0009】[0009]

【発明の実施の形態】本発明の全固体電池は、正極と負
極の間に固体電解質を介在させてなる全固体電池素子を
外装体で被覆した全固体電池であって、外装体内部で全
固体電池素子に圧力が印加され、全固体電池素子と外装
体の間が密着していることを特徴としたものであり、電
池を封口する際の膨れがなく、なおかつ、充放電時の電
極の膨張により発生する力で全固体電池素子を加圧し、
全固体電池素子における電極−固体電解質界面の接合お
よび全固体電池素子と外装体の密着性を保つことによ
り、電池特性が損なわれないものである。
BEST MODE FOR CARRYING OUT THE INVENTION The all-solid-state battery of the present invention is an all-solid-state battery in which an all-solid-state battery element having a solid electrolyte interposed between a positive electrode and a negative electrode is covered with an outer package. Pressure is applied to the solid-state battery element, and the solid-state battery element is characterized by being in intimate contact with the exterior body.There is no swelling when sealing the battery, and the electrode is not charged or discharged during charging and discharging. Pressing the all-solid-state battery element with the force generated by expansion,
Battery characteristics are not impaired by maintaining the bonding between the electrode and the solid electrolyte interface and the adhesion between the all-solid battery element and the package in the all-solid battery element.

【0010】全固体電池素子に印加される圧力は50k
gf/cm2以下では加圧の効果は見られず、また10
000kgf/cm2以上では全固体電池素子にクラッ
クが生じ電池性能が低下するため、50〜10000k
gf/cm2の加圧が好ましい。
[0010] The pressure applied to the all solid state battery element is 50k.
When the pressure is less than gf / cm 2 , the effect of pressurization is not observed.
In the case of 000 kgf / cm 2 or more, cracks occur in the all solid state battery element and the battery performance is reduced.
Pressurization of gf / cm 2 is preferred.

【0011】外装体としては、熱硬化性樹脂あるいは熱
可塑性樹脂のいずれかを用いることが好ましく、金属製
の電池ケースおよび封口板を用いないために、電池の封
口時の膨れがなく、全固体電池素子と外装体の間の密着
性が保たれ、電池特性が損なわれない。さらには全固体
電池素子が溶融状態の樹脂という流体中で再度加圧され
るため、接合界面もより強固なものとなる。この加圧
は、電池素子を形成する際に通常用いる、一軸プレスと
は異なり、いわゆる静水圧プレスとなり、電池素子全体
を均一な圧力で再成形することにより、電池素子内部の
充填密度が一層高まり、粒子間の接合および電極−電解
質層間の接合界面もより強固なものとなりうるという好
ましい作用も生じる。
It is preferable to use either a thermosetting resin or a thermoplastic resin for the outer package. Since a metal battery case and a sealing plate are not used, there is no swelling at the time of closing the battery and all solids are used. Adhesion between the battery element and the package is maintained, and the battery characteristics are not impaired. Further, since the all-solid-state battery element is pressurized again in the fluid of the molten resin, the bonding interface is further strengthened. This pressurization is different from the uniaxial press, which is usually used when forming a battery element, and is a so-called hydrostatic pressure press. By reshaping the entire battery element with a uniform pressure, the packing density inside the battery element is further increased. Also, there is a preferable effect that the bonding between particles and the bonding interface between the electrode and the electrolyte layer can be made stronger.

【0012】また、外装体として樹脂を用いる場合に
は、正極または負極の少なくとも一方の、固体電解質層
と対峙しない面に金属集電板を備えることにより電池の
集電性は向上する。
When a resin is used as the outer package, the current collecting performance of the battery is improved by providing a metal current collector plate on at least one of the positive electrode and the negative electrode, the surface not facing the solid electrolyte layer.

【0013】熱硬化性樹脂としては、エポキシ樹脂、フ
ェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリ
エステル樹脂あるいはポリイミド樹脂のいずれかを用い
ることができる。これらの樹脂の物性を表1に示す。
As the thermosetting resin, any one of epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin and polyimide resin can be used. Table 1 shows the physical properties of these resins.

【0014】[0014]

【表1】 [Table 1]

【0015】上記熱硬化性樹脂の中から、全固体電池の
用途によってより好ましい物性のものが選択できる。例
えば、全固体電池をプリント配線基板上に実装する場合
には、IC、コンデンサーなどと同様に、はんだリフロ
ー槽を通すため、耐熱性が要求される。表1に示した種
々の樹脂の物性値から、耐熱性を要求される用途では、
熱硬化性樹脂では、エポキシ樹脂、フェノール樹脂、ま
たはポリイミド樹脂が好ましい。また、エポキシ樹脂、
フェノール樹脂は圧縮強度の面でも優れていることか
ら、電池の充放電に伴う電極の膨張により発生する力で
電池素子を加圧する効果も大きく、より好ましい樹脂で
あるといえる。
From the above thermosetting resins, those having more preferable physical properties can be selected depending on the use of the all solid state battery. For example, when mounting an all-solid-state battery on a printed wiring board, heat resistance is required because the battery passes through a solder reflow bath like an IC or a capacitor. From the physical properties of various resins shown in Table 1, in applications where heat resistance is required,
As the thermosetting resin, an epoxy resin, a phenol resin, or a polyimide resin is preferable. Also, epoxy resin,
Since phenolic resin is also excellent in terms of compressive strength, the effect of pressurizing the battery element with the force generated by the expansion of the electrode accompanying the charging and discharging of the battery is large, and it can be said that it is a more preferable resin.

【0016】また、Li3PO4−Li2S−SiS2系リ
チウムイオン導電性固体電解質を用いた全固体電池のよ
うに、電池素子を構成する材料に嫌水性のものを用いた
場合、電池ケースを透過する水分によって、電池の貯蔵
性といった信頼性を大きく損なわれることがある。した
がって、吸水率の低い樹脂が好ましく、エポキシ樹脂が
好ましく用いられる。
Further, in the case where a water-phobic material is used for a battery element, such as an all solid battery using a Li 3 PO 4 —Li 2 S—SiS 2 based lithium ion conductive solid electrolyte, The moisture permeating through the case may greatly impair the reliability of the battery, such as its storability. Therefore, a resin having a low water absorption is preferable, and an epoxy resin is preferably used.

【0017】また、これらの熱硬化性樹脂にフィラーを
混合したものを用いると機械的強度が一層高まり、より
好ましい結果が得られる。フィラーとしてはカーボンフ
ァイバー、メタルファイバー、グラスファイバーがある
が、電池の外装体として用いる場合には、電導性を有す
ると正極と負極の短絡が生じるため、グラスファイバー
が特に好ましく用いられる。
When a mixture of these thermosetting resins and a filler is used, the mechanical strength is further increased, and more preferable results are obtained. Examples of the filler include carbon fiber, metal fiber, and glass fiber. In the case where the filler is used as an outer package of a battery, glass fiber is particularly preferably used since short-circuiting between the positive electrode and the negative electrode occurs when the battery has electrical conductivity.

【0018】熱可塑性樹脂としては、ポリフェニレンス
ルフィド樹脂、液晶ポリエステル樹脂、ポリエチレン樹
脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリアセタ
ール樹脂あるいはポリエチレンテレフタレート樹脂のい
ずれかを用いることができる。これらの樹脂の物性を表
2に示す。
As the thermoplastic resin, any of polyphenylene sulfide resin, liquid crystal polyester resin, polyethylene resin, polypropylene resin, polyamide resin, polyacetal resin and polyethylene terephthalate resin can be used. Table 2 shows the physical properties of these resins.

【0019】[0019]

【表2】 [Table 2]

【0020】上記熱可塑性樹脂の中から、全固体電池の
用途によってより好ましい物性のものが選択できる。例
えば、全固体電池をプリント配線基板上に実装する場合
には、IC、コンデンサーなどと同様に、はんだリフロ
ー槽を通すため、耐熱性が要求される。表2に示した種
々の樹脂の物性値から、耐熱性を要求される用途では、
熱可塑性樹脂では、ポリフェニレンスルフィド樹脂、液
晶ポリエステル樹脂、またはポリエチレンテレフタレー
ト樹脂が好ましい。また、ポリフェニレンスルフィド樹
脂および液晶ポリエステル樹脂は圧縮強度の面でも優れ
ていることから、電池の充放電に伴う電極の膨張により
発生する力で電池素子を加圧する効果も大きく、より好
ましい樹脂であるといえる。
From the above-mentioned thermoplastic resins, those having more preferable physical properties can be selected depending on the use of the all-solid-state battery. For example, when mounting an all-solid-state battery on a printed wiring board, heat resistance is required because the battery passes through a solder reflow bath like an IC or a capacitor. From the physical properties of the various resins shown in Table 2, in applications where heat resistance is required,
As the thermoplastic resin, a polyphenylene sulfide resin, a liquid crystal polyester resin, or a polyethylene terephthalate resin is preferable. In addition, since polyphenylene sulfide resin and liquid crystal polyester resin are also excellent in terms of compressive strength, the effect of pressing the battery element with the force generated by the expansion of the electrode accompanying the charging and discharging of the battery is large, and it is a more preferable resin. I can say.

【0021】また、Li3PO4−Li2S−SiS2系リ
チウムイオン導電性固体電解質を用いた全固体電池のよ
うに、電池素子を構成する材料に嫌水性のものを用いた
場合、電池ケースを透過する水分によって、電池の貯蔵
性といった信頼性を大きく損なわれることがある。した
がって、吸水率の低い樹脂が好ましく、ポリフェニレン
スルフィド樹脂および液晶ポリエステル樹脂が用いられ
る。
Further, in the case where a water-phobic material is used for a battery element, such as an all-solid battery using a Li 3 PO 4 —Li 2 S—SiS 2 -based lithium ion conductive solid electrolyte, The moisture permeating through the case may greatly impair the reliability of the battery, such as its storability. Therefore, a resin having a low water absorption is preferable, and a polyphenylene sulfide resin and a liquid crystal polyester resin are used.

【0022】また、これらの熱可塑性樹脂にフィラーを
混合したものを用いると機械的強度が一層高まり、より
好ましい結果が得られる。フィラーとしてはカーボンフ
ァイバー、メタルファイバー、グラスファイバーがある
が、電池の外装体として用いる場合には、電導性を有す
ると正極と負極の短絡が生じるため、グラスファイバー
が特に好ましく用いられる。
The use of a mixture of these thermoplastic resins with a filler further increases the mechanical strength, and provides more favorable results. Examples of the filler include carbon fiber, metal fiber, and glass fiber. In the case where the filler is used as an outer package of a battery, glass fiber is particularly preferably used since short-circuiting between the positive electrode and the negative electrode occurs when the battery has electrical conductivity.

【0023】さらに、本発明の全固体電池の製造法とし
ては、正極と負極の間に固体電解質を介在させてなる全
固体電池素子を電極端子としての2枚の金属板で挟み、
この金属板に50〜10000kgf/cm2の圧力を
印加しながら周囲を熱硬化性樹脂または熱可塑性樹脂で
封止する方法である。この製造法によれば、従来のコイ
ン型電池に用いられていた封口板、あるいは電池ケース
とは異なり、金属板のプレス加工を施していないため
に、金属の「曲げ」の部分がなく、応力集中が起こりに
くい。従って、封口時に金属の弾性に起因するケースの
膨れが起こりにくいものとなる。また、電極の膨張によ
り発生する力で電池素子を加圧し、電池素子における電
極−固体電解質界面の接合を保ち、電池特性が損なわれ
ないという作用を有する。さらに、全固体電池素子が溶
融状態の樹脂という流体中で再度、加圧されるため、接
合界面が強固なものとなる。この加圧は、電池素子を形
成する際に通常用いる、一軸プレスとは異なり、いわゆ
る静水圧プレスとなり、電池素子全体を均一な圧力で再
成形することにより、電池素子内部の充填密度が一層高
まり、粒子間の接合および電極−電解質層間の接合界面
もより強固なものとなりうるという好ましい作用も生じ
る。
Further, as a method of manufacturing an all solid state battery of the present invention, an all solid state battery element having a solid electrolyte interposed between a positive electrode and a negative electrode is sandwiched between two metal plates as electrode terminals.
This is a method of sealing the periphery with a thermosetting resin or a thermoplastic resin while applying a pressure of 50 to 10000 kgf / cm 2 to the metal plate. According to this manufacturing method, unlike a sealing plate or a battery case used for a conventional coin-type battery, since a metal plate is not pressed, there is no “bent” portion of the metal, and the stress is reduced. Concentration is less likely to occur. Therefore, the case is unlikely to swell due to the elasticity of the metal at the time of sealing. In addition, the battery element is pressurized by a force generated by the expansion of the electrode, the junction at the electrode-solid electrolyte interface in the battery element is maintained, and the battery characteristics are not impaired. Furthermore, since the all-solid-state battery element is pressurized again in the fluid of the molten resin, the bonding interface becomes strong. This pressurization is different from the uniaxial press, which is usually used when forming a battery element, and is a so-called hydrostatic pressure press. By reshaping the entire battery element with a uniform pressure, the packing density inside the battery element is further increased. Also, there is a preferable effect that the bonding between particles and the bonding interface between the electrode and the electrolyte layer can be made stronger.

【0024】また、本発明の全固体電池の他の製造法と
しては、正極と負極の間に固体電解質を介在させてなる
全固体電池素子を、埋設した溶融状態の熱硬化性樹脂に
50〜10000kgf/cm2の圧力を印加しながら
熱硬化させた方法、全固体電池素子を溶融状態の熱可塑
性樹脂で封止した後、冷却・硬化させ、再度、樹脂軟化
温度まで昇温し、該温度で再度50〜10000kgf
/cm2の圧力を印加した状態で冷却・硬化させた方法
がある。
Further, as another method of manufacturing the all solid state battery of the present invention, an all solid state battery element having a solid electrolyte interposed between a positive electrode and a negative electrode is embedded in a thermosetting resin in a molten state in an amount of 50 to 50%. A method in which thermosetting is performed while applying a pressure of 10,000 kgf / cm 2 , a method in which an all solid state battery element is sealed with a thermoplastic resin in a molten state, then cooled and cured, and then heated again to a resin softening temperature. 50 ~ 10000kgf again
There is a method of cooling and curing while applying a pressure of / cm 2 .

【0025】以下、本発明の実施の形態について図面を
用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0026】(実施の形態1)図1に本実施の形態の全
固体電池素子の断面図を示す。図1に示したように固体
電解質粉末を予備成形した固体電解質層1の片面に、予
め予備成形した正極合剤層2を、その反対の面に予め予
備成形した負極合剤層3を合せ、圧接して構成される。
さらに、正極側および負極側にリード付集電板4、5を
取り付け、全固体電池素子6とする。
(Embodiment 1) FIG. 1 is a sectional view of an all-solid-state battery element according to the present embodiment. As shown in FIG. 1, a pre-formed positive electrode mixture layer 2 is attached to one surface of a solid electrolyte layer 1 obtained by pre-forming a solid electrolyte powder, and a pre-formed negative electrode mixture layer 3 is attached to the opposite surface. It is configured by pressing.
Further, the current collector plates 4 and 5 with leads are attached to the positive electrode side and the negative electrode side, and the all-solid-state battery element 6 is obtained.

【0027】このようにして作製した全固体電池素子6
を、図2に示す樹脂封止用金型を用いて樹脂封止する。
全固体電池素子6をあらかじめ樹脂硬化温度に設定した
樹脂封止用金型7中に装填し、樹脂軟化温度に加熱され
樹脂溶融部8で軟化している熱硬化性樹脂9をキャビテ
ィ10から注入し、樹脂封止用金型の上型の加圧用パン
チ11で加圧し、この圧力を保持したまま熱硬化性樹脂
を硬化させる。この時の印加圧力は50〜10000k
gf/cm2とする。このようにして作製した全固体電
池の断面図を図3に示す。全固体電池素子6が封止樹脂
12により封止されている。
The all-solid-state battery element 6 manufactured as described above
Is resin-encapsulated using a resin-sealing mold shown in FIG.
The all-solid-state battery element 6 is loaded into a resin sealing mold 7 set at a resin curing temperature in advance, and a thermosetting resin 9 heated to a resin softening temperature and softened at a resin melting portion 8 is injected from a cavity 10. Then, pressure is applied by the upper pressing punch 11 of the resin sealing mold, and the thermosetting resin is cured while maintaining this pressure. The applied pressure at this time is 50 to 10000k
gf / cm 2 . FIG. 3 shows a cross-sectional view of the all-solid-state battery manufactured in this manner. The all-solid-state battery element 6 is sealed with a sealing resin 12.

【0028】なお、全固体電池素子を熱可塑性樹脂で封
止する場合には、低圧で一旦、封止した後、樹脂軟化温
度まで昇温し、この温度で再度50〜10000kgf
/cm2の圧力を印加した状態で冷却・硬化させる。
When all solid-state battery elements are sealed with a thermoplastic resin, they are once sealed at a low pressure, then heated to a resin softening temperature, and then heated again at a temperature of 50 to 10,000 kgf.
Cooling / curing while applying a pressure of / cm 2 .

【0029】(実施の形態2)実施の形態1と同様の方
法で全固体電池素子を作製する。
(Embodiment 2) An all-solid-state battery element is manufactured in the same manner as in Embodiment 1.

【0030】このようにして作製した全固体電池素子
を、あらかじめ樹脂溶融温度に設定した樹脂封止用金型
中に装填し、樹脂軟化温度に加熱され樹脂溶融部で軟化
している熱可塑性樹脂をキャビティから注入し、封止用
金型の上型の加圧用パンチで加圧し、この圧力を保持し
たまま金型温度を室温まで降下させ、熱可塑性樹脂を硬
化させる。この時の印加圧力は50〜10000kgf
/cm2とする。このようにして作製した全固体電池
は、全固体電池素子が封止樹脂により封止されている。
The all-solid-state battery element manufactured as described above is loaded into a resin sealing mold set at a resin melting temperature in advance, and the thermoplastic resin is heated to the resin softening temperature and softened at the resin melting portion. Is injected from the cavity and pressurized by a pressurizing punch of the upper die of the sealing die, and while maintaining this pressure, the die temperature is lowered to room temperature to cure the thermoplastic resin. The applied pressure at this time is 50 to 10000 kgf
/ Cm 2 . In the all-solid-state battery manufactured as described above, the all-solid-state battery element is sealed with a sealing resin.

【0031】なお、全固体電池素子を熱可塑性樹脂で封
止する他の方法として、低圧で一旦、封止した後、樹脂
軟化温度まで昇温し、この温度で再度50〜10000
kgf/cm2の圧力を印加した状態で冷却・硬化させ
ることもできる。
As another method for sealing the all-solid-state battery element with a thermoplastic resin, the element is once sealed at a low pressure, then heated to a resin softening temperature, and then heated again at a temperature of 50 to 10,000.
It is also possible to cool and harden while applying a pressure of kgf / cm 2 .

【0032】(実施の形態3)全固体電池素子13は、
固体電解質粉末を予備成形した固体電解質層の片面に、
予め予備成形した正極合剤を層、その反対の面に予め予
備成形した負極合剤層を合せ、圧接して構成される。さ
らに、正極合剤層側および負極合剤層側を2枚の金属板
で挟み、図4に示す樹脂封止金型を用いて樹脂封止す
る。全固体電池素子13をあらかじめ樹脂硬化温度に設
定した樹脂封止用金型14中に装填し、前記金属板に樹
脂封止用金型の上型の加圧用パンチ18で50〜100
00kgf/cm2の圧力を印加しながら、樹脂軟化温
度に加熱され樹脂溶融部15で軟化している熱硬化性樹
脂16をキャビティ17から注入し、周囲を熱硬化性樹
脂で封止しする。このようにして作製した全固体電池の
断面図を図5に示す。全固体電池素子13が封止樹脂1
9により封止されている。
(Embodiment 3) The all-solid-state battery element 13 includes:
On one side of the solid electrolyte layer preformed from the solid electrolyte powder,
The pre-formed positive electrode mixture layer is combined with the pre-formed negative electrode mixture layer on the opposite surface, and pressed against each other. Further, the positive electrode mixture layer side and the negative electrode mixture layer side are sandwiched between two metal plates, and are sealed with a resin using a resin sealing mold shown in FIG. The all-solid-state battery element 13 is loaded into a resin-sealing mold 14 set at a resin curing temperature in advance, and the metal plate is pressed with the upper pressing die 18 of the resin-sealing mold to 50 to 100.
While applying a pressure of 00 kgf / cm 2, a thermosetting resin 16 heated to a resin softening temperature and softened in a resin melting portion 15 is injected from a cavity 17, and the periphery is sealed with the thermosetting resin. FIG. 5 shows a cross-sectional view of the all-solid-state battery manufactured in this manner. All-solid-state battery element 13 is sealing resin 1
9 is sealed.

【0033】なお、固体電解質としては、リチウムイオ
ン伝導体ではLi2S−SiS2、Li2S−B23、L
2PO4−Li2S−SiS2、LiI−Li2S−Si
2、LiI−Li2S−P25、Li3.6Si0.60.4
4、Li3.40.6Si0.44、LiI−Li3PO4
26、Li3.3PO3.80.22など、銀イオン伝導体で
は、Ag64WO4、RbAg46など、銅イオン伝導
体では、RbCu41.6Cl3.6、RbCu167Cl13
などを用いることができ、本発明では特に固体電解質を
限定するものではなく、いずれの固体電解質についても
同様の効果が得られることは明らかである。
As the solid electrolyte, Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , L 2
i 2 PO 4 -Li 2 S- SiS 2, LiI-Li 2 S-Si
S 2 , LiI-Li 2 SP 2 S 5 , Li 3.6 Si 0.6 P 0.4
O 4, Li 3.4 V 0.6 Si 0.4 O 4, LiI-Li 3 PO 4 -
Silver ion conductors such as P 2 S 6 and Li 3.3 PO 3.8 N 0.22 such as Ag 6 I 4 WO 4 and RbAg 4 I 6 , and copper ion conductors such as RbCu 4 I 1.6 Cl 3.6 and RbCu 16 I 7 Cl 13
And the like can be used. In the present invention, the solid electrolyte is not particularly limited, and it is clear that a similar effect can be obtained with any solid electrolyte.

【0034】電極材料としては、リチウム電池用として
は、金属硫化物として二硫化鉄(LixFeS2)、二硫
化チタン(LixTiS2)、二硫化モリブデン(Lix
MoS2)、金属酸化物としては、酸化タングステン
(LixWO3)、二酸化モリブデン(LixMoO2)、
三酸化モリブデン(LixMoO3)、五酸化バナジウム
(Lix25)、酸化バナジウム(Lix613)、
コバルト酸リチウム(LixCoO2)、ニッケル酸リチ
ウム(LixNiO2)、マンガン酸リチウム(LixM
2O4)、チタン酸リチウム(LixTi2O4)、金
属極として、インジウム、アルミニウム、スズ、アンチ
モンなどの低融点金属単体かもしくはこれらを含む合
金、また炭素系材料として、黒鉛を用いることができ、
これらのうちから任意に2つを選択し、平衡電位の貴な
化合物を正極に、卑な化合物を負極として用いることが
できる。また、銀電池用としては、Ag、Agx25
銅電池用としてはCu、Cu2S、CuxTiS2、Cux
Mo68などを用いることができる。
As an electrode material, for a lithium battery, iron disulfide (Li x FeS 2 ), titanium disulfide (Li x TiS 2 ), and molybdenum disulfide (Li x ) are used as metal sulfides.
MoS 2 ), metal oxides include tungsten oxide (Li x WO 3 ), molybdenum dioxide (Li x MoO 2 ),
Molybdenum trioxide (Li x MoO 3 ), vanadium pentoxide (Li x V 2 O 5 ), vanadium oxide (Li x V 6 O 13 ),
Lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ), lithium manganate (LixM
n 2 O 4), lithium titanate (Li x Ti 2 O 4), a low melting point metal such as indium, aluminum, tin, antimony or the like or an alloy containing them as a metal electrode, and graphite as a carbon-based material Can be
Two of these can be arbitrarily selected, and a compound having a noble equilibrium potential can be used as a positive electrode and a noble compound can be used as a negative electrode. For silver batteries, Ag, Ag x V 2 O 5
Cu, Cu 2 S, Cu x TiS 2 , Cu x
Mo 6 S 8 or the like can be used.

【0035】本発明では特に電極材料を限定するもので
はなく、いずれの電極材料についても同様の効果が得ら
れることは明らかであるが、特に金属間化合物、あるい
は層間化合物を用いた場合のように電池の充放電に際し
て膨張収縮による体積変化の著しい材料を電極とした場
合にその効果は極めて大きなものとなる。
In the present invention, the electrode material is not particularly limited, and it is clear that the same effect can be obtained with any of the electrode materials. In particular, as in the case where an intermetallic compound or an interlayer compound is used, the same effect can be obtained. When a material whose volume changes significantly due to expansion and contraction during charging and discharging of the battery is used as the electrode, the effect is extremely large.

【0036】[0036]

【実施例】次に、本発明の具体例を図面を用いて説明す
る。
Next, a specific example of the present invention will be described with reference to the drawings.

【0037】(実施例1)固体電解質としてLi3PO4
−Li2S−SiS2系ガラス状固体電解質を用いて本発
明の全固体電池を作製した。正極合剤は、コバルト酸リ
チウム(LiCO2)と前記固体電解質を重量比で3:
2で混合して調製した。また、負極合剤は、インジウム
−リチウム合金(In-Li)粉末と前記固体電解質を
重量比で7:3で混合して調整した。これらの電極合剤
を粉末成形金型を用いて、正極層、固体電解質層、負極
層の3層を一体に成形し、直径10mmの全固体電池素
子を作製し、さらに、前記全固体電池素子の正極側、お
よび負極側にリード付集電板を取り付けた。
Example 1 Li 3 PO 4 as a solid electrolyte
Using -Li 2 S-SiS 2 type glass-like solid electrolyte was produced all-solid-state battery of the present invention. The positive electrode mixture, lithium cobaltate (LiC O O 2) and the solid electrolyte at a weight ratio of 3:
2 and prepared by mixing. The negative electrode mixture was prepared by mixing an indium-lithium alloy (In-Li) powder and the solid electrolyte at a weight ratio of 7: 3. Using a powder molding die of these electrode mixtures, three layers of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer were integrally formed to produce an all-solid-state battery element having a diameter of 10 mm. A current collector with a lead was attached to the positive electrode side and the negative electrode side.

【0038】このようにして作製した全固体電池素子
を、あらかじめ、金型温度170℃の樹脂封止用金型中
に装填し、樹脂溶融部で180℃で軟化している熱硬化
性エポキシ樹脂をキャビティから注入し、封止用金型の
上型の加圧用パンチを500kgf/cm2で加圧し、
圧力を保持したまま金型温度を185℃に昇温し、熱硬
化性エポキシ樹脂を硬化させ封止し、全固体電池を構成
した。
The all-solid-state battery element thus manufactured is previously loaded into a resin sealing mold at a mold temperature of 170 ° C., and a thermosetting epoxy resin softened at 180 ° C. in a resin melting portion. Is injected from the cavity, and the upper pressurizing punch of the sealing mold is pressurized at 500 kgf / cm 2 ,
While maintaining the pressure, the mold temperature was raised to 185 ° C., and the thermosetting epoxy resin was cured and sealed to form an all-solid battery.

【0039】構成した全固体電池を充放電電流150μ
A、電圧範囲2.0〜3.6Vで充放電サイクル試験を
行った。
The configured all-solid-state battery was charged and discharged with a current of 150 μm.
A, A charge / discharge cycle test was performed in a voltage range of 2.0 to 3.6 V.

【0040】成形時の圧力を0〜12000kgf/c
2の範囲で変えた以外は上記と同様の構成法で全固体
電池を作製し、同様の充放電サイクル試験を実施した。
その結果を図6に、設計容量に対する実際の放電容量の
比率で示した。この図から、成形時の圧力範囲を50〜
10000kgf/cm2としたときに良好なサイクル
特性が得られることが分かった。
The pressure during molding is 0 to 12000 kgf / c.
An all-solid-state battery was manufactured in the same manner as described above except that the range was changed within the range of m 2 , and the same charge / discharge cycle test was performed.
The results are shown in FIG. 6 as a ratio of the actual discharge capacity to the design capacity. From this figure, it can be seen that the pressure range during molding is 50 to
It was found that good cycle characteristics were obtained when the pressure was 10,000 kgf / cm 2 .

【0041】12000kgf/cm2のものについ
て、全固体電池を分解したところ、内部の全固体電池素
子にクラックが生じており、そのために電池性能が低下
したものと考えられる。このクラックは、樹脂成形時の
圧力が高すぎたために、全固体電池素子が圧壊されたこ
とによるものである。
When the all-solid-state battery was disassembled for 12,000 kgf / cm 2 , cracks occurred in the all-solid-state battery element inside, and it is considered that the battery performance deteriorated due to the cracks. This crack is due to the all-solid-state battery element being crushed due to too high pressure during resin molding.

【0042】また、熱硬化性エポキシ樹脂にフィラーと
してグラスファイバーが40wt%混合されたものを用
いた以外は上記と同様の構成法で全固体電池を作製し、
同様の充放電サイクル試験を実施した。この結果、図に
示したようにフィラーを含有しないものよりも優れた特
性が得られた。
An all solid state battery was manufactured in the same manner as described above except that 40 wt% of glass fiber was mixed as a filler with a thermosetting epoxy resin.
A similar charge / discharge cycle test was performed. As a result, as shown in the figure, characteristics superior to those containing no filler were obtained.

【0043】(実施例2)固体電解質としてLi3PO4
−Li2S−SiS2系ガラス状固体電解質を用いて本発
明の全固体電池を作製した。正極合剤は、ニッケル酸リ
チウム(LiNiO2)と前記固体電解質を重量比で
3:2で混合して調製した。また、負極合剤は、二硫化
鉄(FeS2)と前記固体電解質を重量比で5:5で混合
して調整した。これらの電極合剤を粉末成形金型を用い
て、正極層、固体電解質層、負極層の3層を一体に成形
し、直径10mmの全固体電池素子を作製し、さらに、
前記全固体電池素子の正極側、および負極側にリード付
集電板を取り付けた。
Example 2 Li 3 PO 4 as a solid electrolyte
Using -Li 2 S-SiS 2 type glass-like solid electrolyte was produced all-solid-state battery of the present invention. The positive electrode mixture was prepared by mixing lithium nickelate (LiNiO 2 ) and the solid electrolyte at a weight ratio of 3: 2. The negative electrode mixture was prepared by mixing iron disulfide (FeS 2 ) and the solid electrolyte at a weight ratio of 5: 5. Using a powder molding die of these electrode mixtures, a positive electrode layer, a solid electrolyte layer, and a three-layered negative electrode layer were integrally molded to produce an all-solid-state battery element having a diameter of 10 mm.
A current collector with leads was attached to the positive electrode side and the negative electrode side of the all solid state battery element.

【0044】このようにして作製した全固体電池素子
を、あらかじめ、金型温度260℃の樹脂封止用金型中
に装填し、樹脂溶融部で300℃で軟化している熱可塑
性ポリフェニレンスルフィド樹脂をキャビティから注入
し、封止用金型の上型の加圧用パンチを500kgf/
cm2で加圧し、圧力を保持したまま金型温度を室温ま
で降下させ、熱可塑性ポリフェニレンスルフィド樹脂を
硬化させ封止し、全固体電池を構成した。
The all-solid-state battery element thus manufactured is previously loaded into a resin sealing mold at a mold temperature of 260 ° C., and the thermoplastic polyphenylene sulfide resin softened at 300 ° C. in the resin melting portion. Is injected from the cavity, and the pressurizing punch of the upper die of the sealing die is set to 500 kgf /
pressurized with cm 2, a mold temperature while maintaining the pressure is lowered to room temperature, sealed to cure the thermoplastic polyphenylene sulfide resin, and constitute an all-solid battery.

【0045】構成した全固体電池を充放電電流150μ
A、電圧範囲0.5〜3.2Vで充放電サイクル試験を
行った。
A charge / discharge current of 150 .mu.
A, A charge / discharge cycle test was performed in a voltage range of 0.5 to 3.2 V.

【0046】成形時の圧力を0〜12000kgf/c
2の範囲で変えた以外は上記と同様の構成法で全固体
電池を作製し、同様の充放電サイクル試験を実施した。
その結果を図7に、設計容量に対する実際の放電容量の
比率で示した。この図から、成形時の圧力範囲を50〜
10000kgf/cm2としたときに良好なサイクル
特性が得られることが分かった。
The pressure during molding is 0 to 12000 kgf / c
An all-solid-state battery was manufactured in the same manner as described above except that the range was changed within the range of m 2 , and the same charge / discharge cycle test was performed.
The results are shown in FIG. 7 as the ratio of the actual discharge capacity to the design capacity. From this figure, it can be seen that the pressure range during molding is 50 to
It was found that good cycle characteristics were obtained when the pressure was 10,000 kgf / cm 2 .

【0047】12000kgf/cm2のものについ
て、全固体電池を分解したところ、内部の全固体電池素
子にクラックが生じており、そのために電池性能が低下
したものと考えられる。このクラックは、樹脂成形時の
圧力が高すぎたために、全固体電池素子が圧壊されたこ
とによると考えられる。
When the all-solid-state battery was disassembled for 12000 kgf / cm 2 , cracks occurred in the all-solid-state battery element inside, and it is considered that the battery performance deteriorated due to the cracks. This crack is considered to be caused by the all-solid-state battery element being crushed because the pressure during resin molding was too high.

【0048】また、熱可塑性ポリフェニレンスルフィド
樹脂にフィラーとしてグラスファイバーが40wt%混
合されたものを用いた以外は上記と同様の構成法で全固
体電池を作製し、同様の充放電サイクル試験を実施し
た。この結果、図に示したようにフィラーを含有しない
ものよりも優れた特性が得られた。
An all-solid-state battery was manufactured in the same manner as described above, except that a mixture obtained by mixing 40 wt% of glass fiber as a filler with a thermoplastic polyphenylene sulfide resin was used, and a similar charge / discharge cycle test was performed. . As a result, as shown in the figure, characteristics superior to those containing no filler were obtained.

【0049】(実施例3)固体電解質としてLi3PO4
−Li2S−SiS2系ガラス状固体電解質を用いて本発
明の全固体電池を作製した。正極合剤は、コバルト酸リ
チウム(LiCO2)と前記固体電解質を重量比で3:
2で混合して調製した。また、負極合剤は、二硫化チタ
ン(TiS2)と前記固体電解質を重量比で7:3で混
合して調整した。これらの電極合剤を粉末成形金型を用
いて、正極層、固体電解質層、負極層の3層を一体に成
形し、直径10mmの全固体電池素子を作製し、さら
に、前記全固体電池素子の正極側、および負極側にリー
ド付集電板を取り付けた。
Example 3 Li 3 PO 4 as a solid electrolyte
Using -Li 2 S-SiS 2 type glass-like solid electrolyte was produced all-solid-state battery of the present invention. The positive electrode mixture, lithium cobaltate (LiC O O 2) and the solid electrolyte at a weight ratio of 3:
2 and prepared by mixing. The negative electrode mixture was prepared by mixing titanium disulfide (TiS 2 ) and the solid electrolyte at a weight ratio of 7: 3. Using a powder molding die of these electrode mixtures, three layers of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer were integrally formed to produce an all-solid-state battery element having a diameter of 10 mm. A current collector with a lead was attached to the positive electrode side and the negative electrode side.

【0050】このようにして作製した全固体電池素子
を、熱硬化性樹脂としてエポキシ樹脂、フィラー入り
(40wt%)エポキシ樹脂、フェノール樹脂、ユリア
樹脂、メラミン樹脂、不飽和ポリエステル樹脂およびポ
リイミド樹脂、また、熱可塑性樹脂としてポリフェニレ
ンスルフィド樹脂、フィラー入り(40wt%)ポリフ
ェニレンスルフィド樹脂、液晶ポリエステル、ポリアミ
ド樹脂、ポリアセタール樹脂、ポリエチレンテレフタレ
ート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂およ
びポリカーボネート樹脂を用い、熱硬化性樹脂を用いた
ものは実施例1と同様の方法、熱可塑性樹脂を用いたも
のは実施例2と同様の方法にて、成形圧力500kgf
/cm2として樹脂を硬化させ封止し、全固体電池を構
成した。
The all-solid-state battery element manufactured in this manner was used as a thermosetting resin such as epoxy resin, filler-containing (40 wt%) epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, and polyimide resin. A thermosetting resin was used, using a polyphenylene sulfide resin as a thermoplastic resin, a polyphenylene sulfide resin containing filler (40 wt%), a liquid crystal polyester, a polyamide resin, a polyacetal resin, a polyethylene terephthalate resin, a polyethylene resin, a polypropylene resin, and a polycarbonate resin. The molding pressure was 500 kgf by the same method as in Example 1 and the method using thermoplastic resin by the same method as in Example 2.
/ Cm 2 and the resin was cured and sealed to form an all-solid battery.

【0051】構成した全固体電池を充放電電流150μ
A、0.5Vまで放電を行い保存前の放電容量を測定し
た後、1.7Vまで充電を行い、85℃90%RHの高
温高湿環境で3ヶ月間保存した。保存期間終了後、全固
体電池を放電電流150μA、0.5Vまで放電し、保
存前の放電容量に対する容量維持率を調べ、結果を表3
に示した。
A charge / discharge current of 150 .mu.
A. The battery was discharged to 0.5 V, the discharge capacity before storage was measured, then charged to 1.7 V, and stored for 3 months in a high-temperature, high-humidity environment of 85 ° C. and 90% RH. After the end of the storage period, the all solid state battery was discharged to a discharge current of 150 μA and 0.5 V, and the capacity retention ratio with respect to the discharge capacity before storage was examined.
It was shown to.

【0052】この結果、吸水率の小さい樹脂ほど高温高
湿保存後に高い容量維持率を示し、本発明によれば信頼
性の高い全固体電池が得られることがわかった。
As a result, it was found that a resin having a lower water absorption exhibited a higher capacity retention rate after storage at high temperature and high humidity, and that a highly reliable all solid state battery was obtained according to the present invention.

【0053】[0053]

【表3】 [Table 3]

【0054】(実施例4)固体電解質としてLi3PO4
−Li2S−SiS2系ガラス状固体電解質を用いて本発
明の全固体電池を作製した。正極合剤は、コバルト酸リ
チウム(LiCO2)と前記固体電解質を重量比で3:
2で混合して調製した。また、負極合剤は、チタン酸リ
チウム(LiTi24)と前記固体電解質を重量比で
7:3で混合して調整した。これらの電極合剤を粉末成
形金型を用いて、正極層、固体電解質層、負極層の3層
を一体に成形し、直径10mmの全固体電池素子を作製
し、さらに、前記全固体電池素子の正極側、および負極
側にリード付集電板を取り付けた。
Example 4 Li 3 PO 4 as a solid electrolyte
Using -Li 2 S-SiS 2 type glass-like solid electrolyte was produced all-solid-state battery of the present invention. The positive electrode mixture, lithium cobaltate (LiC O O 2) and the solid electrolyte at a weight ratio of 3:
2 and prepared by mixing. The negative electrode mixture was prepared by mixing lithium titanate (LiTi 2 O 4 ) and the solid electrolyte at a weight ratio of 7: 3. Using a powder molding die of these electrode mixtures, three layers of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer were integrally formed to produce an all-solid-state battery element having a diameter of 10 mm. A current collector with a lead was attached to the positive electrode side and the negative electrode side.

【0055】このようにして作製した全固体電池素子
を、熱硬化性樹脂としてエポキシ樹脂、フィラー入り
(40wt%)エポキシ樹脂、フェノール樹脂、ユリア
樹脂、メラミン樹脂、不飽和ポリエステル樹脂およびポ
リイミド樹脂、また、熱可塑性樹脂としてポリフェニレ
ンスルフィド樹脂、フィラー入り(40wt%)ポリフ
ェニレンスルフィド樹脂、液晶ポリエステル、ポリアミ
ド樹脂、ポリアセタール樹脂、ポリエチレンテレフタレ
ート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂およ
びポリカーボネート樹脂を用い、熱硬化性樹脂を用いた
ものは実施例1と同様の方法、熱可塑性樹脂を用いたも
のは実施例2と同様の方法にて、成形圧力500kgf
/cm2として樹脂を硬化させ封止し、全固体電池を構
成した。
The all-solid-state battery element thus prepared was used as a thermosetting resin such as epoxy resin, filler-containing (40 wt%) epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, and polyimide resin. A thermosetting resin was used, using a polyphenylene sulfide resin as a thermoplastic resin, a polyphenylene sulfide resin containing filler (40 wt%), a liquid crystal polyester, a polyamide resin, a polyacetal resin, a polyethylene terephthalate resin, a polyethylene resin, a polypropylene resin, and a polycarbonate resin. The molding pressure was 500 kgf by the same method as in Example 1 and the method using thermoplastic resin by the same method as in Example 2.
/ Cm 2 and the resin was cured and sealed to form an all-solid battery.

【0056】構成した全固体電池を充放電電流150μ
A、0.5Vまで放電を行いリフロー前の放電容量を測
定した後、3.0Vまで充電を行い、260℃のはんだ
リフロー槽を3分間通過させた。はんだリフロー後、全
固体電池を放電電流150μAで0.5Vまで放電し、
はんだリフロー前の放電容量に対する容量維持率を調
べ、結果を表4に示した。
A charge / discharge current of 150 .mu.
A. Discharge was performed to 0.5 V, and the discharge capacity before reflow was measured. Then, the battery was charged to 3.0 V and passed through a solder reflow bath at 260 ° C. for 3 minutes. After solder reflow, the all solid state battery was discharged to 0.5 V at a discharge current of 150 μA,
The capacity retention ratio with respect to the discharge capacity before solder reflow was examined, and the results are shown in Table 4.

【0057】この結果、熱変形温度の高い樹脂ほど高い
容量維持率を示し、本発明によれば、はんだリフローが
可能な信頼性の高い全固体電池が得られることがわかっ
た。
As a result, it was found that a resin having a higher heat distortion temperature shows a higher capacity retention ratio, and that the present invention provides a highly reliable all-solid-state battery capable of solder reflow.

【0058】[0058]

【表4】 [Table 4]

【0059】(実施例5)固体電解質としてLi3PO4
−Li2S−SiS2系ガラス状固体電解質を用いて本発
明の全固体電池を作製した。正極合剤は、コバルト酸リ
チウム(LiCO2)と前記固体電解質を重量比で3:
2で混合して調製した。また、負極合剤は、チタン酸リ
チウム(LiTi24)と前記固体電解質を重量比で
7:3で混合して調整した。これらの電極合剤を粉末成
形金型を用いて、正極層、固体電解質層、負極層の3層
を一体に成形し、直径10mmの全固体電池素子を作製
した。
Example 5 Li 3 PO 4 as a solid electrolyte
Using -Li 2 S-SiS 2 type glass-like solid electrolyte was produced all-solid-state battery of the present invention. The positive electrode mixture, lithium cobaltate (LiC O O 2) and the solid electrolyte at a weight ratio of 3:
2 and prepared by mixing. The negative electrode mixture was prepared by mixing lithium titanate (LiTi 2 O 4 ) and the solid electrolyte at a weight ratio of 7: 3. The three layers of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer were integrally molded using the electrode mixture by using a powder molding die, thereby producing an all-solid-state battery element having a diameter of 10 mm.

【0060】このようにして作製した全固体電池素子の
正極層および負極層を厚さ0.15mm、直径13mm
のステンレススチールの円板で挟み、500kgf/c
2で加圧しながら、周囲を熱硬化性エポキシ樹脂で封
止して全固体電池を作製した。また、周囲を熱硬化性エ
ポキシ樹脂に換え熱可塑性ポリフェニレンスルフィド樹
脂を用いて封止して全固体電池を作製した。
The positive electrode layer and the negative electrode layer of the all-solid-state battery element thus manufactured were 0.15 mm thick and 13 mm in diameter.
500kgf / c between stainless steel discs
While pressurizing at m 2 , the surroundings were sealed with a thermosetting epoxy resin to produce an all-solid battery. Further, the all-solid-state battery was manufactured by sealing the periphery with a thermoplastic polyphenylene sulfide resin instead of a thermosetting epoxy resin.

【0061】このようにして得られた全固体電池を充放
電電流100μA、電圧範囲0.5〜3.0Vの間で充
放電サイクル試験を行った。
The thus obtained all solid state battery was subjected to a charge / discharge cycle test at a charge / discharge current of 100 μA and a voltage range of 0.5 to 3.0 V.

【0062】成形時の圧力を0〜12000kgf/c
2の範囲で変えた以外は上記と同様の構成法で全固体
電池を作製し、同様の充放電サイクル試験を実施した。
その結果を図8に、設計容量に対する実際の放電容量の
比率で示した。この図から、成形時の圧力範囲を50〜
10000kgf/cm2としたときに良好なサイクル
特性が得られることがわかった。
The pressure during molding is 0 to 12000 kgf / c
An all-solid-state battery was manufactured in the same manner as described above except that the range was changed within the range of m 2 , and the same charge / discharge cycle test was performed.
The results are shown in FIG. 8 as the ratio of the actual discharge capacity to the design capacity. From this figure, it can be seen that the pressure range during molding is 50 to
It was found that good cycle characteristics were obtained when the pressure was 10,000 kgf / cm 2 .

【0063】12000kgf/cm2のものについ
て、全固体電池を分解したところ、内部の全固体電池素
子にクラックが生じており、そのために電池性能が低下
したものと考えられる。このクラックは、樹脂成形時の
圧力が高すぎたために、全固体電池素子が圧壊されたこ
とによるものである。
When the all-solid-state battery was disassembled for 12000 kgf / cm 2 , it was considered that cracks occurred in the all-solid-state battery element inside, and that the battery performance was lowered. This crack is due to the all-solid-state battery element being crushed due to too high pressure during resin molding.

【0064】また、500kgf/cm2で成形した全
固体電池について、実施例3および実施例4と同様の方
法で、高温高湿保存試験およびはんだリフロー特性の試
験も行った。
Further, with respect to the all-solid-state battery molded at 500 kgf / cm 2 , a high-temperature high-humidity storage test and a test of solder reflow characteristics were performed in the same manner as in Examples 3 and 4.

【0065】その結果、高温高湿保存後、およびはんだ
リフロー後でも、電池特性の劣化は認められず、本発明
によれば高信頼性を有する全固体電池が得られることが
わかった。
As a result, no deterioration in battery characteristics was observed even after storage at high temperature and high humidity and after solder reflow, and it was found that an all-solid battery having high reliability was obtained according to the present invention.

【0066】[0066]

【表5】 [Table 5]

【0067】[0067]

【発明の効果】以上のように本発明によれば、金属製の
電池ケース、封口板を用いないために、電池の封口時の
膨れまたは変形がなく、なおかつ、電極の膨張により発
生する力で電池素子を加圧し、電池素子における電極−
固体電解質界面の接合を保ち、電池特性が損なわれない
という有利な効果が得られる。
As described above, according to the present invention, since the metal battery case and the sealing plate are not used, there is no swelling or deformation at the time of closing the battery, and the force generated by the expansion of the electrode is not. The battery element is pressurized and the electrodes of the battery element
An advantageous effect is obtained in that the bonding at the solid electrolyte interface is maintained and the battery characteristics are not impaired.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による全固体電池素子の
構造断面図
FIG. 1 is a structural sectional view of an all-solid-state battery element according to an embodiment of the present invention.

【図2】本発明の一実施の形態による樹脂封止用金型の
模式断面図
FIG. 2 is a schematic cross-sectional view of a resin sealing mold according to an embodiment of the present invention.

【図3】本発明の一実施の形態による全固体電池の構造
断面図
FIG. 3 is a structural sectional view of an all-solid-state battery according to an embodiment of the present invention.

【図4】本発明の一実施の形態による樹脂封止用金型の
模式断面図
FIG. 4 is a schematic sectional view of a resin sealing mold according to an embodiment of the present invention.

【図5】本発明の一実施の形態による全固体電池の構造
断面図
FIG. 5 is a structural sectional view of an all solid state battery according to one embodiment of the present invention.

【図6】本発明の一実施例による全固体電池の充放電サ
イクル特性を示す図
FIG. 6 is a diagram showing charge / discharge cycle characteristics of an all-solid-state battery according to one embodiment of the present invention.

【図7】本発明の一実施例による全固体電池の充放電サ
イクル特性を示す図
FIG. 7 is a diagram showing charge / discharge cycle characteristics of an all-solid-state battery according to one embodiment of the present invention.

【図8】本発明の一実施例による全固体電池の充放電サ
イクル特性を示す図
FIG. 8 is a diagram showing charge / discharge cycle characteristics of an all-solid-state battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 固体電解質層 2 正極合剤層 3 負極合剤層 4 リード付集電板 5 リード付集電板 6 全固体電池素子 7 樹脂封止用金型 8 樹脂溶融部 9 樹脂 10 キャビティ 11 加圧用パンチ 12 封止樹脂 13 全固体電池素子 14 樹脂封止金型 15 樹脂溶融部 16 熱硬化性樹脂 17 キャビティ 18 加圧用パンチ 19 封止樹脂 DESCRIPTION OF SYMBOLS 1 Solid electrolyte layer 2 Positive electrode mixture layer 3 Negative electrode mixture layer 4 Current collecting plate with lead 5 Current collecting plate with lead 6 All solid-state battery element 7 Resin sealing mold 8 Resin fusion part 9 Resin 10 Cavity 11 Punch for pressurization REFERENCE SIGNS LIST 12 sealing resin 13 all solid-state battery element 14 resin sealing mold 15 resin melting portion 16 thermosetting resin 17 cavity 18 pressurizing punch 19 sealing resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H011 AA01 AA04 CC02 CC05 CC09 CC12 DD02 DD12 KK04 5H029 AJ01 AJ11 AK02 AK03 AK05 AK11 AL02 AL03 AL04 AL11 AM11 AM12 AM13 CJ02 CJ03 CJ06 CJ08 CJ28 DJ02 DJ05 EJ06 EJ12 HJ14 HJ15  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shigeo Kondo 1006 Kazuma Kadoma, Kazuma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. 5H011 AA01 AA04 CC02 CC05 CC09 CC12 DD02 DD12 KK04 5H029 AJ01 AJ11 AK02 AK03 AK05 AK11 AL02 AL03 AL04 AL11 AM11 AM12 AM13 CJ02 CJ03 CJ06 CJ08 CJ28 DJ02 DJ05 EJ06 EJ12 HJ14 HJ15

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】正極と負極の間に固体電解質を介在させて
なる全固体電池素子を外装体で被覆した全固体電池であ
って、外装体内部で全固体電池素子に圧力が印加されて
おり、全固体電池素子と外装体の間が密着している全固
体電池。
An all-solid-state battery in which an all-solid-state battery element having a solid electrolyte interposed between a positive electrode and a negative electrode is covered with an exterior body, wherein pressure is applied to the all-solid-state battery element inside the exterior body. An all-solid-state battery in which the all-solid-state battery element and the outer package are in close contact.
【請求項2】印加される圧力が50〜10000kgf
/cm2である請求項1記載の全固体電池。
2. An applied pressure of 50 to 10,000 kgf
2 / cm 2 .
【請求項3】外装体が熱硬化性樹脂、熱可塑性樹脂のい
ずれかからなることを特徴とする請求項1記載の全固体
電池。
3. The all-solid-state battery according to claim 1, wherein the exterior body is made of one of a thermosetting resin and a thermoplastic resin.
【請求項4】熱硬化性樹脂がエポキシ樹脂、フェノール
樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル
樹脂あるいはポリイミド樹脂のいずれか、またはこれら
の樹脂にフィラーを混合した樹脂である請求項3記載の
全固体電池。
4. The thermosetting resin according to claim 3, wherein the thermosetting resin is any one of an epoxy resin, a phenol resin, a urea resin, a melamine resin, an unsaturated polyester resin and a polyimide resin, or a resin obtained by mixing a filler with these resins. All solid state battery.
【請求項5】熱可塑性樹脂がポリフェニレンスルフィド
樹脂、液晶ポリエステル樹脂、ポリエチレン樹脂あるい
はポリプロピレン樹脂、ポリアミド樹脂、ポリアセター
ル樹脂、ポリエチレンテレフタレート樹脂のいずれか、
またはこれらの樹脂にフィラーを混合した樹脂である請
求項3記載の全固体電池。
5. The thermoplastic resin is any one of a polyphenylene sulfide resin, a liquid crystal polyester resin, a polyethylene resin or a polypropylene resin, a polyamide resin, a polyacetal resin, and a polyethylene terephthalate resin.
4. The all-solid-state battery according to claim 3, which is a resin obtained by mixing a filler with these resins.
【請求項6】全固体電池素子の正極または負極の少なく
とも一方の、固体電解質層と対峙しない面に金属集電板
を備えた請求項3記載の全固体電池。
6. The all-solid-state battery according to claim 3, wherein a metal current collector is provided on at least one of the positive electrode and the negative electrode of the all-solid-state battery element, the surface not facing the solid electrolyte layer.
【請求項7】正極と負極の間に固体電解質を介在させて
なる全固体電池素子を電極端子としての2枚の金属板で
挟み、前記金属板に50〜10000kgf/cm2
圧力を印加しながら周囲を熱硬化性樹脂または熱可塑性
樹脂で封止したことを特徴とする全固体電池の製造法。
7. An all-solid-state battery element having a solid electrolyte interposed between a positive electrode and a negative electrode is sandwiched between two metal plates as electrode terminals, and a pressure of 50 to 10,000 kgf / cm 2 is applied to the metal plate. A method for manufacturing an all-solid battery, wherein the periphery is sealed with a thermosetting resin or a thermoplastic resin.
【請求項8】正極と負極の間に固体電解質を介在させて
なる全固体電池素子を埋設した溶融状態の熱硬化性樹脂
に50〜10000kgf/cm2の圧力を印加しなが
ら熱硬化させたことを特徴とする全固体電池の製造法。
8. A thermosetting resin in a molten state in which an all-solid-state battery element having a solid electrolyte interposed between a positive electrode and a negative electrode is thermally cured while applying a pressure of 50 to 10,000 kgf / cm 2. A method for producing an all-solid-state battery, comprising:
【請求項9】正極と負極の間に固体電解質を介在させて
なる全固体電池素子を溶融状態の熱可塑性樹脂で封止し
た後、冷却・硬化させ、再度、樹脂軟化温度まで昇温
し、該温度で再度50〜10000kgf/cm2の圧
力を印加した状態で冷却・硬化させたことを特徴とする
全固体電池の製造法。
9. An all-solid-state battery element having a solid electrolyte interposed between a positive electrode and a negative electrode is sealed with a molten thermoplastic resin, cooled and hardened, and heated again to a resin softening temperature. A method for producing an all-solid-state battery, wherein the battery is cooled and cured while applying a pressure of 50 to 10,000 kgf / cm 2 again at the temperature.
【請求項10】熱硬化性樹脂がエポキシ樹脂、フェノー
ル樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステ
ル樹脂あるいはポリイミド樹脂のいずれか、またはこれ
らの樹脂にフィラーを混合した樹脂である請求項7ある
いは8に記載の全固体電池の製造法。
10. The thermosetting resin is an epoxy resin, a phenol resin, a urea resin, a melamine resin, an unsaturated polyester resin or a polyimide resin, or a resin obtained by mixing a filler with these resins. 3. The method for producing an all-solid-state battery according to item 1.
【請求項11】熱可塑性樹脂がポリフェニレンスルフィ
ド樹脂、液晶ポリエステル樹脂、ポリエチレン樹脂、ポ
リプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹
脂、ポリエチレンテレフタレート樹脂のいずれか、また
はこれらの樹脂にフィラーを混合した樹脂である請求項
7あるいは9に記載の全固体電池の製造法。
11. The thermoplastic resin is any one of a polyphenylene sulfide resin, a liquid crystal polyester resin, a polyethylene resin, a polypropylene resin, a polyamide resin, a polyacetal resin, and a polyethylene terephthalate resin, or a resin obtained by mixing a filler with these resins. 10. The method for producing an all-solid-state battery according to 7 or 9.
JP10273381A 1998-09-28 1998-09-28 Whole solid battery and its manufacture Pending JP2000106154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10273381A JP2000106154A (en) 1998-09-28 1998-09-28 Whole solid battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10273381A JP2000106154A (en) 1998-09-28 1998-09-28 Whole solid battery and its manufacture

Publications (1)

Publication Number Publication Date
JP2000106154A true JP2000106154A (en) 2000-04-11

Family

ID=17527114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10273381A Pending JP2000106154A (en) 1998-09-28 1998-09-28 Whole solid battery and its manufacture

Country Status (1)

Country Link
JP (1) JP2000106154A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327305A (en) * 2003-04-25 2004-11-18 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery
JP2005135634A (en) * 2003-10-28 2005-05-26 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2006019093A (en) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd Battery pack
JP2006100064A (en) * 2004-09-29 2006-04-13 Toyota Motor Corp Sheet member type battery and manufacturing method of the same
KR100586896B1 (en) 2004-07-30 2006-06-08 주식회사 이스퀘어텍 Manufacturing Apparatus of Pouch for Rechargeable Battery
WO2007086219A1 (en) * 2006-01-24 2007-08-02 Murata Manufacturing Co., Ltd. Solid state battery
WO2008041503A1 (en) * 2006-09-29 2008-04-10 Murata Manufacturing Co., Ltd. Battery storing structure
JP2008084798A (en) * 2006-09-29 2008-04-10 Murata Mfg Co Ltd Whole solid secondary battery
JP2009193727A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp All-solid lithium secondary battery
JP2010287414A (en) * 2009-06-11 2010-12-24 Toyota Motor Corp Metal secondary battery
JP2011054438A (en) * 2009-09-02 2011-03-17 Toyota Central R&D Labs Inc All-solid lithium secondary battery
JP2013539171A (en) * 2010-08-24 2013-10-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Bipolar electrochemical cell with improved casing
WO2014007215A1 (en) * 2012-07-06 2014-01-09 株式会社村田製作所 All-solid-state secondary battery and method for producing all-solid-state secondary battery
JP2014102949A (en) * 2012-11-19 2014-06-05 Toyota Motor Corp All-solid-state battery and method for manufacturing same
US8870976B2 (en) 2006-08-31 2014-10-28 Seiko Epson Corporation Method for manufacturing a secondary battery
KR20150075656A (en) * 2013-12-26 2015-07-06 주식회사 엘지화학 Device for Manufacturing the Battery Cell Having for Means of Applying Curing Material
JP2015220102A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Battery mounting substrate
US9257718B2 (en) 2006-08-31 2016-02-09 Seiko Epson Corporation Secondary battery
US9276301B2 (en) 2012-12-07 2016-03-01 Samsung Electronics Co., Ltd. Polymeric compound, oxygen permeable membrane, and electrochemical device
KR20160046882A (en) 2013-09-25 2016-04-29 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
CN107452985A (en) * 2016-06-01 2017-12-08 丰田自动车株式会社 Manufacture method, manufacture device and the all-solid-state battery of all-solid-state battery
KR20170136433A (en) * 2016-06-01 2017-12-11 도요타 지도샤(주) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
CN108336256A (en) * 2017-01-20 2018-07-27 丰田自动车株式会社 All-solid-state battery
WO2018186135A1 (en) * 2017-04-06 2018-10-11 マクセルホールディングス株式会社 Separator and non-aqueous electrolyte battery
WO2018186597A1 (en) * 2017-04-06 2018-10-11 주식회사 엘지화학 Method for manufacturing lithium secondary battery
WO2018198494A1 (en) * 2017-04-28 2018-11-01 株式会社 オハラ All-solid-state battery
JP2019003804A (en) * 2017-06-14 2019-01-10 トヨタ自動車株式会社 All-solid battery
JP2019114381A (en) * 2017-12-22 2019-07-11 株式会社豊田自動織機 Manufacturing method of power storage module
CN110021783A (en) * 2018-01-09 2019-07-16 丰田自动车株式会社 All-solid-state battery
WO2019155940A1 (en) * 2018-02-08 2019-08-15 日立造船株式会社 All-solid state secondary cell and production method for same
JP2019153535A (en) * 2018-03-06 2019-09-12 トヨタ自動車株式会社 All-solid battery
JP2019215973A (en) * 2018-06-11 2019-12-19 本田技研工業株式会社 Capacity recovery device of lithium ion secondary battery and capacity recovery method
JP2020027742A (en) * 2018-08-10 2020-02-20 トヨタ自動車株式会社 Manufacturing method for all-solid-state battery
JP2020511745A (en) * 2017-10-31 2020-04-16 エルジー・ケム・リミテッド Secondary battery including injection-molded battery case
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
JP2020126790A (en) * 2019-02-06 2020-08-20 マクセルホールディングス株式会社 All-solid type lithium secondary battery
JP2020140830A (en) * 2019-02-27 2020-09-03 現代自動車株式会社Hyundai Motor Company All-solid battery
EP3809491A1 (en) 2019-10-15 2021-04-21 Honda Motor Co., Ltd. Electrode for lithium ion secondary batteries and lithium ion secondary battery
EP3809490A1 (en) 2019-10-15 2021-04-21 Honda Motor Co., Ltd. Electrode for lithium ion secondary batteries and lithium ion secondary battery
EP3866221A1 (en) 2020-02-14 2021-08-18 Honda Motor Co., Ltd. Lithium-ion secondary battery electrode and lithium-ion secondary battery
EP3869596A1 (en) 2020-02-18 2021-08-25 Honda Motor Co., Ltd. Electrode for lithium ion secondary batteries and lithium ion secondary battery
EP3879598A1 (en) 2020-03-13 2021-09-15 Honda Motor Co., Ltd. Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2021150126A (en) * 2020-03-18 2021-09-27 トヨタ自動車株式会社 All-solid battery, method for manufacturing battery element, and method for manufacturing all-solid battery
US11205781B2 (en) 2018-06-14 2021-12-21 Honda Motor Co., Ltd. Filamentary positive electrode for solid battery, solid battery, manufacturing method of filamentary positive electrode for solid battery and manufacturing method of solid battery
CN113851763A (en) * 2021-09-15 2021-12-28 中汽创智科技有限公司 Solid-state battery structure and preparation method thereof
CN114024019A (en) * 2021-10-29 2022-02-08 中汽创智科技有限公司 Preparation method and application of all-solid-state battery cell
CN114079125A (en) * 2020-08-10 2022-02-22 北京小米移动软件有限公司 Battery cell, manufacturing method thereof, battery and electronic equipment
US11302969B2 (en) 2017-12-20 2022-04-12 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method therefor
US11342608B2 (en) 2019-01-29 2022-05-24 Honda Motor Co., Ltd. Battery module
US11437675B2 (en) 2018-12-25 2022-09-06 Honda Motor Co., Ltd. Cell structure of solid state battery
US11450882B2 (en) 2019-01-16 2022-09-20 Honda Motor Co., Ltd. All-solid-state battery cell
US11515568B2 (en) 2018-12-13 2022-11-29 Honda Motor Co., Ltd. Laminated battery and manufacturing method of laminated battery
US11600844B2 (en) 2020-02-14 2023-03-07 Honda Motor Co., Ltd. Solid-state battery cell and solid-state battery module
US11710856B2 (en) 2018-12-27 2023-07-25 Honda Motor Co., Ltd. Solid electrolyte laminated sheet and solid state battery
US11735799B2 (en) 2020-03-23 2023-08-22 Honda Motor Co., Ltd. Lithium ion secondary battery
US11749835B2 (en) 2018-11-06 2023-09-05 Honda Motor Co., Ltd. Solid electrolyte sheet and solid state battery
US11862820B2 (en) 2021-01-20 2024-01-02 Honda Motor Co., Ltd. Solid-state battery
US11909003B2 (en) 2018-07-30 2024-02-20 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method therefor
US11942597B2 (en) 2018-03-28 2024-03-26 Honda Motor Co., Ltd. Solid-state battery and solid-state battery module

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327305A (en) * 2003-04-25 2004-11-18 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery
JP2005135634A (en) * 2003-10-28 2005-05-26 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2006019093A (en) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd Battery pack
KR100586896B1 (en) 2004-07-30 2006-06-08 주식회사 이스퀘어텍 Manufacturing Apparatus of Pouch for Rechargeable Battery
JP4687052B2 (en) * 2004-09-29 2011-05-25 トヨタ自動車株式会社 Sheet material type battery manufacturing method and sheet material type battery
JP2006100064A (en) * 2004-09-29 2006-04-13 Toyota Motor Corp Sheet member type battery and manufacturing method of the same
WO2007086219A1 (en) * 2006-01-24 2007-08-02 Murata Manufacturing Co., Ltd. Solid state battery
US9257718B2 (en) 2006-08-31 2016-02-09 Seiko Epson Corporation Secondary battery
US8870976B2 (en) 2006-08-31 2014-10-28 Seiko Epson Corporation Method for manufacturing a secondary battery
WO2008041503A1 (en) * 2006-09-29 2008-04-10 Murata Manufacturing Co., Ltd. Battery storing structure
JP2008084798A (en) * 2006-09-29 2008-04-10 Murata Mfg Co Ltd Whole solid secondary battery
JP2009193727A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp All-solid lithium secondary battery
JP4692556B2 (en) * 2008-02-12 2011-06-01 トヨタ自動車株式会社 All-solid lithium secondary battery
JP2010287414A (en) * 2009-06-11 2010-12-24 Toyota Motor Corp Metal secondary battery
JP2011054438A (en) * 2009-09-02 2011-03-17 Toyota Central R&D Labs Inc All-solid lithium secondary battery
JP2013539171A (en) * 2010-08-24 2013-10-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Bipolar electrochemical cell with improved casing
WO2014007215A1 (en) * 2012-07-06 2014-01-09 株式会社村田製作所 All-solid-state secondary battery and method for producing all-solid-state secondary battery
JPWO2014007215A1 (en) * 2012-07-06 2016-06-02 株式会社村田製作所 All solid state secondary battery
JP2014102949A (en) * 2012-11-19 2014-06-05 Toyota Motor Corp All-solid-state battery and method for manufacturing same
US9276301B2 (en) 2012-12-07 2016-03-01 Samsung Electronics Co., Ltd. Polymeric compound, oxygen permeable membrane, and electrochemical device
KR20180069137A (en) 2013-09-25 2018-06-22 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
KR20160046882A (en) 2013-09-25 2016-04-29 후지필름 가부시키가이샤 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
US11440986B2 (en) 2013-09-25 2022-09-13 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
KR101627366B1 (en) 2013-12-26 2016-06-07 주식회사 엘지화학 Device for Manufacturing the Battery Cell Having for Means of Applying Curing Material
KR20150075656A (en) * 2013-12-26 2015-07-06 주식회사 엘지화학 Device for Manufacturing the Battery Cell Having for Means of Applying Curing Material
JP2015220102A (en) * 2014-05-19 2015-12-07 Tdk株式会社 Battery mounting substrate
CN107452985A (en) * 2016-06-01 2017-12-08 丰田自动车株式会社 Manufacture method, manufacture device and the all-solid-state battery of all-solid-state battery
KR20170136433A (en) * 2016-06-01 2017-12-11 도요타 지도샤(주) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
JP2017220447A (en) * 2016-06-01 2017-12-14 トヨタ自動車株式会社 Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
US10153520B2 (en) 2016-06-01 2018-12-11 Toyota Jidosha Kabushiki Kaisha Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
KR101978557B1 (en) * 2016-06-01 2019-05-14 도요타 지도샤(주) Manufacturing method for all-solid-state battery, manufacturing apparatus for all-solid-state battery, and all-solid-state battery
CN108336256A (en) * 2017-01-20 2018-07-27 丰田自动车株式会社 All-solid-state battery
CN108336256B (en) * 2017-01-20 2021-06-22 丰田自动车株式会社 All-solid-state battery
KR20180086122A (en) 2017-01-20 2018-07-30 도요타 지도샤(주) All solid state battery
US10629867B2 (en) 2017-01-20 2020-04-21 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method thereof
CN109952669A (en) * 2017-04-06 2019-06-28 株式会社Lg化学 The manufacturing method of lithium secondary battery
US11177535B2 (en) 2017-04-06 2021-11-16 Maxell Holdings, Ltd. Separator and non-aqueous electrolyte battery
WO2018186135A1 (en) * 2017-04-06 2018-10-11 マクセルホールディングス株式会社 Separator and non-aqueous electrolyte battery
JPWO2018186135A1 (en) * 2017-04-06 2019-06-27 マクセルホールディングス株式会社 Separator and non-aqueous electrolyte battery
WO2018186597A1 (en) * 2017-04-06 2018-10-11 주식회사 엘지화학 Method for manufacturing lithium secondary battery
WO2018198494A1 (en) * 2017-04-28 2018-11-01 株式会社 オハラ All-solid-state battery
JP2019003804A (en) * 2017-06-14 2019-01-10 トヨタ自動車株式会社 All-solid battery
JP7041809B2 (en) 2017-10-31 2022-03-25 エルジー エナジー ソリューション リミテッド Rechargeable battery including injection molded battery case
JP2020511745A (en) * 2017-10-31 2020-04-16 エルジー・ケム・リミテッド Secondary battery including injection-molded battery case
US11302969B2 (en) 2017-12-20 2022-04-12 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method therefor
US11611110B2 (en) 2017-12-20 2023-03-21 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method therefor
JP2019114381A (en) * 2017-12-22 2019-07-11 株式会社豊田自動織機 Manufacturing method of power storage module
JP2019121532A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 All-solid battery
US11063300B2 (en) 2018-01-09 2021-07-13 Toyota Jidosha Kabushiki Kaisha All-solid-state battery
CN110021783B (en) * 2018-01-09 2022-06-14 丰田自动车株式会社 All-solid-state battery
CN110021783A (en) * 2018-01-09 2019-07-16 丰田自动车株式会社 All-solid-state battery
JP7133316B2 (en) 2018-02-08 2022-09-08 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
JP2019139892A (en) * 2018-02-08 2019-08-22 日立造船株式会社 All-solid-state secondary battery and method of manufacturing the same
WO2019155940A1 (en) * 2018-02-08 2019-08-15 日立造船株式会社 All-solid state secondary cell and production method for same
JP2019153535A (en) * 2018-03-06 2019-09-12 トヨタ自動車株式会社 All-solid battery
US11217819B2 (en) 2018-03-06 2022-01-04 Toyota Jidosha Kabushiki Kaisha All-solid-state battery
US11942597B2 (en) 2018-03-28 2024-03-26 Honda Motor Co., Ltd. Solid-state battery and solid-state battery module
JP2019215973A (en) * 2018-06-11 2019-12-19 本田技研工業株式会社 Capacity recovery device of lithium ion secondary battery and capacity recovery method
JP6997039B2 (en) 2018-06-11 2022-01-17 本田技研工業株式会社 Lithium-ion secondary battery capacity recovery device and capacity recovery method
US11205781B2 (en) 2018-06-14 2021-12-21 Honda Motor Co., Ltd. Filamentary positive electrode for solid battery, solid battery, manufacturing method of filamentary positive electrode for solid battery and manufacturing method of solid battery
US11909003B2 (en) 2018-07-30 2024-02-20 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method therefor
JP2020027742A (en) * 2018-08-10 2020-02-20 トヨタ自動車株式会社 Manufacturing method for all-solid-state battery
JP7017484B2 (en) 2018-08-10 2022-02-08 トヨタ自動車株式会社 Manufacturing method of all-solid-state battery
US11749835B2 (en) 2018-11-06 2023-09-05 Honda Motor Co., Ltd. Solid electrolyte sheet and solid state battery
US11515568B2 (en) 2018-12-13 2022-11-29 Honda Motor Co., Ltd. Laminated battery and manufacturing method of laminated battery
US11437675B2 (en) 2018-12-25 2022-09-06 Honda Motor Co., Ltd. Cell structure of solid state battery
US11710856B2 (en) 2018-12-27 2023-07-25 Honda Motor Co., Ltd. Solid electrolyte laminated sheet and solid state battery
US11450882B2 (en) 2019-01-16 2022-09-20 Honda Motor Co., Ltd. All-solid-state battery cell
US11342608B2 (en) 2019-01-29 2022-05-24 Honda Motor Co., Ltd. Battery module
JP7246196B2 (en) 2019-02-06 2023-03-27 マクセル株式会社 All-solid lithium secondary battery
JP2020126790A (en) * 2019-02-06 2020-08-20 マクセルホールディングス株式会社 All-solid type lithium secondary battery
JP2020140830A (en) * 2019-02-27 2020-09-03 現代自動車株式会社Hyundai Motor Company All-solid battery
JP7319060B2 (en) 2019-02-27 2023-08-01 現代自動車株式会社 All-solid battery
EP3809491A1 (en) 2019-10-15 2021-04-21 Honda Motor Co., Ltd. Electrode for lithium ion secondary batteries and lithium ion secondary battery
EP3809490A1 (en) 2019-10-15 2021-04-21 Honda Motor Co., Ltd. Electrode for lithium ion secondary batteries and lithium ion secondary battery
US11600844B2 (en) 2020-02-14 2023-03-07 Honda Motor Co., Ltd. Solid-state battery cell and solid-state battery module
EP3866221A1 (en) 2020-02-14 2021-08-18 Honda Motor Co., Ltd. Lithium-ion secondary battery electrode and lithium-ion secondary battery
EP3869596A1 (en) 2020-02-18 2021-08-25 Honda Motor Co., Ltd. Electrode for lithium ion secondary batteries and lithium ion secondary battery
EP3879598A1 (en) 2020-03-13 2021-09-15 Honda Motor Co., Ltd. Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7272304B2 (en) 2020-03-18 2023-05-12 トヨタ自動車株式会社 ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
KR20210117174A (en) * 2020-03-18 2021-09-28 도요타지도샤가부시키가이샤 All-solid-state battery, method of producing battery element, and method of producing all-solid-state battery
KR102525019B1 (en) * 2020-03-18 2023-04-25 도요타지도샤가부시키가이샤 All-solid-state battery, method of producing battery element, and method of producing all-solid-state battery
US11876173B2 (en) 2020-03-18 2024-01-16 Toyota Jidosha Kabushiki Kaisha All-solid-state battery, method of producing battery element, and method of producing all-solid-state battery
JP2021150126A (en) * 2020-03-18 2021-09-27 トヨタ自動車株式会社 All-solid battery, method for manufacturing battery element, and method for manufacturing all-solid battery
US11735799B2 (en) 2020-03-23 2023-08-22 Honda Motor Co., Ltd. Lithium ion secondary battery
CN114079125A (en) * 2020-08-10 2022-02-22 北京小米移动软件有限公司 Battery cell, manufacturing method thereof, battery and electronic equipment
US11862820B2 (en) 2021-01-20 2024-01-02 Honda Motor Co., Ltd. Solid-state battery
CN113851763A (en) * 2021-09-15 2021-12-28 中汽创智科技有限公司 Solid-state battery structure and preparation method thereof
CN114024019A (en) * 2021-10-29 2022-02-08 中汽创智科技有限公司 Preparation method and application of all-solid-state battery cell

Similar Documents

Publication Publication Date Title
JP2000106154A (en) Whole solid battery and its manufacture
JP5277859B2 (en) Sulfide-based lithium ion conductive solid electrolyte glass and all-solid lithium secondary battery
US8778543B2 (en) Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method for manufacturing all-solid lithium secondary battery
JP5585622B2 (en) Bipolar battery manufacturing method
JP5124961B2 (en) Bipolar battery
US9257718B2 (en) Secondary battery
JP4478706B2 (en) Lithium ion conductive solid electrolyte and all solid lithium secondary battery using the same
JP4741559B2 (en) Secondary battery and secondary battery unit
US9966604B2 (en) Electrochemical device
JP5365619B2 (en) Bipolar battery
US8870976B2 (en) Method for manufacturing a secondary battery
US20080100990A1 (en) Cell Assemby for an Energy Storage Device Using PTFE Binder in Activated Carbon Electrodes
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
US7235112B2 (en) Micro-battery fabrication process including formation of an electrode on a metal strip, cold compression and removal of the metal strip
JP2000195494A (en) Non-aqueous electrolyte secondary battery
JP2002075324A (en) Battery
JP7437786B2 (en) battery
WO2020137388A1 (en) All-solid-state battery, and method for manufacturing all-solid-state battery
WO2021149382A1 (en) Battery
JP2011204360A (en) Battery element body, battery component manufacturing device, and battery component manufacturing method
JP3494607B2 (en) Lithium secondary battery
JP4449109B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2004071405A (en) Bipolar battery
JP2000251858A (en) Nonaqueous secondary battery and manufacture thereof
US20240055735A1 (en) Battery