JP4685980B2 - 金属工作物熱処理用の炉の電気加熱方法 - Google Patents

金属工作物熱処理用の炉の電気加熱方法 Download PDF

Info

Publication number
JP4685980B2
JP4685980B2 JP2003165229A JP2003165229A JP4685980B2 JP 4685980 B2 JP4685980 B2 JP 4685980B2 JP 2003165229 A JP2003165229 A JP 2003165229A JP 2003165229 A JP2003165229 A JP 2003165229A JP 4685980 B2 JP4685980 B2 JP 4685980B2
Authority
JP
Japan
Prior art keywords
heating
furnace
transformer
voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003165229A
Other languages
English (en)
Other versions
JP2005005043A (ja
Inventor
レムケン カール−ハインツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Priority to JP2003165229A priority Critical patent/JP4685980B2/ja
Publication of JP2005005043A publication Critical patent/JP2005005043A/ja
Application granted granted Critical
Publication of JP4685980B2 publication Critical patent/JP4685980B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属工作物を熱処理する炉の、特にプラズマ炭化またはプラズマ窒化のために使用可能な真空炉の電気加熱方法に関する。その際に炉の加熱要素には、交流回路網に接続した交流変圧器の二次側で生成される加熱電圧が供給される。
【0002】
【従来の技術】
交流回路網においては、一般的にそれぞれ120°だけ互いに位相の異なる3つの交流電圧によって引き起こされる交流電流が流れる。この交流電流は、純粋なオーム電気負荷でない場合、つまり誘導特性および容量特性、あるいはそのいずれか一方を備えた電流回路部分を有する電気負荷の場合に、負荷のインダクタンスおよびキャパシタンス、あるいはそのいずれか一方によって決まる、電圧と電流との間の位相外れ(φ)を有する。
【0003】
交流回路網では、交流によって生成される有効電力のみが、電気負荷において、すなわち人によって設定された課題を満たすために電気エネルギを必要とする動作手段において利用可能である。しかし交流回路網では、なお無効電流に起因した、利用可能な電力に寄与しない無効電力(Q)が発生する。この無効電力は、電圧と電流との間の位相外れがその原因であり、電流回路内のインダクタンスおよびキャパシタンスによって引き起こされ、電界および磁界を形成するために費やされる。無効電力(Q)は、電気装置類に悪影響を与える。その理由は、無効電力が、電圧降下および電流熱損失を引き起こし、発電機、変圧器および導線の追加負荷になるからである。それゆえ比較的大きな電気負荷については、力率(cosφ)を0.8〜0.9の間で保持することが、エネルギ供給企業によって求められる。さらに無効電力に関連した支出が必要である。したがって工場などの関心は、その交流回路網に生ずる無効電力を補償することである。
【0004】
交流回路網における無効電力を補償するためには、例えば移相器とも呼ばれる同期補償装置、無効電力コンデンサおよび無効電力整流器のような多数の補償装置類が知られている。これらの装置類は、有効電力(P)と皮相電力(S)との間の位相角(φ)を小さくし、それによってエネルギ供給企業に支払うべき無効電力(Q)の費用を低減する。それらの欠点は、無効電力補償用装置類に必要となるわずかではない装置技術的および経済的観点での高コストである。これは、可能な限りわずかな製造コストおよび運転コストを考慮して回避することが重要である。
【0005】
無効電力の補償は、金属工作物の熱処理炉において、特に工作物のプラズマ炭化またはプラズマ窒化の場合に使用される真空炉において非常に有効である。プラズマ炭化またはプラズマ窒化における加熱要素の領域での炉雰囲気のイオン化を回避するために、公知の炉は、低オーム抵抗を有するとともに低い加熱電圧が供給される加熱要素を備えている。それでも加熱要素の低オーム設計は、それに応じて多量の加熱要素を必要とし、これらの加熱要素は、大きな加熱電力の原因となる。大きな加熱電力および低い加熱電圧は、かなりの装置技術的な、したがって高い製造コストのほかに、高電流が加熱要素を流れる結果となる。この高電流は、それに応じて高い無効電流割合をもたらし、それによって無効電力(Q)は増加する。
【0006】
交流変圧器において、および特に金属工作物の熱処理炉との関連で加熱電圧を制御しそれによって炉室内の温度を制御するために使用される可変設定自在リアクタンス変圧器(VRTと呼ばれる)において、力率(cosφ)は、定められた1つの作動点で、または所定の複数作動点の範囲内で0.8〜0.9の間の許容値に保持可能である。すでに変圧器の1つもしくは複数の作動点からほんのわずか外れただけで、力率(cosφ)が大きく低減し、それによって無効電流割合が増加し、したがって高い無効電力(Q)が生じることになる。特に、金属工作物の熱処理炉において加熱過程に対して特徴的な動作パラメータに基づいた操作量を用いて変圧器の一次側から二次側への電力伝達を制御する可変設定自在リアクタンス変圧器(VRT)においては、経験的な試みが示しているように、殆ど常に変化する加熱過程の動作パラメータに基づいて、例えば炉温度、装入物温度またはそのときどきに必要な加熱電力に基づいて、最適作動点または複数作動点範囲からの偏差、そしてそれに伴って現れる無効電力(Q)の増加が避けられない。
【0007】
【発明が解決しようとする課題】
この先行技術を考慮して、本発明の課題は、冒頭に挙げた種類の金属工作物熱処理用炉の電気加熱方法をさらに改良して、簡単かつコスト的に有利な方法で比較的わずかな無効電力割合が達成されるようにすることである。
【0008】
【課題を解決するための手段】
この課題は、請求項1の構成要件によって解決される。
その際に本発明によれば、交流変圧器は、40kVAを超える電力を有し、交流変圧器の一次側コイル巻線は、第1加熱フェーズの間は三角結線で接続され、第2加熱フェーズの間は星形結線で接続される。その際に三角結線から星形結線への切換え時点(tum)は、加熱過程に特徴的な動作パラメータに応じて決定される。
【0009】
本発明は、金属工作物熱処理用の炉の電気加熱時の加熱過程が、異なる加熱電力を必要とする加熱フェーズを含むという知識に基づいている。したがって例えば所定温度への炉の加熱時には、要求される熱処理に必要な処理温度に炉を維持するための加熱電力よりも大きな加熱電力が必要である。本発明によれば、加熱過程に対して特徴的な動作パラメータに応じた、三角結線から星形結線へのリアクタンス変圧器の一次側コイル巻線の切換えによって、高い力率cosφを有する1つの作動点で、もしくは複数作動点の範囲で交流変圧器の作動が保証される。三角結線から星形結線への切換えによって、交流変圧器に一次側で供給される電力が低減される。その際に交流変圧器の作動点は、それに結び付いた二次側電気出力の低下にもかかわらず、1つもしくは複数の作動点に結び付いた力率(cosφ)と同様に保持される。その結果、無効電力の限定は、高い費用のかかる補償をすることなく達成される。その際に切換えは、好適には、必要な加熱電力が、加熱全負荷の25%〜35%の値へ低下した場合に行われる。
【0010】
この場合に有利な方法で適用されるのは、第1加熱フェーズにおける一次側コイル巻線の三角結線が、高い加熱電力を生じさせることである。その結果、それに応じて短い加熱時間が得られる。加熱後には、第2加熱フェーズにおいて温度を維持するためのわずかな加熱電力が必要であるに過ぎない。これは、本発明によれば、加熱過程に対して特徴的な動作パラメータおよびそれに付随するわずかな二次側加熱電圧に応じた、三角結線から星形結線への切換えによって考慮される。
【0011】
後者は、とりわけプラズマ炭化またはプラズマ窒化との関連で、加熱要素の領域における炉雰囲気のイオン化の回避をもたらす。先行技術において必要な無効電力(Q)の補償ではなくて、本発明による切換えによって、先行技術の場合に補償されるべき無効電力(Q)は、初めは全く生成されない。三角結線から星形結線へのリアクタンス変圧器の一次側コイル巻線の切換えに起因して、交流変圧器の一次側には、異なった大きさの線間電圧および線間電流が印加される。これらによって、交流変圧器の二次側に生成される加熱電圧は、三角結線から星形結線への切換えによってわずかになり、それに応じて第2加熱フェーズの間に比較的わずかな加熱電力が供給される。ここで確認されたのは、三角結線から星形結線への切換えによって得られた交流変圧器の二次側での低減加熱電力が、好適には実質的に第2加熱フェーズの間に要求される熱処理に不可欠な動作温度の維持のために必要な低減された加熱電力に相応することである。三角結線から星形結線への切換え時点は、有利には所定の操作量、好適には可変設定自在リアクタンス変圧器の操作量に応じて決定される。
【0012】
本発明の特に有利な態様において、三角結線から星形結線への切換え時点は、加熱過程に対する特徴的動作パラメータとしての炉温度および装入物温度および力率(cosφ)、あるいはそれらのうちの少なくとも1つまたは2つに応じて決定される。
【0013】
さらに有利であるのは、接触器を用いて三角結線から星形結線へ切り換えることである。なぜならばその場合には、電力損失がわずかに保持され、無効電力が大幅に低減されるからである。
【0014】
本発明の好適な態様では、比較的高いオーム抵抗を有する加熱要素が使用される。これは、従来の方法と違って、プラズマ炭化またはプラズマ窒化の場合でも可能である。その理由は、星形結線によって電流および加熱電力の双方が、したがって第2加熱フェーズの間の加熱電圧が低減されているからである。その結果、前述のように、加熱要素の領域における炉雰囲気のイオン化の危険性を排除することができる。高オーム抵抗を有する加熱要素の使用によって、装置技術的製造コストは低減される。なぜならば、加熱要素の量が低減され、それに応じて必要な加熱電力がわずかになるからである。さらにこの方法によって、各種の炉型式に関して同じ加熱要素が使用可能である。その結果、プラズマ炭化またはプラズマ窒化用の炉に対する余分なコストが不必要になる。
【0015】
本発明のさらに好適な態様によれば、交流変圧器としては、可変設定自在リアクタンス変圧器が使用される。これによって得られる利点は、高オーム抵抗を有する加熱要素との相互作用において、加熱電圧もしくは炉室内の温度が、接触器を用いる代わりにリアクタンス変圧器の操作量を変えることによって設定自在であるということである。その際にリアクタンス変圧器の操作量の、より小さな値の方向への変化の結果として普通に得られる力率(cosφ)の低減は、加熱要素の高オーム抵抗に基づいてそれほど重要ではない。したがって加熱電圧の微調整を達成するために、さらなる提案によれば、第1および第2加熱フェーズに対する加熱電圧が、接触器を用いた三角結線から星形結線への切換えにかかわりなく、リアクタンス変圧器の操作量を変えることによって適合されることである。
【0016】
第1加熱フェーズの間には、60V未満の、有利には約50Vの加熱電圧が、そして第2加熱フェーズの間には、35V未満の、有利には約30Vの加熱電圧が加熱要素に印加されるのが好適である。それによってプラズマ炭化またはプラズマ窒化の場合に、第1加熱フェーズでは、短い加熱時間が保証され、第2加熱フェーズでは、加熱要素の領域における望ましくないイオン化による炉雰囲気への悪影響が排除されている。最後に提案されるのは、交流回路網に約400Vの電圧を供給することである。その結果、金属工作物熱処理用の炉の運転は、公共商用回路網において可能である。
本発明の他の詳細内容、諸特徴および諸利点は、次の好適な実施例の説明から明らかになる。
【0017】
【発明の実施の形態】
図1および図2に表した配線図は、30×10mmの横断面を有する平型銅線として形成された、約400Vの供給電圧を有する交流回路網の電線1a、1b、1cを示す。電線1a、1b、1cは、等級NH2の315A用ヒューズ付負荷開閉器2a、2bと接続されている。ヒューズ付負荷開閉器2a、2bは、20×10mmの横断面を有する平型銅線3a、3bを介して、300A用の回路接触器4aと、同様に300A用の三角結線接触器4bおよびこれに対して並列に接続された160A用の星形結線接触器4cとに接続されている。6×120mmの横断面を有する平型銅線5a、5bは、接触器4a〜4cを可変設定自在リアクタンス変圧器6の一次側コイル巻線と接続する。特に図2によってわかるように、リアクタンス変圧器6の二次側コイル巻線は、2×120×10mm厚みの平型銅線7a、7b、7cを介して、高オーム抵抗を有する加熱要素8a、8b、8cに接続されている。
【0018】
リアクタンス変圧器6の一次側コイル巻線は、それぞれ真空炉において実施される熱処理のプロセス状態に応じて、三角結線または星形結線のいずれかで結線されている。接触器4b、4cによって、三角結線から星形結線へ切換え可能である。三角結線の場合には、リアクタンス変圧器6の一次側に、約400Vの線間電圧が印加される。その際にリアクタンス変圧器6の一次側コイル巻線を流れる電流は、約464Aである。星形結線の場合には、リアクタンス変圧器6の一次側に、よりわずかな約230Vの線間電圧が印加される。一次側電流の大きさは、同様により低く、約268Aである。
【0019】
リアクタンス変圧器6の一次側にそれぞれ印加される線間電圧は、それぞれ118kVAを伝達するリアクタンス変圧器6の個別変圧器9a、9b、9cの皮相電力によって降圧され、星形結線の場合には、例えばリアクタンス変圧器の二次側で降下する約35Vの加熱電圧へ降圧される。二次側電流が3057Aの場合には、これによって加熱要素8a、8b、8cに対するそれぞれ約107kWの有効電力が得られる。
【0020】
前述の配線図に基づいた加熱要素によって、真空炉の炉室は、例えば金属工作物のプラズマ窒化のために、第1加熱フェーズの間に約1080℃の所定温度へ加熱され、第2加熱フェーズの間にそれぞれの使用目的に対応した例えば600℃〜850℃の窒化温度で所定継続時間にわたり維持可能となる。その際に第1加熱フェーズの間には、リアクタンス変圧器6の一次側コイル巻線が三角結線で結合されるので、それによって加熱要素8a、8b、8cのために供給される高い加熱電力に基づいて、短い加熱時間が得られる。第1加熱フェーズの終わりで所定温度に達した後に、接触器4cを用いて星形結線へ切り換えられる。これによって二次電流もまた二次側で降下する加熱電圧も低減される。
【0021】
第2加熱フェーズの間での温度維持のためには比較的わずかな加熱電力が必要であるので、低減した加熱電圧によって十分な加熱電力が使用可能となる。加熱電力を適合させるためにリアクタンス変圧器6の操作量を大きく変える必要はない。なぜならばリアクタンス変圧器は、さらにその作動点で、もしくは所定の複数作動点の範囲で作動されるからである。しかしながらリアクタンス変圧器6は、加熱電力の微調整のために考慮される。その際に力率(cosφ)の大幅な低下は起こらないままである。この方法によって考慮されるわずかな無効電流割合は、高コストの無効電流補償を不必要にするとともに,とりわけ付随的に発生するエネルギコストを低減する。これは、加熱要素8a、8b、8cの高オーム抵抗によって支援される。
【0022】
図3は、先行技術による加熱過程の間の力率(cosφ)の時間的変化を示す。炉および装入物は、室温(約20℃)から900℃の温度へ加熱される。炉および装入物の温度曲線によってわかるのは、装入物が、炉の温度曲線に遅れて続くことである。加熱時にリアクタンス変圧器6は、まだcosφ=0.85の力率を有する作動点にある。図3によってわかるように、加熱時のリアクタンス変圧器6の作動点は変化し、その結果、力率cosφがcosφ=0.5の値へ低下する。その際に力率cosφの低下に伴って、無効電流割合およびそれによる無効電力Qは増加するが、これは、望ましくないことである。
【0023】
図4は、室温(約20℃)から900℃の処理温度への炉および装入物の加熱における、図3と同様の加熱過程に対する力率cosφの時間的変化を示す。図4に従った実施例において、三角結線から星形結線へのリアクタンス変圧器6の一次側コイル巻線の切換え時点は、力率cosφに応じて決定される。ここで切換え時点tumは、0.80を下回るべきでない所定力率cosφに応じて決定される。炉および装入物の加熱時に、リアクタンス変圧器6の作動点は変化し、これによって加熱過程の始めに0.85の値を有する力率cosφは、次第に低下する。力率cosφが0.80に達する場合およびこれを下回る場合、あるいはそのいずれか一方の場合に、リアクタンス変圧器6の一次側コイル巻線は、三角結線から星形結線へ切り換えられる。三角結線から星形結線への切換えによって、リアクタンス変圧器は、よりわずかな電力を交流回路網から得る。それに応じて二次側加熱電圧が低下し、それによって加熱電力および力率cosφは、無効電力Qの低減に対応する0.95の値へ増加する。その際にリアクタンス変圧器は、わずかな偏差は別として、その作動点で作動する。ここで低減された二次側加熱電力は、炉温度および装入物温度の維持もしくは比較的わずかな上昇のために必要な、第2加熱フェーズで行われる金属工作物の熱処理のための加熱電力を満足させる。三角結線から星形結線への切換え後に、力率cosφは、切換え時点で得られる力率cosφ=0.95から次第にcosφ=0.83の安定値を有する力率cosφになる。
【0024】
所定力率cosφへの到達に応じた三角結線から星形結線へのリアクタンス変圧器6の一次側コイル巻線の切換え時点tumは、電流コスト低減措置を意味する。
【0025】
図5は、室温(約20℃)から約900℃の処理温度への炉および装入物の加熱過程に対する力率cosφの時間的変化を示す。ここで三角結線から星形結線へのリアクタンス変圧器6の一次側コイル巻線の切換え時点は、炉温度の所定時間的変化に応じて決定される。その際には炉温度の時間的変化が検出され、所定の時間的温度変化に達すると、三角結線から星形結線への切換えが行われる。切換え時点では、加熱時に0.85の値から0.80未満の値へ低下する力率cosφが、0.95の値へ上昇し、第2フェーズの間に安定して0.83の値になる。
【0026】
図6は、室温(約20℃)から900℃への炉および装入物の所定加熱過程に対する力率cosφの時間的変化を示す。図6に従った実施例において、三角結線から星形結線へのリアクタンス変圧器6の一次側コイル巻線の切換え時点tumは、装入物温度の時間的変化に応じて決定される。装入物温度の時間的変化δt=10℃に達すると、リアクタンス変圧器6の一次側コイル巻線は、三角結線から星形結線へ切り換えられる。第1加熱フェーズの間に力率cosφ=0.85から0.80未満の値へ低下する力率cosφは、切換え時点tumで急激に約0.85の力率cosφへ上昇し、第2フェーズの間に安定して力率cosφ=0.83になる。
【0027】
図4のように力率cosφの関数としての、図5のように炉温度の関数としての、および図6のように装入物温度の時間的変化の関数としての、加熱過程に対する特徴的な動作パラメータに応じた、三角結線から星形結線への一次側コイル巻線回路のプロセスに従った自動切換えによって、簡単かつコスト的に有利な方法で高価な無効電力補償装置を用いることなく、比較的わずかな無効電力割合が達成される。その際に三角結線から星形結線へのリアクタンス変圧器の一次側コイル巻線の切換え時点は、広範囲で加熱過程の個別要求に適合自在である。
各図に示した各実施例は、本発明の説明のためのみに用いられており、本発明を限定するものではない。
【0028】
【発明の効果】
以上、詳述したようにこの発明はコスト的に好都合な方法によって比較的わずかな無効電力割合を達成する。
【図面の簡単な説明】
【図1】 真空炉用電気加熱装置を示す略体配線図。
【図2】 図1に従う詳細な配線図。
【図3】 従来の加熱過程における力率(cosφ)の経時的変化を示す線図。
【図4】 力率(cosφ)に応じて三角結線から星形結線への一次側コイル巻線の切換えを伴った加熱過程の力率(cosφ)の経時変化を示す線図。
【図5】 炉温度に応じて三角結線から星形結線への一次側コイル巻線の切換えを伴った加熱過程の力率(cosφ)の経時的変化を示す線図。
【図6】 装入物温度に応じて三角結線から星形結線への一次側コイル巻線の切換えを伴った加熱過程の力率(cosφ)の経時的変化を示す線図。
【符号の説明】
1a,1b,1c…電線、2a,2b…ヒューズ付き負荷開閉器、3a,3b…平型銅線、4a…回路接触器、4b…三角結線接触器、4c…星形結線接触器、5a,5b…平型銅線、8a,8b,8c…加熱要素、9a,9b,9c…個別変圧器。

Claims (5)

  1. 金属工作物熱処理用の炉の電気加熱方法であって、
    一次側コイル巻線と二次側コイル巻線とを有する交流変圧器(6)を提供する工程であって、一次側コイル巻線は交流回路網に接続され、二次側コイル巻線は加熱電圧を生成する工程と、
    加熱要素(8a、8b、8c)によって炉を加熱する工程であって、加熱要素(8a、8b、8c)に前記加熱電圧が供給される工程と、を備え、
    前記加熱する工程は、炉が要求される熱処理に必要な処理温度まで加熱される第1加熱フェーズと、要求される熱処理に必要な処理温度で維持される第2加熱フェーズからなり、前記第2加熱フェーズにおいて炉の加熱に必要とされる炉の交流回路網に投入される電力が、前記第1加熱フェーズにおいて炉の加熱に必要とされる炉の交流回路網に投入される電力の30%以下であり、第1加熱フェーズにおいて、交流変圧器(6)の一次側コイル巻線は三角結線で駆動され、第2加熱フェーズにおいて、交流変圧器(6)の一次側コイル巻線は星形結線で駆動され、三角結線から星形結線への切換え時点(tum)は、力率が、所定の力率(cosφ)以下になった時点とされ
    接触器(4、4c)を用いて三角結線から星形結線へ切り換えられ、
    交流変圧器として、可変設定自在リアクタンス変圧器(6)が使用され、
    第1および第2加熱フェーズに対する加熱電圧は、リアクタンス変圧器(6)の設定値を変えることによってさらに調整されることを特徴とする方法。
  2. 第1加熱フェーズの間には60ボルト未満の加熱電圧が、そして第2加熱フェーズの間には35ボルト未満の加熱電圧が、加熱要素(8a、8b、8c)に印加されることを特徴とする、請求項1に記載の方法。
  3. 第1加熱フェーズの間には、50ボルト未満の加熱電圧が、そして第2加熱フェーズの間には、30ボルト未満の加熱電圧が、加熱要素(8a、8b、8c)に印加されることを特徴とする、請求項1に記載の方法。
  4. 400ボルトの電圧を有する交流回路網を使用することを特徴とする、請求項1に記載の方法。
  5. 炉は、プラズマ炭化またはプラズマ窒化のために使用可能な真空炉であることを特徴とする、請求項1に記載の方法。
JP2003165229A 2003-06-10 2003-06-10 金属工作物熱処理用の炉の電気加熱方法 Expired - Fee Related JP4685980B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165229A JP4685980B2 (ja) 2003-06-10 2003-06-10 金属工作物熱処理用の炉の電気加熱方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165229A JP4685980B2 (ja) 2003-06-10 2003-06-10 金属工作物熱処理用の炉の電気加熱方法

Publications (2)

Publication Number Publication Date
JP2005005043A JP2005005043A (ja) 2005-01-06
JP4685980B2 true JP4685980B2 (ja) 2011-05-18

Family

ID=34091773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165229A Expired - Fee Related JP4685980B2 (ja) 2003-06-10 2003-06-10 金属工作物熱処理用の炉の電気加熱方法

Country Status (1)

Country Link
JP (1) JP4685980B2 (ja)

Also Published As

Publication number Publication date
JP2005005043A (ja) 2005-01-06

Similar Documents

Publication Publication Date Title
JP5043824B2 (ja) 真空プラズマ発生器
JP2961146B2 (ja) 制御化電源装置
JP2010529824A (ja) 高周波加熱装置のための電源
CN112236636A (zh) 电炉的电力方法及相应的设备
WO1999025062A1 (en) Auto-ranging power supply
US20100231039A1 (en) Device for the ignition and the start-up of silicon rods
CN109792811B (zh) 次级电路中的具有电容器装置的变流器馈电式电弧炉
JP2018007544A (ja) ガス入り電子管切替式フレキシブル交流伝送システム
CN104467623A (zh) 一种风扇电机调速装置及应用该装置的风扇和风扇电机
US6794618B2 (en) Method for electrical heating of furnaces for heat treatment of metallic workpieces
JP4685980B2 (ja) 金属工作物熱処理用の炉の電気加熱方法
JPH07211452A (ja) 直流アーク炉の調整方法
CN102918179B (zh) 用于将电力供应给cvd反应器的设备和方法
US20090295361A1 (en) Apparatus For Converting Electrical Energy For Conductively Heating Semiconductor Material In Rod Form
JP3886257B2 (ja) 電力分配回路
JP3853072B2 (ja) 電力系統の電圧制御方式
CN113421794B (zh) 一种智能交流接触器自适应分断控制方法
GB2294166A (en) AC electric power switching arrangement; avoiding inrush currents in inductive loads
CN111628510A (zh) 用于补偿交流网络中的无功分量损耗的自动装置和方法
CN213072465U (zh) 一种并联谐振式电源系统
RU2251226C1 (ru) Индукционная установка
KR100520874B1 (ko) 교반 증대형 유도가열기용 전원 공급장치 및 그 제어방법
US5475582A (en) Stepless control of a load guided parallel resonant inverter
JP4114857B2 (ja) 電源、スパッタ用電源及びスパッタ装置
JP2017510895A5 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080526

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080626

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080725

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090305

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090414

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees