JP3733056B2 - Pneumatic radial tire - Google Patents

Pneumatic radial tire Download PDF

Info

Publication number
JP3733056B2
JP3733056B2 JP2001349191A JP2001349191A JP3733056B2 JP 3733056 B2 JP3733056 B2 JP 3733056B2 JP 2001349191 A JP2001349191 A JP 2001349191A JP 2001349191 A JP2001349191 A JP 2001349191A JP 3733056 B2 JP3733056 B2 JP 3733056B2
Authority
JP
Japan
Prior art keywords
short fiber
fiber reinforced
rubber layer
tire
reinforced rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001349191A
Other languages
Japanese (ja)
Other versions
JP2003146029A (en
Inventor
伸明 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001349191A priority Critical patent/JP3733056B2/en
Priority to EP02024210A priority patent/EP1310385B1/en
Priority to DE60210191T priority patent/DE60210191T2/en
Priority to US10/290,218 priority patent/US20030116250A1/en
Priority to CNB021499691A priority patent/CN100398343C/en
Publication of JP2003146029A publication Critical patent/JP2003146029A/en
Application granted granted Critical
Publication of JP3733056B2 publication Critical patent/JP3733056B2/en
Priority to US11/452,358 priority patent/US20060231186A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C15/0603Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex
    • B60C15/0607Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex comprising several parts, e.g. made of different rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C15/0628Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a bead reinforcing layer
    • B60C2015/0639Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a bead reinforcing layer between carcass main portion and bead filler not wrapped around the bead core

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビードエーペックスゴムの少なくとも内側面を含む側面に、短繊維補強ゴム層を隣設することにより、耐久性及び乗り心地性を悪化させることなく、操縦安定性を向上させた空気入りラジアルタイヤに関する。
【0002】
【従来の技術、及び発明が解決しようとする課題】
近年、自動車の高出力化や高性能化に伴い、タイヤについても、高い乗り心地性とともに操縦安定性の向上が強く望まれている。
【0003】
他方、空気入りラジアルタイヤにおいては、タイヤ横剛性を増すことにより操縦安定性能を高めうることは知られており、そのために、従来、スチールコードや有機繊維コードを用いたコード補強層を、ビード部からサイドウォール部にかけて設け、サイドウォールの曲げ剛性を高めることがおこなわれている。
【0004】
しかし、このようなコード補強層の使用は、タイヤ縦剛性の増加を伴うため、乗り心地性の悪化を招くこととなる。又コード補強層は、その端部に応力が集中しやすく、特にタイヤ偏平率を55%以下に減じ接地巾や接地面積の増大を図った高性能タイヤに採用した場合には、サイドウォール部のフレキシブル領域が狭く応力集中が顕著となるため、耐久性を損ねる傾向となる。
【0005】
そこで本発明者は、操縦安定性にはタイヤ横剛性だけでなく、回転方向の捩じれ剛性すなわち周方向剛性も大きく関与していることに着目し、短繊維をタイヤ周方向に配向させることにより、タイヤ半径方向の複素弾性率を低く維持しながら周方向の複素弾性率を大幅に高めた短繊維補強ゴム層を、ビードエーペックスゴムから突出させることなくかつその側面に沿って配することを提案した。そして、これによってタイヤの捩じれ剛性が効果的に高まり、操縦安定性を向上させる一方、タイヤ縦剛性を低く維持させうることを究明し得た。
【0006】
即ち本発明は、タイヤ周方向に短繊維を配向させた短繊維補強ゴム層を、ビードエーペックスゴムの少なくとも内側面を含む側面に沿って配することを基本として、耐久性及び乗り心地性を悪化させることなく、操縦安定性を向上させた空気入りラジアルタイヤの提供を目的としている。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本願請求項1の発明は、トレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスと、前記ビードコアの半径方向外面からタイヤ半径方向外方に向けて先細状にのびるビードエーペックスゴムとを具える空気入りラジアルタイヤであって、
前記ビードエーペックスゴムのタイヤ軸方向内側面に沿い、かつ前記ビードコアからビードエーペックスゴムの半径方向外方端よりも内方の高さ位置まで半径方向に延在する内の短繊維補強ゴム層を配するとともに、
前記内の短繊維補強ゴム層は、ゴム100重量部に対して短繊維を10〜30重量部配合させた短繊配合ゴムからなり、かつその短繊維をタイヤ周方向に配向させ、
しかも前記ビードエーペックスのタイヤ軸方向外側面に沿って前記ビードコアからビードエーペックスゴムの半径方向外方端よりも内方の高さ位置まで延在する外の短繊維補強ゴム層を具えるとともに、前記内の短繊維補強ゴム層の半径方向外端は、外の短繊維補強ゴム層の半径方向外端よりも半径方向内方に位置させ、かつ該外の短繊維補強ゴム層の短繊維をタイヤ周方向に配向させたことを特徴としている。
【0008】
又請求項2の発明では、前記内の短繊維補強ゴム層は、その厚さが0.3〜2.0mmであることを特徴としている。
【0009】
又請求項3の発明では、前記内の短繊維補強ゴム層は、タイヤ周方向の複素弾性率Ea*を、ビードエーペックスゴムの複素弾性率E*より大、かつ半径方向の複素弾性率Eb*をビードエーペックスゴムの複素弾性率E*より小とするとともに、前記複素弾性率Ea*とEb*との比Ea*/Eb*を10〜30としたことを特徴としている。
【0010】
又請求項4の発明では、前記内の短繊維補強ゴム層は、前記半径方向の複素弾性率Eb*を10Mpa以下としたことを特徴としている。
【0011】
又請求項5の発明では、前記内の短繊維補強ゴム層は、その半径方向外端とビードエーペックスゴムの前記外方端との間の半径方向距離L1を3mm以上としたことを特徴としている。
【0012】
又請求項6の発明では、前記内、外の短繊維補強ゴム層の外端間の半径方向の距離は5mm以上としたことを特徴としている。
【0013】
又請求項7の発明では、前記外の短繊維補強ゴム層の外端の高さ位置とビードエーペックスゴムの外方端との間の半径方向の距離L3を3.0mm以上としたことを特徴としている。
【0014】
【発明の実施の形態】
以下、本発明の実施の一形態を、図示例とともに説明する。図1は本発明の空気入りラジアルタイヤが、タイヤ偏平率を55%以下とした高性能の乗用車用タイヤである場合を例示した子午断面図を示す。図2はビード部を拡大して示す断面図である。
【0015】
図1に示すように、空気入りラジアルタイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつ前記カーカス6の外側に配されるベルト層7とを具えるとともに、ビード部4には、前記ビードコア5の半径方向外面からタイヤ半径方向外方に立上がるビードエーペックスゴム8を設けている。
【0016】
なお前記ベルト層7は、高弾性のベルトコードをタイヤ周方向に対して例えば10〜35°の角度で配列した2枚以上、本例では2枚のベルトプライ7A、7Bから構成される。各ベルトプライ7A、7Bは、ベルトコードがプライ間相互で交差するように傾斜の向きを違えて重置され、これによってベルト剛性を高め、トレッド部2の略全巾をタガ効果を有して強固に補強している。ベルトコードとしては、スチールコード或いは、これに匹敵する例えば芳香族ポリアミド繊維等のハイモジュラスの有機繊維コードが好適に使用される。
【0017】
又本例では、前記ベルト層7に対する拘束力を高めて高速耐久性能等を向上させる目的で、ベルト層7の外側にバンド層9を配した場合を例示している。このバンド層9は、タイヤ周方向に対して例えば5°以下の角度で螺旋巻きしたバンドコードを有し、少なくとも前記ベルト層7のタイヤ軸方向外端部を覆って延在する。
【0018】
又前記カーカス6は、カーカスコードをタイヤ周方向に対して75〜90°の角度で配列した1枚以上、本例では1枚のカーカスプライ6Aから形成される。このカーカスプライ6Aは、前記ビードコア5、5間を跨る本体部6aの両端に、前記ビードコア5の廻りで内から外に折り返す折返し部6bを一体に具えている。カーカスコードとして、ナイロン、レーヨン、ポリエステル、芳香族ポリアミドなどの有機繊維コードの他、スチールコードも適宜用いることができるが、軽量化の観点から有機繊維コードが好ましい。
【0019】
次に、前記ビードエーペックスゴム8は、カーカスプライ6Aの前記本体部6aと折返し部6bとの間を通ってタイヤ半径方向外方に向けて先細状にのびる断面三角形状をなす。本例では、高性能タイヤとして必要なタイヤ剛性を確保するため、その半径方向外方端8eのビードベースラインBLからの高さh1を、タイヤ断面高さHTの0.25〜0.5倍の範囲としている。なおビードエーペックスゴム8には、複素弾性率E*が35〜60Mpaと、サイドウォールゴム(通常、複素弾性率は2.5〜6Mpa)に比して高弾性のゴムが使用される。
【0020】
そして本実施形態では、このようなタイヤ1において、耐久性及び乗り心地性を悪化させることなく、操縦安定性を向上させるために、ビード部4に内の短繊維補強ゴム層10、及び外の短繊維補強ゴム層20を設けている。なお、図1,2では、内の短繊維補強ゴム層10のみを、その説明のために図示している
【0021】
この内の短繊維補強ゴム層10は、図2に示すように、実質的に一定のゴム厚さtを有する薄いゴム層であって、前記ビードエーペックスゴム8のタイヤ軸方向内側面に沿い、かつ前記ビードコア5からビードエーペックスゴム8の前記外方端8eよりも内方の高さ位置まで半径方向に延在する。
【0022】
又内の短繊維補強ゴム層10は、ゴム100重量部に対して短繊維を10〜30重量部配合させた短繊配合ゴムGからなり、かつその短繊維をタイヤ周方向に配向させている。なお「短繊維がタイヤ周方向に配向する」とは、短繊維の90%以上が、タイヤ周方向を中心とした±20度以下の角度範囲に配向することを意味する。
【0023】
この短繊維の配向により、図3に示すように、前記内の短繊維補強ゴム層10は、その半径方向の複素弾性率Eb*の上昇を抑えながら、タイヤ周方向の複素弾性率Ea*を大幅に増加させることが可能となり、その比Ea*/Eb*を、例えば10以上にまで高めることができる。なお図3は、短繊維の配合量に基づく、周方向及び半径方向の複素弾性率Ea*、Eb*の変化の一例を示す。
【0024】
このように、内の短繊維補強ゴム層10は、タイヤ周方向の複素弾性率Ea*を大幅に増加させているため、タイヤの周方向剛性、即ちタイヤ回転時の捩じれ剛性を効果的に高めることができる。又図4に誇張して示すように、大きな横力Fが作用してビード部4がタイヤ軸方向内方に湾曲する際、ビードエーペックスゴム8の内側面側が引張り、外側面側が圧縮となる。従って、引張り側となる内側面側に短繊維補強ゴム層10を設ける方が、外側面側に設けるよりも効果的に抗力をうることができるなどコーナリングフォースが高まり、前記捩じれ剛性と相俟って優れた操縦安定性を発揮できる。そのためには、内の短繊維補強ゴム層10は、その半径方向内端e2を、ビードコア5からの半径方向の距離Kを3mm以下としてできるだけビードコア5に近接させることが好ましい。
【0025】
他方、内の短繊維補強ゴム層10では、前記図3の如く、半径方向の複素弾性率Eb*への影響をほとんど回避しうるなどタイヤ縦剛性を低く維持でき、乗り心地性の低下を抑制できる。なお、このためには、前記タイヤ周方向の複素弾性率Ea*が、ビードエーペックスゴムの複素弾性率E*より大(Ea*>E*)、かつ前記半径方向の複素弾性率Eb*がビードエーペックスゴムの複素弾性率E*より小(Eb*<E*)であることが必要である。
【0026】
又前記操縦安定性の向上と乗り心地性の低下抑制との効果をより顕著に発揮させるためには、前記比Ea*/Eb*を10〜30とすることが好ましく、比Ea*/Eb*が10未満のとき、操縦安定性の向上効果が不十分となり、特にハンドル応答性が低下傾向となる。又比Ea*/Eb*が30を越えることは、技術的に難しく、生産性や生産コストに不利を招くほか、ゴム強度が低下傾向となる。従って、前記比Ea*/Eb*は、15〜25がさらに好ましい。
【0027】
このとき、前記タイヤ半径方向の複素弾性率Eb*が、10MPa以下、さらには5MPa以下であることが、乗り心地性のために好ましい。
【0028】
なお複素弾性率は、岩本製作所(株)製の粘弾性スペクトロメーターを用い、温度70℃、周波数10Hz、初期歪10%、動歪±1%として測定した値としている。
【0029】
ここで、短繊維は、押出機やカレンダロールにより短繊配合ゴムをシート状に押し出す際、押し出し方向に配向する傾向があり、これを利用して、内の短繊維補強ゴム層10の短繊維を前記周方向に配向させることができる。しかし、内の短繊維補強ゴム層10の前記厚さtが2.0mmを越えると、短繊維の配向性が悪化するなど、前記比Ea*/Eb*を10以上に確保することが難しくなる。その結果、操縦安定性の向上効果が小さくなり、又タイヤ重量も増加して転がり抵抗を増大させる。又厚さtが0.3mmより小では、材料が薄すぎて補強効果を発揮することができなくなり、又その取り扱いが難しく生産性に不利となる。このように前記厚さtは、0.3〜2.0mmが好ましく、さらには0.3〜1.5mmがより好ましい。
【0030】
次に、前記短繊配合ゴムのゴム基材として、例えば、天然ゴム(NR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレインゴム(IR)等のジエン系ゴムの一種若しくは複数種を組み合わせたものが好適に使用できる。
【0031】
また前記短繊維としては、例えば、ナイロン、ポリエステル、アラミド、レーヨン、ビニロン、コットン、セルロース樹脂、結晶性ポリブタジエンなどの有機繊維の他、例えば金属繊維、ウイスカ、ボロン、ガラス繊維等の無機繊維が挙げられ、これらは単独でも、又2種以上を組合わせて使用することもできる。さらに好ましくは、短繊維はゴム基材との接着性を向上させるために適宜の表面処理を施してもよい。
【0032】
また前記短繊維の平均繊維長さLは、20μm以上、特に50〜5000μmが好ましい。又平均繊維長さLと繊維径Dとのアスペクト比L/Dは10以上、特に20〜500が好ましい。この平均繊維長さLが20μm未満、及びアスペクト比L/Dが10未満では、短繊維が高精度で配向した場合にも、複素弾性率Ea*、Eb*の間に十分な差が確保できなくなるなど操縦安定性の向上と乗り心地性の低下抑制との両立が難しくなる。逆に平均繊維長さLが5000μmより大、及びアスペクト比L/Dが500より大では、短繊維の配向性自体が低下し、同様に前記両立を難しいものとする。
【0033】
また短繊維の配合量は、10〜30重量部であることが必要であり、10重量部未満では補強効果に劣り、必要なタイヤ周方向の複素弾性率Ea*が確保できなくなるなど、操縦安定性の向上効果が発揮されない。逆に30重量部を越えると、短繊維が高精度で配向した場合にも、タイヤ半径方向の複素弾性率Ea*が上昇傾向となって乗り心地性を低下させることとなる。又未加硫ゴムの粘度が増し加工性も低下する。
【0034】
なお前記短繊配合ゴムでは、前記ゴム基材に、さらにカーボンブラックを配合することができ、このカーボンブラックとして、ヨウ素吸着量が30〜90mg/gのものが好適に使用しうる。ヨウ素吸着量が30mg/g未満のカーボンブラックでは、ゴム補強性が低く、強度、耐カット性が共に劣り、逆に90mg/gを越えると、発熱性が高くなって転がり抵抗の悪化を招く。
【0035】
このカーボンブラックの配合量は、前記ゴム基材100重量部に対して40重量部以下、好ましくは20〜30重量部であり、40重量部を越えると、ゴムの発熱性が高くなり転がり抵抗も悪化する。なお短繊配合ゴムには、前記短繊維やカーボンブラック以外に、さらに添加剤としてオイル、老化防止剤、ワックス、加硫促進剤等の従来のタイヤゴム用の添加剤が適宜配合できる。
【0036】
また本実施形態の内の短繊維補強ゴム層10では、その半径方向外端e1が、ビードエーペックスゴム8の前記外方端8eよりも半径方向内方に控えているため、応力の集中が緩和され、耐久性の悪化を防止できる。特に外端e1と外方端8eとの間の半径方向距離L1を3mm以上とすることが、耐久性の点で好ましい。
【0037】
ここで、ビード部4に設ける短繊維補強ゴム層が、本例の如く、内の短繊維補強ゴム層10のみの場合、即ちビードエーペックスゴム8の外側面に短繊維補強ゴム層を配さない場合には、前記外端e1のビードコア5からの高さHiを、タイヤ断面高さHTの0.1〜0.25倍とするのが好ましい。0.1倍未満では、操縦安定性の向上効果が十分発揮されず、逆に0.25倍を越えると乗心地性悪化という不利がある。
【0038】
又前記内の短繊維補強ゴム層10は、前記ビードエーペックスゴム8とカーカスプライ6Aとの間に挟まれて配されるため、加硫成型時のゴム流れが抑制されるなどゴム厚tを均一に確保できる。即ち、他の部位に設けた場合など、ゴム厚tが部分的に変化し、これが強度の弱所となって損傷を起こすなどの不具合がなく、耐久性を維持できる。
【0039】
又前記内の短繊維補強ゴム層10では、本例の如く、その内端e2から外端e1まで略直線状にのびることが好ましく、これによって、捩じれ剛性をより効果的に高めることができる。なお「略直線状」とは、短繊維補強ゴム層10の内端e2、外端e1、及びその中点を通る3点円弧の直径が100mm以上のものを意味する。
【0040】
図5において、前記内の短繊維補強ゴム層10に加え、外の短繊維補強ゴム層20を併示している。
【0041】
この外の短繊維補強ゴム層20は、前記ビードエーペックスのタイヤ軸方向外側面に沿ってビードコア5からビードエーペックスゴム8の外方端8eよりも内方の高さ位置まで延在する。又外の短繊維補強ゴム層20は、短繊維を周方向に配向した前記短繊維配合ゴムGからなり、従って、複素弾性率Ea*、Eb*等のゴム物性を、前記内の短繊維補強ゴム層10のゴム物性と実質的に同じとしている。なおゴム厚さも、0.3〜2.0mmの範囲としている。
【0042】
従って、内の短繊維補強ゴム層10と同様、タイヤ縦剛性を低く維持しながら、周方向の捩じれ剛性を高めることができ、内の短繊維補強ゴム層10と相俟って、操縦安定性のさらなる向上を達成しうる。なお、ビードエーペックスゴム8の外側面は、曲げ変形時の中立線に近いことから、外の短繊維補強ゴム層20は、曲げ剛性の増加を極力抑えながら周方向の捩じれ剛性を高めることができるため、より好ましい態様となる。
【0043】
このとき、前記内、外の短繊維補強ゴム層10、20の各外端e1、f1の高さ位置が近すぎると、応力集中によって耐久性が低下する。従って、本例では、前記外端e1を、前記外端f1よりも半径方向内方に控えて終端せしめ、応力の分散を図っている。これはビードエーペックスゴム8の内側面の方が、曲げ変形時の中立線から遠いことから、内の短繊維補強ゴム層10の方が、曲げ剛性への影響が大きいためであり、従って、外端e1を低くすることが、乗り心地性に有利となる。
【0044】
又前記耐久性の維持のために、前記外端e1、f1間の半径方向の距離L2を5mm以上とするのが好ましく、又同目的で、前記外端f1とビードエーペックスゴム8の前記外方端8eとの間の半径方向の距離L3を3.0mm以上とするのが好ましい。
【0045】
なお、外の短繊維補強ゴム層20の前記外端f1のビードコア5からの高さHoは、タイヤ断面高さHTの0.1〜0.25倍とするのが好ましく、このときには、内の短繊維補強ゴム層10の前記高さHiを、0.08×HTまで減じてもよい。
【0046】
なお、前記短繊維補強ゴム層10、20による前記作用効果は、本例の如く、タイヤ偏平率が30〜55%の高性能タイヤにより有効に機能しうるが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【0047】
【実施例】
タイヤサイズが215/45ZR17であるタイヤを表1の仕様に基づき試作するとともに、各試供タイヤの操縦安定性、および乗り心地をテストした。なお比較例1では、図6に略示するように、スチールコードのコード補強層を、ビードエーペックスゴムの外方端から突出するように設けている。
テストの方法は次の通りである。
【0048】
(1)操縦安定性;
・ タイヤをリム(17×7JJの)、内圧(200kPa)の条件で、乗用車両(国産FR乗用車、排気量2500cc)の全輪に装着し、速度120km/Hで乾燥アスファルト路面を高速走行走行し、直進安定性及びレーンチェンジの安定性をドライバーの官能評価により従来例を100とする指数で表示している。指数の大きい方が良好である。
・ 同テスト車両を用い、ウエットなアスファルト路において速度80km/Hで走行し、その時の直進安定性及びレーンチェンジの安定性を含む操縦安定性能の全体を、ドライバーの官能評価により従来例を100とする指数で表示している。指数の大きい方が良好である。
【0049】
(2)乗り心地性;
・ 同テスト車両を用い、アスファルト路面(良路)を走行したときの乗り心地性を、ドライバーの官能評価により従来例を100とする指数で表示している。指数の大きい方が良好である。
・ 同テスト車両を用い、ベルジャン路面(悪路)を走行したときの乗り心地性を、ドライバーの官能評価により従来例を100とする指数で表示している。指数の大きい方が良好である。
【0050】
【表1】

Figure 0003733056
【0051】
【発明の効果】
叙上の如く本発明は、タイヤ周方向に短繊維を配向させた短繊維補強ゴム層を、ビードエーペックスゴムの少なくとも内側面を含む側面に沿って配しているため、耐久性及び乗り心地性を悪化させることなく、操縦安定性を向上させることができる。
【図面の簡単な説明】
【図1】 本発明の一実施例を外の短繊維補強ゴム層をのぞいて示すタイヤの断面図である。
【図2】 ビード部の内の短繊維補強ゴム層を拡大して示す断面図である。
【図3】短繊維の配合量に基づく、周方向及び半径方向の複素弾性率Ea*、Eb*の変化の一例を示す線図である。
【図4】内の短繊維補強ゴム層の効果の一つを誇張して示す斜視図である。
【図5】 本発明の実施例を示す、ビード部の拡大断面図である。
【図6】表1の比較例1を説明する線図である。
【符号の説明】
2 トレッド部
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス
8 ビードエーペックスゴム
10 内の短繊維補強ゴム層
20 外の短繊維補強ゴム層
G 短繊維補強ゴム[0001]
BACKGROUND OF THE INVENTION
The present invention provides a pneumatic radial with improved steering stability without deteriorating durability and ride comfort by providing a short fiber reinforced rubber layer adjacent to at least the inner side surface of the bead apex rubber. Regarding tires.
[0002]
[Background Art and Problems to be Solved by the Invention]
In recent years, with higher output and higher performance of automobiles, improvement of steering stability as well as high ride comfort is strongly desired for tires.
[0003]
On the other hand, in pneumatic radial tires, it is known that the steering stability performance can be improved by increasing the lateral stiffness of the tire. Therefore, conventionally, a cord reinforcement layer using a steel cord or an organic fiber cord is used as a bead portion. It is provided from the side wall to the side wall portion to increase the bending rigidity of the side wall.
[0004]
However, the use of such a cord reinforcing layer is accompanied by an increase in tire longitudinal rigidity, which leads to a deterioration in riding comfort. Also, the cord reinforcement layer tends to concentrate stress at its end, especially when it is used in high performance tires that reduce the tire flatness to 55% or less and increase the contact width and contact area. Since the flexible region is narrow and stress concentration becomes remarkable, the durability tends to be impaired.
[0005]
Therefore, the present inventor noticed that not only the lateral stiffness of the tire but also the torsional stiffness in the rotational direction, that is, the circumferential stiffness is greatly involved in the steering stability, and by orienting the short fibers in the tire circumferential direction, Proposed to arrange a short fiber reinforced rubber layer with significantly increased circumferential complex elastic modulus while keeping the complex elastic modulus in the tire radial direction without protruding from the bead apex rubber and along the side surface. . As a result, it has been found that the torsional rigidity of the tire is effectively increased and the steering stability is improved, while the longitudinal rigidity of the tire can be kept low.
[0006]
That is, the present invention is based on the fact that the short fiber reinforced rubber layer in which short fibers are oriented in the tire circumferential direction is disposed along the side surface including at least the inner side surface of the bead apex rubber, and the durability and ride comfort are deteriorated. The object of the present invention is to provide a pneumatic radial tire with improved steering stability.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 of the present application is characterized by a taper extending from the tread portion to the bead core of the bead portion through the sidewall portion and the radially outer surface of the bead core toward the outer side in the tire radial direction. A pneumatic radial tire having a bead apex rubber extending in a shape,
An inner short fiber reinforced rubber layer is disposed along the inner surface in the tire axial direction of the bead apex rubber and extending radially from the bead core to an inner height position from the radially outer end of the bead apex rubber. And
The short fiber reinforced rubber layer is composed of a short fiber blended rubber in which 10 to 30 parts by weight of short fibers are blended with 100 parts by weight of rubber, and the short fibers are oriented in the tire circumferential direction.
In addition, an outer short fiber reinforced rubber layer extending from the bead core to an inner height position from the radially outer end of the bead apex rubber along the tire axial direction outer surface of the bead apex, and The radially outer end of the inner short fiber reinforced rubber layer is positioned radially inward from the radially outer end of the outer short fiber reinforced rubber layer, and the short fibers of the outer short fiber reinforced rubber layer are disposed in the tire. It is characterized by being oriented in the circumferential direction.
[0008]
The invention of claim 2 is characterized in that the short fiber reinforced rubber layer has a thickness of 0.3 to 2.0 mm.
[0009]
According to a third aspect of the present invention, the short fiber reinforced rubber layer includes a complex elastic modulus Ea * in the tire circumferential direction that is greater than a complex elastic modulus E * of the bead apex rubber and a radial complex elastic modulus Eb *. Is smaller than the complex elastic modulus E * of the bead apex rubber, and the ratio Ea * / Eb * between the complex elastic modulus Ea * and Eb * is 10-30.
[0010]
According to a fourth aspect of the present invention, the short fiber reinforced rubber layer includes a radial complex elastic modulus Eb * of 10 Mpa or less.
[0011]
Further, in the invention of claim 5, the inner short fiber reinforced rubber layer is characterized in that a radial distance L1 between the outer end in the radial direction and the outer end of the bead apex rubber is 3 mm or more. .
[0012]
The invention according to claim 6 is characterized in that the radial distance between the outer ends of the inner and outer short fiber reinforced rubber layers is 5 mm or more .
[0013]
In the invention of claim 7, the radial distance L3 between the height position of the outer end of the outer short fiber reinforced rubber layer and the outer end of the bead apex rubber is set to 3.0 mm or more. It is said.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a meridional sectional view illustrating a case where the pneumatic radial tire of the present invention is a high-performance passenger car tire having a tire flatness ratio of 55% or less. FIG. 2 is an enlarged cross-sectional view of the bead portion.
[0015]
As shown in FIG. 1, the pneumatic radial tire 1 includes a carcass 6 extending from the tread portion 2 through the sidewall portion 3 to the bead core 5 of the bead portion 4, inside the tread portion 2 and outside the carcass 6. The bead portion 4 is provided with a bead apex rubber 8 that rises outward in the tire radial direction from the radial outer surface of the bead core 5.
[0016]
The belt layer 7 is composed of two or more belt plies 7A and 7B in this example, in which high elasticity belt cords are arranged at an angle of, for example, 10 to 35 ° with respect to the tire circumferential direction. The belt plies 7A and 7B are stacked with different inclination directions so that the belt cords cross each other between the plies, thereby increasing the belt rigidity, and having a substantially full width of the tread portion 2 with a tagging effect. Strongly reinforced. As the belt cord, a steel cord or a high modulus organic fiber cord such as an aromatic polyamide fiber comparable to this is preferably used.
[0017]
Further, in this example, the case where the band layer 9 is disposed outside the belt layer 7 is illustrated for the purpose of increasing the restraining force on the belt layer 7 and improving the high speed durability performance. The band layer 9 has a band cord spirally wound at an angle of, for example, 5 ° or less with respect to the tire circumferential direction, and extends at least covering the outer end portion of the belt layer 7 in the tire axial direction.
[0018]
The carcass 6 is formed of one or more carcass plies 6A in this example in which carcass cords are arranged at an angle of 75 to 90 ° with respect to the tire circumferential direction. The carcass ply 6 </ b> A is integrally provided with folded portions 6 b that are folded back from the inside around the bead core 5 at both ends of the main body portion 6 a that extends between the bead cores 5 and 5. As the carcass cord, in addition to organic fiber cords such as nylon, rayon, polyester, and aromatic polyamide, steel cords can be used as appropriate, but organic fiber cords are preferable from the viewpoint of weight reduction.
[0019]
Next, the bead apex rubber 8 has a triangular cross section that extends between the main body portion 6a and the folded portion 6b of the carcass ply 6A and extends outward in the tire radial direction. In this example, in order to ensure the tire rigidity necessary as a high-performance tire, the height h1 of the radially outer end 8e from the bead base line BL is 0.25 to 0.5 times the tire cross-section height HT. The range is as follows. The bead apex rubber 8 is made of rubber having a complex elastic modulus E * of 35 to 60 Mpa and higher elasticity than the side wall rubber (usually having a complex elastic modulus of 2.5 to 6 Mpa).
[0020]
And in this embodiment, in such a tire 1, in order to improve steering stability without deteriorating durability and riding comfort, the short fiber reinforced rubber layer 10 in the bead part 4 and the outer A short fiber reinforced rubber layer 20 is provided. In FIG. 1, only the short fiber reinforcing rubber layer 10 of the inner, are shown for the explanation.
[0021]
The short fiber reinforced rubber layer 10 is a thin rubber layer having a substantially constant rubber thickness t, as shown in FIG. 2, along the tire axially inner side surface of the bead apex rubber 8. And it extends in the radial direction from the bead core 5 to a height position inward from the outer end 8 e of the bead apex rubber 8.
[0022]
The short fiber reinforced rubber layer 10 is composed of a short fiber blended rubber G in which 10 to 30 parts by weight of short fibers are blended with 100 parts by weight of rubber, and the short fibers are oriented in the tire circumferential direction. . “Short fibers are oriented in the tire circumferential direction” means that 90% or more of the short fibers are oriented in an angle range of ± 20 degrees or less centering on the tire circumferential direction.
[0023]
Due to the orientation of the short fibers, as shown in FIG. 3, the short fiber reinforced rubber layer 10 has a complex elastic modulus Ea * in the tire circumferential direction while suppressing an increase in the complex elastic modulus Eb * in the radial direction. The ratio Ea * / Eb * can be increased to, for example, 10 or more. In addition, FIG. 3 shows an example of the change of the complex elastic modulus Ea * and Eb * of the circumferential direction and radial direction based on the compounding quantity of a short fiber.
[0024]
Thus, since the short fiber reinforced rubber layer 10 in the inside greatly increases the complex elastic modulus Ea * in the tire circumferential direction, it effectively increases the circumferential rigidity of the tire, that is, the torsional rigidity during tire rotation. be able to. As exaggeratedly shown in FIG. 4, when the large lateral force F acts and the bead portion 4 curves inward in the tire axial direction, the inner side of the bead apex rubber 8 is pulled and the outer side is compressed. Therefore, when the short fiber reinforced rubber layer 10 is provided on the inner side which is the tension side, the cornering force is increased such that the drag can be obtained more effectively than when provided on the outer side, and this is combined with the torsional rigidity. And excellent steering stability. For that purpose, it is preferable that the inner short-fiber reinforced rubber layer 10 has its radially inner end e2 as close to the bead core 5 as possible with a radial distance K from the bead core 5 of 3 mm or less.
[0025]
On the other hand, in the short fiber reinforced rubber layer 10 as shown in FIG. 3, the longitudinal rigidity of the tire can be kept low, such as almost no influence on the complex elastic modulus Eb * in the radial direction can be avoided, and the decrease in ride comfort is suppressed. it can. For this purpose, the complex elastic modulus Ea * in the tire circumferential direction is larger than the complex elastic modulus E * of the bead apex rubber (Ea *> E *), and the complex elastic modulus Eb * in the radial direction is a bead. It is necessary to be smaller (Eb * <E *) than the complex elastic modulus E * of the apex rubber.
[0026]
In order to exhibit the effects of improving the steering stability and suppressing the decrease in ride comfort more preferably, the ratio Ea * / Eb * is preferably set to 10 to 30, and the ratio Ea * / Eb * When the value is less than 10, the steering stability improvement effect becomes insufficient, and the steering response tends to decrease. Further, it is technically difficult for the ratio Ea * / Eb * to exceed 30, which causes a disadvantage in productivity and production cost, and the rubber strength tends to decrease. Therefore, the ratio Ea * / Eb * is more preferably 15-25.
[0027]
At this time, the complex elastic modulus Eb * in the tire radial direction is preferably 10 MPa or less, and further preferably 5 MPa or less for ride comfort.
[0028]
The complex elastic modulus is a value measured by using a viscoelastic spectrometer manufactured by Iwamoto Seisakusho Co., Ltd. at a temperature of 70 ° C., a frequency of 10 Hz, an initial strain of 10%, and a dynamic strain of ± 1%.
[0029]
Here, the short fibers tend to be oriented in the extruding direction when the short fiber compounded rubber is extruded into a sheet shape by an extruder or a calender roll. By using this, the short fibers of the short fiber reinforced rubber layer 10 are used. Can be oriented in the circumferential direction. However, when the thickness t of the inner short fiber reinforced rubber layer 10 exceeds 2.0 mm, it becomes difficult to ensure the ratio Ea * / Eb * to 10 or more, for example, the orientation of the short fibers deteriorates. . As a result, the effect of improving the steering stability is reduced, and the tire weight is also increased to increase the rolling resistance. On the other hand, if the thickness t is smaller than 0.3 mm, the material is too thin to exhibit the reinforcing effect, and it is difficult to handle and disadvantageous in productivity. Thus, the thickness t is preferably 0.3 to 2.0 mm, and more preferably 0.3 to 1.5 mm.
[0030]
Next, as the rubber base material of the short fiber compounded rubber, for example, a kind of diene rubber such as natural rubber (NR), styrene-butadiene rubber (SBR), butadiene rubber (BR), or isoprene rubber (IR), or What combined multiple types can use it conveniently.
[0031]
Examples of the short fibers include organic fibers such as nylon, polyester, aramid, rayon, vinylon, cotton, cellulose resin, crystalline polybutadiene, and inorganic fibers such as metal fibers, whiskers, boron, and glass fibers. These can be used alone or in combination of two or more. More preferably, the short fiber may be subjected to an appropriate surface treatment in order to improve the adhesion to the rubber substrate.
[0032]
The average fiber length L of the short fibers is preferably 20 μm or more, particularly preferably 50 to 5000 μm. The aspect ratio L / D between the average fiber length L and the fiber diameter D is preferably 10 or more, particularly preferably 20 to 500. When the average fiber length L is less than 20 μm and the aspect ratio L / D is less than 10, a sufficient difference can be secured between the complex elastic modulus Ea * and Eb * even when the short fibers are oriented with high accuracy. It becomes difficult to achieve both improvement in handling stability and suppression of reduction in ride comfort, such as disappearance. On the other hand, when the average fiber length L is greater than 5000 μm and the aspect ratio L / D is greater than 500, the orientation of the short fibers itself is lowered, and the above-mentioned compatibility is similarly difficult.
[0033]
Further, the blending amount of the short fiber needs to be 10 to 30 parts by weight, and if it is less than 10 parts by weight, the reinforcing effect is inferior, and the necessary complex elastic modulus Ea * in the tire circumferential direction cannot be secured. The effect of improving sex is not demonstrated. On the other hand, if the amount exceeds 30 parts by weight, the complex elastic modulus Ea * in the tire radial direction tends to increase even when the short fibers are oriented with high precision, and the riding comfort is reduced. In addition, the viscosity of the unvulcanized rubber increases and the processability also decreases.
[0034]
In the short fiber blended rubber, carbon black can be further blended with the rubber base material, and the carbon black having an iodine adsorption of 30 to 90 mg / g can be suitably used. Carbon black having an iodine adsorption of less than 30 mg / g has low rubber reinforcing properties and is inferior in both strength and cut resistance. On the other hand, if it exceeds 90 mg / g, exothermicity increases and rolling resistance is deteriorated.
[0035]
The compounding amount of the carbon black is 40 parts by weight or less, preferably 20 to 30 parts by weight with respect to 100 parts by weight of the rubber base material. When the amount exceeds 40 parts by weight, the heat generation property of the rubber increases and the rolling resistance also increases. Getting worse. In addition to the above short fibers and carbon black, conventional additives for tire rubber such as oil, anti-aging agent, wax, vulcanization accelerator and the like can be appropriately blended with the short fiber blended rubber.
[0036]
Further, in the short fiber reinforced rubber layer 10 in the present embodiment, the radially outer end e1 is held inward in the radial direction with respect to the outer end 8e of the bead apex rubber 8, so that the stress concentration is reduced. It is possible to prevent deterioration of durability. In particular, the radial distance L1 between the outer end e1 and the outer end 8e is preferably 3 mm or more from the viewpoint of durability.
[0037]
Here, when the short fiber reinforced rubber layer provided in the bead part 4 is only the short fiber reinforced rubber layer 10 as in this example, that is, the short fiber reinforced rubber layer is not disposed on the outer surface of the bead apex rubber 8. In this case, the height Hi of the outer end e1 from the bead core 5 is preferably 0.1 to 0.25 times the tire cross-section height HT. If it is less than 0.1 times, the effect of improving the steering stability is not sufficiently exhibited. Conversely, if it exceeds 0.25 times, there is a disadvantage that the riding comfort deteriorates.
[0038]
Further, since the short fiber reinforced rubber layer 10 is disposed between the bead apex rubber 8 and the carcass ply 6A, the rubber thickness t is uniform, for example, the rubber flow during vulcanization molding is suppressed. Can be secured. That is, when it is provided in another part, the rubber thickness t is partially changed, and there is no inconvenience such as damage due to weakness of strength, and durability can be maintained.
[0039]
Further, in the short fiber reinforced rubber layer 10 as described above, it is preferable to extend substantially linearly from the inner end e2 to the outer end e1 as in this example, whereby the torsional rigidity can be increased more effectively. The “substantially linear” means that the diameter of a three-point arc passing through the inner end e2, the outer end e1, and the middle point of the short fiber reinforced rubber layer 10 is 100 mm or more.
[0040]
In FIG. 5, in addition to the inner short fiber reinforced rubber layer 10, the outer short fiber reinforced rubber layer 20 is also shown.
[0041]
The outer short fiber reinforced rubber layer 20 extends from the bead core 5 to the inner height of the outer end 8e of the bead apex rubber 8 along the tire axial direction outer surface of the bead apex. The outer short fiber reinforced rubber layer 20 is composed of the short fiber compounded rubber G in which short fibers are oriented in the circumferential direction. Therefore, the rubber properties such as the complex elastic modulus Ea * and Eb * are improved. The rubber layer 10 has substantially the same physical properties as the rubber. The rubber thickness is also in the range of 0.3 to 2.0 mm.
[0042]
Accordingly, like the inner short fiber reinforced rubber layer 10, it is possible to increase the torsional rigidity in the circumferential direction while maintaining the tire longitudinal rigidity low, and in combination with the inner short fiber reinforced rubber layer 10, steering stability is improved. Further improvement can be achieved. Since the outer surface of the bead apex rubber 8 is close to the neutral line during bending deformation, the outer short fiber reinforced rubber layer 20 can increase the torsional rigidity in the circumferential direction while suppressing the increase in bending rigidity as much as possible. Therefore, it becomes a more preferable aspect.
[0043]
At this time, if the height positions of the outer ends e1 and f1 of the inner and outer short fiber reinforced rubber layers 10 and 20 are too close, the durability is lowered due to stress concentration. Therefore, in this example, the outer end e1 is terminated inward in the radial direction with respect to the outer end f1, thereby distributing stress. This is because the inner side surface of the bead apex rubber 8 is far from the neutral line at the time of bending deformation, and therefore the inner short fiber reinforced rubber layer 10 has a larger influence on the bending rigidity, and therefore, Lowering the end e1 is advantageous for ride comfort.
[0044]
In order to maintain the durability, it is preferable that the radial distance L2 between the outer ends e1 and f1 is 5 mm or more, and for the same purpose, the outer end f1 and the outer side of the bead apex rubber 8 are separated from each other. The radial distance L3 between the end 8e is preferably 3.0 mm or more.
[0045]
The height Ho of the outer end f1 of the outer short fiber reinforced rubber layer 20 from the bead core 5 is preferably 0.1 to 0.25 times the tire cross-section height HT. The height Hi of the short fiber reinforced rubber layer 10 may be reduced to 0.08 × HT.
[0046]
In addition, although the said effect by the said short fiber reinforcement rubber layers 10 and 20 can function effectively with a high performance tire with a tire flatness ratio of 30-55% like this example, this invention is in embodiment shown in figure. Without being limited, the present invention can be carried out with various modifications.
[0047]
【Example】
A tire having a tire size of 215 / 45ZR17 was prototyped based on the specifications in Table 1, and the handling stability and riding comfort of each sample tire were tested. In Comparative Example 1, as schematically shown in FIG. 6, a cord reinforcing layer of a steel cord is provided so as to protrude from the outer end of the bead apex rubber.
The test method is as follows.
[0048]
(1) Steering stability;
-Tires are mounted on all wheels of a passenger vehicle (domestic FR passenger car, displacement of 2500 cc) under conditions of rim (17 x 7 JJ) and internal pressure (200 kPa), and run at high speed on a dry asphalt road surface at a speed of 120 km / H. In addition, the straight running stability and the lane change stability are indicated by an index with a conventional example of 100 by sensory evaluation of the driver. A larger index is better.
・ Using the same test vehicle, run at a speed of 80 km / H on a wet asphalt road. The driving stability performance including the straight running stability and the lane change stability at that time is 100 as the conventional example based on the driver's sensory evaluation. The index is displayed. A larger index is better.
[0049]
(2) Ride comfort;
-The ride comfort when driving on the asphalt road surface (good road) using the test vehicle is displayed as an index with a conventional example of 100 by sensory evaluation of the driver. A larger index is better.
-The ride comfort when driving on the Belgian road surface (bad road) using the test vehicle is displayed as an index with the conventional example being 100 based on the sensory evaluation of the driver. A larger index is better.
[0050]
[Table 1]
Figure 0003733056
[0051]
【The invention's effect】
As described above, in the present invention, the short fiber reinforced rubber layer in which the short fibers are oriented in the tire circumferential direction is disposed along the side surface including at least the inner side surface of the bead apex rubber. The steering stability can be improved without deteriorating the engine.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tire showing an embodiment of the present invention except for an outer short fiber reinforced rubber layer .
FIG. 2 is an enlarged cross-sectional view showing a short fiber reinforced rubber layer in a bead portion.
FIG. 3 is a diagram showing an example of changes in complex elastic moduli Ea * and Eb * in the circumferential direction and radial direction based on the blending amount of short fibers.
FIG. 4 is a perspective view exaggerating one of the effects of an inner short fiber reinforced rubber layer.
FIG. 5 is an enlarged cross-sectional view of a bead portion showing an embodiment of the present invention.
6 is a diagram for explaining Comparative Example 1 in Table 1. FIG.
[Explanation of symbols]
2 tread portion 3 side wall portion 4 bead portion 5 bead core 6 carcass 8 bead apex rubber 10 short fiber reinforced rubber layer 20 outer short fiber reinforced rubber layer G short fiber reinforced rubber

Claims (7)

トレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスと、前記ビードコアの半径方向外面からタイヤ半径方向外方に向けて先細状にのびるビードエーペックスゴムとを具える空気入りラジアルタイヤであって、
前記ビードエーペックスゴムのタイヤ軸方向内側面に沿い、かつ前記ビードコアからビードエーペックスゴムの半径方向外方端よりも内方の高さ位置まで半径方向に延在する内の短繊維補強ゴム層を配するとともに、
前記内の短繊維補強ゴム層は、ゴム100重量部に対して短繊維を10〜30重量部配合させた短繊配合ゴムからなり、かつその短繊維をタイヤ周方向に配向させ、
しかも前記ビードエーペックスのタイヤ軸方向外側面に沿って前記ビードコアからビードエーペックスゴムの半径方向外方端よりも内方の高さ位置まで延在する外の短繊維補強ゴム層を具えるとともに、前記内の短繊維補強ゴム層の半径方向外端は、外の短繊維補強ゴム層の半径方向外端よりも半径方向内方に位置させ、かつ該外の短繊維補強ゴム層の短繊維をタイヤ周方向に配向させたことを特徴とする空気入りラジアルタイヤ。
A pneumatic radial tire comprising a carcass extending from a tread portion through a sidewall portion to a bead core of a bead portion, and a bead apex rubber extending in a tapered shape from a radially outer surface of the bead core toward a radially outer side of the tire. And
An inner short fiber reinforced rubber layer is disposed along the inner surface in the tire axial direction of the bead apex rubber and extending radially from the bead core to an inner height position from the radially outer end of the bead apex rubber. And
The short fiber reinforced rubber layer is composed of a short fiber blended rubber in which 10 to 30 parts by weight of short fibers are blended with 100 parts by weight of rubber, and the short fibers are oriented in the tire circumferential direction.
In addition, an outer short fiber reinforced rubber layer extending from the bead core to an inner height position from the radially outer end of the bead apex rubber along the tire axial direction outer side surface of the bead apex, and The radially outer end of the inner short fiber reinforced rubber layer is positioned radially inward from the radially outer end of the outer short fiber reinforced rubber layer, and the short fibers of the outer short fiber reinforced rubber layer are disposed in the tire. A pneumatic radial tire characterized by being oriented in the circumferential direction.
前記内の短繊維補強ゴム層は、その厚さが0.3〜2.0mmであることを特徴とする請求項1記載の空気入りラジアルタイヤ。  The pneumatic radial tire according to claim 1, wherein the short fiber reinforced rubber layer has a thickness of 0.3 to 2.0 mm. 前記内の短繊維補強ゴム層は、タイヤ周方向の複素弾性率Ea*を、ビードエーペックスゴムの複素弾性率E*より大、かつ半径方向の複素弾性率Eb*をビードエーペックスゴムの複素弾性率E*より小とするとともに、前記複素弾性率Ea*とEb*との比Ea*/Eb*を10〜30としたことを特徴とする請求項1又は2記載の空気入りラジアルタイヤ。  The short fiber reinforced rubber layer includes a complex elastic modulus Ea * in the tire circumferential direction that is larger than a complex elastic modulus E * of the bead apex rubber, and a complex elastic modulus Eb * in the radial direction of the complex elastic modulus of the bead apex rubber. 3. The pneumatic radial tire according to claim 1, wherein the pneumatic radial tire is smaller than E * and has a ratio Ea * / Eb * between the complex elastic modulus Ea * and Eb * of 10 to 30. 4. 前記内の短繊維補強ゴム層は、前記半径方向の複素弾性率Eb*を10Mpa以下としたことを特徴とする請求項3に記載の空気入りラジアルタイヤ。The pneumatic radial tire according to claim 3, wherein the inner short fiber reinforced rubber layer has a complex elastic modulus Eb * in the radial direction of 10 Mpa or less. 前記内の短繊維補強ゴム層は、その半径方向外端とビードエーペックスゴムの前記外方端との間の半径方向距離L1を3mm以上としたことを特徴とする請求項1〜4の何れかに記載の空気入りラジアルタイヤ。  The inner short fiber reinforced rubber layer has a radial distance L1 between the outer end in the radial direction and the outer end of the bead apex rubber of 3 mm or more. Pneumatic radial tire described in 2. 前記内、外の短繊維補強ゴム層の外端間の半径方向の距離は5mm以上としたことを特徴とする請求項5に記載の空気入りラジアルタイヤ。  6. The pneumatic radial tire according to claim 5, wherein a radial distance between outer ends of the inner and outer short fiber reinforced rubber layers is 5 mm or more. 前記外の短繊維補強ゴム層の外端の高さ位置とビードエーペックスゴムの外方端との間の半径方向の距離L3を3.0mm以上としたことを特徴とする請求項1〜6のいずれかに記載の空気入りラジアルタイヤ。  The radial distance L3 between the height position of the outer end of the outer short fiber reinforced rubber layer and the outer end of the bead apex rubber is set to 3.0 mm or more. A pneumatic radial tire according to any one of the above.
JP2001349191A 2001-11-08 2001-11-14 Pneumatic radial tire Expired - Fee Related JP3733056B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001349191A JP3733056B2 (en) 2001-11-14 2001-11-14 Pneumatic radial tire
EP02024210A EP1310385B1 (en) 2001-11-08 2002-10-30 Pneumatic radial tire
DE60210191T DE60210191T2 (en) 2001-11-08 2002-10-30 Pneumatic radial tire
US10/290,218 US20030116250A1 (en) 2001-11-08 2002-11-08 Pneumatic radial tire
CNB021499691A CN100398343C (en) 2001-11-08 2002-11-08 Inflated radial tire
US11/452,358 US20060231186A1 (en) 2001-11-08 2006-06-14 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349191A JP3733056B2 (en) 2001-11-14 2001-11-14 Pneumatic radial tire

Publications (2)

Publication Number Publication Date
JP2003146029A JP2003146029A (en) 2003-05-21
JP3733056B2 true JP3733056B2 (en) 2006-01-11

Family

ID=19161897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349191A Expired - Fee Related JP3733056B2 (en) 2001-11-08 2001-11-14 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP3733056B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685530B2 (en) * 2005-07-08 2011-05-18 住友ゴム工業株式会社 Pneumatic tire
US20070125469A1 (en) * 2005-12-05 2007-06-07 Poling David C Pneumatic tire
JP5104050B2 (en) * 2007-06-12 2012-12-19 横浜ゴム株式会社 Pneumatic tire
JP5280832B2 (en) * 2008-12-25 2013-09-04 住友ゴム工業株式会社 Pneumatic tire
JP6753248B2 (en) * 2016-09-28 2020-09-09 住友ゴム工業株式会社 Pneumatic tires
KR101890808B1 (en) * 2017-08-11 2018-08-22 넥센타이어 주식회사 pneumatic tire
JP7363360B2 (en) * 2019-10-21 2023-10-18 住友ゴム工業株式会社 tire

Also Published As

Publication number Publication date
JP2003146029A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US20060231186A1 (en) Pneumatic radial tire
JP4170821B2 (en) Pneumatic radial tire
JP4160245B2 (en) Pneumatic tire and manufacturing method thereof
JP3638664B2 (en) Pneumatic tire
WO2015111439A1 (en) Motorcycle tire
JP2008105515A (en) Pneumatic tire for racing cart
JP6043553B2 (en) Pneumatic tire
JP2013001206A (en) Pneumatic tire
JP3733056B2 (en) Pneumatic radial tire
JP3733055B2 (en) Pneumatic radial tire
JP2001191764A (en) Pneumatic tire
JP3079028B2 (en) Pneumatic tire
JP4087625B2 (en) Pneumatic tire
JP3638663B2 (en) Pneumatic tire
JP4002113B2 (en) Pneumatic tire
JP6315651B2 (en) Pneumatic tire
JP4658377B2 (en) Radial tires for motorcycles
JP4383034B2 (en) Pneumatic tire
JP3315084B2 (en) Manufacturing method of pneumatic tire
JP4261866B2 (en) Pneumatic radial tire
JPH11301209A (en) Pneumatic tire
JP4295553B2 (en) Pneumatic radial tire
JP3774107B2 (en) Pneumatic tire
JPH07186609A (en) Pneumatic tire
JPH01145205A (en) Radial tyre

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees