JP4681156B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4681156B2
JP4681156B2 JP2001203763A JP2001203763A JP4681156B2 JP 4681156 B2 JP4681156 B2 JP 4681156B2 JP 2001203763 A JP2001203763 A JP 2001203763A JP 2001203763 A JP2001203763 A JP 2001203763A JP 4681156 B2 JP4681156 B2 JP 4681156B2
Authority
JP
Japan
Prior art keywords
rubber
bead
ply
tire
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001203763A
Other languages
Japanese (ja)
Other versions
JP2003011623A (en
Inventor
好美 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001203763A priority Critical patent/JP4681156B2/en
Publication of JP2003011623A publication Critical patent/JP2003011623A/en
Application granted granted Critical
Publication of JP4681156B2 publication Critical patent/JP4681156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0617Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a cushion rubber other than the chafer or clinch rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カーカスの折返し高さおよびビードエーペックス高さを減じることにより転がり抵抗を改善したタイヤにおいて、操縦安定性、乗り心地性および耐久性を向上しうる空気入りタイヤに関する。
【0002】
【従来の技術】
例えば、図5に示すように、ビードコアaの廻りで折り返されるカーカスの折返し部b1、および前記ビードコアaから半径方向外方に立ち上がるビードエーペックスゴムcの高さを低く抑えることが、転がり抵抗を減じるために効果的であることが、従来から知られている。
【0003】
しかしこのような構造を採用したときには、タイヤ剛性が減じ、特に操縦安定性の低下が著しくなる。なおこのようなタイヤのサイドウォール部などをスチールのコード補強層で補強した場合には、乗り心地の低下を招くとともに、転がり抵抗の低減効果が損なわれるという問題がある。
【0004】
そこで、本出願人は、特開平8−175119号公報において、前記コード補強層に代え、短繊維補強ゴム層を用いることを提案している。このような短繊維補強ゴム層は、タイヤの曲げ剛性を適度に高めることができ、優れた低転がり抵抗性を維持しながら、操縦安定性と乗り心地性との双方を向上しうるのである。
【0005】
【発明が解決しようとする課題】
しかしながら、このような構造のタイヤでは、ビード部において、変形が大きく応力が集中するため、含有する短繊維が原因して前記短繊維補強ゴム層gに損傷が発生し易くなり耐久性を損ねる傾向となる。
【0006】
そこで、本発明は、前記短繊維補強ゴム層を、半径方向内外に区分されかつ短繊維の配合量を違えた複数のゴム領域によって形成することを基本として、ビード部における短繊維補強ゴム層への損傷を抑制でき、優れた低転がり抵抗性を維持しながら、操縦安定性及び乗り心地性だけでなく耐久性の向上をも図りうる空気入りタイヤの提供を目的としている。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本願請求項1の発明は、トレッド部からサイドウォール部をへてビード部のビードコアに至るプライ本体部に、前記ビードコアの廻りで折り返すプライ折返し部を一体に設けた1枚のカーカスプライからなるカーカスと、前記プライ本体部とプライ折返し部との間を通って前記ビードコアからタイヤ半径方向外側に向けて先細状にのびるビードエーペックスゴムとを具える空気入りタイヤであって、
前記カーカスプライは、前記プライ折返し部の半径方向外端のビードベースラインからの高さh1をタイヤ断面高さHの0.12〜0.15倍、かつ前記ビードエーペックスゴムは、その半径方向外端のビードベースラインからの高さh2を、タイヤ断面高さHの0.20〜0.25倍とし、
しかも前記サイドウォール部に、前記ビードエーペックスゴムの外面に沿いかつビードエーペックスゴムの外端を過ぎて前記プライ本体部の外面に沿ってのびる短繊維補強ゴム層を配するとともに、
前記短繊維補強ゴム層は、半径方向内外に区分されかつ短繊維の配合量を違えた複数のゴム領域を連続することにより形成され
しかも半径方向外側のゴム領域の短繊維の配合量は、半径方向内側で隣り合うゴム領域の短繊維の配合量よりも多いことを特徴としている。
【0008】
又請求項2の発明では、前記短繊維補強ゴム層は、その半径方向内端が前記プライ折返し部の外端を半径方向外方に越える位置を起点とし、かつ半径方向外端はタイヤ最大巾点の近傍に位置するとともに、半径方向最内側のゴム領域の外端は、ビードエーペックスゴムの前記外端より半径方向外側に位置することを特徴としている。
【0009】
又請求項3の発明では、前記短繊維補強ゴム層のゴム厚さtは、0.3〜1.0mmであることを特徴としている。
【0010】
【発明の実施の形態】
以下、本発明の実施の一形態を、図示例とともに説明する。
図1は本発明の空気入りタイヤ1が乗用車用ラジアルタイヤである場合を例示した子午断面図を示す。図2はビード部を拡大して示す断面図である。
【0011】
図1に示すように、空気入りタイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつ前記カーカス6の外側に配されるベルト層7と、前記ビードコア5からタイヤ半径方向外側にのびるビードエーペックスゴム8とを具える。
【0012】
なお前記ベルト層7は、高弾性のベルトコードをタイヤ周方向に対して例えば10〜35°の角度で配列した2枚以上、本例では2枚のベルトプライ7A、7Bから構成される。各ベルトプライ7A、7Bは、ベルトコードがプライ間相互で交差するように傾斜の向きを違えて重置され、コードのトライアングル構造によってベルト剛性を高め、トレッド部2の略全巾をタガ効果を有して補強する。ベルトコードとしては、スチールコード或いは、これに匹敵する例えば芳香族ポリアミド繊維等のハイモジュラスの有機繊維コードが好適に使用される。
【0013】
又本例では、前記ベルト層7に対する拘束力を高めて高速耐久性能等を向上させる目的で、ベルト層7の外側にバンド層9を配した場合を例示している。このバンド層9は、タイヤ周方向に対して例えば5度以下の角度で螺旋巻きしたバンドコードを有し、少なくとも前記ベルト層7のタイヤ軸方向外端部を覆って延在する。
【0014】
又前記カーカス6は、カーカスコードをタイヤ周方向に対して75〜90度の角度で配列した1枚のカーカスプライ6Aからなり、このカーカスプライ6Aは、前記ビードコア5、5間を跨るプライ本体部6aの両端に、前記ビードコア5の廻りで内から外に折り返すプライ折返し部6bを一体に具えている。なおカーカスコードとして、ナイロン、レーヨン、ポリエステル、芳香族ポリアミドなどの有機繊維コードの他、スチールコードも適宜用いることができるが、軽量化の観点から有機繊維コードが好ましい。
【0015】
又前記ビードエーペックスゴム8は、ゴム硬度(デュロメータA硬さ)が65〜95度程度の比較的硬質のゴムからなり、前記プライ本体部6aとプライ折返し部6bとの間を通ってタイヤ半径方向外側に向けて先細状に延在する。
【0016】
ここで重要なことは、本実施形態のタイヤ1では、転がり抵抗を減じるために、
▲1▼ カーカス6として、前記プライ折返し部6bの半径方向外端6e(折返し端6eという場合がある)のビードベースラインBLからの高さh1(折返し高さh1という場合がある)を、タイヤ断面高さHの0.12〜0.15倍の範囲に規制すること、及び
▲2▼ 前記ビードエーペックスゴム8として、その外端8e(エーペックス端8eという場合がある)のビードベースラインBLからの高さh2(エーペックス高さh2という場合がある)を、タイヤ断面高さHの0.20〜0.25倍の範囲に規制することである。
【0017】
このように、エーペックス高さh2を小に規制することにより、軽量化に加えビードエーペックスゴム8の発熱によるエネルギーロスが減じられる。又前記プライ本体部6aの輪郭形状が、ビード部4からサイドウォール部3にかけて直線状となるため、カーカスコードパスが短くなり、カーカスコード全体に均一かつ充分な張力が付与されるなど、タイヤの撓みも全体的に抑制される。これらの相乗作用によって、転がり抵抗が減じられる。又折返し高さh1も前記エーペックス高さh2より小となるため、前記折返し端6eでの損傷を抑制しながら、さらなる軽量化が達成でき、前記転がり抵抗の低減効果を一層高めることができるのである。
【0018】
しかしこのような構造では、その反面、タイヤ剛性が減じ、操縦安定性が低下する傾向となる。
【0019】
そこで、本実施形態のタイヤ1では、前述の優れた低転がり抵抗性を維持しながら、操縦安定性と乗り心地性とを高め、かつ充分な耐久性の確保を図るために、前記サイドウォール部3に、短繊維補強ゴム層10を配するとともに、この短繊維補強ゴム層10を、半径方向内外に区分された複数のゴム領域11によって形成している。
【0020】
詳しくは、前記短繊維補強ゴム層10は、図2に示すように、実質的に一定のゴム厚さtを有する薄いゴム層であって、前記ビードエーペックスゴム8のタイヤ軸方向外面に沿って半径方向外方にのびるとともに、前記エーペックス端8eを過ぎた後は、前記プライ本体部6aのタイヤ軸方向外面に沿って延在している。
【0021】
このとき、前記短繊維補強ゴム層10が、前記プライ折返し部6bと重複しないように、その半径方向内端ELを前記折返し端6eを越えた半径方向外方に位置させるのが好ましく、さらには、前記内端ELと折返し端6eとの間隔jを0〜10mmの範囲でできるだけ小に規制するのが、耐久性の確保の観点から好ましい。
【0022】
又前記短繊維補強ゴム層10では、その半径方向外端EUを、タイヤ最大巾点TMの近傍Yに位置させるのが好ましく、前記外端EUの位置が低すぎると、補強効果が過小となって、操縦安定性を充分に向上させることが難しくなる。逆に高すぎると、低転がり抵抗性及び乗り心地性を損ねる傾向となる。なお前記「近傍Y」とは、タイヤ最大巾点TMからの半径方向の距離が、前記タイヤ断面高さHの0.1倍以下の範囲を意味する。
【0023】
次に、前記短繊維補強ゴム層10は、ゴム基材中に短繊維を配合させた短繊維配合ゴムからなり、特に短繊維の90%以上をタイヤ半径方向に対して±20度以下の小な角度で配向させることが好ましい。この短繊維の配向により、具体的には、短繊維の配向方向(半径方向)の複素弾性率E*aと、該配向方向に直角な方向(周方向)の複素弾性率E*bとの比(E*a/E*b)比を、例えば1.0よりも大、より好ましくは5以上、さらに好ましくは7〜20程度とすることができる。これにより、サイドウォール部3において、タイヤ半径方向の圧縮、曲げ剛性を効果的に補うことができ、優れた低転がり抵抗性を維持しながら、操縦安定性と乗り心地性とを向上させることが可能となる。
【0024】
なお複素弾性率は、岩本製作所(株)製の粘弾性スペクトロメーターVESF−III 型を用い、測定条件は、温度70℃、周波数10Hz、初期歪10%、動歪±1%として測定している。
【0025】
ここで、前記短繊維補強ゴム層10のゴム基材として、例えば、天然ゴム(NR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレインゴム(IR)等のジエン系ゴムの一種若しくは複数種を組み合わせたものが好適に使用できる。
【0026】
また前記短繊維としては、例えば、ナイロン、ポリエステル、アラミド、レーヨン、ビニロン、コットン、セルロース樹脂、結晶性ポリブタジエンなどの有機繊維が好ましいが、これ以外にも、例えば金属繊維、ウイスカ、ボロン、ガラス繊維等の無機繊維が挙げられ、これらは単独でも、又2種以上を組合わせて使用することもできる。さらに好ましくは、短繊維はゴム基材との接着性を向上させるために適宜の表面処理を施してもよい。
【0027】
また前記短繊維の平均径(D)は、例えば0.1〜1.0μmとするのが好ましく、0.1μmよりも小さいと、補強効果が相対的に低下する傾向となり、逆に1.0μmよりも大きくなるとゴムとの界面で割れや亀裂が生じやすくなるなど、ゴムとの接着強度が相対的に低下する傾向となる。また短繊維は、その平均長(L)と前記平均径(D)との比(L/D)を5以上、より望ましくは50以上、さらに好ましくは50〜2000としたものが好ましい。この比(L/D)が5未満となると、短繊維の前記配向による補強効果が充分発揮できなくなる。なお短繊維の前記平均長(L)は、20μm以上、さらには50〜1000μmが好ましい。
【0028】
又短繊維補強ゴム層10には、短繊維以外に、カーボンブラック、シリカ等のゴム補強剤、及び硫黄、老化防止剤などの従来のタイヤゴム用の添加剤が適宜配合できる。
【0029】
又短繊維補強ゴム層10の前記ゴム厚さtは、0.3〜1.0mmの範囲が好ましく、ゴム厚さtが0.3mm未満であると、剛性が不十分となって操縦安定性等の向上効果が充分に発揮されず、又生産性も悪くなる。逆にゴム厚さtが1.0mmを越えると、短繊維の配向性が低下するため、この短繊維の補強効果が薄れる一方、重量が不必要に増加して低転がり抵抗性を損ねることとなる。
【0030】
そして、本実施形態では、前記短繊維補強ゴム層10への損傷を抑え、タイヤの耐久性を高めるために、前記短繊維補強ゴム層10を、半径方向内外に区分された複数のゴム領域11によって形成するとともに、各ゴム領域11を、前記短繊維の配合量を違えた異なるゴム組成物Gで形成している。
【0031】
なお本例では、前記短繊維補強ゴム層10が、半径方向最内側のゴム領域11Aと、その半径方向外側のゴム領域11Bと、半径方向最外側のゴム領域11Cとの3つのゴム領域11からなり、各ゴム領域11A、11B、11Cが、繊維の配合量を違えたゴム組成物GA、GB、GCで形成される場合を例示している。
【0032】
このとき、前記ゴム組成物GA、GB、GCの短繊維配合量ga、gb、gcにおいて、以下の関係にあることが、前記損傷抑制効果のために必要である。
ga<gb<gc
即ち、半径方向外側のゴム領域11の短繊維の配合量を、半径方向内側で隣り合うゴム領域11の短繊維の配合量よりも多くすることが必要である。
【0033】
これは、エーペックス高さh2が低い本実施形態のタイヤ1では、ビード部4において、変形が大きく応力が集中するため、短繊維に原因してゴム層10にクラック等が発生しやすくなる。従って、応力集中の度合いが高い半径方向内側のゴム領域11ほど短繊維の配合量を減じ、ゴムの屈曲亀裂性能を相対的に高めることが、損傷抑制に効果的となる。また逆に、半径方向外側のゴム領域11ほど剛性が高まる結果、操縦安定性と乗り心地性とのバランスが取り易くなり、さらなる性能向上も期待できる。
【0034】
又ゴム層10の損傷抑制のためには、前記最内側のゴム領域11Aは、その半径方向外端AUが前記エーペックス端8eを半径方向外方に越える位置まで延在することが好ましい。これは、前記エーペックス端8e近傍で、応力が最も集中しやすくなるため、少なくともこの部分に最内側のゴム領域11Aを配することが、損傷抑制のために好ましい。なお剛性確保の観点から、前記外端AUのビードベースラインBLからの高さh3は、前記タイヤ断面高さHの0.3倍以下にとどめるのが良い。
【0035】
ここで、ゴム組成物Gでは、短繊維配合量が10重量部より少ないと、短繊維を含有する効果が発揮されなくなり、逆に30重量部を越えると、ゴム組成物Gを形成する際のゴム練りや押出しが難しく、生産性が著しく悪化する。従って、ゴム組成物Gの短繊維配合量は、10〜30重量部の範囲が好ましく、特に、前記短繊維補強ゴム層10の区分による効果を最大限に引き出すためには、前記ゴム組成物GAにおける短繊維配合量gaを、ゴム基材100重量部に対して10〜20重量部、前記ゴム組成物GBにおける短繊維配合量gbを15〜25重量部、前記ゴム組成物GCにおける短繊維配合量gcを20〜30重量部とするのが好ましい。
【0036】
又図3に示すように、前記短繊維補強ゴム層10を、ゴム組成物GAからなる半径方向最内側のゴム領域11Aと、ゴム組成物GCからなる半径方向最外側のゴム領域11Cとの2つのゴム領域11で形成することもできる。このとき、ゴム組成物GA、GCの短繊維配合量ga、gcは、
ga<gc
であって、又短繊維配合量gaを10〜20重量部、短繊維配合量gcを20〜30重量部とするのが、前記短繊維補強ゴム層10の区分による効果を最大限に引き出すために好ましい。
【0037】
なおゴム領域11の数nが4以上では、区分によるさらなる効果が見込めなくなるだけでなく、前記短繊維補強ゴム層10の形成作業能率を損ねる傾向となり、従って、前述の如く、前記数nは2又は3であることが好ましい。
【0038】
又各ゴム領域11は、各端部を突き合わせて一連に接続しており、このゴム領域11の間の境界線N(端部の突き合わせ面に相当)は、図4(A)、(B)の如く、厚さ方向と平行であっても良く、厚さ方向に対して傾斜させても良い。なお境界線Nを傾斜させる方が、突き合わせ面積が大きく、接続強度が高まるため、耐久性の観点からは好ましい。
【0039】
又境界線Nを傾斜させる場合には、この境界線Nのゴム領域11に沿った半径方向の長さJが、接続される内外のゴム領域11のうち、巾狭のゴム領域11の巾Wjの0.5倍以下とするのが好ましい。0.5倍を越えると、短繊維補強ゴム層10の区分による効果が充分に達成されなくなる。
【0040】
又境界線Nを傾斜させる場合には、この境界線Nの半径方向内側点が、エーペックス端8eより半径方向外側であることが損傷抑制のために好ましく、又剛性確保の観点から、境界線Nの半径方向外側点のビードベースラインBLからの高さh3を、前記タイヤ断面高さHの0.3倍以下にと止めるのが良い。
【0041】
又各ゴム領域11においては、配合する短繊維の種類を同一とすることが好ましいが、要求により短繊維の種類を相違させてもよい。なお短繊維の種類が相違するとは、繊維の材質、平均径、平均長さの何れか一つが相違することを意味する。
【0042】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【0043】
【実施例】
タイヤサイズが205/65R15であり、かつ図1に示す構造をなすタイヤを表1の仕様に基づき試作するとともに、各試供タイヤの転がり抵抗性、操縦安定性、乗り心地、耐久性をテストした。なお短繊維補強ゴム層以外の構造は、表2に示す如く各タイヤとも同一である。
テストの方法は次の通りである。
【0044】
(1)転がり抵抗性:
転がり抵抗試験機を用い、各タイヤをリム(15×6.5JJ)、内圧(200kPa)、時速(80km/h)、荷重(4.5kN)の条件で、測定した転がり抵抗値を測定し、従来例を100とした指数で表示している。指数の小さい方が、抵抗が小さく良好である。
【0045】
(2)操縦安定性及び乗り心地性;
タイヤをリム(15×6.5JJ)、内圧(200kPa)の条件で、乗用車両(2000cc、FF車)の4輪に装着し、ドライアスファルト路面のテストコースを走行した時の操縦安定性及び乗り心地性を、ドライバーの官能評価により従来例を100とする指数で表示している。指数の大きい方が良好である。
【0046】
(3)耐久性;
ドラム試験機を用いて、リム(15×6.5JJ)、内圧(200kPa)の条件で、ECE30により規定された荷重/速度性能テストに準拠して、ステップスピード方式により実施した。テストは、逐次走行速度を上昇させるとともに、タイヤが破壊したときの速度を従来例を100とする指数で表示している。指数の大きい方が良好である。
【0047】
【表1】

Figure 0004681156
【0048】
【表2】
Figure 0004681156
【0049】
【発明の効果】
叙上の如く本発明は、短繊維補強ゴム層を、半径方向内外に区分されかつ短繊維の配合量を違えた複数のゴム領域によって形成しているため、カーカスの折返し高さおよびビードエーペックス高さを減じることにより転がり抵抗を改善したタイヤにおいて、操縦安定性、乗り心地性および耐久性を向上することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例のタイヤの断面図である。
【図2】ビード部を短繊維補強ゴム層とともに拡大して示す断面図である。
【図3】短繊維補強ゴム層の他の例を示す断面図である。
【図4】(A)、(B)は、ゴム領域の間の境界線を例示する略断面図である。
【図5】従来技術を説明する線図である。
【符号の説明】
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス
6A カーカスプライ
6a プライ本体部
6b プライ折返し部
8 ビードエーペックスゴム
10 短繊維補強ゴム層
11 ゴム領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pneumatic tire that can improve steering stability, ride comfort and durability in a tire in which rolling resistance is improved by reducing a carcass folding height and a bead apex height.
[0002]
[Prior art]
For example, as shown in FIG. 5, it is possible to reduce the rolling resistance by suppressing the height of the folded portion b1 of the carcass folded around the bead core a and the bead apex rubber c that rises radially outward from the bead core a. Therefore, it is conventionally known that it is effective.
[0003]
However, when such a structure is adopted, the tire rigidity is reduced, and the steering stability is particularly lowered. In addition, when such a sidewall portion of a tire is reinforced with a steel cord reinforcing layer, there are problems that the ride comfort is lowered and the effect of reducing rolling resistance is impaired.
[0004]
In view of this, the present applicant has proposed in Japanese Patent Application Laid-Open No. 8-175119 to use a short fiber reinforced rubber layer instead of the cord reinforcing layer. Such a short fiber reinforced rubber layer can appropriately increase the bending rigidity of the tire, and can improve both steering stability and ride comfort while maintaining excellent low rolling resistance.
[0005]
[Problems to be solved by the invention]
However, in the tire having such a structure, deformation is large and stress is concentrated in the bead portion. Therefore, the short fiber reinforced rubber layer g is likely to be damaged due to the contained short fibers, and the durability tends to be deteriorated. It becomes.
[0006]
Therefore, the present invention is based on the fact that the short fiber reinforced rubber layer is formed by a plurality of rubber regions that are divided inward and outward in the radial direction and have different blending amounts of short fibers. It is an object of the present invention to provide a pneumatic tire that can suppress damage to the tire and improve durability as well as steering stability and ride comfort while maintaining excellent low rolling resistance.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the invention of claim 1 of the present application, a ply turn-up portion that folds around the bead core is integrally provided in a ply body portion that extends from the tread portion to the bead core of the bead portion through the sidewall portion. A pneumatic tire comprising a carcass made of a single carcass ply and a bead apex rubber that extends between the ply main body and the ply turn-up portion and tapers outward from the bead core in the radial direction of the tire. And
The carcass ply has a height h1 from the bead base line of the radially outer end of the ply turn-up portion of 0.12 to 0.15 times the tire cross-section height H, and the bead apex rubber is radially outward. The height h2 from the end bead baseline is 0.20 to 0.25 times the tire cross-section height H,
In addition, a short fiber reinforced rubber layer extending along the outer surface of the bead apex rubber and extending along the outer surface of the ply main body portion along the outer surface of the bead apex rubber is disposed on the sidewall portion,
The short fiber reinforced rubber layer is formed by continuing a plurality of rubber regions that are divided inward and outward in the radial direction and have different blending amounts of short fibers ,
Moreover, the amount of short fibers in the radially outer rubber region is larger than the amount of short fibers in the adjacent rubber region on the radially inner side .
[0008]
According to a second aspect of the present invention, the short fiber reinforced rubber layer has a radial inner end starting from a position where the outer end of the ply folded portion extends radially outward, and the radial outer end has a maximum tire width. The outer end of the radially innermost rubber region is located in the vicinity of the point, and is characterized by being positioned radially outward from the outer end of the bead apex rubber.
[0009]
The invention of claim 3 is characterized in that a rubber thickness t of the short fiber reinforced rubber layer is 0.3 to 1.0 mm .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a meridional sectional view illustrating a case where the pneumatic tire 1 of the present invention is a radial tire for passenger cars. FIG. 2 is an enlarged cross-sectional view of the bead portion.
[0011]
As shown in FIG. 1, a pneumatic tire 1 is arranged on a carcass 6 extending from a tread portion 2 through a sidewall portion 3 to a bead core 5 of a bead portion 4, inside the tread portion 2 and outside the carcass 6. And a bead apex rubber 8 extending outward from the bead core 5 in the tire radial direction.
[0012]
The belt layer 7 is composed of two or more belt plies 7A and 7B in this example, in which high-elasticity belt cords are arranged at an angle of, for example, 10 to 35 ° with respect to the tire circumferential direction. The belt plies 7A and 7B are stacked with different inclination directions so that the belt cords cross each other between the plies. The belt triangle structure increases the rigidity of the belt so that the substantially full width of the tread portion 2 is reduced. Have and reinforce. As the belt cord, a steel cord or a high modulus organic fiber cord such as an aromatic polyamide fiber comparable to this is preferably used.
[0013]
Further, in this example, the case where the band layer 9 is disposed outside the belt layer 7 is illustrated for the purpose of increasing the restraining force on the belt layer 7 and improving the high speed durability performance. The band layer 9 has a band cord spirally wound at an angle of, for example, 5 degrees or less with respect to the tire circumferential direction, and extends at least covering the outer end portion of the belt layer 7 in the tire axial direction.
[0014]
The carcass 6 includes a single carcass ply 6A in which carcass cords are arranged at an angle of 75 to 90 degrees with respect to the tire circumferential direction. The carcass ply 6A is a ply main body that straddles between the bead cores 5 and 5. A ply turn-back portion 6b that folds from the inside to the outside around the bead core 5 is integrally provided at both ends of 6a. As the carcass cord, an organic fiber cord such as nylon, rayon, polyester, aromatic polyamide, or the like, or a steel cord can be used as appropriate, but an organic fiber cord is preferable from the viewpoint of weight reduction.
[0015]
The bead apex rubber 8 is made of a relatively hard rubber having a rubber hardness (durometer A hardness) of about 65 to 95 degrees, and passes between the ply body portion 6a and the ply folded portion 6b in the tire radial direction. Extends outwardly in a tapered shape.
[0016]
What is important here is that in the tire 1 of the present embodiment, in order to reduce rolling resistance,
(1) As the carcass 6, a height h1 (may be referred to as a turn-up height h1) of the radially outer end 6e (may be referred to as a turn-up end 6e) of the ply turn-up portion 6b from the bead base line BL Restricting to a range of 0.12 to 0.15 times the cross-sectional height H, and (2) As the bead apex rubber 8, from the bead base line BL of the outer end 8e (sometimes referred to as apex end 8e). The height h2 of the tire (which may be referred to as apex height h2) is restricted to a range of 0.20 to 0.25 times the tire cross-section height H.
[0017]
In this way, by restricting the apex height h2 to be small, energy loss due to heat generation of the bead apex rubber 8 is reduced in addition to weight reduction. Further, since the contour shape of the ply body portion 6a is linear from the bead portion 4 to the sidewall portion 3, the carcass cord path is shortened, and uniform and sufficient tension is applied to the entire carcass cord. Deflection is also suppressed as a whole. These synergistic effects reduce rolling resistance. Moreover, since the folding height h1 is also smaller than the apex height h2, further weight reduction can be achieved while suppressing damage at the folding end 6e, and the rolling resistance reduction effect can be further enhanced. .
[0018]
However, such a structure, on the other hand, tends to reduce tire rigidity and decrease steering stability.
[0019]
Therefore, in the tire 1 of the present embodiment, in order to improve the steering stability and the ride comfort while maintaining the above-described excellent low rolling resistance, and to ensure sufficient durability, the sidewall portion 3, the short fiber reinforced rubber layer 10 is disposed, and the short fiber reinforced rubber layer 10 is formed by a plurality of rubber regions 11 divided inward and outward in the radial direction.
[0020]
Specifically, as shown in FIG. 2, the short fiber reinforced rubber layer 10 is a thin rubber layer having a substantially constant rubber thickness t, and extends along the outer surface in the tire axial direction of the bead apex rubber 8. In addition to extending outward in the radial direction, after passing through the apex end 8e, the ply main body portion 6a extends along the outer surface in the tire axial direction.
[0021]
At this time, it is preferable that the short fiber reinforced rubber layer 10 has its radially inner end EL positioned radially outward beyond the folded end 6e so that it does not overlap with the ply folded portion 6b. The distance j between the inner end EL and the turned-back end 6e is preferably as small as possible within the range of 0 to 10 mm from the viewpoint of ensuring durability.
[0022]
Further, in the short fiber reinforced rubber layer 10, it is preferable that the outer end EU in the radial direction is positioned in the vicinity Y of the tire maximum width point TM. If the position of the outer end EU is too low, the reinforcing effect is too small. Therefore, it becomes difficult to sufficiently improve the handling stability. On the contrary, if it is too high, low rolling resistance and riding comfort tend to be impaired. The “neighbor Y” means a range in which the distance in the radial direction from the tire maximum width point TM is 0.1 times or less of the tire cross-section height H.
[0023]
Next, the short fiber reinforced rubber layer 10 is made of a short fiber blended rubber in which short fibers are blended in a rubber base material, and in particular 90% or more of the short fibers are as small as ± 20 degrees or less with respect to the tire radial direction. It is preferable to align at an angle. Specifically, by the orientation of the short fibers, the complex elastic modulus E * a in the orientation direction (radial direction) of the short fibers and the complex elastic modulus E * b in the direction perpendicular to the orientation direction (circumferential direction) The ratio (E * a / E * b) ratio can be, for example, larger than 1.0, more preferably 5 or more, and still more preferably about 7 to 20. As a result, the compression and bending rigidity in the tire radial direction can be effectively compensated in the sidewall portion 3, and the steering stability and the ride comfort can be improved while maintaining excellent low rolling resistance. It becomes possible.
[0024]
The complex elastic modulus is measured using a viscoelastic spectrometer type VESF-III manufactured by Iwamoto Seisakusho Co., Ltd., and the measurement conditions are a temperature of 70 ° C., a frequency of 10 Hz, an initial strain of 10%, and a dynamic strain of ± 1%. .
[0025]
Here, examples of the rubber base material of the short fiber reinforced rubber layer 10 include diene rubbers such as natural rubber (NR), styrene-butadiene rubber (SBR), butadiene rubber (BR), and isoprene rubber (IR). One or a combination of a plurality of types can be suitably used.
[0026]
The short fibers are preferably organic fibers such as nylon, polyester, aramid, rayon, vinylon, cotton, cellulose resin, crystalline polybutadiene, etc., but other than these, for example, metal fibers, whiskers, boron, glass fibers, etc. Inorganic fibers such as these can be used, and these can be used alone or in combination of two or more. More preferably, the short fiber may be subjected to an appropriate surface treatment in order to improve the adhesion to the rubber substrate.
[0027]
The average diameter (D) of the short fibers is preferably 0.1 to 1.0 μm, for example. If the average diameter is smaller than 0.1 μm, the reinforcing effect tends to be relatively lowered, and conversely 1.0 μm If it is larger than that, the adhesive strength with the rubber tends to be relatively lowered, for example, cracks and cracks are likely to occur at the interface with the rubber. The short fibers are preferably those in which the ratio (L / D) of the average length (L) to the average diameter (D) is 5 or more, more preferably 50 or more, and still more preferably 50 to 2000. When this ratio (L / D) is less than 5, the reinforcing effect by the orientation of the short fibers cannot be sufficiently exhibited. The average length (L) of the short fibers is preferably 20 μm or more, and more preferably 50 to 1000 μm.
[0028]
In addition to the short fibers, the short fiber reinforced rubber layer 10 can be appropriately blended with rubber reinforcing agents such as carbon black and silica, and conventional additives for tire rubber such as sulfur and anti-aging agents.
[0029]
Further, the rubber thickness t of the short fiber reinforced rubber layer 10 is preferably in the range of 0.3 to 1.0 mm. When the rubber thickness t is less than 0.3 mm, the rigidity is insufficient and the steering stability is increased. Such an improvement effect is not sufficiently exhibited, and productivity is also deteriorated. On the contrary, if the rubber thickness t exceeds 1.0 mm, the orientation of the short fibers is lowered, and the reinforcing effect of the short fibers is reduced. On the other hand, the weight is unnecessarily increased and the low rolling resistance is impaired. Become.
[0030]
In the present embodiment, in order to suppress damage to the short fiber reinforced rubber layer 10 and increase the durability of the tire, the short fiber reinforced rubber layer 10 is divided into a plurality of rubber regions 11 that are divided inward and outward in the radial direction. In addition, each rubber region 11 is formed of different rubber compositions G with different blending amounts of the short fibers.
[0031]
In this example, the short fiber reinforced rubber layer 10 is composed of three rubber regions 11 including a radially innermost rubber region 11A, a radially outer rubber region 11B, and a radially outermost rubber region 11C. Thus, each rubber region 11A, 11B, 11C is illustrated as being formed of rubber compositions GA, GB, GC having different fiber blending amounts.
[0032]
At this time, it is necessary for the damage suppression effect that the short fiber blending amounts ga, gb, and gc of the rubber compositions GA, GB, and GC have the following relationship.
ga <gb <gc
That is, it is necessary to increase the blending amount of the short fibers in the rubber region 11 on the radially outer side than the blending amount of the short fibers on the rubber region 11 adjacent on the radially inner side.
[0033]
This is because, in the tire 1 of the present embodiment having a low apex height h2, the deformation is large and the stress is concentrated in the bead portion 4, so that cracks and the like are easily generated in the rubber layer 10 due to the short fibers. Therefore, reducing the amount of short fibers and relatively improving the flex cracking performance of the rubber in the radially inner rubber region 11 having a higher degree of stress concentration is effective in suppressing damage. Conversely, as the rubber region 11 radially outward increases in rigidity, it becomes easier to balance steering stability and riding comfort, and further performance improvement can be expected.
[0034]
In order to suppress damage to the rubber layer 10, the innermost rubber region 11A preferably extends to a position where the radially outer end AU exceeds the apex end 8e radially outward. This is because stress is most easily concentrated in the vicinity of the apex end 8e. Therefore, it is preferable to dispose the innermost rubber region 11A at least in this portion in order to suppress damage. Note from the viewpoint of securing the rigidity, the outer end bead base line height from BL of AU h3 is better to keep more than 0.3 times the tire section height H.
[0035]
Here, in the rubber composition G, when the amount of the short fiber is less than 10 parts by weight, the effect of containing the short fiber is not exhibited, and conversely, when the amount exceeds 30 parts by weight, the rubber composition G is formed. Rubber kneading and extruding are difficult, and productivity is significantly deteriorated. Accordingly, the short fiber content of the rubber composition G is preferably in the range of 10 to 30 parts by weight. In particular, in order to maximize the effects of the division of the short fiber reinforced rubber layer 10, the rubber composition GA is used. The short fiber content ga in the rubber composition GC is 10 to 20 parts by weight with respect to 100 parts by weight of the rubber base material, the short fiber content gb in the rubber composition GB is 15 to 25 parts by weight, and the short fiber content in the rubber composition GC. The amount gc is preferably 20 to 30 parts by weight.
[0036]
Further, as shown in FIG. 3, the short fiber reinforced rubber layer 10 is divided into two parts, a radially innermost rubber region 11A made of the rubber composition GA and a radially outermost rubber region 11C made of the rubber composition GC. It can also be formed by two rubber regions 11. At this time, the short fiber blending amounts ga and gc of the rubber compositions GA and GC are
ga <gc
In addition, the short fiber blending amount ga is 10 to 20 parts by weight and the short fiber blending amount gc is 20 to 30 parts by weight in order to maximize the effect of the section of the short fiber reinforced rubber layer 10. Is preferable.
[0037]
When the number n of the rubber regions 11 is 4 or more, not only the effect due to the division cannot be expected, but also the forming work efficiency of the short fiber reinforced rubber layer 10 tends to be impaired. Therefore, as described above, the number n is 2 Or 3 is preferred.
[0038]
Each rubber region 11 is connected in series by abutting each end, and a boundary line N (corresponding to the abutting surface of the end) between the rubber regions 11 is shown in FIGS. 4 (A) and 4 (B). As described above, it may be parallel to the thickness direction, or may be inclined with respect to the thickness direction. It is preferable to incline the boundary line N from the viewpoint of durability because the butt area is large and the connection strength is increased.
[0039]
When the boundary line N is inclined, the length J in the radial direction along the rubber region 11 of the boundary line N is the width Wj of the narrow rubber region 11 in the inner and outer rubber regions 11 to be connected. Is preferably 0.5 times or less. When it exceeds 0.5 times, the effect of the division of the short fiber reinforced rubber layer 10 is not sufficiently achieved.
[0040]
Further, when the boundary line N is inclined, it is preferable for the damage suppression that the radially inner point of the boundary line N is radially outward from the apex end 8e, and from the viewpoint of securing rigidity, the boundary line N It is preferable that the height h3 from the bead base line BL at the radially outer point is set to 0.3 times or less of the tire cross-sectional height H.
[0041]
Further, in each rubber region 11, it is preferable that the types of the short fibers to be blended are the same, but the types of the short fibers may be different depending on requirements. In addition, that the kind of short fiber is different means that any one of the fiber material, the average diameter, and the average length is different.
[0042]
As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.
[0043]
【Example】
A tire having a tire size of 205 / 65R15 and having the structure shown in FIG. 1 was prototyped based on the specifications shown in Table 1, and each sample tire was tested for rolling resistance, handling stability, riding comfort, and durability. The structure other than the short fiber reinforced rubber layer is the same for each tire as shown in Table 2.
The test method is as follows.
[0044]
(1) Rolling resistance:
Using a rolling resistance tester, the measured rolling resistance value of each tire was measured under the conditions of rim (15 × 6.5JJ), internal pressure (200 kPa), speed (80 km / h), and load (4.5 kN). The index is displayed as an index with the conventional example as 100. The smaller the index, the better the resistance.
[0045]
(2) Steering stability and ride comfort;
Steering stability and riding when the tire is mounted on four wheels of a passenger vehicle (2000cc, FF vehicle) under the conditions of rim (15 × 6.5JJ) and internal pressure (200 kPa) and traveling on a dry asphalt road test course The comfort is displayed as an index with the conventional example being 100 based on the sensory evaluation of the driver. A larger index is better.
[0046]
(3) Durability;
Using a drum tester, a step speed method was performed in accordance with a load / speed performance test defined by ECE30 under the conditions of a rim (15 × 6.5 JJ) and an internal pressure (200 kPa). In the test, the running speed is sequentially increased, and the speed when the tire breaks is displayed as an index with the conventional example being 100. A larger index is better.
[0047]
[Table 1]
Figure 0004681156
[0048]
[Table 2]
Figure 0004681156
[0049]
【The invention's effect】
As described above, in the present invention, the short fiber reinforced rubber layer is formed by a plurality of rubber regions which are divided inward and outward in the radial direction and have different blending amounts of the short fibers, so that the folded height of the carcass and the height of the bead apex are increased. In the tire having improved rolling resistance by reducing the height, it is possible to improve the handling stability, the ride comfort and the durability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tire according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a bead portion together with a short fiber reinforced rubber layer.
FIG. 3 is a cross-sectional view showing another example of a short fiber reinforced rubber layer.
4A and 4B are schematic cross-sectional views illustrating a boundary line between rubber regions. FIG.
FIG. 5 is a diagram for explaining the prior art.
[Explanation of symbols]
3 Sidewall part 4 Bead part 5 Bead core 6 Carcass 6A Carcass ply 6a Ply body part 6b Ply turn-up part 8 Bead apex rubber 10 Short fiber reinforced rubber layer 11 Rubber region

Claims (3)

トレッド部からサイドウォール部をへてビード部のビードコアに至るプライ本体部に、前記ビードコアの廻りで折り返すプライ折返し部を一体に設けた1枚のカーカスプライからなるカーカスと、前記プライ本体部とプライ折返し部との間を通って前記ビードコアからタイヤ半径方向外側に向けて先細状にのびるビードエーペックスゴムとを具える空気入りタイヤであって、
前記カーカスプライは、前記プライ折返し部の半径方向外端のビードベースラインからの高さh1をタイヤ断面高さHの0.12〜0.15倍、かつ前記ビードエーペックスゴムは、その半径方向外端のビードベースラインからの高さh2を、タイヤ断面高さHの0.20〜0.25倍とし、
しかも前記サイドウォール部に、前記ビードエーペックスゴムの外面に沿いかつビードエーペックスゴムの外端を過ぎて前記プライ本体部の外面に沿ってのびる短繊維補強ゴム層を配するとともに、
前記短繊維補強ゴム層は、半径方向内外に区分されかつ短繊維の配合量を違えた複数のゴム領域を連続することにより形成され
しかも半径方向外側のゴム領域の短繊維の配合量は、半径方向内側で隣り合うゴム領域の短繊維の配合量よりも多いことを特徴とする空気入りタイヤ。
A carcass composed of a single carcass ply in which a ply turn-up portion that folds around the bead core is integrally provided on a ply main body portion that extends from the tread portion through the sidewall portion to the bead core of the bead portion, and the ply main body portion and the ply A pneumatic tire comprising a bead apex rubber that extends in a tapered manner from the bead core toward the outside in the radial direction of the tire through the folded portion,
The carcass ply has a height h1 from the bead base line of the radially outer end of the ply turn-up portion of 0.12 to 0.15 times the tire cross-section height H, and the bead apex rubber is radially outward. The height h2 from the end bead baseline is 0.20 to 0.25 times the tire cross-section height H,
In addition, a short fiber reinforced rubber layer extending along the outer surface of the bead apex rubber and extending along the outer surface of the ply main body portion along the outer surface of the bead apex rubber is disposed on the sidewall portion,
The short fiber reinforced rubber layer is formed by continuing a plurality of rubber regions that are divided inward and outward in the radial direction and have different blending amounts of short fibers ,
In addition , the pneumatic tire is characterized in that the blending amount of the short fibers in the radially outer rubber region is larger than the blending amount of the short fibers in the adjacent rubber region on the radially inner side .
前記短繊維補強ゴム層は、その半径方向内端が前記プライ折返し部の外端を半径方向外方に越える位置を起点とし、かつ半径方向外端はタイヤ最大巾点の近傍に位置するとともに、半径方向最内側のゴム領域の外端は、ビードエーペックスゴムの前記外端より半径方向外側に位置することを特徴とする請求項1記載の空気入りタイヤ。  The short fiber reinforced rubber layer starts from a position where its radially inner end exceeds the outer end of the ply folded portion radially outward, and the radially outer end is located in the vicinity of the tire maximum width point, 2. The pneumatic tire according to claim 1, wherein an outer end of the radially innermost rubber region is located radially outward from the outer end of the bead apex rubber. 前記短繊維補強ゴム層のゴム厚さtは、0.3〜1.0mmである請求項1又は2記載の空気入りタイヤ。The pneumatic tire according to claim 1 or 2, wherein a rubber thickness t of the short fiber reinforced rubber layer is 0.3 to 1.0 mm .
JP2001203763A 2001-07-04 2001-07-04 Pneumatic tire Expired - Fee Related JP4681156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203763A JP4681156B2 (en) 2001-07-04 2001-07-04 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203763A JP4681156B2 (en) 2001-07-04 2001-07-04 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2003011623A JP2003011623A (en) 2003-01-15
JP4681156B2 true JP4681156B2 (en) 2011-05-11

Family

ID=19040340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203763A Expired - Fee Related JP4681156B2 (en) 2001-07-04 2001-07-04 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4681156B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155728A (en) * 2006-12-22 2008-07-10 Sumitomo Rubber Ind Ltd Pneumatic tire
FR2940188B1 (en) * 2008-12-22 2010-12-24 Michelin Soc Tech PNEUMATIC HAVING PERFECTED BOURRELETS
JP5684030B2 (en) * 2011-03-31 2015-03-11 株式会社ブリヂストン Pneumatic tire and molding method thereof
JP5541348B2 (en) * 2012-11-27 2014-07-09 横浜ゴム株式会社 Non-pneumatic tire
JP6786849B2 (en) * 2016-04-05 2020-11-18 住友ゴム工業株式会社 Pneumatic tires
KR102204855B1 (en) * 2019-04-16 2021-01-20 한국타이어앤테크놀로지 주식회사 Pneumatic tire with bead filler applied with multiple rubber layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247115A (en) * 1999-03-01 2000-09-12 Bridgestone Corp Pneumatic tire
JP2001080312A (en) * 1999-09-13 2001-03-27 Sumitomo Rubber Ind Ltd Radial tire for heavy load

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170109A (en) * 1986-12-29 1988-07-14 Bridgestone Corp Pneumatic tire
JP2702862B2 (en) * 1992-12-28 1998-01-26 住友ゴム工業株式会社 Heavy duty tire
JPH08132830A (en) * 1994-11-08 1996-05-28 Bridgestone Corp Pneumatic radial tire
JP2788715B2 (en) * 1994-12-27 1998-08-20 住友ゴム工業株式会社 Pneumatic tire
JP3437303B2 (en) * 1995-01-11 2003-08-18 株式会社ブリヂストン Pneumatic tire
JPH08192608A (en) * 1995-01-17 1996-07-30 Bridgestone Corp Bead structure for pneumatic tire
JP3665884B2 (en) * 1996-08-05 2005-06-29 東洋ゴム工業株式会社 Pneumatic radial tire
JPH11198615A (en) * 1998-01-12 1999-07-27 Sumitomo Rubber Ind Ltd Pneumatic tire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247115A (en) * 1999-03-01 2000-09-12 Bridgestone Corp Pneumatic tire
JP2001080312A (en) * 1999-09-13 2001-03-27 Sumitomo Rubber Ind Ltd Radial tire for heavy load

Also Published As

Publication number Publication date
JP2003011623A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP4377933B2 (en) Pneumatic tire
JP4316660B2 (en) Pneumatic tire
WO2014084370A1 (en) Pneumatic tire
JP6423312B2 (en) Reinforcing member for tire and tire using the same
JP5294396B2 (en) Pneumatic radial tire
JP4377934B2 (en) Pneumatic tire
JP4681156B2 (en) Pneumatic tire
JP2005280459A (en) Run flat tire
JP3930474B2 (en) Heavy duty tire
JP4383034B2 (en) Pneumatic tire
JP4177656B2 (en) Pneumatic radial tire
JP4535430B2 (en) Pneumatic radial tire
JP2004189106A (en) Pneumatic tire
JP4087625B2 (en) Pneumatic tire
JP3459800B2 (en) Pneumatic tire
JP3733056B2 (en) Pneumatic radial tire
JP5332422B2 (en) Pneumatic tire
JP4295553B2 (en) Pneumatic radial tire
JP2007030719A (en) Pneumatic radial tire
JP6304807B2 (en) Pneumatic tire
JP2003146028A (en) Pneumatic radial tire
JP2000062416A (en) Pneumatic tire for passenger car
JP4523823B2 (en) Pneumatic tire
JP4261866B2 (en) Pneumatic radial tire
JP2008100552A (en) Tire for motorcycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees