JP4686860B2 - Manufacturing method of flexible printed wiring board - Google Patents

Manufacturing method of flexible printed wiring board Download PDF

Info

Publication number
JP4686860B2
JP4686860B2 JP2000400394A JP2000400394A JP4686860B2 JP 4686860 B2 JP4686860 B2 JP 4686860B2 JP 2000400394 A JP2000400394 A JP 2000400394A JP 2000400394 A JP2000400394 A JP 2000400394A JP 4686860 B2 JP4686860 B2 JP 4686860B2
Authority
JP
Japan
Prior art keywords
copper foil
adhesive layer
heating
insulating tape
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000400394A
Other languages
Japanese (ja)
Other versions
JP2002204047A (en
Inventor
晃治 中島
豊一 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000400394A priority Critical patent/JP4686860B2/en
Publication of JP2002204047A publication Critical patent/JP2002204047A/en
Application granted granted Critical
Publication of JP4686860B2 publication Critical patent/JP4686860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ICカード端子等の半導体パッケージングおよび携帯情報端末等の電子機器に組み込まれるTAB(テープ オートメイテッド ボンディング)配線板等の可撓性を有するフレキシブルプリント配線板の製造方法およびそれに用いられる製造装置に関する。
【0002】
【従来の技術】
従来のフレキシブルプリント配線板の製造方法では、可撓性を有するポリイミドテープ等の絶縁性テープ基板に接着層を塗布し、電気的導通をとるためのデバイスホール、スルーホールやスプロケットホールなどの開孔部を形成するための金型パンチングを行い、次ぎに接着層面に銅箔を加熱ローラにて熱圧着する事で(以降、銅箔の加熱ローラでの熱圧着をラミネートと称す)、3層構造の可撓性を有する銅箔付テープ基板が形成される。
【0003】
次ぎに銅箔上に所定の絶縁性回路パターンを形成し、これをエッチングレジストとして利用し、銅箔の露出している部分を湿式エッチング処理にて除去することで、所定の銅パターンからなる配線導体が形成されている。
【0004】
近年、半導体素子の高周波化と電子機器の小型化、高集積化に伴い、フレキシブルプリント配線板の高密度化が進展し、孔位置精度の要求も厳しくなってきている。
【0005】
しかしながら、従来のフレキシブルプリント配線板では、金型パンチングによる孔開け加工のため、金型の位置精度にて開孔されているものの、その後の加熱ローラによる銅箔ラミネートによって、銅箔と接着層とポリイミドテープの各材料の熱膨張の差に起因した開孔部の位置ズレが発生していた。
【0006】
近年、このポリイミドテ−プのテープ厚さが薄くなる傾向にあり、銅箔と接着層とポリイミドテープの各材料の熱膨張の差がより一層顕著になってきている。
【0007】
一般的に銅箔ラミネートでは、接着層付ポリイミドテープを予備加熱した後、加熱ローラにて銅箔とポリイミドテープを熱圧着して貼り合わせている。
【0008】
しかしながら、接着層付ポリイミドテープを予備加熱することで、接着層とポリイミドテープの線膨張係数の差異に起因してポリイミドテープが伸ばされた状態となり、さらに銅箔と加熱ローラにてラミネートされるため、銅箔とポリイミドテープの線膨張係数の差異だけでなく、接着層の線膨張係数が大きく関与している。また、汎用される接着層として線膨張係数の大きなエポキシ樹脂が主に用いられることから、銅箔ラミネート時に開孔部の位置ズレが生じ、高密度配線板に至っては無視できなくなってきている。
【0009】
一方、前記銅箔ラミネートによる開孔部の位置ズレを回避する手段としては、ポリイミドテープと銅箔を貼り合わせた銅箔付テープ基板を先に作製しておき、その後、レーザ加工や湿式エッチングによって銅箔にダメージを与えないように、ポリイミドテープに孔開け加工をおこなう方法がある。
【0010】
このポリイミドテープのレーザ加工としては、エキシマレーザや炭酸ガスレーザが利用可能であるが、エキシマレーザは加工精度には優れるものの、加工速度が遅く加工コストの高い量産性の悪いプロセスとなっている。また、炭酸ガスレーザは加工速度も比較的速く、加工コストもエキシマレーザに比べて安価であるものの、加工精度が劣っていた。
【0011】
以上のように、レーザ加工に対して金型パンチングは量産性と加工精度の双方に優れた孔開け加工方法であり、金型パンチングが孔開け加工方法として一般的に広く使用されている。
【0012】
しかしながら、上述したように、金型パンチングには、孔開け加工の後に銅箔ラミネートをおこなう必要があり、銅箔と接着層とポリイミドテープの各材料の熱膨張の差に起因した開孔部の位置ズレが発生し、フレキシブルプリント配線板の課題となっていた。
【0013】
【発明が解決しようとする課題】
以上のように、従来のフレキシブルプリント配線板では、量産性と加工精度の双方に優れた金型パンチング法にて孔開け加工を行い、金型の位置精度で開孔が可能となっているが、その後の加熱ローラによる銅箔ラミネートによって銅箔と接着層とポリイミドテープの各材料の線膨張係数の差に起因した開孔部の位置ズレが発生していた。特に、汎用される接着層として線膨張係数の大きなエポキシ樹脂が主に用いられることから、銅箔とポリイミドテープの線膨張係数の差異だけでなく、接着層の線膨張係数が大きく関与して、銅箔ラミネート時に極めて大きな開孔部の位置ズレが生じていた。
【0014】
以上のことから、フレキシブルプリント配線板の高密度化の進展に対応した開孔部の位置精度が得られず問題となっていた。従って、フレキシブルプリント配線板の高密度化の進展に対応した開孔部位置の高精度化を可能とすべく、銅箔ラミネート時の開孔部の位置ズレを抑えたフレキシブルプリント配線板の製造方法が要求されていた。
【0015】
上記の問題に鑑み、本発明は、フレキシブルプリント配線板の高密度化の進展に対応した開孔部位置の高精度化を可能とするフレキシブルプリント配線板の製造方法およびそれに用いられる製造装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するために本発明のフレキシブルプリント配線板の製造方法は、可撓性を有する接着層付絶縁性テープ基板に孔開けを行うことにより開孔部を有した接着層付絶縁性テープ基板を作製する孔加工工程と、前記開孔部を有した接着層付絶縁性テープ基板と銅箔とを熱圧着するラミネート工程と、前記銅箔上にエッチングレジストを形成し前記銅箔の露出部をエッチング除去するパターンエッチング工程と、を備え、前記ラミネート工程は、前記開孔部を有した前記接着層付絶縁性テープの接着層面と前記銅箔のマット面とを対向させ、前記銅箔と前記開孔部を有した接着層付絶縁性テープとを、前記銅箔側に配置され第1の加熱温度を有する第1の加熱加圧ローラと前記第1の加熱加圧ローラに対向して配置された第1の加圧ローラとの間を通過させることにより加熱加圧を行うことで、仮固定状態の銅箔付絶縁性テープ基板を作製する第1のラミネート工程と、前記仮固定状態の銅箔付絶縁性テープ基板の銅箔側に配置され前記第1の加熱温度より高い第2の加熱温度を有する第2の加熱加圧ローラと前記第2の加熱加圧ローラに対向して配置された第2の加圧ローラとの間を通過させることにより加熱加圧を行い、前記仮固定状態の銅箔付絶縁性テープ基板を熱圧着することで、本圧着された銅箔付絶縁性テープ基板を作製する第2のラミネート工程と、により構成され、前記パターンエッチング工程は、前記本圧着された銅箔付絶縁性テープ基板の前記銅箔上に前記エッチングレジストを形成し前記銅箔の露出部をエッチング除去することにより、前記開孔部を被覆する銅パターンを形成するものである。
【0017】
この工程により、第1の熱圧着は低温にて熱圧着することで、銅箔と接着剤と絶縁性テープ基板の各材料の熱膨張差が極めて少ない状態で仮圧着し、絶縁性テープ基板に開孔された孔位置を仮固定した後、第2以降の熱圧着で高温度の熱圧着条件で本圧着するため、銅箔と接着剤と絶縁性テープ基板の各材料の熱膨張の差に起因した開孔部の位置ズレを防止することが可能となる。
【0020】
【発明の実施の形態】
本発明の請求項1に記載のフレキシブルプリント配線板の製造方法は、可撓性を有する接着層付絶縁性テープ基板に孔開けを行うことにより開孔部を有した接着層付絶縁性テープ基板を作製する孔加工工程と、前記開孔部を有した接着層付絶縁性テープ基板と銅箔とを熱圧着するラミネート工程と、前記銅箔上にエッチングレジストを形成し前記銅箔の露出部をエッチング除去するパターンエッチング工程と、を備え、前記ラミネート工程は、前記開孔部を有した前記接着層付絶縁性テープの接着層面と前記銅箔のマット面とを対向させ、前記銅箔と前記開孔部を有した接着層付絶縁性テープとを、前記銅箔側に配置され第1の加熱温度を有する第1の加熱加圧ローラと前記第1の加熱加圧ローラに対向して配置された第1の加圧ローラとの間を通過させることにより加熱加圧を行うことで、仮固定状態の銅箔付絶縁性テープ基板を作製する第1のラミネート工程と、前記仮固定状態の銅箔付絶縁性テープ基板の銅箔側に配置され前記第1の加熱温度より高い第2の加熱温度を有する第2の加熱加圧ローラと前記第2の加熱加圧ローラに対向して配置された第2の加圧ローラとの間を通過させることにより加熱加圧を行い、前記仮固定状態の銅箔付絶縁性テープ基板を熱圧着することで、本圧着された銅箔付絶縁性テープ基板を作製する第2のラミネート工程と、により構成され、前記パターンエッチング工程は、前記本圧着された銅箔付絶縁性テープ基板の前記銅箔上に前記エッチングレジストを形成し前記銅箔の露出部をエッチング除去することにより、前記開孔部を被覆する銅パターンを形成することを特徴とするものであり、この工程により、第1の熱圧着では低温にて熱圧着することで、銅箔と接着層と絶縁性テープ基板の各材料の熱膨張差が極めて少ない状態で仮圧着し、銅箔付絶縁性テープ基板に開孔された開孔部の位置を仮固定した状態で、第2以降の熱圧着で高温度の熱圧着条件で本圧着できるという作用を有することから、銅パターンと開孔部との位置ズレが少なく、高い孔位置精度を有したフレキシブルプリント配線板が製造可能である
【0022】
本発明の請求項記載のフレキシブルプリント配線板の製造方法は、請求項記載の発明において、前記第1の加熱加圧ローラの加熱温度が、50℃以上で80℃以下であり、前記第2の加熱加圧ローラの加熱温度が、100℃以上で140℃以下であることを特徴とするものであり、この工程により、第1の加熱加圧ローラによる熱圧着では50℃以上で80℃以下という低温にて熱圧着することで、銅箔と接着層と絶縁性テープ基板の各材料の熱膨張差が極めて少ない状態で仮圧着し、絶縁性テープ基板に開孔された開孔部の位置を仮固定した状態で、第2の加熱加圧ローラによる熱圧着で100℃以上で140℃以下という高温度の熱圧着条件で本圧着できるという作用を有する。
【0028】
以下本発明の一実施の形態について、図1から図4を用いて説明する。なお、これらの図面において同一の部材には同一の符号を付しており、重複した説明は省略させている。また、実施の形態において示されている数値等は種々選択し得る中の一例であり、これに限定されるものではない。
【0029】
(実施の形態1)
以下に本発明の実施の形態のフレキシブルプリント配線板の一製造方法について説明する。図1は本発明の一実施の形態におけるフレキシブルプリント配線板の製造方法の孔加工工程を示す要部断面図である。なお、図1において、1はポリイミドテープ、2はエポキシ系接着剤、3は開孔部、4は接着層付ポリイミドテープを示す。
【0030】
まず、図1(a)に示すように、可撓性を有する絶縁性テープ基板としては、50μmの厚さのポリイミドテープ1を用いることができ、このポリイミドテープ1の片側表面に厚さ12μmのエポキシ系接着層2が形成されている。
【0031】
次ぎに、図1(b)に示すように、表面にエポキシ系接着層2を備えたポリイミドテープ1は、金型パンチング加工にてスルーホール、スプロケットホールなどの開孔部3が形成され、開孔部を有した接着層付ポリイミドテープ4が作製される。
【0032】
図2は本発明の一実施の形態におけるフレキシブルプリント配線板の製造方法のラミネート工程を示す要部断面図である。図2において、5は厚さ18μmの銅箔、6は開孔部を有した接着層付ポリイミドテープ4と銅箔5を仮圧着するために銅箔5側に配置された第1の加熱加圧ローラ、7は前記第1の加熱加圧ローラ6に対向して配置されて、開孔部を有した接着層付ポリイミドテープ4側から加圧するための第1の加圧ローラである。8は開孔部を有した接着層付ポリイミドテープ4と銅箔5を仮圧着した仮固定状態の銅箔付ポリイミドテープ基板である。9は銅箔付ポリイミドテープ基板を本圧着するために銅箔5側に配置された第2の加熱加圧ローラ、10は前記第2の加熱加圧ローラ9に対向して配置されて、仮固定状態の銅箔付ポリイミドテープ基板8側から加圧するための第2の加圧ローラである。11は本圧着後の銅箔付ポリイミドテープ基板である。
【0033】
まず、図2(a)に示すように、開孔部を有した接着層付ポリイミドテープ4の接着層面と銅箔5のマット面を対向させ、前記銅箔5と開孔部を有した接着層付ポリイミドテープ4を第1の加熱加圧ローラ6と第1の加圧ローラ7の間を通過させることで加熱加圧をおこない、仮固定状態の銅箔付ポリイミドテープ基板8が作製される。
【0034】
ここで、銅箔5側に配置された第1の加熱加圧ローラ6は加熱温度が50℃と低温度に設定され、銅箔5側から加熱をおこなっている。
【0035】
また、銅箔5側からの加熱と同時に、開孔部を有した接着層付ポリイミドテープ4側に配置された第1の加圧ローラ7と前記第1の加熱加圧ローラ6によって銅箔5と開孔部を有した接着層付ポリイミドテープ4が0.4MPaで加圧されている。
【0036】
以上のように、第1の熱圧着では低温にて熱圧着することで、銅箔5とエポキシ系接着層2とポリイミドテープ1の各材料の熱膨張差が極めて少ない状態で仮圧着され、接着層付ポリイミドテープ4に形成された開孔部3の位置を仮固定することが可能となっている。
【0037】
特に、接着層として銅箔やポリイミドテープに比べて線膨張係数の大きなエポキシ樹脂が汎用されていることから、第1の熱圧着前に接着層付ポリイミドテープ4を予備加熱をおこなったり、第1の熱圧着の際に接着層付ポリイミドテープ4側から加熱をおこなうと、エポキシ系接着層2とポリイミドテープ1の間に大きな熱膨張差が生じ、極めて大きな孔の位置ズレが発生していた。
【0038】
本発明では、開孔部を有した接着層付ポリイミドテープ4に極力熱を加えないことで、接着層付ポリイミドテープ4に形成された開孔部3がエポキシ系接着層2とポリイミドテープ1の熱膨張の差に起因した開孔部の位置ズレがなく、金型パンチング加工直後の開孔部の位置を維持した状態で、銅箔5と第1の熱圧着がなされ、接着層付ポリイミドテープ4に形成された開孔部3の位置を精度よく仮固定することが可能となっている。
【0039】
ここで、第1の熱圧着の加熱温度と開孔部の位置ズレについて、本願発明者らが検討した結果、第1の熱圧着の加熱温度が40℃の場合は、熱圧着条件が低温すぎて、接着層に粘着性が生じず銅箔との仮固定ができないという不良が発生した。また、第1の熱圧着の加熱温度が90℃の場合は、熱圧着条件が高温すぎて、熱膨張の差に起因した開孔部の位置ズレが生じてしまった。以上のことから、開孔部の位置ズレが少ない状態で仮固定できる第1の熱圧着の加熱温度は50℃以上で80℃以下が適していることが判明した。
【0040】
次ぎに、図2(b)に示すように、前記仮固定状態の銅箔付ポリイミドテープ基板8を第2の加熱加圧ローラ9と第2の加圧ローラ10の間を通過させることで加熱加圧をおこない、本圧着後の銅箔付ポリイミドテープ基板11が作製される。
【0041】
ここで、仮固定状態の銅箔付ポリイミドテープ基板8の銅箔側に配置された第2の加熱加圧ローラ9は加熱温度が120℃と高温の本圧着温度に設定され、銅箔側から加熱をおこなっている。
【0042】
また、銅箔側からの加熱と同時に、ポリイミドテープ側に配置された第2の加圧ローラ10と前記第2の加熱加圧ローラ9によって仮固定状態の銅箔付ポリイミドテープ基板8が0.4MPaで加圧されている。
【0043】
以上のように、第2は高温度にて熱圧着することで、仮固定状態の銅箔付ポリイミドテープ基板8は強固に本圧着され、且つ本圧着後も前記開孔部3は仮圧着時の孔位置精度を維持することが可能となっている。
【0044】
ここで、第2の熱圧着の加熱温度と開孔部の位置ズレについて、本願発明者らが検討した結果、第2の熱圧着の加熱温度が90℃の場合は、熱圧着条件が低温すぎて接着層の粘着性が弱く、銅箔と強固に本圧着できないという不良が発生した。また、第2の熱圧着の加熱温度が150℃の場合は、熱圧着条件が高温すぎて、仮圧着時の孔位置精度を維持した状態で本圧着できなかった。以上のことから、開孔部の位置ズレが少ない状態で本圧着できる第2の熱圧着の加熱温度は100℃以上で140℃以下が適していることが判明した。
【0045】
また、本実施の形態では、2段の熱圧着をおこなった例を示しているが、2段以上に分割して熱圧着をおこなっても良い。
【0046】
さらに、本実施の形態では、同一の加圧力にて2段の熱圧着をおこなった例を示しているが、加熱温度に応じて、接着層の硬さが変化しており、この接着層の硬さに対応した加圧力にて加圧することで、接着層中に銅箔のマット面を更に強固に押圧硬化できる。
【0047】
図3は本発明の一実施の形態におけるフレキシブルプリント配線板の製造方法のパターンエッチング工程を示す要部断面図である。図3において、12はエポキシ系接着層を本硬化させた本硬化後の銅箔付ポリイミドテープ基板、13はエッチングレジスト、14は銅パターン、15はメッキ膜、16はフレキシブルプリント配線板である。
【0048】
まず、図3(a)に示すように、本圧着後の銅箔付ポリイミドテープ基板11に160℃で6時間の熱処理を加えて、エポキシ系接着層を本硬化した本硬化後の銅箔付ポリイミドテープ12を得る。次ぎに、前記本硬化後の銅箔付ポリイミドテープ12の銅箔表面にフォトリソグラフィー法等のパターン形成技術を用いて、位置決めされた所定形状のエッチングレジスト13を形成する。
【0049】
その後、図3(b)に示すように、前記エッチングレジスト13に被覆されてない銅箔部を塩化鉄系エッチング溶液にてエッチング除去して銅パターン14が形成される。次ぎに、図3(c)に示すように、前記エッチングレジスト13がアルカリ溶液にて溶解除去される。
【0050】
最後に、図3(d)に示すように、前記銅パターン14にニッケル、金からなるメッキ膜15を積層メッキすることでフレキシブルプリント配線板16が作製される。
【0051】
本発明では、開孔部3の孔位置精度が高いことから、前記銅パターン14と前記開孔部3との位置ズレが少なく、高い孔位置精度を有したフレキシブルプリント配線板が製造可能である。
【0052】
また、本実施の形態においては、可撓性を有する接着層付絶縁性テープ基板として、表面にエポキシ系接着層が形成されたポリイミドテープを例示して説明したが、エポキシ系接着剤及びポリイミドテープは、加工適正、汎用性に優れるものであるが、本発明においては、その基板としてポリイミドテープ以外にも、従来公知のフレキシブルプリント配線板に使用される可撓性、柔軟性を有する絶縁性の基板を用いることもできる。また、その接着剤もエポキシ系接着剤以外に、他の熱硬化型接着剤を用いることができるのは言うまでもない。
【0053】
更に、銅箔についても、加工適正、汎用性に優位な点があるが、金属箔として、銅箔以外にも従来公知のフレキシブルプリント配線板に使用される金属箔を使用することもできる。
【0054】
(実施の形態2)
以下に本発明の実施の形態のフレキシブルプリント配線板の製造装置ついて説明する。
【0055】
本発明のフレキシブルプリント配線板の製造装置は、可撓性を有する接着層付絶縁性テープ基板と銅箔を熱圧着するための装置である。図4は本発明の一実施の形態におけるフレキシブルプリント配線板の製造装置を示す装置構成図である。
【0056】
図4において、17は予備加熱部、18は開孔部を有した接着層付ポリイミドテープ4を供給する巻きだしリール、19は銅箔5を供給する巻きだしリール、20は本圧着後の銅箔付ポリイミドテープ11を巻き取る巻き取りリールである。
【0057】
本発明の製造装置では、図4に示すように、加熱温度と加圧力を調整可能な1段目の第1の加熱加圧ローラ6と第1の加圧ローラ7と、同じく加熱温度と加圧力を調整可能な2段目の第2の加熱加圧ローラ9と第2の加圧ローラ10とが、接着層付ポリイミドテープ4と銅箔5の移動方向に沿って配置されている。
【0058】
まず、第1の加熱加圧ローラ6と第1の加圧ローラ7では、低温度の熱圧着条件で仮圧着するための加熱温度と加圧力を調整できるため、銅箔5と開孔部を有した接着層付ポリイミドテープ4を構成するエポキシ系接着層とポリイミドテープの各材料の熱膨張差が極めて少ない状態で仮圧着することが可能となっている。
【0059】
さらに、第2の加熱加圧ローラ9と第2の加圧ローラ10では、高温度の熱圧着条件で本圧着するための加熱温度と加圧力を調整できるため、仮固定状態の銅箔付ポリイミドテープ基板8は強固に本圧着され、且つ本圧着後も前記開孔部は仮圧着時の孔位置精度を維持することが可能となっている。
【0060】
また、加熱源が銅箔5に接する側に配置され、銅箔側からのみ加熱できるため、開孔部を有した接着層付ポリイミドテープ4に不要な熱を加えることがなくなり、開孔部を有した接着層付ポリイミドテープ4を構成するエポキシ系接着層とポリイミドテープの熱膨張の差に起因した開孔部の位置ズレがなく、金型パンチング加工直後の孔位置を維持した状態で、銅箔5と第1の熱圧着がなされ、接着層付ポリイミドテープ4に形成された開孔部の位置を精度よく仮固定することが可能となっている。
【0061】
さらに、第1の加熱加圧ローラ6と第1の加圧ローラ7の前に銅箔5を予備加熱する予備加熱部17を配置することで、第1の加熱加圧ローラ6での銅箔5の加熱時間が短縮できるため、ラミネート速度の高速化が可能となる。
【0062】
【発明の効果】
本発明のフレキシブルプリント配線板の製造方法を用いることで、高精度の開孔部を有したフレキシブルプリント配線板の作製が可能となっている。
【0063】
また、本発明のフレキシブルプリント配線板の製造装置は、高精度の開孔部を有したフレキシブルプリント配線板の作製を可能とするものとなっている。
【0064】
よって、フレキシブルプリント配線板の高密度化の進展に対応した開孔部位置の高精度化を可能とするフレキシブルプリント配線板の製造方法およびそれに用いられる製造装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態におけるフレキシブルプリント配線板の孔加工工程を示す要部断面図
【図2】本発明の一実施の形態におけるフレキシブルプリント配線板のラミネート工程を示す要部断面図
【図3】本発明の一実施の形態におけるフレキシブルプリント配線板のパターンエッチング工程を示す要部断面図
【図4】本発明の一実施の形態におけるフレキシブルプリント配線板の製造装置を示す装置構成図
【符号の説明】
1 ポリイミドテープ
2 エポキシ系接着層
3 開孔部
4 接着層付ポリイミドテープ
5 銅箔
6 第1の加熱加圧ローラ
7 第1の加圧ローラ
8 仮固定状態の銅箔付ポリイミドテープ基板
9 第2の加熱加圧ローラ
10 第2の加圧ローラ
11 本圧着後の銅箔付ポリイミドテープ
12 本硬化後の銅箔付ポリイミドテープ
13 エッチングレジスト
14 銅パターン
15 メッキ膜
16 フレキシブルプリント配線板
17 予備加熱部
18 巻きだしリール
19 巻きだしリール
20 巻き取りリール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a flexible printed wiring board having flexibility, such as a TAB (tape automated bonding) wiring board incorporated in an electronic device such as a semiconductor packaging such as an IC card terminal and a portable information terminal, and the like. It relates to a manufacturing apparatus.
[0002]
[Prior art]
In the conventional method of manufacturing a flexible printed wiring board, an adhesive layer is applied to an insulating tape substrate such as a polyimide tape having flexibility, and openings such as device holes, through holes and sprocket holes are provided for electrical conduction. 3 layers structure by punching the mold to form the part and then thermocompression bonding copper foil on the adhesive layer surface with a heating roller (hereinafter, thermocompression bonding of the copper foil with the heating roller is called laminate) A copper foil-attached tape substrate having the following flexibility is formed.
[0003]
Next, a predetermined insulating circuit pattern is formed on the copper foil, this is used as an etching resist, and the exposed portion of the copper foil is removed by a wet etching process. A conductor is formed.
[0004]
In recent years, with the increase in the frequency of semiconductor elements and the miniaturization and high integration of electronic devices, the density of flexible printed wiring boards has increased, and the demand for hole position accuracy has become stricter.
[0005]
However, in the conventional flexible printed wiring board, although the hole is punched by die punching, the hole is made with the positional accuracy of the die. The positional deviation of the opening due to the difference in thermal expansion of each material of the polyimide tape occurred.
[0006]
In recent years, the tape thickness of this polyimide tape tends to be reduced, and the difference in thermal expansion among the copper foil, the adhesive layer, and the polyimide tape has become more prominent.
[0007]
In general, in copper foil lamination, a polyimide tape with an adhesive layer is preheated, and then the copper foil and the polyimide tape are bonded by thermocompression bonding with a heating roller.
[0008]
However, by preheating the polyimide tape with the adhesive layer, the polyimide tape is stretched due to the difference in linear expansion coefficient between the adhesive layer and the polyimide tape, and is further laminated with the copper foil and the heating roller. In addition to the difference in the linear expansion coefficient between the copper foil and the polyimide tape, the linear expansion coefficient of the adhesive layer is greatly involved. Moreover, since an epoxy resin having a large linear expansion coefficient is mainly used as a general-purpose adhesive layer, the positional deviation of the opening portion occurs at the time of copper foil lamination, and it has become impossible to ignore even a high-density wiring board.
[0009]
On the other hand, as a means of avoiding the positional deviation of the opening portion due to the copper foil laminate, a tape substrate with a copper foil bonded with a polyimide tape and a copper foil is prepared first, and then laser processing or wet etching is performed. There is a method of perforating a polyimide tape so as not to damage the copper foil.
[0010]
As laser processing of this polyimide tape, excimer laser or carbon dioxide laser can be used. Excimer laser is a process with low processing speed but high processing cost and low mass productivity, although it has excellent processing accuracy. Further, the carbon dioxide laser has a relatively high processing speed and the processing cost is lower than that of the excimer laser, but the processing accuracy is inferior.
[0011]
As described above, die punching is a punching method excellent in both mass productivity and processing accuracy with respect to laser processing, and die punching is generally widely used as a punching method.
[0012]
However, as described above, it is necessary to perform copper foil laminating after punching for die punching, and the opening portion due to the difference in thermal expansion of each material of the copper foil, the adhesive layer, and the polyimide tape. Misalignment occurred, which was a problem for flexible printed wiring boards.
[0013]
[Problems to be solved by the invention]
As described above, in the conventional flexible printed wiring board, drilling is performed by the die punching method which is excellent in both mass productivity and processing accuracy, and it is possible to open the hole with the accuracy of the mold position. Then, due to the copper foil laminating by the heating roller after that, the positional deviation of the hole portion due to the difference in the linear expansion coefficient among the materials of the copper foil, the adhesive layer and the polyimide tape occurred. In particular, since an epoxy resin having a large linear expansion coefficient is mainly used as a general-purpose adhesive layer, not only the difference in linear expansion coefficient between the copper foil and the polyimide tape, but also the linear expansion coefficient of the adhesive layer is greatly involved, When the copper foil was laminated, a very large misalignment of the apertures occurred.
[0014]
From the above, the position accuracy of the opening corresponding to the progress of higher density of the flexible printed wiring board cannot be obtained, which is a problem. Therefore, a method for manufacturing a flexible printed wiring board that suppresses the positional deviation of the opening portion during copper foil lamination in order to enable high accuracy of the opening portion position corresponding to the progress of higher density of the flexible printed wiring board. Was requested.
[0015]
In view of the above problems, the present invention provides a method for manufacturing a flexible printed wiring board and a manufacturing apparatus used therefor, which can increase the accuracy of the position of the opening corresponding to the progress of higher density of the flexible printed wiring board. The purpose is to do.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for producing a flexible printed wiring board according to the present invention comprises an insulating tape with an adhesive layer having a hole by punching a flexible insulating tape substrate with an adhesive layer. A hole forming step for producing a substrate, a laminating step for thermocompression bonding of the insulating tape substrate with an adhesive layer having the aperture and the copper foil, and an etching resist formed on the copper foil to expose the copper foil A pattern etching step of etching away a portion , wherein the laminating step causes the adhesive layer surface of the insulating tape with an adhesive layer having the opening portion and the mat surface of the copper foil to face each other, and the copper foil And an insulating tape with an adhesive layer having an opening are disposed opposite to the first heating and pressing roller disposed on the copper foil side and having a first heating temperature and the first heating and pressing roller. The first pressure b A first laminating step for producing a temporarily fixed copper foil-attached insulating tape substrate by performing heating and pressurization by passing between and a copper foil, and the temporarily fixed copper foil-containing insulating tape substrate A second heating and pressing roller disposed on the copper foil side and having a second heating temperature higher than the first heating temperature and a second pressing force disposed opposite to the second heating and pressing roller A second process for producing an insulative tape substrate with copper foil, which is finally bonded, by applying heat and pressure by passing between the rollers and thermocompression-bonding the temporarily fixed insulating tape substrate with copper foil. And the pattern etching step is to form the etching resist on the copper foil of the copper tape-attached insulating tape substrate with copper foil and remove the exposed portion of the copper foil by etching. The opening portion is And it forms a copper pattern covering.
[0017]
By this process, the first thermocompression bonding is performed by thermocompression bonding at a low temperature, so that the thermal expansion difference between each material of the copper foil, the adhesive, and the insulating tape substrate is temporarily reduced, and the insulating tape substrate is bonded. After temporarily fixing the opened hole position, the main pressure bonding is performed under the high-temperature thermocompression condition in the second and subsequent thermocompression bonding, so the difference in thermal expansion between each material of the copper foil, the adhesive, and the insulating tape substrate It is possible to prevent the positional deviation of the resulting opening portion.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, there is provided a method for manufacturing a flexible printed wiring board, wherein the insulating tape substrate with an adhesive layer having a hole is formed by punching the insulating tape substrate with an adhesive layer having flexibility. A hole forming step for forming the adhesive layer, a laminating step for thermocompression bonding of the insulating tape substrate with an adhesive layer having the opening and the copper foil, and an exposed portion of the copper foil by forming an etching resist on the copper foil A pattern etching step of etching and removing , wherein the laminating step makes the adhesive layer surface of the insulating tape with an adhesive layer having the opening portion and the mat surface of the copper foil face each other, and The insulating tape with an adhesive layer having the opening portion is opposed to the first heating and pressing roller disposed on the copper foil side and having the first heating temperature and the first heating and pressing roller. With the arranged first pressure roller A first laminating step for producing a temporarily fixed copper foil-attached insulating tape substrate by performing heating and pressurizing by passing the copper foil, and the copper foil side of the temporarily fixed copper foil-containing insulating tape substrate Between a second heating and pressing roller having a second heating temperature higher than the first heating temperature and a second pressing roller arranged opposite to the second heating and pressing roller A second laminating step for producing a pressure-bonded insulating tape substrate with copper foil by thermocompressing the temporarily fixed state of the insulating tape substrate with copper foil, The pattern etching step is performed by forming the etching resist on the copper foil of the copper-bonded insulating tape substrate with copper foil and removing the exposed portion of the copper foil by etching. Cover the hole And characterized in that to form a pattern, this process, in the first thermocompression bonding by thermocompression bonding at a low temperature, the thermal expansion difference between the materials of the copper foil and the adhesive layer and the insulating tape substrate Temporary pressure bonding is performed in an extremely small state, and the position of the opening formed in the insulating tape substrate with copper foil is temporarily fixed, so that the second and subsequent thermocompression bonding can be performed under high temperature thermocompression bonding conditions. Since it has an effect | action, there is little position shift with a copper pattern and an opening part, and the flexible printed wiring board with the high hole position accuracy can be manufactured .
[0022]
Method of manufacturing a flexible printed wiring board according to claim 2 of the present invention is the invention of claim 1 wherein the heating temperature of the first heating and pressing roller, not more than 80 ° C. at 50 ° C. or higher, the first The heating temperature of the heating and pressing roller 2 is 100 ° C. or more and 140 ° C. or less. By this process, the thermocompression bonding by the first heating and pressing roller is 50 ° C. or more and 80 ° C. By thermocompression bonding at a low temperature of the following, temporary bonding is performed with very little difference in thermal expansion between the copper foil, the adhesive layer, and the insulating tape substrate, and the opening portion formed in the insulating tape substrate In a state where the position is temporarily fixed, it has an effect that the main press-bonding can be performed under a high-temperature thermo-compression condition of 100 ° C. or more and 140 ° C. or less by thermo-compression using the second heat and pressure roller .
[0028]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In these drawings, the same members are denoted by the same reference numerals, and redundant description is omitted. In addition, the numerical values and the like shown in the embodiments are examples that can be variously selected, and are not limited thereto.
[0029]
(Embodiment 1)
A method for manufacturing a flexible printed wiring board according to the embodiment of the present invention will be described below. FIG. 1 is a cross-sectional view of a principal part showing a hole drilling process of a method for manufacturing a flexible printed wiring board in an embodiment of the present invention. In FIG. 1, 1 is a polyimide tape, 2 is an epoxy adhesive, 3 is an aperture, and 4 is a polyimide tape with an adhesive layer.
[0030]
First, as shown in FIG. 1A, a polyimide tape 1 having a thickness of 50 μm can be used as a flexible insulating tape substrate. A polyimide tape 1 having a thickness of 12 μm is formed on one surface of the polyimide tape 1. An epoxy adhesive layer 2 is formed.
[0031]
Next, as shown in FIG. 1 (b), the polyimide tape 1 having the epoxy adhesive layer 2 on the surface is formed with an opening 3 such as a through hole or a sprocket hole by die punching. A polyimide tape 4 with an adhesive layer having a hole is produced.
[0032]
FIG. 2 is a cross-sectional view of the main part showing the laminating process of the method for producing a flexible printed wiring board in one embodiment of the present invention. In FIG. 2, 5 is a copper foil having a thickness of 18 μm, 6 is a first heating element disposed on the copper foil 5 side in order to temporarily press-bond the adhesive-attached polyimide tape 4 with an opening and the copper foil 5. The pressure roller 7 is a first pressure roller that is disposed to face the first heating and pressure roller 6 and pressurizes from the side of the polyimide tape 4 with an adhesive layer having an opening. Reference numeral 8 denotes a polyimide tape substrate with a copper foil in a temporarily fixed state in which a polyimide tape 4 with an adhesive layer having an opening and a copper foil 5 are temporarily bonded. Reference numeral 9 denotes a second heating and pressing roller disposed on the copper foil 5 side for main press-bonding of the polyimide foil substrate with copper foil, and reference numeral 10 is disposed so as to face the second heating and pressing roller 9. It is the 2nd pressurizing roller for pressurizing from the polyimide tape board | substrate 8 with a copper foil of a fixed state. Reference numeral 11 denotes a polyimide tape substrate with copper foil after the main pressure bonding.
[0033]
First, as shown in FIG. 2 (a), the adhesive layer surface of the polyimide tape 4 with an adhesive layer having an aperture and the mat surface of the copper foil 5 are opposed to each other, and the copper foil 5 and the adhesive having the aperture are bonded. The polyimide tape with layer 4 is heated and pressed by passing between the first heating and pressing roller 6 and the first pressing roller 7 to produce a temporarily fixed polyimide tape substrate 8 with copper foil. .
[0034]
Here, the heating temperature of the first heating and pressing roller 6 disposed on the copper foil 5 side is set to a low temperature of 50 ° C., and heating is performed from the copper foil 5 side.
[0035]
Simultaneously with the heating from the copper foil 5 side, the copper foil 5 is formed by the first pressure roller 7 and the first heating and pressure roller 6 disposed on the side of the polyimide tape 4 with an adhesive layer having an opening. The polyimide tape 4 with an adhesive layer having an opening is pressed at 0.4 MPa.
[0036]
As described above, in the first thermocompression bonding, the thermocompression bonding is performed at a low temperature so that the materials of the copper foil 5, the epoxy adhesive layer 2, and the polyimide tape 1 are temporarily bonded and bonded in a state where the difference in thermal expansion is extremely small. It is possible to temporarily fix the position of the opening 3 formed in the layered polyimide tape 4.
[0037]
In particular, since an epoxy resin having a larger linear expansion coefficient than copper foil or polyimide tape is widely used as an adhesive layer, pre-heating the polyimide tape 4 with an adhesive layer before the first thermocompression bonding, When heating was performed from the side of the polyimide tape 4 with an adhesive layer during the thermocompression bonding, a large difference in thermal expansion occurred between the epoxy adhesive layer 2 and the polyimide tape 1, and an extremely large hole misalignment occurred.
[0038]
In the present invention, the hole 3 formed in the polyimide tape 4 with the adhesive layer is formed of the epoxy adhesive layer 2 and the polyimide tape 1 by applying as little heat as possible to the polyimide tape 4 with the adhesive layer having the aperture. There is no displacement of the opening due to the difference in thermal expansion, and the first thermocompression bonding with the copper foil 5 is performed in a state where the position of the opening immediately after the die punching process is maintained. The position of the opening 3 formed in 4 can be temporarily fixed with high accuracy.
[0039]
Here, as a result of investigation by the inventors of the present invention on the heating temperature of the first thermocompression bonding and the positional deviation of the opening portion, when the heating temperature of the first thermocompression bonding is 40 ° C., the thermocompression bonding condition is too low. As a result, there was a defect that the adhesive layer was not sticky and could not be temporarily fixed to the copper foil. In addition, when the heating temperature of the first thermocompression bonding was 90 ° C., the thermocompression bonding conditions were too high, and the positional deviation of the aperture due to the difference in thermal expansion occurred. From the above, it has been found that the heating temperature of the first thermocompression bonding that can be temporarily fixed in a state where the positional deviation of the opening portion is small is suitably 50 ° C. or higher and 80 ° C. or lower.
[0040]
Next, as shown in FIG. 2 (b), the polyimide tape substrate 8 with copper foil in the temporarily fixed state is heated by passing between the second heating and pressing roller 9 and the second pressing roller 10. The polyimide tape substrate 11 with a copper foil after the main pressure bonding is produced by applying pressure.
[0041]
Here, the second heating and pressing roller 9 disposed on the copper foil side of the temporarily fixed polyimide tape substrate 8 with copper foil is set to a main press bonding temperature of 120 ° C. and a high pressure bonding temperature, and from the copper foil side. Heating.
[0042]
Simultaneously with the heating from the copper foil side, the polyimide tape substrate 8 with the copper foil temporarily fixed by the second pressure roller 10 and the second heat and pressure roller 9 arranged on the polyimide tape side becomes 0. Pressurized at 4 MPa.
[0043]
As described above, the second is thermocompression bonding at a high temperature, so that the temporarily fixed polyimide tape substrate 8 with copper foil is firmly main-bonded, and the opening 3 is still temporarily bonded after the main-bonding. The hole position accuracy can be maintained.
[0044]
Here, as a result of investigation by the inventors of the present invention on the heating temperature of the second thermocompression bonding and the positional deviation of the aperture, when the heating temperature of the second thermocompression bonding is 90 ° C., the thermocompression bonding condition is too low. As a result, the adhesive layer was weakly tacky, and a defect occurred in that it could not be firmly bonded with the copper foil. In addition, when the heating temperature of the second thermocompression bonding was 150 ° C., the thermocompression bonding conditions were too high, and the main pressure bonding could not be performed while maintaining the hole position accuracy during the temporary pressure bonding. From the above, it has been found that the heating temperature of the second thermocompression bonding that can be subjected to the main pressure bonding in a state where the positional deviation of the opening portion is small is suitably 100 ° C. or higher and 140 ° C. or lower.
[0045]
In this embodiment, an example in which two-stage thermocompression bonding is performed is shown, but thermocompression bonding may be performed in two or more stages.
[0046]
Furthermore, in the present embodiment, an example in which two-stage thermocompression bonding is performed with the same pressure is shown, but the hardness of the adhesive layer changes according to the heating temperature. By pressing with a pressure corresponding to the hardness, the matte surface of the copper foil can be pressed and cured more firmly in the adhesive layer.
[0047]
FIG. 3 is a cross-sectional view of a principal part showing a pattern etching process of the method for manufacturing a flexible printed wiring board in one embodiment of the present invention. In FIG. 3, 12 is a polyimide film substrate with a copper foil that has been permanently cured with an epoxy adhesive layer, 13 is an etching resist, 14 is a copper pattern, 15 is a plating film, and 16 is a flexible printed wiring board.
[0048]
First, as shown in FIG. 3A, the polyimide film substrate 11 with copper foil after the main pressure bonding is subjected to a heat treatment at 160 ° C. for 6 hours to fully cure the epoxy adhesive layer. A polyimide tape 12 is obtained. Next, an alignment-shaped etching resist 13 is formed on the surface of the copper foil of the polyimide tape 12 with the copper foil after the main curing by using a pattern forming technique such as a photolithography method.
[0049]
Thereafter, as shown in FIG. 3B, a copper pattern 14 is formed by etching away the copper foil portion not covered with the etching resist 13 with an iron chloride etching solution. Next, as shown in FIG. 3C, the etching resist 13 is dissolved and removed with an alkaline solution.
[0050]
Finally, as shown in FIG. 3D, a flexible printed wiring board 16 is produced by laminating a plating film 15 made of nickel and gold on the copper pattern 14.
[0051]
In the present invention, since the hole position accuracy of the hole portion 3 is high, there is little positional deviation between the copper pattern 14 and the hole portion 3, and a flexible printed wiring board having high hole position accuracy can be manufactured. .
[0052]
In the present embodiment, the polyimide tape having an epoxy adhesive layer formed on the surface is described as an example of the flexible insulating tape substrate with an adhesive layer. However, the epoxy adhesive and the polyimide tape are described. Is excellent in processing suitability and versatility, but in the present invention, in addition to the polyimide tape as the substrate, the insulating material having flexibility and flexibility used in conventionally known flexible printed wiring boards. A substrate can also be used. It goes without saying that other thermosetting adhesives can be used as the adhesive in addition to the epoxy adhesive.
[0053]
Further, the copper foil is superior in processing suitability and versatility, but as the metal foil, a metal foil used for a conventionally known flexible printed wiring board can be used in addition to the copper foil.
[0054]
(Embodiment 2)
An apparatus for manufacturing a flexible printed wiring board according to an embodiment of the present invention will be described below.
[0055]
The apparatus for producing a flexible printed wiring board according to the present invention is an apparatus for thermocompression bonding a flexible insulating tape substrate with an adhesive layer and a copper foil. FIG. 4 is an apparatus configuration diagram showing a flexible printed wiring board manufacturing apparatus according to an embodiment of the present invention.
[0056]
In FIG. 4, 17 is a preheating part, 18 is an unwinding reel for supplying the polyimide tape 4 with an adhesive layer having an opening, 19 is an unwinding reel for supplying the copper foil 5, and 20 is copper after the main pressure bonding. It is a take-up reel which winds up the polyimide tape 11 with foil.
[0057]
In the manufacturing apparatus of the present invention, as shown in FIG. 4, the first heating pressure roller 6 and the first pressure roller 7 in the first stage whose heating temperature and pressing force can be adjusted, A second heating and pressing roller 9 and a second pressing roller 10 in the second stage capable of adjusting the pressure are arranged along the moving direction of the polyimide tape 4 with adhesive layer and the copper foil 5.
[0058]
First, the first heating and pressure roller 6 and the first pressure roller 7 can adjust the heating temperature and pressure for temporary bonding under low temperature thermocompression bonding conditions. It is possible to perform temporary pressure bonding in a state where the difference in thermal expansion between the materials of the epoxy adhesive layer and the polyimide tape constituting the polyimide tape 4 with adhesive layer is extremely small.
[0059]
Further, the second heating and pressing roller 9 and the second pressing roller 10 can adjust the heating temperature and the pressurizing force for the main press bonding under the high temperature thermocompression bonding conditions. The tape substrate 8 is firmly pressure-bonded, and the hole portion can maintain the hole position accuracy during temporary pressure-bonding even after the pressure bonding.
[0060]
In addition, since the heating source is disposed on the side in contact with the copper foil 5 and can be heated only from the copper foil side, unnecessary heat is not applied to the polyimide tape 4 with an adhesive layer having an aperture, and the aperture is There is no misalignment of the opening due to the difference in thermal expansion between the epoxy adhesive layer constituting the polyimide tape 4 with adhesive layer and the polyimide tape, and the position of the hole immediately after the die punching is maintained. The first thermocompression bonding with the foil 5 is performed, and the position of the opening formed in the polyimide tape 4 with the adhesive layer can be temporarily fixed with high accuracy.
[0061]
Furthermore, the copper foil in the 1st heat pressurizing roller 6 is arrange | positioned by arrange | positioning the preheating part 17 which preheats the copper foil 5 before the 1st heat pressurizing roller 6 and the 1st pressurizing roller 7. Since the heating time of 5 can be shortened, the laminating speed can be increased.
[0062]
【The invention's effect】
By using the method for producing a flexible printed wiring board of the present invention, it is possible to produce a flexible printed wiring board having a highly accurate aperture.
[0063]
Moreover, the manufacturing apparatus of the flexible printed wiring board of this invention enables preparation of the flexible printed wiring board which has a highly accurate opening part.
[0064]
Therefore, it is possible to provide a manufacturing method of a flexible printed wiring board and a manufacturing apparatus used therefor, which can increase the accuracy of the position of the opening corresponding to the progress of higher density of the flexible printed wiring board.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part showing a hole drilling process of a flexible printed wiring board in an embodiment of the present invention. FIG. 2 is a cross-sectional view of a main part showing a laminating process of a flexible printed wiring board in an embodiment of the present invention. FIG. 3 is a cross-sectional view of an essential part showing a pattern etching process of a flexible printed wiring board according to an embodiment of the present invention. FIG. 4 is an apparatus configuration showing an apparatus for manufacturing a flexible printed wiring board according to an embodiment of the present invention. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Polyimide tape 2 Epoxy system adhesive layer 3 Opening part 4 Adhesive layer-attached polyimide tape 5 Copper foil 6 1st heating pressurization roller 7 1st pressurization roller 8 The polyimide tape board | substrate 9 with a copper foil of a temporarily fixed state 2nd Heating and pressure roller 10 Second pressure roller 11 Polyimide tape with copper foil 12 after main pressure bonding Polyimide tape with copper foil after main curing 13 Etching resist 14 Copper pattern 15 Plating film 16 Flexible printed wiring board 17 Preheating part 18 Rewind reel 19 Rewind reel 20 Take-up reel

Claims (2)

可撓性を有する接着層付絶縁性テープ基板に孔開けを行うことにより開孔部を有した接着層付絶縁性テープ基板を作製する孔加工工程と、前記開孔部を有した接着層付絶縁性テープ基板と銅箔とを熱圧着するラミネート工程と、前記銅箔上にエッチングレジストを形成し前記銅箔の露出部をエッチング除去するパターンエッチング工程と、を備え、前記ラミネート工程は、前記開孔部を有した前記接着層付絶縁性テープの接着層面と前記銅箔のマット面とを対向させ、前記銅箔と前記開孔部を有した接着層付絶縁性テープとを、前記銅箔側に配置され第1の加熱温度を有する第1の加熱加圧ローラと前記第1の加熱加圧ローラに対向して配置された第1の加圧ローラとの間を通過させることにより加熱加圧を行うことで、仮固定状態の銅箔付絶縁性テープ基板を作製する第1のラミネート工程と、前記仮固定状態の銅箔付絶縁性テープ基板の銅箔側に配置され前記第1の加熱温度より高い第2の加熱温度を有する第2の加熱加圧ローラと前記第2の加熱加圧ローラに対向して配置された第2の加圧ローラとの間を通過させることにより加熱加圧を行い、前記仮固定状態の銅箔付絶縁性テープ基板を熱圧着することで、本圧着された銅箔付絶縁性テープ基板を作製する第2のラミネート工程と、により構成され、前記パターンエッチング工程は、前記本圧着された銅箔付絶縁性テープ基板の前記銅箔上に前記エッチングレジストを形成し前記銅箔の露出部をエッチング除去することにより、前記開孔部を被覆する銅パターンを形成することを特徴とするフレキシブルプリント配線板の製造方法。A hole machining process for manufacturing the adhesive layer with an insulating tape substrate having an opening portion by performing punching on the insulating tape substrate with the adhesive layer having flexibility, with the adhesive layer having the opening A laminating step of thermocompression bonding the insulating tape substrate and the copper foil, and a pattern etching step of forming an etching resist on the copper foil and etching away the exposed portion of the copper foil , the laminating step comprising: The adhesive layer surface of the insulating tape with an adhesive layer having an opening and the mat surface of the copper foil are opposed to each other, and the copper foil and the insulating tape with an adhesive layer having the aperture are formed on the copper Heating is performed by passing between a first heating and pressing roller disposed on the foil side and having a first heating temperature and a first pressing roller disposed opposite to the first heating and pressing roller. By pressing, with temporarily fixed copper foil A first laminating step for producing an edge tape substrate, and a second heating temperature higher than the first heating temperature and disposed on the copper foil side of the temporarily fixed copper foil-attached insulating tape substrate. The heat and pressure roller is passed between a second pressure roller disposed opposite to the second pressure roller and the second pressure roller, and the insulation with copper foil in the temporarily fixed state is performed. A second laminating step for producing a pressure-bonded insulating tape substrate with copper foil by thermocompression bonding of the adhesive tape substrate, and the pattern etching step is performed with the insulation with copper foil subjected to the main-pressure bonding. by sex tape forming said etching resist on the copper foil substrate to the exposed portion etch removal of the copper foil, the flexible printed wiring board and forming a copper pattern that covers the opening Production method. 前記第1の加熱加圧ローラの加熱温度が、50℃以上で80℃以下であり、前記第2の加熱加圧ローラの加熱温度が、100℃以上で140℃以下であることを特徴とする請求項記載のフレキシブルプリント配線板の製造方法。The heating temperature of the first heating and pressing roller is 50 ° C. or more and 80 ° C. or less, and the heating temperature of the second heating and pressing roller is 100 ° C. or more and 140 ° C. or less. The manufacturing method of the flexible printed wiring board of Claim 1 .
JP2000400394A 2000-12-28 2000-12-28 Manufacturing method of flexible printed wiring board Expired - Fee Related JP4686860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400394A JP4686860B2 (en) 2000-12-28 2000-12-28 Manufacturing method of flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400394A JP4686860B2 (en) 2000-12-28 2000-12-28 Manufacturing method of flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2002204047A JP2002204047A (en) 2002-07-19
JP4686860B2 true JP4686860B2 (en) 2011-05-25

Family

ID=18864998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400394A Expired - Fee Related JP4686860B2 (en) 2000-12-28 2000-12-28 Manufacturing method of flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP4686860B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688476B2 (en) * 2004-01-21 2011-05-25 ノーリツ鋼機株式会社 Thermal transfer apparatus and inkjet recording apparatus
JP2007173362A (en) * 2005-12-20 2007-07-05 Fujitsu Ltd Bonding method of flying lead
KR100887387B1 (en) * 2007-08-24 2009-03-06 삼성전기주식회사 Apparatus and method for manufacturing printed circuit board
KR101425177B1 (en) 2012-10-25 2014-09-25 하나 마이크론(주) Apparatus of manufacturing flexible integrated circuit device
CN112420604B (en) * 2020-11-20 2022-12-06 中国科学院半导体研究所 Preparation method of TSV (through silicon Via) vertical electrical interconnection device based on thermocompression bonding
CN117015161B (en) * 2023-09-18 2024-02-02 明光瑞智电子科技有限公司 Preparation process and equipment of high-Tg halogen-free copper-clad plate substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870170A (en) * 1994-08-29 1996-03-12 Toyota Auto Body Co Ltd Method and device for manufacturing flexible wiring
JPH11102938A (en) * 1997-09-29 1999-04-13 Hitachi Cable Ltd Tab tape carrier and manufacture thereof
JP2000190424A (en) * 1998-12-25 2000-07-11 Kitagawa Elaborate Mach Co Ltd Method and apparatus for producing thermoplastic resin metal clad laminated sheet
JP2000200853A (en) * 1998-12-28 2000-07-18 Shigetaka Ooto Tape-type chip size package and manufacture thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169860A (en) * 1983-03-15 1984-09-25 松下電工株式会社 Continuous manufacture of laminated board
JPS63283949A (en) * 1987-05-15 1988-11-21 Matsushita Electric Works Ltd Preparation of laminated sheet
JPH0542648A (en) * 1991-08-13 1993-02-23 Hitachi Chem Co Ltd Method for continuously producing laminate and device therefor
JPH0577378A (en) * 1991-09-20 1993-03-30 Kanegafuchi Chem Ind Co Ltd Production of metal foil-coated laminate by wet continuous method
JPH11207912A (en) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd Preparation of laminated sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870170A (en) * 1994-08-29 1996-03-12 Toyota Auto Body Co Ltd Method and device for manufacturing flexible wiring
JPH11102938A (en) * 1997-09-29 1999-04-13 Hitachi Cable Ltd Tab tape carrier and manufacture thereof
JP2000190424A (en) * 1998-12-25 2000-07-11 Kitagawa Elaborate Mach Co Ltd Method and apparatus for producing thermoplastic resin metal clad laminated sheet
JP2000200853A (en) * 1998-12-28 2000-07-18 Shigetaka Ooto Tape-type chip size package and manufacture thereof

Also Published As

Publication number Publication date
JP2002204047A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
US7281328B2 (en) Method of fabricating rigid-flexible printed circuit board
JP4045143B2 (en) Manufacturing method of wiring film connecting member and manufacturing method of multilayer wiring board
US7229293B2 (en) Connecting structure of circuit board and method for manufacturing the same
WO2010013366A1 (en) Flex-rigid wiring board and method for manufacturing the same
US20080128911A1 (en) Semiconductor package and method for manufacturing the same
JP2002076578A (en) Printed wiring board and manufacturing method therefor
JP4686860B2 (en) Manufacturing method of flexible printed wiring board
WO2006098406A1 (en) Method for manufacturing circuit forming board
JP2004119729A (en) Method of manufacturing circuit device
KR20100095031A (en) Method for manufacturing electronic component module
JP4398683B2 (en) Manufacturing method of multilayer wiring board
JP4443543B2 (en) Multilayer wiring board manufacturing method, wiring film connecting member used therefor, and manufacturing method
JP4086607B2 (en) Circuit device manufacturing method
JP2003110240A (en) Composite wiring board and manufacturing method thereof
KR100693146B1 (en) Multi-layer printed circuit board making method
JP5057339B2 (en) Wiring board manufacturing method
JP2001326458A (en) Printed wiring board and its manufacturing method
JPS60216573A (en) Manufacture of flexible printed circuit board
JP2003152336A (en) Method of manufacturing multilayer printed wiring board
JP2002246745A (en) Three-dimensional mounting package and its manufacturing method, and adhesive therefor
JP5098313B2 (en) Wiring board
JP2020017634A (en) Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
US9674955B2 (en) Tape carrier package, method of manufacturing the same and chip package
JP2001308521A (en) Method for manufacturing multilayered circuit board
JP2008235640A (en) Circuit board and circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees