JP3740353B2 - Permanent magnet type reluctance type rotating electrical machine - Google Patents

Permanent magnet type reluctance type rotating electrical machine Download PDF

Info

Publication number
JP3740353B2
JP3740353B2 JP2000216433A JP2000216433A JP3740353B2 JP 3740353 B2 JP3740353 B2 JP 3740353B2 JP 2000216433 A JP2000216433 A JP 2000216433A JP 2000216433 A JP2000216433 A JP 2000216433A JP 3740353 B2 JP3740353 B2 JP 3740353B2
Authority
JP
Japan
Prior art keywords
permanent magnet
electrical machine
rotating electrical
magnetic
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000216433A
Other languages
Japanese (ja)
Other versions
JP2002034185A (en
Inventor
則雄 高橋
豊 橋場
和人 堺
政憲 新
幸彦 風尾
正 徳増
資康 望月
貴志 荒木
正克 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000216433A priority Critical patent/JP3740353B2/en
Publication of JP2002034185A publication Critical patent/JP2002034185A/en
Application granted granted Critical
Publication of JP3740353B2 publication Critical patent/JP3740353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、永久磁石式リラクタンス型回転電機の改良に関する。
【0002】
【従来の技術】
図11は、4極構成からなる従来の永久磁石式リラクタンス型回転電機を示す径方向断面図である。
【0003】
図11において、固定子1は電機子コイル2を有し、その内側には回転子3が設けられている。回転子3は、(回転子)鉄心4と永久磁石6とを備えていて、回転子鉄心4は電磁鋼板の積層構成からなり、回転軸を中心とした円周方向に磁化容易方向と磁化困難方向とが交互に形成されている。
【0004】
回転子3は、外周面に磁気的な凹凸を形成するために、鉄心4内に8個の永久磁石埋め込み穴5が磁化容易方向に沿い形成され、永久磁石6がその永久磁石埋め込み穴5内に嵌め込まれ接着剤により固定されている。
【0005】
8個の永久磁石6は、回転中心から径方向に向け十字状に配置構成されて4つの凸極、すなわち磁極部4a(4極)を形成する。
【0006】
また、図11において、凸極を形成した永久磁石6の中間、すなわち2つの凸極間の鉄心4には、空洞部からなる非磁性部8が設けられ、磁極間4bが形成されている。すなわち、非磁性部8の両側に位置する各永久磁石6で挟まれる部分が磁気的に凹部となり、永久磁石埋め込み穴5内の永久磁石6はその磁極間4bを通る電機子電流の磁束を打ち消すように磁化されている。 磁極部4aの両側に位置する一対の永久磁石6,6は、いずれもその磁化方向は回転子3の円周方向に同一であり、磁極間4bの両側に位置する一対の永久磁石6,6は、反対に、磁化方向は円周方向に互いに逆となる。なお、永久磁石6は、好ましくは磁極
(凸極)軸に対しほぼ垂直な方向に磁化されている。
【0007】
次に、上記構成の従来の永久磁石式リラクタンス型回転電機の作用を説明する。
【0008】
図12には、d軸(いわゆる磁束の通り易い部分)の電機子電流による鉄心4の磁極軸に沿った方向の成分の磁束φdを示しており、磁束φdは磁極部4aの鉄心4を磁路とするため、この方向の磁路では磁気抵抗が極めて小さく、磁束が通り易い。
【0009】
図13には、q軸(いわゆる磁束の通り難い部分)の電機子電流による磁極間4bの中央部と回転子3の中心を結ぶ線に沿った方向の成分の磁束φqを示しており、磁束φqは永久磁石6の非磁性部8並びに磁極間4bを横断する磁路を形成する。そこで、空洞部からなる非磁性部8の比透磁率は“1”であり、永久磁石6の比透磁率もほぼ“1”であるので、高磁気抵抗により電機子電流による磁束φqは低下する。
【0010】
磁極部4aの両側に位置する各永久磁石6,6は、上述のように、磁極軸に対しほぼ垂直な方向に磁化されているので、図14に示すように各永久磁石6,6で発生した磁束は鉄心4の外周領域の磁性部7を円周方向に流れ、磁極部4aを通って、自己の反対の極に戻る経路の磁気回路φmaを形成する。このとき、各永久磁石6,6の一部の磁束は空隙(いわゆる固定子1と回転子3との間のエアギャップ部)を経て固定子1を通り、互いに隣の永久磁石6及び回転子3の磁極部4aを通り、元の永久磁石6に戻る磁気回路φmbをも形成する。
【0011】
永久磁石6の鎖交磁束は、図13に示したようにq軸の電機子電流による磁極間4bの中心軸方向成分の磁束φqとは逆方向に分布し、磁極間4bから侵入する電機子磁束φqに反発して打ち消し合う。
【0012】
従ってまた、磁極間4bの外側のエアギャップ部においては、永久磁石6の磁束により電機子電流が作るエアギャップの磁束密度を低下させ、磁極部4a上のエアギャップ磁束密度と比較して大きな変化(差)を呈する。その結果、回転子3の位置に対するエアギャップ磁束密度の変化、すなわち大きな磁気エネルギ変化が得られる。
【0013】
さらに、負荷時においても、磁極部4aと磁極間4bとの境界領域で磁気的に短絡する磁性部7を有し、磁性部7は負荷電流によって大きく磁気飽和する。その結果、磁極間4bに分布する永久磁石6の磁束が増加し、非磁性部8及び永久磁石6における高磁気抵抗と永久磁石6の磁束とによって、エアギャップ磁束密度分布、すなわち磁気エネルギ変化の大きい凹凸が形成され、回転電機からは大出力が導出される。
【0014】
なお、永久磁石式リラクタンス型回転電機では、永久磁石6は回転子3の円周方向に間隔を置いて配置されていることから、回転子3の外側円周方向のほぼ全周囲にわたり永久磁石6を配置したいわゆる一般的な永久磁石型回転電機と比較し、永久磁石6自体の表面積は小さく、永久磁石6による鎖交磁束量も少ない。
【0015】
また、永久磁石式リラクタンス型回転電機では、無励磁状態での永久磁石6のほとんどの磁束は、磁性部7を通る回転子鉄心4内の漏れ磁束となる。従って、この状態では誘導電圧を極めて小さくできるので、無励磁時の鉄損は少なくなる。また、電機子コイル2が短絡故障した際に流れる過電流も少ない。
【0016】
また、永久磁石式リラクタンス型回転電機は、負荷時において、永久磁石6による鎖交磁束に、電機子電流(リラクタンス型回転電機の励磁電流成分とトルク電流成分)による鎖交磁束が加わって端子電圧を誘導する。
【0017】
一方、一般的な永久磁石型回転電機では、永久磁石6の鎖交磁束が端子電圧のほとんどを占めているので端子電圧を調整することは困難であるが、永久磁石式リラクタンス型回転電機は、永久磁石6による鎖交磁束が少ないので、励磁電流成分を広く調整することにより、端子電圧を幅広く調整できる特徴がある。
【0018】
すなわち、永久磁石式リラクタンス型回転電機は、回転速度に応じて電圧が電源電圧以下となるように励磁電流成分を調整することができ、基底速度から一定電圧で広範囲な可変速運転が可能となる。また、強制的制御で弱め界磁を行って電圧を抑制していないので、高速回転時に制御が動作しなくなっても過電圧が発生するようなことはない。
【0019】
さらにまた、永久磁石式リラクタンス型回転電機は、永久磁石6を回転子鉄心4内に埋め込む構成となっているので、積層構造からなる電磁鋼板の鉄心4そのものが永久磁石6の保持機構となり、回転の遠心力による永久磁石6の飛散等は防止される。
【0020】
また、上記従来の永久磁石式リラクタンス型回転電機では、図13に示した電機子電流が形成する回転子3へのq軸電流による磁束φqは、図15に示したように、永久磁石埋め込み穴5の外周側薄肉部18、及び磁極間4bの回転中心軸寄りのブリッジ薄肉部19を流れるため、d軸電流による磁束φdとq軸電流による磁束φqとの差が小さくなり、リラクタンストルクが減少する。
【0021】
そこで、回転トルクに無効なq軸電流による磁束φqが、非磁性部8の外周側から永久磁石埋め込み穴5の外周側薄肉部18に流れる無効磁束を少なくし、且つ永久磁石6より発生する磁束の漏れ(永久磁石無効磁束17)を小さくするために、鉄心4の永久磁石埋め込み穴5周辺、及び磁極間4bの外周側はできる限り径方向に狭くすることが考えられる。
【0022】
【発明が解決しようとする課題】
しかしながら、上記従来の永久磁石式リラクタンス型回転電機では、永久磁石埋め込み穴5周辺、及び磁極間4bの外周側を径方向に狭くすると、強度的に回転による永久磁石6自体の遠心力を回転子鉄心4で支えることが難しくなり、特に高速回転機に適用しようとした場合は、永久磁石6の飛散、回転子3の破損が生じ回転電機としての成立が難くなる。
【0023】
また、従来の永久磁石式リラクタンス型回転電機では、無効磁束及び漏れ磁束の磁束量を補い、特性上必要な有効磁束を確保するために永久磁石6の量を増加させることも考えられるが、回転子3全体の体積に対する永久磁石埋め込み穴5の占める容積の割合が大きくなるというスペース上の問題と、遠心力による永久磁石6の応力がさらに増加することから構造上並びに強度上問題であり、単純に永久磁石6の量を増加させることは困難である。
【0024】
また従来、永久磁石6は接着剤により永久磁石埋め込み穴5に固定されたが、接着剤の劣化等により接着力が低下し、永久磁石埋め込み穴5内で永久磁石6で脱落する恐れもある。永久磁石埋め込み穴5内で脱落した永久磁石6は、回転子3の回転に伴う遠心力により、永久磁石埋め込み穴5の外周側、すなわち回転軸より遠い方の側の壁を押圧するので、それが磁極間4b外周側を支えている永久磁石埋め込み穴5の外周側薄肉部18、及び磁極間4bの中央側ブリッジ薄肉部19に対する応力の増加につながることとなった。
【0025】
従って、上記構成の回転子を高速回転及び高出力の回転電機へ適用しようとすると、増加した遠心力により外周側薄肉部18や中央側ブリッジ薄肉部19が損傷を受け、永久磁石6の飛散や回転子3の破損等が懸念される。
【0026】
また、従来の永久磁石式リラクタンス型回転電機における永久磁石6は、その形状が磁化方向に対し等方性を有し方向性を持たないので、永久磁石6の着磁方向を目視では識別することが出来ず、作業員は回転子3の組立作業時に方向を間違えて永久磁石6を挿入する可能性があり改善が要望されていた。
【0027】
【課題を解決するための手段】
請求項1記載の発明は、電機子コイルを有する固定子と、この固定子の内側にあって、永久磁石を隣り合う磁極間を通る電機子の磁束を打ち消すように鉄心内の永久磁石の埋め込み穴中に設け、かつ前記磁極間の永久磁石外周側に非磁性部を設けて、周方向に磁気的凹凸を形成した回転子とを有する永久磁石式リラクタンス型回転電機において、永久磁石は、その着磁方向にほぼ直交し、かつ非磁性部とは反対側の前記永久磁石埋め込み穴の壁面に固定し、かつ前記非磁性部側の壁面との間に隙間を設けたことを特徴とする。
【0028】
請求項2記載の発明は、請求項1記載の永久磁石式リラクタンス型回転電機において、永久磁石は、永久磁石の磁気吸引力により、埋め込み穴の壁面に固定されたことを特徴とする。
【0029】
請求項3記載の発明は、請求項2記載の永久磁石式リラクタンス型回転電機において、永久磁石は、その着磁方向の両端部間において、永久磁石埋め込み穴の壁面との間の磁気吸引力に差を有し、常にいずれか一方の端面が、永久磁石埋め込み穴の壁面に固定されることを特徴とする。
【0030】
このように請求項1から請求項3に記載の各発明によれば、永久磁石は非磁性部とは反対側の永久磁石埋め込み穴の壁面に固定され、回転子の回転に伴う永久磁石の遠心力が構造的に弱い非磁性部に加わることがないので、回転子の破損や永久磁石の外側への飛散を回避することができる。
【0031】
請求項4または5に記載の発明は、請求項3記載の永久磁石式リラクタンス型回転電機において、永久磁石は、永久磁石埋め込み穴の壁面に対向する着磁方向の両端部のいずれか一方の面、または永久磁石の着磁方向の両端部にそれぞれ対向する永久磁石埋め込み穴の壁面のいずれか一方の面に段差を設け、永久磁石の両端部の磁気吸引力に差を設けたことを特徴とする。
【0032】
このように、請求項4または5に記載の発明によれば、段差を形成して磁気吸引力に差を設けたので、請求項3記載の発明の作用と同様に、回転子の破損や永久磁石の外側への飛散を回避することができる。
【0033】
請求項6記載の発明は、請求項3記載の永久磁石式リラクタンス型回転電機において、永久磁石の着磁方向の永久磁石埋め込み穴の壁面との間のいずれか一方に、永久磁石埋め込み穴の壁面に面する側に段差を設けた磁性部材を介在させたことを特徴とする。
【0034】
このように、請求項6記載の発明によれば、磁性部材を介在させたので、請求項3記載の発明の作用に加えて、永久磁石の固定がより強固に行われる。
【0035】
請求項7または8記載の発明は、請求項1記載の永久磁石式リラクタンス型回転電機において、永久磁石の着磁方向の永久磁石埋め込み穴の壁面との間のいずれか一方に、ばね等の弾性部材の介装、または永久磁石埋め込み穴と非磁性部との間の鉄心に切り欠きないしは切り起こし加工により弾性部を形成し、永久磁石を押圧するように構成したことを特微とする。
【0036】
このように、請求項7または8に記載の発明によれば、弾性部材または弾性部の構成により、請求項1記載の発明の作用に加えて、永久磁石はより強固に固定される。
【0037】
請求項9または10に記載の発明は、請求項1から8のうちのいずれか1項に記載の永久磁石式リラクタンス型回転電機において、回転子の鉄心の内径寸法を、鉄心の外形寸法の25%から55%の範囲、または回転子の回転に伴う鉄心の応力値が最小となるように鉄心の内径寸法を設定しことを特徴とする。
【0038】
このように、請求項9または10に記載の発明は、回転子の鉄心の内径寸法を、鉄心の外形寸法の25%から55%の範囲、または回転子の回転に伴う鉄心の応力値が最小となるように鉄心の内径寸法を設定し、回転子自体の回転にともなう応力が最小となるようにしたので、請求項1から8の各発明における作用に加えて、より機械的に強固な回転子を提供することができる。
【0039】
請求項11記載の発明は、電機子コイルを有する固定子と、この固定子の内側にあって、永久磁石を、隣り合う磁極間を通る電機子の磁束を打ち消すように鉄心内の永久磁石埋め込み穴中に設け、かつ前記磁極間の永久磁石外周側に非磁性部を設けて、円周方向に磁気的凹凸を形成した回転子とを有する永久磁石式リラクタンス型回転電機において、永久磁石は、永久磁石の着磁方向と略直交する面の面積が着磁方向に沿い変化するように構成されたことを特徴とする。
【0040】
請求項12記載の発明は、請求項11記載の永久磁石式リラクタンス型回転電機において、永久磁石埋め込み穴の壁面を、永久磁石の着磁方向の一方の端部を係止するように変形させたことを特徴とする。
【0041】
上記のように、請求項11及び12に記載の発明によれば、永久磁石の形状を着磁方向に変化させ方向性を持たせたので、回転子の組み立て製造に際し、作業員は永久磁石の組み込み方向を間違えることがなく、効率良く作業を行うことができる。
【0042】
【発明の実施の形態】
以下、本発明の永久磁石式リラクタンス型回転電機の一実施の形態を、図1ないし図10を参照して詳細に説明する。なお、図11ないし図15に示した従来の構成と同一構成には同一符号を付し詳細な説明は省略する。
【0043】
(第1の実施の形態:請求項1、2、3、4に対応)
(構成)
図1は、本発明の永久磁石式リラクタンス型回転電機の第1の実施の形態を示す径方向断面図である。また、図2は図1に示す回転子の径方向拡大断面図である。
【0044】
図1において、固定子1は電機子コイル2を有し、内側には、電磁鋼板の積層構成からなる回転子3が収容されている。回転子3は、回転子鉄心4と永久磁石6とを備えていて、回転子鉄心4は磁化容易方向(d軸方向)と磁化困難方向 (q軸方向)を形成している。
【0045】
回転子鉄心4は、円周方向に磁気的な凹凸を形成するため8個の永久磁石埋め込み穴5が磁化容易方向に沿い形成され、永久磁石埋め込み穴5内に永久磁石6が装着されている。
【0046】
空洞(空隙)からなる非磁性部8は、磁極的に凹部(磁極間4b)を形成し、その両側に位置する永久磁石6,6は、磁極間4bを通る電機子電流の磁束を打ち消すように磁化されている。
【0047】
一方、磁極部4aの両側に位置する一対(2個)の永久磁石6,6は、磁化方向が同一であり、磁極間4bの両側に位置する2個の永久磁石6,6は、回転子3の円周方向に沿い互いに磁化方向は逆となる。なお、永久磁石6は、磁極(凸極)軸にほぼ垂直な方向に磁化されているのが望ましい。
【0048】
図2に示すように、永久磁石6は、永久磁石埋め込み穴5内にあって、非磁性部8とは反対側の回転軸により近い内周側壁面9に、着磁方向とはほぼ直交する面で自己の磁気吸引力により密着固定されている。
【0049】
そして永久磁石6の固定された内周側壁面9とは反対側(すなわち非磁性部8側)の内周側壁面、すなわち回転軸からはより遠い外周側壁面10と永久磁石6との間には隙間(空間)が設けられている。なお、図1以下の説明図では、永久磁石6の着磁方向の両端面に対応する、永久磁石埋め込み穴5の内周側壁面9及び外周側壁面10の該当部分位置を破線で囲んで示すものとする。
【0050】
そこで、図2に示すように、永久磁石理め込み穴5の外周側壁面10に対向する側の永久磁石6面には段部(凹凸)が形成されていて、段部の凸部により、外周側壁面10近くに対向する部分の表面積が小さくなるように構成されている。尚、本実施の形態では、永久磁石6は半径方向に沿って凹凸(段部)が連なるように段差を設けたが、半径方向に沿ってではなく、回転子3の軸方向に沿って凹凸(段部)が連なるように段差を設けることもできる。
【0051】
(作用)
このように第1の実施の形態の永久磁石式リラクタンス型回転電機は、従来と相違し、永久磁石6は、永久磁石埋め込み穴5の内周側壁面9に固定されていて、より回転軸側に近いので、永久磁石6の回転子3の回転に伴う永久磁石6自体の平均的な遠心力はより小さいものとなり、回転子鉄心4への応力を軽減させることができる。
【0052】
従って、回転子3の外周側を支える永久磁石埋め込み穴5の外周側薄肉部18、及び磁極間中央側ブリッジ薄肉部19は、いずれも厚みが薄く強度的に厳しい状況にあるが、永久磁石6自体は、永久磁石埋め込み穴5内の肉厚な内周側壁面9に固定されていて、回転子3の回転に伴う外周側薄肉部18やブリッジ薄肉部19にかかる応力は軽減される。
【0053】
また、永久磁石6は、自己の磁気吸引力により、永久磁石埋め込み穴5の内周側壁面9に固定され、従来のように、経年変化による接着剤の枯れや劣化等による剥がれがないので、永久磁石6は永久磁石埋め込み穴5内にあって安定する。
【0054】
さらにまた、この実施の形態では、永久磁石6は、永久磁石理め込み穴5の外周側壁面10に空隙を形成して対向する面に凹凸を設けているため、外周側壁面10により近い部分の表面積(すなわち凸部の先端面積)は小さいので、その永久磁石6の凸部を通る磁束は減少する。その結果、永久磁石理め込み穴5の周側壁面に対する永久磁石6の磁気吸引力は、外周側壁面10との間の磁気吸引力よりも内周側壁面9との間の磁気吸引力がより強くなり、永久磁石6は着磁方向に内周側壁面9に強固に固定される。
【0055】
(効果)
上記のように、図1及び2に示す第1の実施の形態の永久磁石式リラクタンス型回転電機によれば、永久磁石6が永久磁石埋め込み穴5の中で、(平均)遠心力がより小さく、しかも肉厚の内周側壁面9に固定されるので、回転子鉄心4に及ぼす応力を低減することができ、回転子3の損傷を回避し信頼性を向上させ得るとともに、より高速な回転及び出力の増大を実現できる。
【0056】
また、永久磁石6は、永久磁石埋め込み穴5の外周側壁面10に間隙を介して対向する側の表面に凹凸(段差)を形成したので、永久磁石6と永久磁石埋め込み穴5の着磁方向各面に働く磁気吸引力により一層強弱がつき、その吸引力の差により、永久磁石埋め込み穴5の内周側壁面9への固定をより強固なものとすることができる。
【0057】
さらに、この実施の形態では、永久磁石6は自己の磁気吸引力により永久磁石埋め込み穴5内に固定され、従来のように接着剤を使用することがないので、接着剤の枯れや劣化による脱落はなく安定するとともに、永久磁石6の鉄心4内への実装が容易となり製造の効率化を図ことができる。
【0058】
(第2の実施の形態:請求項5に対応)
(構成)
図3は、本発明の永久磁石式リラクタンス型回転電機の第2の実施の形態を示す回転子の径方向拡大断面図である。
【0059】
図3に示すように、本実施の形態では、永久磁石6の着磁方向の両端部においてそれぞれ対向する永久磁石埋め込み穴5の壁面のうち、非磁性部8側の外周側壁面10自体に段差(凹凸)が構成され、これにより永久磁石6の両端部における磁気吸引力に差を有するように形成したものである。
【0060】
従って、この構成によっても、永久磁石6と永久磁石埋め込み穴5の外周側壁面10との間に、間隙を有するのに加えて、永久磁石6の凸部により、外周側壁面10に近接する部分の表面積(すなわち凸部の先端面積)が小さいので、第1の実施の形態と同様に、永久磁石6の着磁方向に働く磁気吸引力に強弱がつき、その吸引力の差により、永久磁石6は永久磁石埋め込み穴5の内周側壁面9側に強固に固定される。
【0061】
尚、本実施の形態において、回転子鉄心4は半径方向に沿って段差(凹凸)を設けているが、第1の実施の形態と同様に、回転子鉄心4の軸方向に沿って段差(凹凸)を設けても良い。
【0062】
(作用)
このように第2の実施の形態の永久磁石式リラクタンス型回転電機は、永久磁石埋め込み穴5の外周側壁面10に段差を形成したので、永久磁石6と外周側壁面10とを通る磁束は減少し、反対側の内周側壁面9との間の磁気吸引力より小さくなり、永久磁石6は遠心力のより小さくな方向の内周側壁面9に強固に固定される。
【0063】
(効果)
上記のように、図3に示す第2の実施の形態の永久磁石式リラクタンス型回転電機によれば、永久磁石埋め込み穴5の外周側壁面10、すなわち回転子鉄心4側に段差(凹凸)を形成したことにより、永久磁石6を永久磁石埋め込み穴5の内周側壁面9に強固に固定することができる。
【0064】
従って、この実施の形態においても、永久磁石6は永久磁石埋め込み穴5の回転軸側により近く、しかも肉厚側の内周側壁面9に固定され、回転子鉄心4に対する応力を低減することができるので、回転子3を損傷を回避して信頼性を向上させることができるとともに、より回転速度が早く、出力の大きい永久磁石式リラクタンス型回転電機を実現できる。
【0065】
また、永久磁石6は自己の磁気吸引力により永久磁石埋め込み穴5内に固定されるので固定は安定し、永久磁石6は簡単な形状及び構造を有するので、回転子3の製造が容易となる。
【0066】
(第3の実施の形態:請求項6に対応)
(構成)
図4は、本発明の永久磁石式リラクタンス型回転電機の第3の実施の形態を示す回転子の径方向拡大断面図である。
【0067】
すなわち、本実施の形態では、永久磁石6は、永久磁石埋め込み穴5の内周側壁面9との間に、磁性部材11を介して固定され、磁性部材11は内周側壁面9に接する側の面に、図示のように断面コ字状の段差(凹凸)を設けたものである。
【0068】
そして、第1及び第2の実施の形態と同様に、永久磁石6と永久磁石埋め込み穴5の外周側壁面10との間には隙間を形成したので、永久磁石6は、磁性部材11を介した磁気吸引力により、永久磁石埋め込み穴5の内周側壁面9に強固に固定される。尚、本実施の形態では、磁性部材11は、半径方向に沿い段差(凹凸)を設けるように図示してあるが、磁性部材11の段差(凹凸)は、回転子3の回転軸方向に沿って設けても良い。
【0069】
(作用)
上記構成による第3の実施の形態の永久磁石式リラクタンス型回転電機によれば、永久磁石6は着磁方向に磁性部材11を介して内周側壁面9に固定されていて、しかも磁性部材11の内周側壁面9側は段差を有するので、永久磁石6から発生するほとんどの磁束は磁性部材11を通って回転子鉄心4内に到達する。従って、端部断面積の小さい磁性部材11の凸部と永久磁石埋め込み穴5の内周側壁面9との間の磁束密度は大となり磁気吸引力も増加し、永久磁石6は磁性部材11を介して永久磁石埋め込み穴5の内周側壁面9に強固に固定される。
【0070】
(効果)
上記のように、第3の実施の形態の永久磁石式リラクタンス型回転電機によれば、永久磁石6は磁性部材11を介して回転子鉄心4に強固に固定されて安定するので、第1及び第2の実施の形態と同様に、高信頼性を有し、高速回転、高出力の回転電機を提供することができる。
【0071】
(第4の実施の形態:請求項7に対応)
(構成)
図5は、本発明による永久磁石式リラクタンス型回転電機の第4の実施の形態を示す回転子の径方向拡大断面図である。
【0072】
図5に示したように、本実施の形態の回転子3は、永久磁石6と永久磁石埋め込み穴5の外周側壁面10との間に、ばね等の弾性部材12をその弾性力の付勢方向が永久磁石6の着磁方向と一致するように挿入し、弾性部材12が永久磁石6を押圧し、永久磁石6が常に永久磁石埋め込み穴5の内周側壁面9に強固に押圧固定されるように構成されている。
【0073】
尚、本実施の形態では、回転子3の径方向に沿い2個の弾性部材12を配列挿入したが弾性部材12の個数は1個でも、あるいは3個以上の複数個でも良い。また、複数個の弾性部材12の配列方向も回転子3の径方向に限らず、回転軸方向に沿い配列挿入することができる。
【0074】
(作用)
上記のように、この実施の形態の永久磁石式リラクタンス型回転電機では、永久磁石6は、自己磁気吸引力に加えて、ばね等の弾性部材12により、永久磁石埋め込み穴5の内周側壁面9に押し付けられるので、永久磁石6は永久磁石埋め込み穴5の内周側壁面9に確実かつ強固に固定される。
【0075】
(効果)
上記第4の実施の形態の永久磁石式リラクタンス型回転電機は、永久磁石6が、弾性部材12により、永久磁石6は永久磁石埋め込み穴5の内周側壁面9に押し付け固定されるので、永久磁石6は安定し、信頼性が向上するとともに、回転子3のより高速回転が可能となる。
【0076】
(第5の実施の形態:請求項8、9、10に対応)
(構成)
図6は、本発明の永久磁石式リラクタンス型回転電機の第5の実施の形態を示す回転子の径方向拡大断面図である。
【0077】
すなわち、本実施の形態では、図6に示したように、永久磁石埋め込み穴5と非磁性部8との間の回転子鉄心4に、切り欠きないしは切り起こし加工による弾性部13を設け、その弾性部13が永久磁石6を永久磁石埋め込み穴5内の内周側壁面9に向け常に押圧するように構成されている。
【0078】
また、本実施の形態の永久磁石式リラクタンス型回転電機は、(回転子)鉄心4の内径寸法dが外形寸法doutの25%〜55%の範囲にあるように構成されている。
【0079】
すなわち、図7は図6に示す回転子3の回転時における鉄心4の内径寸法d (横軸)に対する鉄心4内の最大応力値σ(縦軸)の関係を示した特性図である。
【0080】
回転電機は、図7に示すように、(回転子)鉄心4の内径寸法dが、d1→dα→d2へと順次大きくなるに従い、鉄心4内の最大応力値αは一旦小さな値を示した後、途中(dα)における最小値を境に順次大きくなる特性を呈する。そこで、この実施の形態の発明は、鉄心4内の最大応力値αが最小となる内径寸法dαは、回転子鉄心外径doutに対し、25%〜55%の範囲内に存在することに着目してなされたものである。
【0081】
従って、回転子鉄心4の内径寸法dが外径doutに対し25%〜55%の範囲内、さらに好ましくは最大応力値αが最小となる略dαとなるように内径寸法dを設定することにより、回転遠心力による鉄心4内の応力は軽減され、剛性の高い回転子3を得ることができる。
【0082】
なお、永久磁石6及び永久磁石埋め込み穴5の各形状や配置の傾き等が異なるものとなると、回転子鉄心4内の応力値が最小となる最適な内径寸法dαも若干変化する。しかしながら、最適な内径寸法dαは鉄心外径doutに対し、やはり25%〜55%の範囲内に存在する。
【0083】
従って、この実施の形態の永久磁石式リラクタンス型回転電機は、永久磁石埋め込み穴5内の永久磁石6は、自己の磁気吸引力に加えて、弾性部13による付勢を受けて内周側壁面9に押圧され固定され、さらに回転子鉄心4の内径寸法dを外径doutに対し、25%〜55%の範囲内に、なお好ましくは回転子鉄心4内の応力値が最小となる最適な内径寸法dαに設定して構成されたものである。
【0084】
尚、本実施の形態では、(回転子)鉄心4の径方向に沿った切り欠きないしは切り起こしにより弾性部13を形成したが、もちろん回転軸方向に沿い設けることもできる。
【0085】
(作用)
上記のように構成された永久磁石式リラクタンス型回転電機によれば、永久磁石埋め込み穴5と非磁性部8との間の回転子鉄心4に弾性部13が設けられ、永久磁石6は弾性部13により付勢されつつ、永久磁石6の永久磁石埋め込み穴5の内周側壁面9へ固定され安定する。
【0086】
また、回転子鉄心4の内径寸法dが外形寸法doutに対し、25%〜55%の範囲内にあるように構成されたので、回転に伴う回転子鉄心4内の応力を最小限に抑えることができる。
【0087】
(効果)
上記のように、第5の実施の形態の永久磁石式リラクタンス型回転電機は、回転子鉄心4の弾性部13により、永久磁石6は永久磁石埋め込み穴5の内周側壁面9に押し付けられるので、永久磁石6は自己の磁気吸引力と相俟って強固に固定され、高速回転が可能となり、信頼性も向上する。
【0088】
また、弾性部13は、鉄心4への単なる切り欠きないしは切り起こし加工により形成され、ばね等の弾性部材を挿入することがないので、部品点数を増すことなく製造できる。
【0089】
また、この実施の形態によれば、回転子鉄心4の内径寸法dが外形寸法doutの25%〜55%の範囲となるように形成したので、回転子鉄心4内の遠心力に対する応力値を最小限に抑えることが可能となり、信頼性の向上と同時に、より高速回転及び高出力を実現できる。
【0090】
(第6の実施の形態:請求項11、12に対応)
(構成)
図8は、本発明の永久磁石式リラクタンス型回転電機の第6の実施の形態を示す径方向断面図、図9は図8に示す回転子の径方向拡大断面図、図10は図8に示す永久磁石の斜視図である。
【0091】
本実施の形態の永久磁石式リラクタンス型回転電機は、回転子鉄心4の永久磁石埋め込み穴5に挿入される永久磁石14の形状を、図10に拡大して示したように、着磁方向15に向け台形状に、すなわち符号16で示す着磁方向15に直交する面(図示では横断面)の面積が着磁方向に向け変化し、順次小さくなるように構成されている。
【0092】
また、永久磁石14が挿入された永久磁石埋め込み穴5の形状を、図8及び図9に示したように、回転子鉄心4の内周側壁面9から内側に向けて一対の突起部が形成され、その一対の突起部間に永久磁石14の台形状の底部を抱え込み固定するように加工構成されている。
【0093】
従って、この実施の形態では、永久磁石埋め込み穴5内で永久磁石14は、内周側壁面9の突起部間への嵌め込み操作によって装着できる。
【0094】
(作用)
上記のように、この実施の形態の永久磁石式リラクタンス型回転電機は、永久磁石14の形状を、着磁方向15に面積(横面積)が変化するように方向性を持たせたので、作業員は永久磁石6の着磁方向15を目視で識別できる。
【0095】
(効果)
従って、第6の実施の形態によれば、上記第1から第5の各実施の形態と同様に、永久磁石6は自己の磁気吸引力により強固に固定されるとともに、形状を着磁方向15に沿い変化させたので、作業員が永久磁石6の方向を間違えて回転子鉄心4内に装着するような不具合は回避され、製造効率を高めることができる。
【0096】
なお、上記説明の各実施の形態では、回転電機が4極であるとして説明したが、極数には4極に限定されないことは言うまでもない。
【0097】
以上説明のように、本発明の永久磁石式リラクタンス型回転電機によれば、永久磁石を、自己の磁気吸引力により、永久磁石埋め込み穴の内周側壁面に固定するので、回転に伴う回転子鉄心内の応力は低減され、高速回転、高出力を実現し得るものであり、実用に際し顕著な効果を得ることができる。
【0098】
【発明の効果】
請求項1から3に記載の発明によれば、永久磁石は非磁性部とは反対側の永久磁石埋め込み穴の壁面に固定され、回転子の回転に伴う永久磁石の遠心力が、回転子内の応力を軽減し、回転子の損傷を回避することができる。
【0099】
請求項4または5に記載の発明によれば、永久磁石の磁気吸引力に、その着磁方向の両端部間に差を設けたので、請求項1から3の発明と同様に、回転子の損傷を回避することができる。
【0100】
請求項6記載の発明によれば、磁性部材の存在により、請求項3記載の発明の効果に加えて、永久磁石のより強固な固定が可能となる。
【0101】
請求項7または8に記載の発明においても、弾性部材または弾性部の存在により、請求項1記載の発明の効果に加えて、永久磁石のより強固な固定が可能となる。
【0102】
請求項9または10に記載の発明によれば、回転子自体の回転に伴う鉄心内の応力を軽減することができ、より高速回転の回転電機を実現することができる。
【0103】
請求項11または12に記載の発明によれば、永久磁石の形状に着磁方向への方向性を持たせたので、鉄心内への装着を容易かつ確実に行うことができ、製造効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる永久磁石式リラクタンス型回転電機の径方向断面図である。
【図2】図1に示す回転子の径方向拡大断面図である。
【図3】本発明の第2の実施の形態に係わる永久磁石式リラクタンス型回転電機の回転子径方向拡大断面図である。
【図4】本発明の第3の実施の形態に係わる永久磁石式リラクタンス型回転電機の回転子径方向拡大断面図である。
【図5】本発明の第4の実施の形態に係わる永久磁石式リラクタンス型回転電機の回転子径方向拡大断面図である。
【図6】本発明の第5の実施の形態に係わる永久磁石式リラクタンス型回転電機の回転子径方向拡大断面図である。
【図7】図6に示す永久磁石式リラクタンス型回転電機の回転子鉄心内径寸法と回転子鉄心内の最大応力値との関係を示す特性図である。
【図8】本発明の第6の実施の形態に係わる永久磁石式リラクタンス型回転電機の回転子の径方向断面図である。
【図9】図8に示す回転子の径方向拡大断面図である。
【図10】図9に示す永久磁石の斜視図である。
【図11】従来の永久磁石式リラクタンス型回転電機の径方向断面図である。
【図12】図11に示す永久磁石式リラクタンス型回転電機のd軸の電機子電流による回転子鉄心の磁極軸に沿った方向の成分の磁束φdの流れを示した径方向断面図である。
【図13】図11に示す永久磁石式リラクタンス型回転電機のq軸の電機子電流による磁極間4bを中心とした径方向の軸に沿った方向の成分の磁束φqの流れを示した径方向断面図である。
【図14】図11に示す永久磁石式リラクタンス型回転電機の永久磁石が発生する磁束の流れを示した径方向断面図である。
【図15】図11に示す永久磁石式リラクタンス型回転電機の永久磁石が発生する磁束の流れを示した回転子の径方向拡大断面図である。
【符号の説明】
1・・・固定子
2・・・電機子コイル
3・・・回転子
4・・・(回転子)鉄心
5・・・永久磁石埋め込み穴
6・・・永久磁石
7,14・・・磁性部
8・・・非磁性部
9・・・永久磁石埋め込み穴の内周側壁面
10・・・永久磁石埋め込み穴の外周側壁面
11・・・磁性部材
12・・・弾性部材
13・・・弾性部
18・・・外周側薄肉部
19・・・ブリッジ薄肉部
4a・・・磁極部
4b・・・磁極間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a permanent magnet type reluctance type rotating electrical machine.
[0002]
[Prior art]
FIG. 11 is a radial cross-sectional view showing a conventional permanent magnet type reluctance rotating electric machine having a four-pole configuration.
[0003]
In FIG. 11, the stator 1 has an armature coil 2, and a rotor 3 is provided inside thereof. The rotor 3 includes a (rotor) iron core 4 and a permanent magnet 6, and the rotor iron core 4 has a laminated structure of electromagnetic steel plates, and an easy magnetization direction and a hard magnetization direction in a circumferential direction around the rotation axis. The directions are alternately formed.
[0004]
In the rotor 3, eight permanent magnet embedded holes 5 are formed in the iron core 4 along the easy magnetization direction in order to form magnetic irregularities on the outer peripheral surface, and the permanent magnet 6 is disposed in the permanent magnet embedded hole 5. And is fixed by an adhesive.
[0005]
The eight permanent magnets 6 are arranged and configured in a cross shape in the radial direction from the center of rotation to form four convex poles, that is, magnetic pole portions 4a (four poles).
[0006]
In FIG. 11, a nonmagnetic portion 8 formed of a hollow portion is provided in the middle of the permanent magnet 6 having the convex poles, that is, the iron core 4 between the two convex poles, and an intermagnetic pole 4 b is formed. That is, the portion sandwiched between the permanent magnets 6 located on both sides of the nonmagnetic portion 8 is magnetically recessed, and the permanent magnet 6 in the permanent magnet embedded hole 5 cancels the magnetic flux of the armature current passing between the magnetic poles 4b. So that it is magnetized. The pair of permanent magnets 6, 6 located on both sides of the magnetic pole part 4 a has the same magnetization direction in the circumferential direction of the rotor 3, and the pair of permanent magnets 6, 6 located on both sides of the gap 4 b. On the contrary, the magnetization directions are opposite to each other in the circumferential direction. The permanent magnet 6 is preferably a magnetic pole.
Magnetized in a direction substantially perpendicular to the (convex pole) axis.
[0007]
Next, the operation of the conventional permanent magnet type reluctance type rotating electrical machine having the above configuration will be described.
[0008]
FIG. 12 shows the magnetic flux φd of the component along the magnetic pole axis of the iron core 4 due to the armature current of the d-axis (so-called magnetic flux passage portion), and the magnetic flux φd causes the iron core 4 of the magnetic pole portion 4a to be magnetized. Therefore, the magnetic path in this direction has a very small magnetic resistance, and the magnetic flux easily passes therethrough.
[0009]
FIG. 13 shows the magnetic flux φq of the component in the direction along the line connecting the center of the magnetic pole 4b and the center of the rotor 3 due to the armature current of the q axis (so-called magnetic flux difficult part). φq forms a magnetic path crossing the nonmagnetic portion 8 of the permanent magnet 6 and the magnetic pole 4b. Therefore, the relative magnetic permeability of the nonmagnetic portion 8 formed of the hollow portion is “1”, and the relative magnetic permeability of the permanent magnet 6 is also almost “1”. Therefore, the magnetic flux φq due to the armature current is reduced due to the high magnetic resistance. .
[0010]
As described above, the permanent magnets 6 and 6 positioned on both sides of the magnetic pole portion 4a are magnetized in a direction substantially perpendicular to the magnetic pole axis, so that they are generated in the permanent magnets 6 and 6 as shown in FIG. The magnetic flux flows in the circumferential direction in the magnetic part 7 in the outer peripheral region of the iron core 4, and forms a magnetic circuit φma that passes through the magnetic pole part 4a and returns to the opposite pole. At this time, a part of the magnetic flux of each permanent magnet 6, 6 passes through the stator 1 through a gap (so-called air gap portion between the stator 1 and the rotor 3), and the permanent magnet 6 and the rotor adjacent to each other. The magnetic circuit φmb that passes through the three magnetic pole portions 4a and returns to the original permanent magnet 6 is also formed.
[0011]
As shown in FIG. 13, the interlinkage magnetic flux of the permanent magnet 6 is distributed in the direction opposite to the magnetic flux φq of the central axis direction component of the magnetic pole 4b due to the q-axis armature current, and enters the magnetic pole 4b. They repel each other and cancel each other.
[0012]
Therefore, in the air gap portion outside the magnetic pole portion 4b, the magnetic flux density of the air gap created by the armature current is reduced by the magnetic flux of the permanent magnet 6, and a large change compared to the air gap magnetic flux density on the magnetic pole portion 4a. Presents (difference). As a result, a change in the air gap magnetic flux density with respect to the position of the rotor 3, that is, a large change in magnetic energy is obtained.
[0013]
Further, even when a load is applied, the magnetic portion 7 is magnetically short-circuited in the boundary region between the magnetic pole portion 4a and the inter-magnetic pole 4b, and the magnetic portion 7 is largely magnetically saturated by the load current. As a result, the magnetic flux of the permanent magnet 6 distributed between the magnetic poles 4b is increased, and the air gap magnetic flux density distribution, that is, the change in magnetic energy is caused by the high magnetic resistance in the nonmagnetic portion 8 and the permanent magnet 6 and the magnetic flux of the permanent magnet 6. Large irregularities are formed, and a large output is derived from the rotating electrical machine.
[0014]
In the permanent magnet type reluctance type rotating electrical machine, the permanent magnets 6 are arranged at intervals in the circumferential direction of the rotor 3, so that the permanent magnets 6 extend almost all around the outer circumferential direction of the rotor 3. The surface area of the permanent magnet 6 itself is small and the amount of interlinkage magnetic flux by the permanent magnet 6 is small as compared with a so-called general permanent magnet type rotating electrical machine in which the magnet is disposed.
[0015]
In the permanent magnet type reluctance type rotating electrical machine, most of the magnetic flux of the permanent magnet 6 in the non-excited state becomes leakage magnetic flux in the rotor core 4 that passes through the magnetic part 7. Therefore, in this state, the induced voltage can be made extremely small, so that the iron loss at the time of no excitation is reduced. Further, the overcurrent that flows when the armature coil 2 is short-circuited is also small.
[0016]
In addition, the permanent magnet type reluctance type rotating electrical machine has a terminal voltage in which the interlinkage magnetic flux by the armature current (excitation current component and torque current component of the reluctance type rotating electrical machine) is added to the interlinkage magnetic flux by the permanent magnet 6 at the time of load. To induce.
[0017]
On the other hand, in a general permanent magnet type rotating electrical machine, it is difficult to adjust the terminal voltage because the interlinkage magnetic flux of the permanent magnet 6 occupies most of the terminal voltage, but the permanent magnet type reluctance type rotating electrical machine is Since the interlinkage magnetic flux by the permanent magnet 6 is small, the terminal voltage can be widely adjusted by widely adjusting the excitation current component.
[0018]
That is, the permanent magnet type reluctance type rotating electrical machine can adjust the excitation current component so that the voltage is equal to or lower than the power supply voltage according to the rotation speed, and can perform a wide range of variable speed operation from the base speed at a constant voltage. . In addition, since the field is weakened by forcible control and the voltage is not suppressed, no overvoltage is generated even if the control does not operate during high-speed rotation.
[0019]
Furthermore, since the permanent magnet type reluctance type rotating electrical machine has a structure in which the permanent magnet 6 is embedded in the rotor core 4, the iron core 4 itself of the electromagnetic steel sheet having a laminated structure serves as a holding mechanism for the permanent magnet 6, and rotates. The scattering of the permanent magnet 6 due to the centrifugal force is prevented.
[0020]
Further, in the conventional permanent magnet type reluctance rotating electric machine, the magnetic flux φq due to the q-axis current to the rotor 3 formed by the armature current shown in FIG. 13 is embedded in the permanent magnet embedded hole as shown in FIG. 5 and the bridge thin portion 19 near the rotation center axis of the magnetic pole 4b, the difference between the magnetic flux φd caused by the d-axis current and the magnetic flux φq caused by the q-axis current is reduced, and the reluctance torque is reduced. To do.
[0021]
Therefore, the magnetic flux φq caused by the q-axis current that is invalid for the rotational torque reduces the ineffective magnetic flux that flows from the outer peripheral side of the nonmagnetic portion 8 to the outer peripheral thin portion 18 of the permanent magnet embedded hole 5 and the magnetic flux generated from the permanent magnet 6. In order to reduce the leakage (permanent magnet invalid magnetic flux 17), it is conceivable that the periphery of the permanent magnet embedded hole 5 of the iron core 4 and the outer peripheral side of the inter-magnetic pole 4b are made as narrow as possible in the radial direction.
[0022]
[Problems to be solved by the invention]
However, in the conventional permanent magnet type reluctance type rotating electrical machine described above, when the periphery of the permanent magnet embedded hole 5 and the outer peripheral side of the magnetic pole 4b are narrowed in the radial direction, the centrifugal force of the permanent magnet 6 itself due to the rotation is strengthened in the rotor. It becomes difficult to support with the iron core 4, and particularly when applied to a high-speed rotating machine, the permanent magnet 6 scatters and the rotor 3 is damaged, making it difficult to establish a rotating electric machine.
[0023]
Further, in the conventional permanent magnet type reluctance type rotating electrical machine, it is conceivable to increase the amount of the permanent magnet 6 in order to compensate for the magnetic fluxes of the reactive magnetic flux and the leakage magnetic flux and secure the effective magnetic flux necessary for the characteristics. This is a structural problem and a strength problem because the ratio of the volume occupied by the permanent magnet embedding hole 5 to the total volume of the child 3 is increased, and the stress of the permanent magnet 6 due to the centrifugal force is further increased. In addition, it is difficult to increase the amount of the permanent magnet 6.
[0024]
Conventionally, the permanent magnet 6 is fixed to the permanent magnet embedding hole 5 by an adhesive. However, the adhesive strength is reduced due to deterioration of the adhesive and the like, and the permanent magnet 6 may fall off in the permanent magnet embedding hole 5. The permanent magnet 6 dropped out in the permanent magnet embedding hole 5 presses the outer peripheral side of the permanent magnet embedding hole 5, that is, the wall farther from the rotation axis by the centrifugal force accompanying the rotation of the rotor 3. This leads to an increase in stress on the outer peripheral side thin portion 18 of the permanent magnet embedded hole 5 supporting the outer peripheral side of the magnetic pole 4b and the central bridge thin portion 19 of the inter magnetic pole 4b.
[0025]
Therefore, when the rotor having the above-described configuration is applied to a high-speed rotating and high-output rotating electric machine, the outer peripheral side thin portion 18 and the central bridge thin portion 19 are damaged by the increased centrifugal force, and the permanent magnet 6 is scattered. There is a concern about the rotor 3 being damaged.
[0026]
Further, since the shape of the permanent magnet 6 in the conventional permanent magnet type reluctance type rotating electrical machine is isotropic with respect to the magnetization direction and has no directionality, the magnetization direction of the permanent magnet 6 can be identified visually. Therefore, there is a possibility that the worker may insert the permanent magnet 6 in the wrong direction when the rotor 3 is assembled.
[0027]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a stator having an armature coil and a permanent magnet embedded in an iron core so as to cancel the magnetic flux of the armature which is inside the stator and passes between adjacent magnetic poles. In a permanent magnet type reluctance type rotating electrical machine having a rotor provided with a nonmagnetic portion on the outer peripheral side of the permanent magnet between the magnetic poles and having magnetic irregularities formed in the circumferential direction, the permanent magnet It is characterized in that it is fixed to the wall surface of the permanent magnet embedding hole on the opposite side to the non-magnetic portion and substantially perpendicular to the magnetization direction, and a gap is provided between the wall surface on the non-magnetic portion side.
[0028]
According to a second aspect of the present invention, in the permanent magnet type reluctance type rotating electrical machine according to the first aspect, the permanent magnet is fixed to the wall surface of the embedded hole by the magnetic attractive force of the permanent magnet.
[0029]
According to a third aspect of the present invention, in the permanent magnet type reluctance type rotating electrical machine according to the second aspect, the permanent magnet has a magnetic attraction force between the end portions in the magnetization direction and the wall surface of the permanent magnet embedded hole. There is a difference, and one of the end faces is always fixed to the wall surface of the permanent magnet embedding hole.
[0030]
As described above, according to each of the first to third aspects of the present invention, the permanent magnet is fixed to the wall surface of the permanent magnet embedding hole on the side opposite to the nonmagnetic portion, and the permanent magnet is centrifuged as the rotor rotates. Since no force is applied to the structurally weak non-magnetic part, it is possible to avoid damage to the rotor and scattering of the permanent magnet to the outside.
[0031]
The invention according to claim 4 or 5 is the permanent magnet type reluctance type rotating electrical machine according to claim 3, wherein the permanent magnet is either one surface of both ends in the magnetization direction facing the wall surface of the permanent magnet embedded hole. Or a step is provided on any one of the wall surfaces of the permanent magnet embedding holes respectively opposed to both ends in the magnetization direction of the permanent magnet, and a difference is provided in the magnetic attractive force at both ends of the permanent magnet. To do.
[0032]
Thus, according to the invention described in claim 4 or 5, since the step is formed to provide a difference in the magnetic attractive force, the rotor is damaged or permanently formed as in the operation of the invention described in claim 3. Spattering to the outside of the magnet can be avoided.
[0033]
According to a sixth aspect of the present invention, in the permanent magnet type reluctance type rotating electrical machine according to the third aspect of the present invention, the wall surface of the permanent magnet embedded hole is located between the permanent magnet embedded hole wall surface in the magnetization direction of the permanent magnet. The magnetic member which provided the level | step difference in the side which faces is interposed.
[0034]
Thus, according to the invention described in claim 6, since the magnetic member is interposed, in addition to the operation of the invention described in claim 3, the permanent magnet is more firmly fixed.
[0035]
The invention according to claim 7 or 8 is the permanent magnet type reluctance type rotating electrical machine according to claim 1, wherein an elastic member such as a spring is provided between the permanent magnet embedded hole wall surface in the magnetization direction of the permanent magnet. A feature is that an elastic portion is formed by notching or cutting and raising the iron core between the member interposition or the permanent magnet embedded hole and the non-magnetic portion to press the permanent magnet.
[0036]
Thus, according to the invention described in claim 7 or 8, in addition to the action of the invention described in claim 1, the permanent magnet is more firmly fixed by the configuration of the elastic member or the elastic portion.
[0037]
According to a ninth or tenth aspect of the present invention, in the permanent magnet reluctance type rotating electrical machine according to any one of the first to eighth aspects, the inner diameter dimension of the rotor iron core is 25 of the outer dimension of the iron core. The inner diameter dimension of the iron core is set so as to minimize the stress value of the iron core accompanying the rotation of the rotor in the range of% to 55%.
[0038]
Thus, in the invention according to claim 9 or 10, the inner diameter dimension of the rotor core is in the range of 25% to 55% of the outer dimension of the iron core, or the stress value of the iron core accompanying the rotation of the rotor is minimized. The inner diameter dimension of the iron core is set so that the stress is reduced with the rotation of the rotor itself, so that in addition to the effects of the inventions of claims 1 to 8, more mechanically strong rotation Can provide a child.
[0039]
According to the eleventh aspect of the present invention, there is provided a stator having an armature coil, and a permanent magnet embedded in the iron core so as to cancel the magnetic flux of the armature passing through between the adjacent magnetic poles inside the stator. In a permanent magnet type reluctance type rotating electrical machine having a rotor provided with a nonmagnetic portion on the outer peripheral side of the permanent magnet between the magnetic poles and having magnetic irregularities formed in the circumferential direction, the permanent magnet is The area of the surface substantially perpendicular to the magnetization direction of the permanent magnet is configured to change along the magnetization direction.
[0040]
According to a twelfth aspect of the present invention, in the permanent magnet type reluctance type rotating electric machine according to the eleventh aspect, the wall surface of the permanent magnet embedded hole is deformed so as to lock one end portion in the magnetization direction of the permanent magnet. It is characterized by that.
[0041]
As described above, according to the inventions of the eleventh and twelfth aspects, since the shape of the permanent magnet is changed in the magnetizing direction so as to have the directionality, the worker is required to install the permanent magnet when the rotor is assembled and manufactured. It is possible to work efficiently without making a mistake in the installation direction.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a permanent magnet type reluctance type rotating electrical machine according to the present invention will be described in detail with reference to FIGS. The same components as those of the conventional configuration shown in FIGS. 11 to 15 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0043]
(First embodiment: corresponding to claims 1, 2, 3 and 4)
(Constitution)
FIG. 1 is a radial cross-sectional view showing a first embodiment of a permanent magnet type reluctance type rotating electrical machine of the present invention. FIG. 2 is an enlarged sectional view of the rotor shown in FIG. 1 in the radial direction.
[0044]
In FIG. 1, a stator 1 has an armature coil 2, and a rotor 3 having a laminated structure of electromagnetic steel plates is accommodated inside. The rotor 3 includes a rotor core 4 and a permanent magnet 6. The rotor core 4 forms an easy magnetization direction (d-axis direction) and a difficult magnetization direction (q-axis direction).
[0045]
In the rotor core 4, eight permanent magnet embedded holes 5 are formed along the easy magnetization direction in order to form magnetic irregularities in the circumferential direction, and the permanent magnet 6 is mounted in the permanent magnet embedded hole 5. .
[0046]
The nonmagnetic portion 8 formed of a cavity (air gap) forms a concave portion (4b between the magnetic poles) in a magnetic pole, and the permanent magnets 6 and 6 located on both sides of the nonmagnetic portion 8 cancel the magnetic flux of the armature current passing through the magnetic pole 4b. Is magnetized.
[0047]
On the other hand, the pair of (two) permanent magnets 6 and 6 positioned on both sides of the magnetic pole part 4a have the same magnetization direction, and the two permanent magnets 6 and 6 positioned on both sides of the gap 4b are rotors. The magnetization directions are opposite to each other along the circumferential direction of 3. The permanent magnet 6 is preferably magnetized in a direction substantially perpendicular to the magnetic pole (convex pole) axis.
[0048]
As shown in FIG. 2, the permanent magnet 6 is in the permanent magnet embedding hole 5, and is substantially orthogonal to the magnetization direction on the inner peripheral side wall surface 9 closer to the rotation axis on the side opposite to the nonmagnetic portion 8. The surface is tightly fixed by its own magnetic attractive force.
[0049]
And the inner peripheral side wall surface opposite to the inner peripheral side wall surface 9 to which the permanent magnet 6 is fixed (that is, the nonmagnetic portion 8 side), that is, between the outer peripheral side wall surface 10 farther from the rotating shaft and the permanent magnet 6. Is provided with a gap (space). In the explanatory diagrams of FIG. 1 and the subsequent figures, corresponding positions of the inner peripheral side wall surface 9 and the outer peripheral side wall surface 10 of the permanent magnet embedding hole 5 corresponding to both end surfaces in the magnetization direction of the permanent magnet 6 are surrounded by broken lines. Shall.
[0050]
Therefore, as shown in FIG. 2, a step portion (unevenness) is formed on the surface of the permanent magnet 6 on the side facing the outer peripheral side wall surface 10 of the permanent magnet insertion hole 5, It is comprised so that the surface area of the part which opposes the outer peripheral side wall surface 10 vicinity may become small. In this embodiment, the permanent magnet 6 is provided with a step so that the unevenness (step portion) is continuous along the radial direction, but the unevenness is not along the radial direction but along the axial direction of the rotor 3. It is also possible to provide a step so that the (steps) are continuous.
[0051]
(Function)
Thus, the permanent magnet type reluctance type rotating electrical machine of the first embodiment is different from the conventional one, and the permanent magnet 6 is fixed to the inner peripheral side wall surface 9 of the permanent magnet embedding hole 5 so that it is closer to the rotating shaft side. Therefore, the average centrifugal force of the permanent magnet 6 itself accompanying the rotation of the rotor 3 of the permanent magnet 6 becomes smaller, and the stress on the rotor core 4 can be reduced.
[0052]
Therefore, the outer peripheral side thin portion 18 of the permanent magnet embedding hole 5 that supports the outer peripheral side of the rotor 3 and the central pole bridge thin portion 19 between the magnetic poles are both thin and severe in strength, but the permanent magnet 6 As such, it is fixed to the thick inner peripheral side wall surface 9 in the permanent magnet embedded hole 5, and the stress applied to the outer peripheral side thin portion 18 and the bridge thin portion 19 due to the rotation of the rotor 3 is reduced.
[0053]
In addition, the permanent magnet 6 is fixed to the inner peripheral side wall surface 9 of the permanent magnet embedding hole 5 by its own magnetic attractive force, and, unlike the conventional case, the adhesive does not peel off due to aging or deterioration, etc. The permanent magnet 6 is in the permanent magnet embedded hole 5 and is stable.
[0054]
Furthermore, in this embodiment, since the permanent magnet 6 forms a gap in the outer peripheral side wall surface 10 of the permanent magnet insertion hole 5 and is provided with irregularities on the opposing surface, a portion closer to the outer peripheral side wall surface 10. Therefore, the magnetic flux passing through the convex portion of the permanent magnet 6 is reduced. As a result, the magnetic attraction force of the permanent magnet 6 with respect to the peripheral side wall surface of the permanent magnet insertion hole 5 is less than the magnetic attraction force between the outer peripheral side wall surface 10 and the inner peripheral side wall surface 9. The permanent magnet 6 is firmly fixed to the inner peripheral side wall surface 9 in the magnetization direction.
[0055]
(effect)
As described above, according to the permanent magnet type reluctance type rotating electrical machine of the first embodiment shown in FIGS. 1 and 2, the (average) centrifugal force is smaller in the permanent magnet 6 in the permanent magnet embedded hole 5. In addition, since it is fixed to the thick inner peripheral side wall surface 9, the stress exerted on the rotor core 4 can be reduced, damage to the rotor 3 can be avoided, reliability can be improved, and higher speed rotation can be achieved. And increase in output can be realized.
[0056]
Further, since the permanent magnet 6 has irregularities (steps) formed on the surface on the side facing the outer peripheral side wall surface 10 of the permanent magnet embedded hole 5 through a gap, the magnetization direction of the permanent magnet 6 and the permanent magnet embedded hole 5 is The strength of the magnetic attraction acting on each surface is further increased, and the fixing of the permanent magnet embedded hole 5 to the inner peripheral side wall surface 9 can be made stronger by the difference in the attraction force.
[0057]
Furthermore, in this embodiment, the permanent magnet 6 is fixed in the permanent magnet embedding hole 5 by its own magnetic attractive force, and no adhesive is used as in the prior art. In addition, the permanent magnet 6 can be easily mounted in the iron core 4 and the manufacturing efficiency can be improved.
[0058]
(Second embodiment: corresponding to claim 5)
(Constitution)
FIG. 3 is an enlarged radial sectional view of a rotor showing a second embodiment of the permanent magnet type reluctance type rotating electrical machine of the present invention.
[0059]
As shown in FIG. 3, in the present embodiment, a step is formed on the outer peripheral side wall 10 on the nonmagnetic portion 8 side among the wall surfaces of the permanent magnet embedding holes 5 facing each other at both ends in the magnetization direction of the permanent magnet 6. (Concavities and convexities) are formed, and are formed so as to have a difference in magnetic attractive force at both ends of the permanent magnet 6.
[0060]
Therefore, even in this configuration, in addition to having a gap between the permanent magnet 6 and the outer peripheral side wall surface 10 of the permanent magnet embedding hole 5, a portion close to the outer peripheral side wall surface 10 by the convex portion of the permanent magnet 6. Since the surface area (i.e., the tip area of the convex portion) of the permanent magnet 6 is small, the magnetic attractive force acting in the magnetization direction of the permanent magnet 6 becomes strong and weak as in the first embodiment. 6 is firmly fixed to the inner peripheral side wall surface 9 side of the permanent magnet embedded hole 5.
[0061]
In the present embodiment, the rotor core 4 is provided with a step (unevenness) along the radial direction. However, as in the first embodiment, a step (in the axial direction of the rotor core 4 ( (Unevenness) may be provided.
[0062]
(Function)
As described above, in the permanent magnet type reluctance type rotating electrical machine according to the second embodiment, the step is formed on the outer peripheral side wall surface 10 of the permanent magnet embedded hole 5, so that the magnetic flux passing through the permanent magnet 6 and the outer peripheral side wall surface 10 is reduced. Then, the magnetic attractive force between the inner peripheral side wall surface 9 on the opposite side becomes smaller, and the permanent magnet 6 is firmly fixed to the inner peripheral side wall surface 9 in the direction of smaller centrifugal force.
[0063]
(effect)
As described above, according to the permanent magnet type reluctance type rotating electric machine of the second embodiment shown in FIG. 3, a step (unevenness) is formed on the outer peripheral side wall surface 10 of the permanent magnet embedded hole 5, that is, on the rotor core 4 side. By forming, the permanent magnet 6 can be firmly fixed to the inner peripheral side wall surface 9 of the permanent magnet embedding hole 5.
[0064]
Therefore, also in this embodiment, the permanent magnet 6 is fixed to the inner peripheral side wall surface 9 closer to the rotating shaft side of the permanent magnet embedding hole 5 and further to reduce the stress on the rotor core 4. Therefore, it is possible to avoid damage to the rotor 3 and improve the reliability, and it is possible to realize a permanent magnet type reluctance type rotating electrical machine having a higher rotational speed and a higher output.
[0065]
Further, since the permanent magnet 6 is fixed in the permanent magnet embedding hole 5 by its own magnetic attractive force, the fixing is stable, and the permanent magnet 6 has a simple shape and structure, so that the rotor 3 can be easily manufactured. .
[0066]
(Third Embodiment: Corresponding to Claim 6)
(Constitution)
FIG. 4 is an enlarged radial sectional view of a rotor showing a third embodiment of a permanent magnet type reluctance type rotating electrical machine of the present invention.
[0067]
That is, in the present embodiment, the permanent magnet 6 is fixed between the inner peripheral side wall surface 9 of the permanent magnet embedding hole 5 via the magnetic member 11, and the magnetic member 11 is in contact with the inner peripheral side wall surface 9. As shown in the figure, a step (unevenness) having a U-shaped cross section is provided on the surface.
[0068]
And since the clearance gap was formed between the permanent magnet 6 and the outer peripheral side wall surface 10 of the permanent magnet embedding hole 5 similarly to the 1st and 2nd embodiment, the permanent magnet 6 is interposed through the magnetic member 11. Due to the magnetic attraction force, the inner peripheral side wall surface 9 of the permanent magnet embedded hole 5 is firmly fixed. In the present embodiment, the magnetic member 11 is illustrated as having a step (unevenness) along the radial direction. However, the step (unevenness) of the magnetic member 11 is along the rotation axis direction of the rotor 3. May be provided.
[0069]
(Function)
According to the permanent magnet type reluctance type rotating electrical machine of the third embodiment having the above-described configuration, the permanent magnet 6 is fixed to the inner peripheral side wall surface 9 via the magnetic member 11 in the magnetization direction, and the magnetic member 11. Since the inner peripheral side wall surface 9 has a step, most of the magnetic flux generated from the permanent magnet 6 reaches the rotor core 4 through the magnetic member 11. Therefore, the magnetic flux density between the convex portion of the magnetic member 11 having a small end cross-sectional area and the inner peripheral side wall surface 9 of the permanent magnet embedding hole 5 is increased and the magnetic attraction force is increased, and the permanent magnet 6 passes through the magnetic member 11. Thus, the inner peripheral side wall surface 9 of the permanent magnet embedded hole 5 is firmly fixed.
[0070]
(effect)
As described above, according to the permanent magnet type reluctance type rotating electrical machine of the third embodiment, the permanent magnet 6 is firmly fixed to the rotor core 4 via the magnetic member 11 and is stable. Similar to the second embodiment, a rotating electrical machine having high reliability, high speed rotation, and high output can be provided.
[0071]
(Fourth embodiment: corresponding to claim 7)
(Constitution)
FIG. 5 is an enlarged radial sectional view of a rotor showing a fourth embodiment of a permanent magnet type reluctance type rotating electrical machine according to the present invention.
[0072]
As shown in FIG. 5, the rotor 3 according to the present embodiment urges an elastic member 12 such as a spring between the permanent magnet 6 and the outer peripheral side wall surface 10 of the permanent magnet embedded hole 5. The elastic member 12 presses the permanent magnet 6 so that the direction matches the magnetization direction of the permanent magnet 6, and the permanent magnet 6 is always firmly pressed and fixed to the inner peripheral side wall surface 9 of the permanent magnet embedded hole 5. It is comprised so that.
[0073]
In this embodiment, the two elastic members 12 are arranged and inserted along the radial direction of the rotor 3, but the number of the elastic members 12 may be one, or may be three or more. Further, the arrangement direction of the plurality of elastic members 12 is not limited to the radial direction of the rotor 3 and can be inserted along the rotation axis direction.
[0074]
(Function)
As described above, in the permanent magnet type reluctance type rotating electrical machine of this embodiment, the permanent magnet 6 has the inner peripheral side wall surface of the permanent magnet embedded hole 5 by the elastic member 12 such as a spring in addition to the self-magnetic attractive force. 9, the permanent magnet 6 is securely and firmly fixed to the inner peripheral side wall surface 9 of the permanent magnet embedded hole 5.
[0075]
(effect)
In the permanent magnet type reluctance type rotating electrical machine of the fourth embodiment, the permanent magnet 6 is fixed by being pressed against the inner peripheral side wall surface 9 of the permanent magnet embedded hole 5 by the elastic member 12. The magnet 6 is stable, reliability is improved, and the rotor 3 can be rotated at a higher speed.
[0076]
(Fifth embodiment: corresponding to claims 8, 9 and 10)
(Constitution)
FIG. 6 is an enlarged radial sectional view of a rotor showing a fifth embodiment of the permanent magnet type reluctance type rotating electrical machine of the present invention.
[0077]
That is, in the present embodiment, as shown in FIG. 6, the rotor core 4 between the permanent magnet embedding hole 5 and the nonmagnetic part 8 is provided with an elastic part 13 by notching or raising processing, The elastic portion 13 is configured to always press the permanent magnet 6 toward the inner peripheral side wall surface 9 in the permanent magnet embedded hole 5.
[0078]
Further, the permanent magnet type reluctance type rotating electrical machine of the present embodiment is configured such that the inner diameter dimension d of the (rotor) iron core 4 is in the range of 25% to 55% of the outer dimension dout.
[0079]
7 is a characteristic diagram showing the relationship of the maximum stress value σ (vertical axis) in the iron core 4 with respect to the inner diameter d (horizontal axis) of the iron core 4 when the rotor 3 shown in FIG. 6 is rotated.
[0080]
As shown in FIG. 7, in the rotating electrical machine, the maximum stress value α in the iron core 4 once showed a small value as the inner diameter d of the (rotor) iron core 4 increased sequentially from d1 → dα → d2. After that, it exhibits a characteristic of increasing gradually with the minimum value in the middle (dα) as a boundary. Accordingly, in the invention of this embodiment, attention is paid to the fact that the inner diameter dα at which the maximum stress value α in the iron core 4 is minimum is in the range of 25% to 55% with respect to the outer diameter dout of the rotor core. It was made.
[0081]
Therefore, by setting the inner diameter dimension d so that the inner diameter dimension d of the rotor core 4 is in the range of 25% to 55% with respect to the outer diameter dout, and more preferably, the maximum stress value α is approximately dα. The stress in the iron core 4 due to the rotational centrifugal force is reduced, and a highly rigid rotor 3 can be obtained.
[0082]
If the shapes of the permanent magnet 6 and the permanent magnet embedding hole 5 are different from each other, the optimum inner diameter dα at which the stress value in the rotor core 4 is minimized also changes slightly. However, the optimum inner diameter dα is still in the range of 25% to 55% with respect to the iron core outer diameter dout.
[0083]
Therefore, in the permanent magnet type reluctance type rotating electrical machine of this embodiment, the permanent magnet 6 in the permanent magnet embedding hole 5 is urged by the elastic portion 13 in addition to its own magnetic attractive force, and the inner peripheral side wall surface. 9, the inner diameter dimension d of the rotor core 4 is within a range of 25% to 55% with respect to the outer diameter dout, and preferably the stress value in the rotor core 4 is minimized. The inner diameter dimension dα is set.
[0084]
In the present embodiment, the elastic portion 13 is formed by notching or raising the (rotor) iron core 4 in the radial direction, but it can of course be provided along the rotation axis direction.
[0085]
(Function)
According to the permanent magnet type reluctance type rotating electrical machine configured as described above, the elastic portion 13 is provided in the rotor core 4 between the permanent magnet embedded hole 5 and the nonmagnetic portion 8, and the permanent magnet 6 has the elastic portion. While being biased by 13, the permanent magnet 6 is fixed to the inner peripheral side wall surface 9 of the permanent magnet embedding hole 5 and stabilized.
[0086]
Further, since the inner diameter dimension d of the rotor core 4 is configured to be in the range of 25% to 55% with respect to the outer dimension dout, the stress in the rotor core 4 accompanying the rotation is minimized. Can do.
[0087]
(effect)
As described above, in the permanent magnet type reluctance type rotating electrical machine of the fifth embodiment, the permanent magnet 6 is pressed against the inner peripheral side wall surface 9 of the permanent magnet embedded hole 5 by the elastic portion 13 of the rotor core 4. The permanent magnet 6 is firmly fixed in combination with its magnetic attraction force, and can be rotated at a high speed, thereby improving the reliability.
[0088]
Further, the elastic portion 13 is formed by simply cutting or raising the iron core 4 and does not insert an elastic member such as a spring, so that it can be manufactured without increasing the number of parts.
[0089]
Moreover, according to this embodiment, since the inner diameter dimension d of the rotor core 4 is formed to be in the range of 25% to 55% of the outer dimension dout, the stress value with respect to the centrifugal force in the rotor core 4 is set. As a result, it is possible to minimize the speed, and at the same time, higher speed rotation and higher output can be realized.
[0090]
(Sixth embodiment: corresponding to claims 11 and 12)
(Constitution)
FIG. 8 is a radial sectional view showing a sixth embodiment of the permanent magnet type reluctance type rotating electrical machine of the present invention, FIG. 9 is an enlarged radial sectional view of the rotor shown in FIG. 8, and FIG. It is a perspective view of the permanent magnet shown.
[0091]
In the permanent magnet type reluctance type rotating electrical machine according to the present embodiment, the shape of the permanent magnet 14 inserted into the permanent magnet embedded hole 5 of the rotor core 4 is enlarged as shown in FIG. The area of a plane (in the drawing, a cross section) orthogonal to the magnetization direction 15 indicated by reference numeral 16 changes toward the magnetization direction, and is gradually reduced.
[0092]
Further, as shown in FIGS. 8 and 9, the shape of the permanent magnet embedding hole 5 into which the permanent magnet 14 is inserted is formed with a pair of protrusions inward from the inner peripheral side wall surface 9 of the rotor core 4. The trapezoidal bottom portion of the permanent magnet 14 is held and fixed between the pair of protrusions.
[0093]
Therefore, in this embodiment, the permanent magnet 14 can be mounted in the permanent magnet embedded hole 5 by a fitting operation between the protruding portions of the inner peripheral side wall surface 9.
[0094]
(Function)
As described above, in the permanent magnet type reluctance type rotating electrical machine of this embodiment, the shape of the permanent magnet 14 is directional so that the area (lateral area) changes in the magnetization direction 15. An operator can visually identify the magnetization direction 15 of the permanent magnet 6.
[0095]
(effect)
Therefore, according to the sixth embodiment, as in the first to fifth embodiments, the permanent magnet 6 is firmly fixed by its own magnetic attractive force, and the shape thereof is changed to the magnetization direction 15. Therefore, it is possible to avoid the trouble that the worker puts the permanent magnet 6 in the wrong direction in the rotor core 4 and to improve the production efficiency.
[0096]
In each of the embodiments described above, the rotating electrical machine is described as having four poles, but it goes without saying that the number of poles is not limited to four.
[0097]
As described above, according to the permanent magnet type reluctance type rotating electrical machine of the present invention, the permanent magnet is fixed to the inner peripheral side wall surface of the permanent magnet embedding hole by its own magnetic attractive force, so that the rotor accompanying the rotation The stress in the iron core is reduced, and high speed rotation and high output can be realized, and a remarkable effect can be obtained in practical use.
[0098]
【The invention's effect】
According to the first to third aspects of the present invention, the permanent magnet is fixed to the wall surface of the permanent magnet embedding hole on the side opposite to the nonmagnetic portion, and the centrifugal force of the permanent magnet accompanying the rotation of the rotor is increased in the rotor. It is possible to reduce the stress of the rotor and avoid damage to the rotor.
[0099]
According to the invention described in claim 4 or 5, since the difference in the magnetic attraction force of the permanent magnet is provided between both end portions in the magnetization direction, Damage can be avoided.
[0100]
According to the sixth aspect of the invention, the presence of the magnetic member enables the permanent magnet to be more firmly fixed in addition to the effect of the third aspect of the invention.
[0101]
In the invention according to claim 7 or 8, in addition to the effect of the invention according to claim 1, the permanent magnet can be more firmly fixed due to the presence of the elastic member or the elastic portion.
[0102]
According to invention of Claim 9 or 10, the stress in the iron core accompanying rotation of rotor itself can be reduced, and the rotary electric machine of higher speed rotation is realizable.
[0103]
According to the invention described in claim 11 or 12, since the shape of the permanent magnet is given directionality in the magnetization direction, it can be easily and reliably mounted in the iron core, and the manufacturing efficiency is improved. Can be made.
[Brief description of the drawings]
FIG. 1 is a radial cross-sectional view of a permanent magnet type reluctance rotary electric machine according to a first embodiment of the present invention.
FIG. 2 is an enlarged radial sectional view of the rotor shown in FIG. 1;
FIG. 3 is an enlarged sectional view in the rotor radial direction of a permanent magnet type reluctance type rotating electrical machine according to a second embodiment of the present invention.
FIG. 4 is an enlarged sectional view in the rotor radial direction of a permanent magnet type reluctance type rotating electrical machine according to a third embodiment of the present invention.
FIG. 5 is an enlarged sectional view in the rotor radial direction of a permanent magnet type reluctance type rotating electrical machine according to a fourth embodiment of the present invention.
FIG. 6 is an enlarged sectional view in the rotor radial direction of a permanent magnet type reluctance type rotating electrical machine according to a fifth embodiment of the present invention.
7 is a characteristic diagram showing the relationship between the rotor core inner diameter of the permanent magnet type reluctance type rotating electrical machine shown in FIG. 6 and the maximum stress value in the rotor core.
FIG. 8 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electrical machine according to a sixth embodiment of the present invention.
9 is an enlarged sectional view of the rotor shown in FIG. 8 in the radial direction.
10 is a perspective view of the permanent magnet shown in FIG. 9. FIG.
FIG. 11 is a radial sectional view of a conventional permanent magnet type reluctance type rotating electrical machine.
12 is a radial sectional view showing a flow of a magnetic flux φd of a component in a direction along a magnetic pole axis of a rotor core by a d-axis armature current of the permanent magnet type reluctance type rotating electric machine shown in FIG. 11;
13 is a radial direction showing a flow of a magnetic flux φq of a component in a direction along a radial axis around a magnetic pole 4b by a q-axis armature current of the permanent magnet type reluctance type rotating electric machine shown in FIG. It is sectional drawing.
14 is a radial cross-sectional view showing a flow of magnetic flux generated by a permanent magnet of the permanent magnet type reluctance type rotating electric machine shown in FIG.
15 is an enlarged radial sectional view of a rotor showing a flow of magnetic flux generated by a permanent magnet of the permanent magnet type reluctance type rotating electrical machine shown in FIG. 11;
[Explanation of symbols]
1 ... Stator
2 ... Armature coil
3 ... Rotor
4 ... (rotor) iron core
5 ... Permanent magnet embedding hole
6 ... Permanent magnet
7, 14 ... Magnetic part
8 ... Nonmagnetic part
9 ... Inner peripheral side wall surface of permanent magnet embedded hole
10 ... Peripheral side wall surface of permanent magnet embedded hole
11 ... Magnetic member
12 ... Elastic member
13 ... Elastic part
18 ... Outer peripheral side thin part
19 ・ ・ ・ Bridge thin section
4a: Magnetic pole part
4b: Between magnetic poles

Claims (12)

電機子コイルを有する固定子と、この固定子の内側にあって、永久磁石を隣り合う磁極間を通る電機子の磁束を打ち消すように鉄心内の永久磁石埋め込み穴中に設け、かつ前記磁極間の永久磁石外周側に非磁性部を設けて、円周方向に磁気的凹凸を形成した回転子とを有する永久磁石式リラクタンス型回転電機において、
前記永久磁石は、その着磁方向にほぼ直交し、かつ非磁性部とは反対側の前記永久磁石埋め込み穴の壁面に固定し、かつ前記非磁性部側の壁面との間に隙間を設けたことを特徴とする永久磁石式リラクタンス型回転電機。
A stator having an armature coil, and a permanent magnet provided inside the permanent magnet embedded hole in the iron core so as to cancel the magnetic flux of the armature passing between the adjacent magnetic poles inside the stator, and between the magnetic poles In a permanent magnet type reluctance type rotating electrical machine having a nonmagnetic part on the outer peripheral side of the permanent magnet and having a rotor with magnetic irregularities formed in the circumferential direction,
The permanent magnet is fixed to the wall surface of the permanent magnet embedding hole on the opposite side to the non-magnetic portion substantially perpendicular to the magnetization direction, and a gap is provided between the permanent magnet and the non-magnetic portion side wall surface. A permanent magnet type reluctance rotating electrical machine characterized by the above.
請求項1記載の永久磁石式リラクタンス型回転電機において、 前記永久磁石は、その磁気吸引力により、前記永久磁石埋め込み穴の壁面に固定されたことを特徴とする永久磁石式リラクタンス型回転電機。The permanent magnet reluctance type rotating electric machine according to claim 1, wherein the permanent magnet is fixed to a wall surface of the permanent magnet embedding hole by a magnetic attraction force thereof. 請求項2記載の永久磁石式リラクタンス型回転電機において、 前記永久磁石は、その着磁方向の両端部間において、前記永久磁石埋め込み穴の壁面との間の磁気吸引力に差を有し、いずれか一方の端面が、常に前記永久磁石埋め込み穴の壁面に固定されることを特徴とする永久磁石式リラクタンス型回転電機。The permanent magnet type reluctance type rotating electrical machine according to claim 2, wherein the permanent magnet has a difference in magnetic attraction force between both ends in the magnetization direction and a wall surface of the permanent magnet embedding hole. One of the end faces is always fixed to the wall surface of the permanent magnet embedding hole. 請求項3記載の永久磁石式リラクタンス型回転電機において、 前記永久磁石は、前記永久磁石埋め込み穴の壁面に対向する両端部のいずれか一方の面に段差を設け、前記両端部における磁気吸引力に差を設けたことを特徴とする永久磁石式リラクタンス型回転電機。The permanent magnet type reluctance type rotating electrical machine according to claim 3, wherein the permanent magnet is provided with a step on one surface of both end portions opposed to the wall surface of the permanent magnet embedding hole, and the magnetic attraction force at the both end portions is increased. A permanent magnet type reluctance rotating electric machine characterized by providing a difference. 請求項3記載の永久磁石式リラクタンス型回転電機において、 前記永久磁石の着磁方向の両端部にそれぞれ対向する前記永久磁石埋め込み穴の壁面のいずれか一方の面に段差を設け、前記永久磁石の前記両端部の磁気吸引力に差を設けたことを特徴とする永久磁石式リラクタンス型回転電機。The permanent magnet type reluctance type rotating electrical machine according to claim 3, wherein a step is provided on any one of the wall surfaces of the permanent magnet embedding hole respectively opposed to both ends in the magnetization direction of the permanent magnet. A permanent magnet type reluctance type rotating electrical machine characterized in that a difference is provided in the magnetic attractive force at both ends. 請求項3記載の永久磁石式リラクタンス型回転電機において、 前記永久磁石の着磁方向の前記永久磁石埋め込み穴の壁面との間のいずれか一方に、前記永久磁石埋め込み穴の壁面に面する側に段差を有する磁性部材を介在させたことを特徴とする永久磁石式リラクタンス型回転電機。The permanent magnet type reluctance type rotating electrical machine according to claim 3, wherein the permanent magnet type reluctance type rotating electrical machine is located on the side facing the wall surface of the permanent magnet embedding hole on either side of the permanent magnet embedding hole wall surface in the magnetization direction of the permanent magnet. A permanent magnet type reluctance type rotating electrical machine characterized by interposing a magnetic member having a step. 請求項1記載の永久磁石式リラクタンス型回転電機において、 前記永久磁石の着磁方向の前記永久磁石埋め込み穴の壁面との間のいずれか一方に、ばね等の弾性部材を介装したことを特徴とする永久磁石式リラクタンス型回転電機。The permanent magnet type reluctance type rotating electrical machine according to claim 1, wherein an elastic member such as a spring is interposed between the permanent magnet and the wall surface of the permanent magnet embedding hole in the magnetization direction of the permanent magnet. A permanent magnet type reluctance type rotating electrical machine. 請求項1の永久磁石式リラクタンス型回転電機において、
前記永久磁石埋め込み穴と前記非磁性部との間の前記鉄心に切り欠きないしは切り起こし加工により弾性部を形成し、その弾性部により前記永久磁石が押圧されるように構成されたことを特微とする永久磁石式リラクタンス型回転電機。
In the permanent magnet type reluctance type rotating electrical machine according to claim 1,
An elastic part is formed in the iron core between the permanent magnet embedding hole and the non-magnetic part by notching or raising, and the permanent magnet is pressed by the elastic part. A permanent magnet type reluctance type rotating electrical machine.
請求項1から8のうちのいずれか1項に記載の永久磁石式リラクタンス型回転電機において、
前記回転子の鉄心の内径寸法が、鉄心の外形寸法の25%から55%の範囲となるように設定されたことを特徴とする永久磁石式リラクタンス型回転電機。
In the permanent magnet type reluctance type rotating electrical machine according to any one of claims 1 to 8,
A permanent magnet type reluctance rotating electric machine characterized in that an inner diameter dimension of an iron core of the rotor is set in a range of 25% to 55% of an outer dimension of the iron core.
請求項1から8のうちのいずれか1項に記載の永久磁石式リラクタンス型回転電機において、
前記回転子の回転に伴う前記鉄心の応力値が最小となるように鉄心の内径寸法が設定されたことを特徴とする永久磁石式リラクタンス型回転電機。
In the permanent magnet type reluctance type rotating electrical machine according to any one of claims 1 to 8,
A permanent magnet type reluctance type rotating electrical machine characterized in that an inner diameter dimension of an iron core is set so that a stress value of the iron core accompanying rotation of the rotor is minimized.
電機子コイルを有する固定子と、この固定子の内側にあって、永久磁石を隣り合う磁極間を通る電機子の磁束を打ち消すように鉄心内の永久磁石埋め込み穴中に設け、かつ前記磁極間の永久磁石外周側に非磁性部を設けて、円周方向に磁気的凹凸を形成した回転子とを有する永久磁石式リラクタンス型回転電機において、
前記永久磁石は、前記永久磁石の着磁方向と略直交する面の面積が着磁方向に沿い変化するように構成されたことを特徴とする永久磁石式リラクタンス型回転電機。
A stator having an armature coil, and a permanent magnet provided inside the permanent magnet embedded hole in the iron core so as to cancel the magnetic flux of the armature passing between the adjacent magnetic poles inside the stator, and between the magnetic poles In a permanent magnet type reluctance type rotating electrical machine having a nonmagnetic part on the outer peripheral side of the permanent magnet and having a rotor with magnetic irregularities formed in the circumferential direction,
The permanent magnet type reluctance rotating electric machine, wherein the permanent magnet is configured such that an area of a surface substantially orthogonal to the magnetization direction of the permanent magnet changes along the magnetization direction.
請求項11記載の永久磁石式リラクタンス型回転電機において、
前記永久磁石埋め込み穴の壁面を、前記永久磁石の前記着磁方向の一方の端部を係止するように変形させたことを特徴とする永久磁石式リラクタンス型回転電機。
In the permanent magnet type reluctance type rotating electrical machine according to claim 11,
A permanent magnet type reluctance type rotating electrical machine, wherein the wall surface of the permanent magnet embedded hole is deformed so as to lock one end of the permanent magnet in the magnetization direction.
JP2000216433A 2000-07-17 2000-07-17 Permanent magnet type reluctance type rotating electrical machine Expired - Lifetime JP3740353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216433A JP3740353B2 (en) 2000-07-17 2000-07-17 Permanent magnet type reluctance type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216433A JP3740353B2 (en) 2000-07-17 2000-07-17 Permanent magnet type reluctance type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2002034185A JP2002034185A (en) 2002-01-31
JP3740353B2 true JP3740353B2 (en) 2006-02-01

Family

ID=18711701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216433A Expired - Lifetime JP3740353B2 (en) 2000-07-17 2000-07-17 Permanent magnet type reluctance type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP3740353B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154665A (en) * 2014-02-18 2015-08-24 株式会社ジェイテクト Rotor, and method of manufacturing the rotor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI116756B (en) 2002-08-26 2006-02-15 Abb Oy Rotor in a permanent magnet machine and process for making it
JP4138406B2 (en) * 2002-08-30 2008-08-27 株式会社東芝 Permanent magnet type reluctance type rotating electrical machine
JP4591085B2 (en) * 2003-01-15 2010-12-01 三菱電機株式会社 Permanent magnet type motor
JP4186759B2 (en) * 2003-09-03 2008-11-26 株式会社日立製作所 AC generator for vehicles
US7705503B2 (en) 2005-09-07 2010-04-27 Kabushiki Kaisha Toshiba Rotating electrical machine
US7504754B2 (en) * 2005-10-31 2009-03-17 Caterpillar Inc. Rotor having multiple permanent-magnet pieces in a cavity
JP2007159361A (en) * 2005-12-08 2007-06-21 Toshiba Corp Rotor and its manufacturing method
JP5451090B2 (en) * 2009-01-28 2014-03-26 本田技研工業株式会社 Rotating electric machine
JP5472200B2 (en) * 2011-05-19 2014-04-16 株式会社デンソー Rotating electrical machine rotor
CN104753279B (en) * 2013-12-28 2017-12-01 黄劭刚 AC frequency conversion senses single armature synchronous motor of brushless excitation
JP2017158282A (en) * 2016-03-01 2017-09-07 本田技研工業株式会社 Rotary electric machine
JP2018164378A (en) * 2017-03-27 2018-10-18 本田技研工業株式会社 Ipm rotor magnet, and method of manufacturing ipm rotor and ipm rotor magnet
JP6803889B2 (en) * 2018-10-23 2020-12-23 本田技研工業株式会社 Vehicles equipped with rotary electric machines and rotary electric machines
EP3916962A1 (en) * 2020-05-27 2021-12-01 Volvo Car Corporation Permanent magnet motor with field weakening arrangement
JPWO2022219923A1 (en) * 2021-04-13 2022-10-20

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134178U (en) * 1981-02-16 1982-08-21
JPS59209054A (en) * 1983-05-12 1984-11-27 Yaskawa Electric Mfg Co Ltd Securing method of magnet of rotary electric machine
JPH06133479A (en) * 1992-09-02 1994-05-13 Toshiba Corp Permanent magnet rotor and manufacture thereof
JP3172497B2 (en) * 1998-09-29 2001-06-04 株式会社東芝 Permanent magnet type reluctance type rotating electric machine
JP3172504B2 (en) * 1998-09-29 2001-06-04 株式会社東芝 Rotor of permanent magnet type reluctance type rotating electric machine
JP3193348B2 (en) * 1998-09-30 2001-07-30 株式会社東芝 Permanent magnet type reluctance type rotating electric machine
JP2000175388A (en) * 1998-12-02 2000-06-23 Meidensha Corp Permanent magnet burial type motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154665A (en) * 2014-02-18 2015-08-24 株式会社ジェイテクト Rotor, and method of manufacturing the rotor

Also Published As

Publication number Publication date
JP2002034185A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP4363746B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP3740353B2 (en) Permanent magnet type reluctance type rotating electrical machine
KR100609331B1 (en) Permanent Magnet Motor
JP4679052B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP5353917B2 (en) Rotating machine rotor
JP5202455B2 (en) Permanent magnet embedded rotor and vacuum cleaner
WO2011001533A1 (en) Permanent magnetic rotating electric machine
JP2006509483A (en) Electric machines, especially brushless synchronous motors
KR20000009230A (en) Brushless dc motor
JP2007068357A (en) Rotor of rotary electric machine and rotary electric machine using the same
JP2010088219A (en) Embedded permanent magnet rotor and cleaner
JP3172497B2 (en) Permanent magnet type reluctance type rotating electric machine
JP2004088846A (en) Permanent magnet rotor
JP3170224B2 (en) Reluctance type rotating electric machine
JP2007143331A (en) Permanent-magnet-embedded rotor
JP2011199946A (en) Permanent magnet embedded rotor for rotary electric machine, and rotary electric machine
JP3210634B2 (en) Permanent magnet type reluctance type rotating electric machine
JP2002136009A (en) Permanent magnet rotor
JP2011199944A (en) Permanent magnet embedded rotor for rotary electric machine, and rotary electric machine
JP3507653B2 (en) Permanent magnet rotating electric machine
JPH10290542A (en) Motor
JPH0720050U (en) Permanent magnet type synchronous motor rotor
WO2013132625A1 (en) Rotating electric machine
KR102416029B1 (en) High Efficiency Motor
JP7447945B2 (en) rotating electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R151 Written notification of patent or utility model registration

Ref document number: 3740353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

EXPY Cancellation because of completion of term