JP4679052B2 - Permanent magnet type reluctance type rotating electrical machine - Google Patents

Permanent magnet type reluctance type rotating electrical machine Download PDF

Info

Publication number
JP4679052B2
JP4679052B2 JP2003420853A JP2003420853A JP4679052B2 JP 4679052 B2 JP4679052 B2 JP 4679052B2 JP 2003420853 A JP2003420853 A JP 2003420853A JP 2003420853 A JP2003420853 A JP 2003420853A JP 4679052 B2 JP4679052 B2 JP 4679052B2
Authority
JP
Japan
Prior art keywords
rotor
rotor core
magnetic
permanent magnet
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003420853A
Other languages
Japanese (ja)
Other versions
JP2005184957A (en
Inventor
雅彦 山舖
正典 大橋
明人 近藤
恭男 平野
伸建 相倉
貴志 荒木
正克 松原
資康 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2003420853A priority Critical patent/JP4679052B2/en
Publication of JP2005184957A publication Critical patent/JP2005184957A/en
Application granted granted Critical
Publication of JP4679052B2 publication Critical patent/JP4679052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、永久磁石を複合した永久磁石式リラクタンス型回転電機に関する。   The present invention relates to a permanent magnet type reluctance type rotating electrical machine in which permanent magnets are combined.

永久磁石式リラクタンス型回転電機は、磁束が通り易い磁気的凸部(d軸と称する)と磁束が通り難い磁気的凹部(q軸と称する)とが形成され、且つ、永久磁石を有する回転子を備えており、回転子は、固定子巻線が施された固定子内に配置されている。そして、回転子においては、磁気的凸部(d軸)では空隙磁束密度が高く、磁気抵抗の大きい磁気的凹部(q軸)では空隙磁束密度が低くなり、この磁束密度の変化によってリラクタンストルクが発生し、又、永久磁石と固定子の磁極との間の磁気吸引力および磁気反発力によってもトルクが発生する。   A permanent magnet type reluctance type rotating electrical machine is a rotor in which a magnetic convex portion (referred to as d-axis) that allows easy passage of magnetic flux and a magnetic concave portion (referred to as q-axis) that does not easily pass magnetic flux are formed, and a rotor having a permanent magnet. The rotor is arranged in a stator provided with a stator winding. In the rotor, the magnetic flux density is high in the magnetic convex portion (d-axis), and the magnetic flux density is low in the magnetic concave portion (q-axis) having a large magnetic resistance. Torque is also generated by a magnetic attractive force and a magnetic repulsive force between the permanent magnet and the magnetic pole of the stator.

図13および図14は従来の永久磁石式リラクタンス型回転電機の回転子を示すもので、8極の場合である。ここで、図13は回転軸を省略して示す縦断正面図、図14は縦断側面図である。即ち、図13において、回転子100は、円環状の多数の珪素鋼板を積層してなる回転子鉄心101を有する。回転子鉄心101の外周部には、図13に示すように、略長方形の一対の磁石挿入孔部102、102が形成されており、この一対の磁石挿入孔部102、102に永久磁石103、103が挿入固定されている。さらに、回転子鉄心101の外周部には、図13に示すように、一対の永久磁石103、103間に位置して孔部104が形成されており、この孔部104は、略三角形状をなしている。そして、回転子100において、一対の磁石挿入孔部102、102および永久磁石103、103並びに孔部104が設けられた部分が磁束の通り難い磁気的凹部(q軸)105であり、磁気的凹部105、105間の部分が磁束の通り易い磁気的凸部(d軸)106であり、これらの磁気的凹部105、磁気的凸部106は所定の角度を存して交互に形成されている(例えば特許文献1参照)。
特開2001−339922号公報(図1)
FIG. 13 and FIG. 14 show a rotor of a conventional permanent magnet type reluctance type rotating electric machine, which is a case of 8 poles. Here, FIG. 13 is a longitudinal front view showing the rotating shaft omitted, and FIG. 14 is a longitudinal side view. That is, in FIG. 13, the rotor 100 has a rotor core 101 formed by laminating a large number of annular silicon steel plates. As shown in FIG. 13, a pair of substantially rectangular magnet insertion holes 102, 102 are formed on the outer periphery of the rotor core 101, and permanent magnets 103, 102 are formed in the pair of magnet insertion holes 102, 102. 103 is inserted and fixed. Furthermore, as shown in FIG. 13, a hole 104 is formed between the pair of permanent magnets 103, 103 on the outer periphery of the rotor core 101, and the hole 104 has a substantially triangular shape. There is no. In the rotor 100, the portion provided with the pair of magnet insertion holes 102 and 102, the permanent magnets 103 and 103, and the hole 104 is a magnetic recess (q-axis) 105 that is difficult to pass magnetic flux, and the magnetic recess A portion between 105 and 105 is a magnetic convex portion (d-axis) 106 through which magnetic flux easily passes, and these magnetic concave portion 105 and magnetic convex portion 106 are alternately formed with a predetermined angle ( For example, see Patent Document 1).
JP 2001-339922 A (FIG. 1)

従来の回転子100は、図14に示すように、回転子鉄心101を中空状の回転子軸107に嵌め込み固定して構成され、回転子軸107は図示しない軸受部に支承されるようになっているが、上述したように回転子100は、多数の珪素鋼板からなる回転子鉄心101、多数の永久磁石103および回転子軸107からなる重量物であるので、軸受部での機械的損失が大きく、効率が悪いという問題がある。 As shown in FIG. 14, the conventional rotor 100 is configured by fitting a rotor core 101 into a hollow rotor shaft 107 and fixing it, and the rotor shaft 107 is supported by a bearing portion (not shown). and that although the rotor 100 as described above, the rotational stator core 101 composed of a plurality of silicon steel plates, since the weight consisting of a number of permanent magnets 103 and rotor shaft 107, the mechanical loss at the bearing portion There is a problem that it is large and inefficient.

また、回転子100の冷却は、回転子軸107中に冷却媒体例えば冷却油を通すことにより行なわれるようになっているが、回転子鉄心101の熱は回転子軸107を介して冷却油伝えられることになるので、冷却性能が悪いという問題もある。
本発明は上述の事情に鑑みてなされたものであり、その目的は、回転子の軽量化及び冷却性能の向上を図ることができる永久磁石式リラクタンス型回転電機を提供することにある。
The cooling of the rotating element 100 is adapted to be carried out by passing a cooling medium, for example cooling oil in the rotor shaft 107, the heat of the rotating stator core 101 to the cooling oil through the rotor shaft 107 Since it is transmitted, there is also a problem that the cooling performance is poor.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a permanent magnet type reluctance type rotating electrical machine capable of reducing the weight of the rotor and improving the cooling performance.

本発明の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた孔部と、前記回転子鉄心に設けられ、磁路の影響の少なく且つ遠心力による応力限界により決定されたエリアに位置する空洞部と、を備え、前記空洞部は、前記回転子鉄心を冷却する冷却媒体が流通するように形成され、前記磁石挿入孔部と前記永久磁石と前記孔部とからなる磁気的凹部が所定の角度を存して複数個所設けられた前記回転子鉄心において、前記磁気的凹部間に形成される磁気的凸部の中心を通る中心線上に位置し、前記磁気的凸部に隣接する前記磁気的凹部の中心線に平行な2つの線と、前記回転子鉄心の内径と同心状の線と、隣接する前記永久磁石の長辺に平行な2つの線とを結んで形成される略五角形のエリアに設けられていることを特徴とする。
The permanent magnet type reluctance type rotating electrical machine of the present invention comprises a stator having a stator winding, and a rotor having a rotor core.
The rotor is provided on an outer peripheral portion of the rotor core, and is inserted and fixed to a pair of substantially rectangular magnet insertion hole portions whose opposing distances sequentially increase toward the outer periphery, and the pair of magnet insertion hole portions. A permanent magnet, a hole provided in the rotor core between the pair of permanent magnets, and provided in the rotor core, which is less influenced by a magnetic path and is determined by a stress limit due to centrifugal force. And the cavity is formed so that a cooling medium for cooling the rotor core flows therethrough, and includes the magnet insertion hole, the permanent magnet, and the hole. In the rotor core provided with a plurality of magnetic concave portions at a predetermined angle, the magnetic convex portion is located on a center line passing through the center of the magnetic convex portion formed between the magnetic concave portions. The center line of the magnetic recess adjacent to It is provided with two lines parallel, and the inner diameter concentric lines of the rotor core, to a substantially pentagonal area formed by connecting the two lines parallel to the long sides of the permanent magnets adjacent It is characterized by that.

本発明の永久磁石式リラクタンス型回転電機よれば、回転子鉄心に空洞部を設けるようにしたので、それだけ回転子の軽量化を図り得て、軸受部での機械的損失を少なくし得、効率をよくすることができる。また、空洞部を回転子鉄心の冷却に利用できるので、回転子の冷却性能の向上を図ることができる。   According to the permanent magnet type reluctance type rotating electrical machine of the present invention, since the cavity is provided in the rotor core, the rotor can be reduced in weight, the mechanical loss in the bearing can be reduced, and the efficiency can be reduced. Can be better. Further, since the hollow portion can be used for cooling the rotor core, the cooling performance of the rotor can be improved.

(第1の実施例)
以下、本発明の第1の実施例について、図1ないし図4を参照しながら説明する。
まず、図1ないし図3は、永久磁石式リラクタンス型回転電機の回転子の一例を示すもので、8極の場合ある。ここで、図1は回転子軸を省略して示す縦断正面図、図2は正面図、図3は図2のX−X線に沿う断面図である。
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIGS.
First, FIG. 1 to FIG. 3 show an example of a rotor of a permanent magnet type reluctance type rotating electrical machine, which is a case of 8 poles. Here, FIG. 1 is a longitudinal front view showing the rotor shaft omitted, FIG. 2 is a front view, and FIG. 3 is a sectional view taken along line XX of FIG.

回転子1は、円環状の多数の珪素鋼板を積層してなる回転子鉄心2を有する。回転子鉄心2の外周部には、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部3、3が軸方向に延びるように形成されており(従って、一対の磁石挿入孔部3、3は、外周側からみてハ字形になっている。)、この一対の磁石挿入孔部3、3に永久磁石4、4が挿入されて接着により固定されている。   The rotor 1 has a rotor core 2 formed by laminating a large number of annular silicon steel plates. A pair of substantially rectangular magnet insertion hole portions 3 and 3 whose opposing distances gradually increase toward the outer periphery are formed in the outer peripheral portion of the rotor core 2 so as to extend in the axial direction (therefore, a pair of magnets). The insertion holes 3 and 3 are shaped like a letter C when viewed from the outer periphery side.) The permanent magnets 4 and 4 are inserted into the pair of magnet insertion holes 3 and 3 and fixed by adhesion.

さらに、回転子鉄心2の外周部には、一対の永久磁石4、4間に位置して孔部5が形成されており、この孔部5は、一対の永久磁石4、4に平行な二辺部と外周に沿う辺部とを有する略三角形状をなしている。そして、回転子1において、一対の磁石挿入孔部3、3および永久磁石4、4並びに孔部5が設けられた部分が磁束の通り難い磁気的凹部(q軸)6であり、磁気的凹部6、6間の部分が磁束の通り易い磁気的凸部(d軸)7である。そして、回転子鉄心2の内周には、180度の間隔を存して2個のキー8が軸方向に延びるようにして形成されている。   Further, a hole 5 is formed in the outer peripheral portion of the rotor core 2 so as to be located between the pair of permanent magnets 4, 4. It has a substantially triangular shape having side portions and side portions along the outer periphery. In the rotor 1, the portion provided with the pair of magnet insertion holes 3, 3 and the permanent magnets 4, 4 and the hole 5 is a magnetic recess (q-axis) 6 in which magnetic flux is difficult to pass, and the magnetic recess A portion between 6 and 6 is a magnetic convex portion (d axis) 7 in which magnetic flux easily passes. Then, two keys 8 are formed on the inner periphery of the rotor core 2 so as to extend in the axial direction with an interval of 180 degrees.

そして、回転子鉄心2には、所定の角度を存して円形状の8個の空洞部9が軸方向に延びるように形成されており、これらは、後述するように、各磁気的凸部7の中心を通る中心線La上に位置するようになっている。なお、回転子鉄心2には、8個の空洞部9の1個置きの空洞部9に対応し且つそれより外周側に位置して珪素鋼板結束用のタック10 (計4個)が形成されている。なお、回転子鉄心2には円環状の端板11、12(図3参照)が配置されている。 The rotor core 2 is formed with eight circular cavities 9 extending in the axial direction at a predetermined angle, and these magnetic protrusions are formed as described later. 7 is located on the center line La passing through the center of the center No. 7. The rotor core 2 is formed with tucks 10 (total of four) for binding silicon steel plates corresponding to the other hollow portions 9 of the eight hollow portions 9 and positioned on the outer peripheral side thereof. ing. The rotor core 2 is provided with annular end plates 11 and 12 (see FIG. 3).

回転子軸13は、図3に示すように、中空状をなすもので、その外周の途中部位には、鍔部14が一体に形成され、外周の鍔部14から一方の端部(図3では左端部)にかけて前記2個のキー8に対応して2個のキー溝15が形成され、そして、左端部の外周には、ねじ部16が形成されている。
ここで、回転子軸13に回転子鉄心2、端板11および12を組み込み固定する手順について述べる。まず、回転軸13に端板11をその左端部側から嵌め込んで鍔部14に当接するまで移動させる。つぎに、回転子軸13に回転子鉄心2を、そのキー8をキー溝15に合致させながら嵌め込んで右端部が端板11に当接するまで移動させる。そして、回転子軸13の左端部に端板12を嵌め込んだ後、回転子軸13のねじ部16にワッシャ17を介してナット18を螺合させて締め付け、以て、回転子1の組立てを完了する。なお、端板11、12にも回転子鉄心2とキー8と同様のキーが形成されている。
As shown in FIG. 3, the rotor shaft 13 has a hollow shape, and a flange portion 14 is integrally formed at an intermediate portion of the outer periphery, and one end portion (see FIG. 3) from the outer periphery flange portion 14. In the left end portion, two key grooves 15 are formed corresponding to the two keys 8, and a screw portion 16 is formed on the outer periphery of the left end portion.
Here, a procedure for incorporating and fixing the rotor core 2 and the end plates 11 and 12 to the rotor shaft 13 will be described. First, move the end plate 11 from the left end side of the rotating stylus shaft 13 until it abuts against the flange portion 14 is fitted. Next, the rotor core 2 is fitted onto the rotor shaft 13 while the key 8 is fitted in the key groove 15 and moved until the right end abuts against the end plate 11. Then, after the end plate 12 is fitted into the left end portion of the rotor shaft 13, the nut 18 is screwed onto the screw portion 16 of the rotor shaft 13 via the washer 17 and tightened, whereby the assembly of the rotor 1 is performed. To complete. The end plates 11 and 12 are also formed with keys similar to the rotor core 2 and the key 8.

図2および図3において、端板11および12の回転子鉄心2の両端面と接する面部には、回転子鉄心2の8個の空洞部9と連通する円形の環状凹部11aおよび12aが形成されている。また、端板11および12には、回転子鉄心2の8個の空洞部9にそれぞれ対応し且つ環状凹部11aおよび12aを介して連通する8個の流出孔11bおよび12bが形成されている。さらに、端板11の回転子鉄心2の端面と接する面部には、180度位置がずれた2個の流出孔11bに対応し且つ環状凹部11aを介して連通する2個の導入凹部11c(図2参照)が形成されている。そして、回転子軸13には、その回転子軸13の中空部内を前記2個の導入凹部11cに連通する2個の導入孔13aが形成されている。   2 and 3, circular annular recesses 11 a and 12 a communicating with the eight hollow portions 9 of the rotor core 2 are formed on the surface portions of the end plates 11 and 12 that are in contact with both end surfaces of the rotor core 2. ing. The end plates 11 and 12 are formed with eight outflow holes 11b and 12b that correspond to the eight hollow portions 9 of the rotor core 2 and communicate with each other through the annular recesses 11a and 12a. Further, two introduction recesses 11c (FIG. 5) corresponding to the two outflow holes 11b whose positions are shifted by 180 degrees and communicating with each other through the annular recess 11a are formed on the surface portion of the end plate 11 that contacts the end surface of the rotor core 2. 2) is formed. The rotor shaft 13 is formed with two introduction holes 13a for communicating the hollow portion of the rotor shaft 13 with the two introduction recesses 11c.

しかして、回転子1は、図4に示すように、スロット19a内に図示しない固定子巻線が収納して巻装された固定子19内に配置され、回転子軸13は図示しない軸受部に支承されるようになっており、以て、永久磁石式リラクタンス型回転電機20が構成されている。   As shown in FIG. 4, the rotor 1 is disposed in a stator 19 in which a stator winding (not shown) is housed and wound in a slot 19a, and the rotor shaft 13 is a bearing portion (not shown). Thus, a permanent magnet type reluctance type rotating electrical machine 20 is configured.

つぎに、本実施例の作用につき図4も参照して説明する。
回転子1には、磁束が通り難い磁気的凹部(q軸)6と磁束が通り易い磁気的凸部(d軸)7とが形成されているので、これらの磁気的凹部6及び磁気的凸部7上の空隙部分で、固定子巻線に電流を流すことにより蓄えられる磁気エネルギーが異なり、この磁気エネルギーの変化によりリラクタンストルクが発生する。また、回転子1には、永久磁石4、4も設けられているので、永久磁石4、4と固定子19の磁極との間の磁気吸引力及び磁気反発力によってもトルクが発生する。これにより、回転子1が回転するようになる。
Next, the operation of this embodiment will be described with reference to FIG.
Since the rotor 1 is formed with a magnetic recess (q axis) 6 in which magnetic flux is difficult to pass and a magnetic convex portion (d axis) 7 in which magnetic flux easily passes, these magnetic recess 6 and magnetic convex The magnetic energy stored by passing a current through the stator winding in the gap portion on the portion 7 is different, and reluctance torque is generated by the change in the magnetic energy. Since the rotor 1 is also provided with the permanent magnets 4, 4, torque is also generated by the magnetic attractive force and the magnetic repulsive force between the permanent magnets 4, 4 and the magnetic poles of the stator 19. Thereby, the rotor 1 comes to rotate.

図4は、永久磁石式リラクタンス型回転電機20を運転状態にした場合おける固定子巻線および永久磁石4による回転子1および固定子19の磁束の流れ(磁路)をコンピュータ解析(シミュレーション)した結果を示すものである。この図4において、寸法aは磁気的凹部6の中心を通る中心線Lbを基準とする距離、寸法bは回転子1の半径寸法を基準とする距離、寸法cは永久磁石4の長辺を基準とする距離を示し、寸法a、bは回転子1に作用する遠心力により発生する応力限界により決定され、寸法cは磁路に対して影響が少ないところを判断して決定される。そして、寸法aを有して中心線Lbに平行な線と、寸法bを有して回転子1の内径と同心状の線と、寸法cを有して永久磁石4の長辺に平行な線とを結んだ略五角形のエリアEを想定した場合に、前記空洞部9はこのエリアE内に位置するように設定されている。この結果、エリアEは、磁気的凸部7の中心を通る中心線La上に位置することにもなる。なお、珪素鋼板結束用のタック10もこのエリアE内に位置するように設定されている。   FIG. 4 shows a computer analysis (simulation) of the magnetic flux flow (magnetic path) of the rotor 1 and the stator 19 by the stator winding and the permanent magnet 4 when the permanent magnet type reluctance type rotating electrical machine 20 is in an operating state. The result is shown. In FIG. 4, the dimension a is a distance based on the center line Lb passing through the center of the magnetic recess 6, the dimension b is a distance based on the radial dimension of the rotor 1, and the dimension c is the long side of the permanent magnet 4. The reference distance is shown, the dimensions a and b are determined by the stress limit generated by the centrifugal force acting on the rotor 1, and the dimension c is determined by judging that the influence on the magnetic path is small. Then, a line having a dimension a and parallel to the center line Lb, a line having a dimension b and concentric with the inner diameter of the rotor 1, and a dimension c and parallel to the long side of the permanent magnet 4 When a substantially pentagonal area E connecting the lines is assumed, the hollow portion 9 is set so as to be located in the area E. As a result, the area E is also located on the center line La passing through the center of the magnetic projection 7. The silicon steel plate binding tack 10 is also set to be located in this area E.

しかして、永久磁石式リラクタンス型回転電機20が運転状態にある場合には、回転子1の回転子軸13の中空部内を冷却媒体として冷却油が流通するようになっており、回転子1の回転遠心力により、冷却油は、図3に矢印で示すように、導入孔13a、導入凹部11cを経て環状凹部11aに流入し、さらに、空洞部9を流通して環状凹部12aに流入した後、流出孔12bから外部に流出する。この場合、冷却油は、回転子軸13の中空部内を流通するときに回転子軸13を冷却するとともに回転子軸13を介して回転子鉄心2を冷却し、また、空洞部9を流通するときに回転子鉄心2を直接冷却するようになる。以上は、冷却油の主たる流れを示したものである。   Thus, when the permanent magnet type reluctance type rotating electrical machine 20 is in an operating state, the cooling oil flows through the hollow portion of the rotor shaft 13 of the rotor 1 as a cooling medium. As shown by the arrow in FIG. 3, the cooling oil flows into the annular recess 11 a through the introduction hole 13 a and the introduction recess 11 c, and further flows through the cavity 9 and flows into the annular recess 12 a by the rotational centrifugal force. , Flows out from the outflow hole 12b. In this case, the cooling oil cools the rotor shaft 13 as it flows through the hollow portion of the rotor shaft 13, cools the rotor core 2 through the rotor shaft 13, and also flows through the hollow portion 9. Sometimes the rotor core 2 is cooled directly. The above shows the main flow of the cooling oil.

このような本実施例によれば、回転子鉄心2に8個の空洞部9を形成するようにしたので、その分だけ本来重量物であった回転子1の軽量化を図ることができ、回転子軸13を支承する軸受部での機械的損失を少なくし得て、効率よくすることができる。この場合、空洞部9は、回転子1に作用する遠心力により発生する応力限界により決定される寸法aおよびbと、磁路に対して影響が少ないところを判断して決定される寸法cとにより設定されたエリアE内に位置して形成されているので、回転遠心力に対する機械的強度を損なうことがなく、また、固定子19の固定子巻線および回転子1の永久磁石による磁束の流れ(磁路)を阻害することがなくて、特性に悪影響を与えることもない。
しかも、上述した回転子鉄心2の空洞部9に回転子軸13を流通する冷却油を取り入れて流通させることができるので、回転子鉄心2を直接冷却することができて、回転子1の冷却性能の向上を図ることができる。
According to the present embodiment, since the eight hollow portions 9 are formed in the rotor core 2, it is possible to reduce the weight of the rotor 1 that was originally heavy by that amount, The mechanical loss in the bearing portion that supports the rotor shaft 13 can be reduced and the efficiency can be improved. In this case, the hollow portion 9 has dimensions a and b determined by the stress limit generated by the centrifugal force acting on the rotor 1, and a dimension c determined by judging that there is little influence on the magnetic path. Therefore, the mechanical strength against the rotational centrifugal force is not impaired, and the stator windings of the stator 19 and the magnetic flux generated by the permanent magnets of the rotor 1 are not damaged. The flow (magnetic path) is not obstructed and the characteristics are not adversely affected.
In addition, since the cooling oil flowing through the rotor shaft 13 can be introduced into the hollow portion 9 of the rotor core 2 and can be circulated, the rotor core 2 can be directly cooled and the cooling of the rotor 1 can be performed. The performance can be improved.

(第2の実施例)
図5は本発明の第2の実施例を示すもので、第1の実施例と異なるところは、回転子鉄心2に、空洞部9より外周側に位置してその空洞部9より小径の空洞部21が設けられた構成にある。この場合、空洞部21もエリアE(図4参照)内に位置するようになっている。なお、この第2の実施例では、タック10(図1参照)は、第1の実施例とは異なる位置に形成されることになる。
(Second embodiment)
FIG. 5 shows a second embodiment of the present invention. The difference from the first embodiment is that the rotor core 2 is located on the outer peripheral side of the cavity portion 9 and has a smaller diameter than the cavity portion 9. The portion 21 is provided. In this case, the cavity 21 is also located in the area E (see FIG. 4). In the second embodiment, the tack 10 (see FIG. 1) is formed at a position different from that in the first embodiment.

この第2の実施例によれば、第1の実施例に比し、空洞部21の分だけ回転子1の一層の軽量化と冷却性能の向上を図ることができる。
(第3ないし第5の実施例)
図6は本発明の第3の実施例を示すもので、第1の実施例と異なるところは、8個の空洞部9の代わりに、角部に丸みをもつ略五角形をなす空洞部22が8個形成された構成にある。この空洞部22もエリアE(図4参照)内に位置するようになっている。
According to the second embodiment, as compared with the first embodiment, it is possible to further reduce the weight of the rotor 1 and improve the cooling performance by the amount of the cavity 21.
(Third to fifth embodiments)
FIG. 6 shows a third embodiment of the present invention. The difference from the first embodiment is that instead of the eight hollow portions 9, a hollow portion 22 having a substantially pentagonal shape with rounded corners is provided. Eight are formed. The cavity 22 is also located in the area E (see FIG. 4).

これに対して、本発明の第4の実施例を示す図7では、90度の間隔を存して4個の空洞部22が形成され、本発明の第5の実施例を示す図7では、180度の間隔を存して2個の空洞部22が形成されている。
これらの第3ないし第5の実施例によっても第1の実施例と略同様の効果を得ることができる。
On the other hand, in FIG. 7 showing the fourth embodiment of the present invention, four hollow portions 22 are formed with an interval of 90 degrees, and in FIG. 7 showing the fifth embodiment of the present invention. , Two cavities 22 are formed with an interval of 180 degrees.
The effects similar to those of the first embodiment can be obtained by the third to fifth embodiments.

(第6ないし第9の実施例)
図9は本発明の第6の実施例を示すもので、第1の実施例と異なるところは、空洞部9の代わりに、角部に丸みをもつ略三角形をなす空洞部23(合計8個)が形成された構成にある。
図10ないし図12は本発明の第7ないし第9の実施例を示すもので、以下、第6の実施例と異なるところを説明する。
(Sixth to ninth embodiments)
FIG. 9 shows a sixth embodiment of the present invention. The difference from the first embodiment is that, instead of the cavity portion 9, a hollow portion 23 having a rounded corner and having a substantially triangular shape (total of eight portions). ) Is formed.
FIGS. 10 to 12 show the seventh to ninth embodiments of the present invention, and the differences from the sixth embodiment will be described below.

図10に示す第7の実施例では、空洞部23の代わりに、この空洞部23の大きさより小で角部に丸みをもつ略三角形をなす一対の空洞部24、24が形成されている。
図11に示す第8の実施例は、空洞部23の代わりに、角部に丸みをもつ略五角形をなす一対の空洞部25、25が形成されている。
図12に示す第9の実施例では、空洞部23と、これより内周側に位置して角部に丸みをもつ長方形をなす空洞部26とが形成されている。
In the seventh embodiment shown in FIG. 10, instead of the cavity 23, a pair of cavities 24, 24 that are smaller than the size of the cavity 23 and have a substantially triangular shape with rounded corners are formed.
In the eighth embodiment shown in FIG. 11, instead of the cavity 23, a pair of cavities 25, 25 having a substantially pentagonal shape with rounded corners are formed.
In the ninth embodiment shown in FIG. 12, a cavity 23 and a cavity 26 which is located on the inner peripheral side and has a rounded corner are formed.

なお、上記空洞部23、24、25および26もそれぞれエリアE(図4参照)内に位置するようになっている。
これらの第6ないし第9の実施例によっても第1の実施例と略同様の効果を得ることができる。
なお、本発明は上記しかつ図面に示す実施例にのみ限定されるものではなく、要旨を変更しない範囲内で適宜変形して実施し得ることは勿論である。
The cavities 23, 24, 25 and 26 are also located in the area E (see FIG. 4).
According to these sixth to ninth embodiments, substantially the same effect as that of the first embodiment can be obtained.
In addition, this invention is not limited only to the Example shown above and shown in drawing, Of course, it can change suitably and implement in the range which does not change a summary.

本発明の第1の実施例を示す回転子の縦断正面図FIG. 1 is a longitudinal front view of a rotor showing a first embodiment of the present invention. 回転子の正面図Front view of rotor 図2のX−X線に沿う断面図Sectional drawing which follows the XX line of FIG. 永久磁石式リラクタンス型回転電機の部分縦断正面図Partial longitudinal front view of a permanent magnet type reluctance type rotating electrical machine 本発明の第2の実施例を示す回転子の部分縦断正面図Partial longitudinal sectional front view of a rotor showing a second embodiment of the present invention 本発明の第3の実施例を示す回転子の縦断正面図Longitudinal front view of a rotor showing a third embodiment of the present invention 本発明の第4の実施例を示す図6相当図FIG. 6 equivalent view showing a fourth embodiment of the present invention. 本発明の第5の実施例を示す図6相当図FIG. 6 equivalent view showing a fifth embodiment of the present invention. 本発明の第6の実施例を示す図5相当図FIG. 5 equivalent view showing a sixth embodiment of the present invention 本発明の第7の実施例を示す図9相当図FIG. 9 equivalent diagram showing a seventh embodiment of the present invention. 本発明の第8の実施例を示す図9相当図FIG. 9 equivalent view showing an eighth embodiment of the present invention. 本発明の第9の実施例を示す図9相当図FIG. 9 equivalent diagram showing a ninth embodiment of the present invention. 従来例を示す図1相当図1 equivalent diagram showing a conventional example 図3相当図3 equivalent figure

符号の説明Explanation of symbols

図面中、1は回転子、2は回転子鉄心、3は磁石挿入孔部、4は永久磁石、5は孔部、6は磁気的凹部、7は磁気的凸部、9は空洞部、11および12は端板、13は回転子軸、19は固定子、20は永久磁石式リラクタンス型回転電機、21ないし26は空洞部を示す。
In the drawings, 1 is a rotor, 2 is a rotor core, 3 is a magnet insertion hole, 4 is a permanent magnet, 5 is a hole, 6 is a magnetic recess, 7 is a magnetic projection, 9 is a cavity, 11 And 12 are end plates, 13 is a rotor shaft, 19 is a stator, 20 is a permanent magnet type reluctance type rotating electrical machine, and 21 to 26 are cavities.

Claims (1)

固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた孔部と、
前記回転子鉄心に設けられ、磁路の影響の少なく且つ遠心力による応力限界により決定されたエリアに位置する空洞部と、を備え、
前記空洞部は、前記回転子鉄心を冷却する冷却媒体が流通するように形成され、前記磁石挿入孔部と前記永久磁石と前記孔部とからなる磁気的凹部が所定の角度を存して複数個所設けられた前記回転子鉄心において、前記磁気的凹部間に形成される磁気的凸部の中心を通る中心線上に位置し、前記磁気的凸部に隣接する前記磁気的凹部の中心線に平行な2つの線と、前記回転子鉄心の内径と同心状の線と、隣接する前記永久磁石の長辺に平行な2つの線とを結んで形成される略五角形のエリアに設けられていることを特徴とする永久磁石式リラクタンス型回転電機。
Comprising a stator having a stator winding and a rotor having a rotor core;
The rotor is
A pair of substantially rectangular magnet insertion holes provided on the outer periphery of the rotor core, the opposing distance sequentially increasing toward the outer periphery;
A permanent magnet inserted and fixed in the pair of magnet insertion holes;
A hole provided between the pair of permanent magnets in the rotor core;
A cavity portion that is provided in the rotor core and is located in an area that is less affected by a magnetic path and that is determined by a stress limit due to centrifugal force; and
The hollow portion is formed so that a cooling medium for cooling the rotor core flows , and a plurality of magnetic recesses including the magnet insertion hole portion, the permanent magnet, and the hole portion exist at a predetermined angle. In the rotor core provided at a location, the rotor core is located on a center line passing through the center of the magnetic convex portion formed between the magnetic concave portions and parallel to the center line of the magnetic concave portion adjacent to the magnetic convex portion. and two lines such, the inner diameter concentric lines of the rotor core, that is provided in a substantially pentagonal area formed by connecting the two lines parallel to the long sides of the permanent magnets adjacent Permanent magnet type reluctance type rotating electric machine.
JP2003420853A 2003-12-18 2003-12-18 Permanent magnet type reluctance type rotating electrical machine Expired - Lifetime JP4679052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420853A JP4679052B2 (en) 2003-12-18 2003-12-18 Permanent magnet type reluctance type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420853A JP4679052B2 (en) 2003-12-18 2003-12-18 Permanent magnet type reluctance type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2005184957A JP2005184957A (en) 2005-07-07
JP4679052B2 true JP4679052B2 (en) 2011-04-27

Family

ID=34782255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420853A Expired - Lifetime JP4679052B2 (en) 2003-12-18 2003-12-18 Permanent magnet type reluctance type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP4679052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518913B1 (en) * 2013-12-18 2015-05-11 현대자동차 주식회사 Fixed structure of rotor for driving motor

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660406B2 (en) * 2005-09-07 2011-03-30 株式会社東芝 Rotating electric machine
US7705503B2 (en) * 2005-09-07 2010-04-27 Kabushiki Kaisha Toshiba Rotating electrical machine
US8080908B2 (en) 2005-11-09 2011-12-20 Kabushiki Kaisha Toshiba Cooling structure for rotor core in electric rotating machine
JP5288698B2 (en) 2006-10-20 2013-09-11 株式会社東芝 Permanent magnet type reluctance type rotating electrical machine
JP5157138B2 (en) * 2006-11-24 2013-03-06 株式会社日立製作所 Permanent magnet rotating electrical machine and wind power generation system
WO2008078584A1 (en) * 2006-12-27 2008-07-03 Kabushiki Kaisha Yaskawa Denki Buried magnet motor
JP4404223B2 (en) 2007-03-20 2010-01-27 株式会社安川電機 Electromagnetic steel sheet forming body, electromagnetic steel sheet laminate, permanent magnet type synchronous rotating electric machine equipped with the same, permanent magnet type synchronous rotating electric machine, vehicle using the rotating electric machine, elevator, fluid machine, processing machine
JP5092579B2 (en) * 2007-06-26 2012-12-05 株式会社明電舎 Permanent magnet reluctance motor rotor
US7791236B2 (en) * 2007-08-16 2010-09-07 Ford Global Technologies, Llc Permanent magnet machine
DE102007039186A1 (en) * 2007-08-20 2009-02-26 Siemens Ag Runner of a traction motor
JP5238298B2 (en) * 2008-03-07 2013-07-17 東海旅客鉄道株式会社 Permanent magnet synchronous motor
JP2009261059A (en) * 2008-04-14 2009-11-05 Panasonic Corp Motor and electronic equipment using the same
KR101448649B1 (en) 2008-07-08 2014-10-08 엘지전자 주식회사 Motor
KR100972444B1 (en) * 2008-07-30 2010-07-27 주식회사 동성전기 Rotor of brushless motor
US20100117475A1 (en) 2008-11-11 2010-05-13 Ford Global Technologies, Llc Permanent Magnet Machine with Offset Pole Spacing
US8536748B2 (en) 2008-11-11 2013-09-17 Ford Global Technologies, Llc Permanent magnet machine with different pole arc angles
JP2010183800A (en) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp Rotor of electric motor, electric motor, air blower and compressor
JP5097743B2 (en) * 2009-04-09 2012-12-12 本田技研工業株式会社 Electric motor
JP5023100B2 (en) * 2009-04-20 2012-09-12 本田技研工業株式会社 Electric motor
CN102484402B (en) * 2009-08-31 2014-11-05 株式会社安川电机 Rotor, permanent magnet type synchronous rotating electrical machine, vehicle, elevating machine, fluid machinery, and processing machine
US8461739B2 (en) 2009-09-25 2013-06-11 Ford Global Technologies, Llc Stator for an electric machine
JP5088587B2 (en) * 2009-11-25 2012-12-05 株式会社安川電機 Permanent magnet type synchronous rotating electric machine, vehicle equipped therewith, elevator, fluid machine and processing machine
US20110273047A1 (en) * 2010-05-10 2011-11-10 Remy Technologies, L.L.C. Rotor lamination assembly
JP5038475B2 (en) * 2010-09-28 2012-10-03 本田技研工業株式会社 Rotor
JP5261836B2 (en) * 2010-11-01 2013-08-14 本田技研工業株式会社 Rotating electrical machine rotor
CN202513692U (en) 2011-09-15 2012-10-31 蒂森克虏伯电梯(上海)有限公司 A rotor, and a motor, an elevation traction machine or a servo transmission mechanism including the rotor
JP5494767B2 (en) * 2012-09-14 2014-05-21 株式会社明電舎 Permanent magnet reluctance motor rotor
US20140175916A1 (en) * 2012-12-20 2014-06-26 Remy Technologies, Llc Rotor assembly having liquid cooling
CN105144548B (en) * 2013-04-22 2018-01-02 三菱电机株式会社 Electric rotating machine
DE102014202283A1 (en) * 2014-02-07 2015-08-13 Bühler Motor GmbH Oil pump drive
DE102014106614A1 (en) 2014-05-12 2015-11-12 Thyssenkrupp Presta Teccenter Ag Rotor shaft with laminated core
JP6147226B2 (en) * 2014-06-13 2017-06-14 株式会社オティックス Rotor for rotating electrical machines
WO2016002253A1 (en) * 2014-07-02 2016-01-07 三菱電機株式会社 Dynamo-electric machine
JP6711082B2 (en) * 2016-03-31 2020-06-17 スズキ株式会社 Rotating electric machine
JP6661458B2 (en) * 2016-04-27 2020-03-11 株式会社小松製作所 Rotor and electric motor
KR102617452B1 (en) * 2016-09-02 2023-12-26 현대모비스 주식회사 Motor rotor with cooling
KR102622139B1 (en) * 2016-11-16 2024-01-08 현대모비스 주식회사 Rotor of motor and manufacturing method thereof
KR101905306B1 (en) 2017-02-15 2018-10-05 엘지전자 주식회사 Motor
JP7166066B2 (en) * 2018-03-20 2022-11-07 株式会社東芝 Rotating electric machine
DE102018204436A1 (en) 2018-03-22 2019-09-26 Volkswagen Aktiengesellschaft Method for mounting lamella or laminated cores on a hollow shaft and a rotor produced in this way for an electrical machine
FR3086119B1 (en) * 2018-09-14 2021-07-09 Valeo Equip Electr Moteur ROTATING ELECTRIC MACHINE EQUIPPED WITH A REDUCED INERTIA ROTOR
DE102018132502A1 (en) * 2018-12-17 2020-06-18 Valeo Siemens Eautomotive Germany Gmbh Rotor plate, rotor and electrical machine and method for producing a rotor
JP7489284B2 (en) * 2020-10-06 2024-05-23 株式会社日立産機システム Rotating Electric Machine
DE102021206596A1 (en) 2021-06-25 2022-12-29 Volkswagen Aktiengesellschaft Rotor for an electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152576A (en) * 1998-11-05 2000-05-30 Fujitsu General Ltd Reluctance motor
JP2000270525A (en) * 1999-03-18 2000-09-29 Toshiba Corp Permanent magnet reluctance rotating electric machine
JP2001025209A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor
JP2001095182A (en) * 1999-09-20 2001-04-06 Fujitsu General Ltd Permanent magent electric motor
JP2002112513A (en) * 2000-09-29 2002-04-12 Toshiba Corp Dynamo-electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570450B2 (en) * 1995-12-25 2004-09-29 アイシン・エィ・ダブリュ株式会社 Motor cooling circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152576A (en) * 1998-11-05 2000-05-30 Fujitsu General Ltd Reluctance motor
JP2000270525A (en) * 1999-03-18 2000-09-29 Toshiba Corp Permanent magnet reluctance rotating electric machine
JP2001025209A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor
JP2001095182A (en) * 1999-09-20 2001-04-06 Fujitsu General Ltd Permanent magent electric motor
JP2002112513A (en) * 2000-09-29 2002-04-12 Toshiba Corp Dynamo-electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518913B1 (en) * 2013-12-18 2015-05-11 현대자동차 주식회사 Fixed structure of rotor for driving motor

Also Published As

Publication number Publication date
JP2005184957A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4679052B2 (en) Permanent magnet type reluctance type rotating electrical machine
US9013082B2 (en) Rotating machine and rotor thereof
JP5017120B2 (en) Rotating electrical machine rotor and rotating electrical machine
JP4660406B2 (en) Rotating electric machine
US7705503B2 (en) Rotating electrical machine
US6630762B2 (en) Permanent magnet rotor and method of making the same
JP4715291B2 (en) Electric motor
JP4310611B2 (en) Permanent magnet motor
JP5074350B2 (en) Magnetic bearing
JP2006050745A (en) Axial gap rotary electric machine
JP2007104819A (en) Rotating electric machine
JP2007068357A (en) Rotor of rotary electric machine and rotary electric machine using the same
JP2009201269A (en) Embedded magnet motor and manufacturing method therefor
JP3740353B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP2005354798A (en) Electric motor
JP2008148447A (en) Motor for electric power steering device
JP2007043864A (en) Axial air gap synchronous machine
JP4070630B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP6013269B2 (en) Permanent magnet rotating electric machine
JP2005094845A (en) Rotor of permanent magnet type rotary electric machine
JP2007143331A (en) Permanent-magnet-embedded rotor
JPH09182331A (en) Rotor for permanent magnet type synchronous electric rotating machine
JP4080273B2 (en) Permanent magnet embedded motor
JP6747064B2 (en) Permanent magnet type rotating electric machine
JP2011193627A (en) Rotor core and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4679052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term