JP5202455B2 - Permanent magnet embedded rotor and vacuum cleaner - Google Patents

Permanent magnet embedded rotor and vacuum cleaner Download PDF

Info

Publication number
JP5202455B2
JP5202455B2 JP2009158797A JP2009158797A JP5202455B2 JP 5202455 B2 JP5202455 B2 JP 5202455B2 JP 2009158797 A JP2009158797 A JP 2009158797A JP 2009158797 A JP2009158797 A JP 2009158797A JP 5202455 B2 JP5202455 B2 JP 5202455B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
rotor core
arc
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009158797A
Other languages
Japanese (ja)
Other versions
JP2011015572A (en
Inventor
昌弘 仁吾
篤 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009158797A priority Critical patent/JP5202455B2/en
Publication of JP2011015572A publication Critical patent/JP2011015572A/en
Application granted granted Critical
Publication of JP5202455B2 publication Critical patent/JP5202455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、掃除機等に使用され、高速回転を行う永久磁石埋め込み型ロータに関する。また、その永久磁石埋め込み型回転子を搭載した掃除機に関する。   The present invention relates to a permanent magnet embedded rotor that is used in a vacuum cleaner or the like and performs high-speed rotation. The present invention also relates to a vacuum cleaner equipped with the permanent magnet embedded rotor.

磁石埋め込み式回転子では、磁極間の漏れ磁束を低減するために、回転子の磁極間外周部の磁路を狭く設計する方法が従来より用いられている。この際、高速回転するモータ(電動)では、磁石に作用する遠心力による磁石挿入穴外周薄肉部の機械的強度が課題となる。   In a magnet-embedded rotor, in order to reduce leakage magnetic flux between magnetic poles, a method of narrowly designing the magnetic path of the outer periphery between the magnetic poles of the rotor has been conventionally used. At this time, in a motor (electric) that rotates at high speed, the mechanical strength of the outer peripheral thin portion of the magnet insertion hole due to centrifugal force acting on the magnet becomes a problem.

従来、永久磁石式リラクタンス型回転電機の組立時における永久磁石の挿入を容易にし、製造の機械化を可能とする。また永久磁石を固定する接着剤が劣化した場合においても、永久磁石式リラクタンス型回転電機の中の永久磁石の飛散及び回転子の破損の恐れをなくし、高出力化、高効率化、高速化、高信頼性を図るため、永久磁石埋め込み穴に永久磁石位置決め用突起を設けることにより、永久磁石を支持するようにした。また回転子鉄心内の薄肉部の形状を最適化することにより、永久磁石より発生する磁束の漏れを低減し、かつ応力の集中する薄肉部の強度を確保するようにした永久磁石式リラクタンス型回転電機が提案されている(例えば、特許文献1参照)。   Conventionally, it is easy to insert a permanent magnet at the time of assembling a permanent magnet type reluctance type rotating electrical machine, and to enable mechanization of manufacture. In addition, even when the adhesive that fixes the permanent magnet deteriorates, there is no risk of permanent magnet scattering and rotor breakage in the permanent magnet type reluctance type rotating electrical machine, and high output, high efficiency, high speed, In order to achieve high reliability, the permanent magnet is supported by providing a permanent magnet positioning projection in the permanent magnet embedding hole. In addition, by optimizing the shape of the thin part in the rotor core, the permanent magnet reluctance type rotation reduces the leakage of magnetic flux generated from the permanent magnet and ensures the strength of the thin part where stress is concentrated. An electric machine has been proposed (see, for example, Patent Document 1).

また、ロータ(回転子)の機械的強度の確保と、漏れ磁束の抑制との両立を図るために、ステータ(固定子)とロータとを有するモータであって、ロータは、回転軸と、複数の磁極を有し、各磁極に対応する位置にスロットが形成されたヨークと、各スロットに挿入された永久磁石とを備えてなり、ヨークは、スロットの両端部にブリッジを有し、このブリッジの厚さが、ロータの回転中心側から外周へ向けて連続的または段階的に減少していることを特徴とするモータが提案されている(例えば、特許文献2参照)。   Further, in order to achieve both of ensuring the mechanical strength of the rotor (rotor) and suppressing leakage magnetic flux, the motor includes a stator (stator) and a rotor, and the rotor includes a rotating shaft, a plurality of shafts, A yoke having slots formed at positions corresponding to the magnetic poles and permanent magnets inserted into the slots. The yoke has bridges at both ends of the slot. Has been proposed in which the thickness of the rotor decreases continuously or stepwise from the rotation center side to the outer periphery of the rotor (see, for example, Patent Document 2).

特開2001−339919号公報JP 2001-339919 A 特開平9−224338号公報JP-A-9-224338

しかしながら、上記特許文献1記載の永久磁石式リラクタンス型回転電機は、高速回転時には永久磁石より外周側の空気孔と回転子鉄心外周との間の薄肉部に大きな応力集中が生じる。そのため、薄肉部の径方向幅を遠心力に耐えるように大きく設計する必要があり、その場合、極間の磁束漏れが大きくなり回転電機特性の低下をもたらすという課題があった。   However, in the permanent magnet type reluctance type rotating electrical machine described in Patent Document 1, a large stress concentration occurs in the thin portion between the air hole on the outer peripheral side of the permanent magnet and the outer periphery of the rotor core during high speed rotation. For this reason, it is necessary to design the radial width of the thin portion so as to withstand centrifugal force. In this case, there is a problem that magnetic flux leakage between the poles increases and the rotating electrical machine characteristics deteriorate.

また、上記特許文献2に記載されたモータでも、回転子の回転速度が1万rpm(回転数/分)を超えるような超高速回転では十分な機械的強度が得られない場合がある。   Further, even with the motor described in Patent Document 2, sufficient mechanical strength may not be obtained at ultra high speed rotation in which the rotation speed of the rotor exceeds 10,000 rpm (number of rotations / minute).

この発明は、上記のような課題を解決するためになされたもので、高速回転時の遠心力によって発生する応力を低減することができるとともに磁気特性に優れた永久磁石埋め込み型回転子及び掃除機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is capable of reducing stress generated by centrifugal force during high-speed rotation, and has an excellent permanent magnet embedded rotor and vacuum cleaner. The purpose is to provide.

この発明に係る永久磁石埋め込み型回転子は、
電磁鋼板を積層して形成される回転子鉄心と、
回転子鉄心の外周部に沿って設けられ、永久磁石を埋め込む複数の磁石挿入穴と、
回転子鉄心の略中心部に設けられる軸穴とを備え、1極を構成する前記永久磁石を複数に分割して、前記磁石挿入穴に埋め込むものであって、
磁石挿入穴は、全体が略コの字状であり、磁石挿入穴の両端は内側に屈曲して永久磁石が存在しない周方向端部が円弧状の空気領域を形成し、
空気領域は、永久磁石の外周側表面よりも軸穴側に配置するように構成されるとともに、永久磁石の内周側表面よりも軸穴側に延びるように形成され、
回転子鉄心は、極間部の磁路の径方向寸法が所定値より小さくなるように構成されるとともに、極間部に位置する空気領域の円弧の半径を、極間部以外における空気領域の円弧の半径よりも大きくしたことを特徴とする。
The permanent magnet embedded rotor according to the present invention is:
A rotor core formed by laminating electromagnetic steel sheets;
A plurality of magnet insertion holes provided along the outer periphery of the rotor core, and embedded with permanent magnets;
A shaft hole provided at a substantially central portion of the rotor core, and the permanent magnet constituting one pole is divided into a plurality of parts and embedded in the magnet insertion hole,
The magnet insertion hole is substantially U-shaped as a whole, both ends of the magnet insertion hole are bent inward, and a circumferential end where no permanent magnet is present forms an arc-shaped air region,
The air region is configured to be disposed closer to the shaft hole side than the outer peripheral side surface of the permanent magnet, and is formed to extend to the shaft hole side from the inner peripheral side surface of the permanent magnet,
The rotor core is configured so that the radial dimension of the magnetic path in the interpolar portion is smaller than a predetermined value, and the radius of the arc of the air region located in the interpolar portion is set to be equal to that in the air region other than the interpolar portion. It is characterized by being larger than the radius of the arc.

この発明に係る永久磁石埋め込み型回転子は、回転子鉄心が、極間部の磁路の径方向寸法が所定値より小さくなるように構成されるとともに、極間部に位置する空気領域の円弧の半径を、極間部以外における空気領域の円弧の半径よりも大きくしたことにより、高速回転時の遠心力によって発生する応力を低減することができるとともに磁気特性に優れた永久磁石埋め込み型回転子を提供することができる。   In the embedded permanent magnet rotor according to the present invention, the rotor core is configured such that the radial dimension of the magnetic path in the interpolar portion is smaller than a predetermined value, and the arc of the air region located in the interpolar portion By making the radius of the rotor larger than the radius of the arc of the air region other than between the poles, the stress generated by centrifugal force during high-speed rotation can be reduced and the permanent magnet embedded rotor with excellent magnetic properties Can be provided.

実施の形態1を示す図で、ブラシレスDCモータ100の横断面図。FIG. 3 is a diagram illustrating the first embodiment and is a cross-sectional view of the brushless DC motor 100. 実施の形態1を示す図で、ブラシレスDCモータ100の縦断面図。FIG. 3 is a diagram illustrating the first embodiment, and is a longitudinal sectional view of a brushless DC motor 100. 実施の形態1を示す図で、永久磁石埋め込み型回転子である回転子1の横断面図。FIG. 3 shows the first embodiment, and is a cross-sectional view of a rotor 1 that is a permanent magnet embedded rotor. 実施の形態1を示す図で、空気領域4aが永久磁石外周側表面3aよりも外側にある仕様1(a)と内側にある仕様2(b)との回転子1を示す断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view showing a rotor 1 with a specification 1 (a) in which the air region 4a is outside the permanent magnet outer peripheral surface 3a and a specification 2 (b) inside. 実施の形態1を示す図で、仕様1(図4(a))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)。FIG. 5 is a diagram showing the first embodiment, and is a stress analysis diagram at the time of rotation of the specification 1 (FIG. 4A) ((a) is a diagram of the entire rotor 1, and (b) is a partially enlarged diagram). 実施の形態1を示す図で、仕様2(図4(b))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)。FIG. 5 is a diagram showing the first embodiment, and is a stress analysis diagram at the time of rotation of specification 2 (FIG. 4B) ((a) is a diagram of the entire rotor 1, and (b) is a partially enlarged diagram). 実施の形態1を示す図で、仕様1(a)を基準にして最大応力を比較した結果を表で示す図。The figure which shows Embodiment 1, and is a figure which shows the result of having compared the maximum stress on the basis of the specification 1 (a) with a table | surface. 実施の形態1を示す図で、空気領域4aの周方向端部の円弧4bの半径を磁石挿入穴4の外周側の直線部4cの長さを一定として変化させた仕様3(a)と仕様4(b)との回転子1を示す横断面図。In the figure which shows Embodiment 1, the specification 3 (a) and the specification which changed the radius of the circular arc 4b of the circumferential direction edge part of the air area 4a by making the length of the linear part 4c of the outer peripheral side of the magnet insertion hole 4 constant The cross-sectional view which shows the rotor 1 with 4 (b). 実施の形態1を示す図で、仕様3(図8(a))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)。FIG. 5 shows the first embodiment, and is a stress analysis diagram at the time of rotation of specification 3 (FIG. 8A) ((a) is a diagram of the entire rotor 1 and (b) is a partially enlarged diagram). 実施の形態1を示す図で、仕様4(図8(b))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)。FIG. 5 shows the first embodiment, and is a stress analysis diagram at the time of rotation of specification 4 (FIG. 8B) ((a) is a diagram of the entire rotor 1 and (b) is a partially enlarged diagram). 実施の形態1を示す図で、仕様2(図4(b))を基準にして最大応力を比較した結果を表で示す図。FIG. 5 is a diagram showing the first embodiment, and a table showing the result of comparing the maximum stress based on the specification 2 (FIG. 4B). 実施の形態1を示す図で、ブラシレスDCモータ100の固定子2及び回転子1の磁束線の分布を示す図。FIG. 3 is a diagram illustrating the first embodiment, and is a diagram illustrating a distribution of magnetic flux lines of the stator 2 and the rotor 1 of the brushless DC motor 100. 実施の形態1を示す図で、4個の磁石挿入穴4を有する回転子1の横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of a rotor 1 having four magnet insertion holes 4. 実施の形態1を示す図で、回転子1が2極で構成される場合に2枚の永久磁石3で構成した従来の回転子1と、1極を3枚の永久磁石3に分割して6枚の永久磁石3で構成し且つ本実施の形態の形状で構成した回転子1を示す横断面図。In the figure which shows Embodiment 1, when the rotor 1 is comprised by two poles, the conventional rotor 1 comprised by the two permanent magnets 3 and 1 pole were divided | segmented into the three permanent magnets 3 The cross-sectional view which shows the rotor 1 comprised with the permanent magnet 3 of 6 sheets, and was comprised by the shape of this Embodiment. 従来の回転子1の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)。The stress analysis figure at the time of rotation of the conventional rotor 1 ((a) is a figure of the whole rotor 1, (b) is the figure which expanded a part). 実施の形態1を示す図で、従来の回転子1を基準にして最大応力を比較した結果を表で示す図。The figure which shows Embodiment 1 and the figure which shows the result of having compared the maximum stress on the basis of the conventional rotor 1 with a table | surface. 実施の形態1を示す図で、磁石挿入穴4に永久磁石3の固定用の磁石固定部4dを設けた回転子1の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of the rotor 1 in which a magnet fixing portion 4d for fixing the permanent magnet 3 is provided in the magnet insertion hole 4; 実施の形態1を示す図で、磁石挿入穴4の空気領域4aに接着剤もしくは樹脂を流し込み永久磁石3を固定した回転子1の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a rotor 1 in which an adhesive or resin is poured into an air region 4a of a magnet insertion hole 4 and a permanent magnet 3 is fixed. 実施の形態2を示す図で、極間部12に空気孔16を設けた回転子1の横断面図((a)は空気孔16が円で永久磁石3が4個で4極の例、(b)は空気孔16が円で永久磁石3が6個で2極の例、(c)は空気孔16が略三角形で永久磁石3が4個で4極の例)。In the figure which shows Embodiment 2, the cross-sectional view of the rotor 1 which provided the air hole 16 in the space | interval part 12 ((a) is an example in which the air hole 16 is a circle and the four permanent magnets 3 are four poles, (B) is an example in which the air holes 16 are circular and the permanent magnets 3 are six and two poles, and (c) is an example in which the air holes 16 are substantially triangular and the four permanent magnets 3 are four poles). 実施の形態2を示す図で、極間部12の外周部に窪み17を設けた回転子1の横断面図。FIG. 5 shows the second embodiment, and is a cross-sectional view of the rotor 1 in which a recess 17 is provided in the outer peripheral portion of the inter-electrode portion 12. 実施の形態2を示す図で、極間部12の外周部付近にカシメ18(a)もしくはリベット19(b)を設けた回転子1を示す横断面図。FIG. 9 is a cross-sectional view showing the rotor 1 in which a caulking 18 (a) or a rivet 19 (b) is provided in the vicinity of the outer peripheral portion of the interpolar portion 12 in the second embodiment. 実施の形態3を示す図で、回転子1の横断面図((a)は永久磁石3を2分割した2極の回転子1で空気孔16を用いる回転子1の横断面図、(b)は永久磁石3を3分割した2極の回転子1で空気孔16を用いる回転子1の横断面図、(c)は永久磁石3を2分割した2極の回転子1でカシメ18を用いる回転子1の横断面図、(d)は永久磁石3を2分割した2極の回転子1で軸位置決め用キー溝15aを用いる回転子1の横断面図)。FIG. 6 is a diagram showing the third embodiment, and a cross-sectional view of the rotor 1 ((a) is a cross-sectional view of the rotor 1 using the air holes 16 in the two-pole rotor 1 obtained by dividing the permanent magnet 3 into two parts; ) Is a cross-sectional view of the rotor 1 using the air hole 16 with the two-pole rotor 1 obtained by dividing the permanent magnet 3 into three parts, and (c) is the crimp 18 with the two-pole rotor 1 obtained by dividing the permanent magnet 3 into two parts. FIG. 4D is a cross-sectional view of the rotor 1 used, and FIG. 4D is a cross-sectional view of the rotor 1 using the axial positioning key groove 15a in the two-pole rotor 1 obtained by dividing the permanent magnet 3 into two parts. 実施の形態4を示す図で、永久磁石外周側表面3aの外側にスリット21を設けた回転子1の横断面図。FIG. 6 is a diagram showing the fourth embodiment, and is a transverse cross-sectional view of a rotor 1 in which a slit 21 is provided outside a permanent magnet outer peripheral surface 3a. 実施の形態5を示す図で、ブラシレスDCモータ200の横断面図。FIG. 10 shows the fifth embodiment and is a cross-sectional view of the brushless DC motor 200. 実施の形態5を示す図で、ブラシレスDCモータ200の縦断面図。FIG. 10 is a diagram illustrating the fifth embodiment, and is a longitudinal sectional view of a brushless DC motor 200. 実施の形態5を示す図で、回転子101の断面図。FIG. 10 shows the fifth embodiment and is a cross-sectional view of the rotor 101. 実施の形態5を示す図で、回転子鉄心110の平面図。FIG. 10 shows the fifth embodiment and is a plan view of the rotor core 110. 実施の形態5を示す図で、円弧104bの半径が小さい回転子の応力解析結果を示す図。FIG. 16 shows the fifth embodiment, and shows the stress analysis result of the rotor having a small radius of the arc 104b. 実施の形態5を示す図で、図28と同じ磁石量(肉厚も同じ)で円弧104bの半径を大きくした回転子の応力解析結果を示す図。FIG. 29 is a diagram illustrating the fifth embodiment and is a diagram illustrating a stress analysis result of the rotor in which the radius of the arc 104b is increased with the same magnet amount (the same thickness) as in FIG. 28; 実施の形態5を示す図で、図1に示すブラシレスDCモータ100の無負荷時の磁束線図。FIG. 6 is a diagram showing the fifth embodiment, and is a magnetic flux diagram when the brushless DC motor 100 shown in FIG. 1 is unloaded. 実施の形態5を示す図で、ブラシレスDCモータ200の無負荷時の磁束線図。FIG. 10 is a diagram illustrating the fifth embodiment and is a magnetic flux diagram when the brushless DC motor 200 is not loaded. 実施の形態5を示す図で、極間部112を直線状にカットし極間外周部を狭くした回転子の応力解析結果を示す図。FIG. 10 shows the fifth embodiment, and shows a stress analysis result of a rotor in which an inter-electrode portion 112 is cut linearly and an inter-electrode outer peripheral portion is narrowed. 実施の形態5を示す図で、図32に対して極間部112の円弧104bの半径を大きくした回転子の応力解析結果を示す図。FIG. 33 is a diagram illustrating the fifth embodiment and is a diagram illustrating a stress analysis result of the rotor in which the radius of the arc 104b of the inter-electrode portion 112 is larger than that in FIG. 実施の形態5を示す図で、変形例1の回転子201の断面図。FIG. 10 shows the fifth embodiment and is a cross-sectional view of a rotor 201 of a first modification. 実施の形態5を示す図で、変形例2の回転子301の断面図。FIG. 10 shows the fifth embodiment and is a cross-sectional view of a rotor 301 of a second modification. 実施の形態5を示す図で、磁石挿入穴104の空気領域104aに接着剤もしくは樹脂を流し込み永久磁石103を固定した回転子101の横断面図。FIG. 10 shows the fifth embodiment, and is a cross-sectional view of a rotor 101 in which an adhesive or resin is poured into an air region 104a of a magnet insertion hole 104 and a permanent magnet 103 is fixed.

実施の形態1.
図1乃至図18は実施の形態1を示す図で、図1はブラシレスDCモータ100の横断面図、図2はブラシレスDCモータ100の縦断面図、図3は永久磁石埋め込み型回転子である回転子1の横断面図、図4は空気領域4aが永久磁石外周側表面3aよりも外側にある仕様1(a)と内側にある仕様2(b)との回転子1を示す断面図、図5は仕様1(
図4(a))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)、図6は仕様2(図4(b))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)、図7は仕様1(a)を基準にして最大応力を比較した結果を表で示す図、図8は空気領域4aの周方向端部の円弧4bの半径を磁石挿入穴4の外周側の直線部4cの長さを一定として変化させた仕様3(a)と仕様4(b)との回転子1を示す横断面図、図9は仕様3(図8(a))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)、図10は仕様4(図8(b))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)、図11は仕様2(図4(b))を基準にして最大応力を比較した結果を表で示す図、図12はブラシレスDCモータ100の固定子2及び回転子1の磁束線の分布を示す図、図13は4個の磁石挿入穴4を有する回転子1の横断面図、図14は回転子1が2極で構成される場合に2枚の永久磁石3で構成した従来の回転子1と、1極を3枚の永久磁石3に分割して6枚の永久磁石3で構成し且つ本実施の形態の形状で構成した回転子1を示す横断面図、図15は従来の回転子1の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)、図16は従来の回転子1を基準にして最大応力を比較した結果を表で示す図、図17は磁石挿入穴4に永久磁石3の固定用の磁石固定部4dを設けた回転子1の横断面図、図18は磁石挿入穴4の空気領域4aに接着剤もしくは樹脂を流し込み永久磁石3を固定した回転子1の横断面図である。
Embodiment 1 FIG.
FIGS. 1 to 18 are diagrams showing the first embodiment. FIG. 1 is a transverse sectional view of the brushless DC motor 100, FIG. 2 is a longitudinal sectional view of the brushless DC motor 100, and FIG. 3 is an embedded permanent magnet rotor. FIG. 4 is a cross-sectional view showing the rotor 1 with a specification 1 (a) in which the air region 4a is outside the outer peripheral surface 3a of the permanent magnet and a specification 2 (b) in which the air region 4a is inside, Figure 5 shows specification 1 (
4 (a)) is a stress analysis diagram during rotation ((a) is a view of the entire rotor 1, (b) is a partially enlarged view), and FIG. 6 is a specification 2 (FIG. 4 (b)). Stress analysis diagram at the time of rotation ((a) is a diagram of the entire rotor 1, (b) is a partially enlarged diagram), FIG. 7 shows the result of comparing the maximum stress based on the specification 1 (a). FIG. 8 shows specifications 3 (a) and 4 (4) in which the radius of the circular arc 4b at the circumferential end of the air region 4a is changed with the length of the linear portion 4c on the outer peripheral side of the magnet insertion hole 4 being constant. FIG. 9 is a cross-sectional view showing the rotor 1 with b), FIG. 9 is a stress analysis diagram during rotation of the specification 3 (FIG. 8A) ((a) is a diagram of the entire rotor 1, and (b) is a part of it. FIG. 10 is a stress analysis diagram at the time of rotation of the specification 4 (FIG. 8B) ((a) is a diagram of the entire rotor 1, (b) is a partially enlarged diagram), FIG. 11 is specification 2 (Figure FIG. 12 is a table showing the results of comparing the maximum stress based on (b)), FIG. 12 is a diagram showing the distribution of magnetic flux lines of the stator 2 and the rotor 1 of the brushless DC motor 100, and FIG. FIG. 14 is a cross-sectional view of a rotor 1 having a magnet insertion hole 4. FIG. 14 shows a conventional rotor 1 composed of two permanent magnets 3 and three one pole when the rotor 1 is composed of two poles. FIG. 15 is a cross-sectional view showing a rotor 1 divided into six permanent magnets 3 and composed of six permanent magnets 3 and having the shape of the present embodiment. FIG. 15 shows stress analysis during rotation of the conventional rotor 1. FIG. ((A) is a view of the entire rotor 1, (b) is a partially enlarged view), FIG. 16 is a table showing the results of comparing the maximum stress based on the conventional rotor 1, 17 is a cross-sectional view of the rotor 1 in which a magnet fixing portion 4d for fixing the permanent magnet 3 is provided in the magnet insertion hole 4, and FIG. It is a cross-sectional view of the rotor 1 with a fixed permanent magnet 3 pouring an adhesive or resin to the air region 4a.

図1、図2により、ブラシレスDCモータ100の構成を説明する。   The configuration of the brushless DC motor 100 will be described with reference to FIGS.

ブラシレスDCモータ100は、固定子2と、永久磁石埋め込み型回転子である回転子1とを備える。   The brushless DC motor 100 includes a stator 2 and a rotor 1 that is a permanent magnet embedded rotor.

固定子2は、周方向に略等間隔に配置される3個のティース6が、リング状のコアバック8の内側に形成される固定子鉄心5と、各ティース6に施される巻線7とを備える。   The stator 2 includes three teeth 6 arranged at substantially equal intervals in the circumferential direction, a stator core 5 formed inside a ring-shaped core back 8, and a winding 7 applied to each tooth 6. With.

ティース6は、コアバック8側から内側に向かって略平行の形状を有している。ティース6の先端部6a(内径側)は、両サイドが周方向に広がるような円弧状をなしている。但し、円弧状でなくてもよく、例えば、直線状でもよい。   The teeth 6 have a substantially parallel shape from the core back 8 side toward the inside. The tip 6a (inner diameter side) of the tooth 6 has an arc shape in which both sides spread in the circumferential direction. However, it does not have to be arcuate, and may be linear, for example.

夫々のティース6には、集中巻方式の巻線7が施される。巻線7には、銅線に絶縁被覆が施されたマグネットワイヤが用いられる。   A concentrated winding type winding 7 is applied to each of the teeth 6. For the winding 7, a magnet wire in which a copper wire is coated with an insulating coating is used.

3個の集中巻方式の巻線7により、三相の巻線(例えば、三相Y結線の巻線)が形成される。   Three concentrated winding type windings 7 form a three-phase winding (for example, a three-phase Y-connection winding).

固定子鉄心5は、厚さ0.1〜0.7mm程度の薄い電磁鋼板を一枚一枚打ち抜いて所定の枚数を積層することで構成される。一例では、0.27mmの電磁鋼板を用いている。   The stator core 5 is configured by punching out thin electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm one by one and laminating a predetermined number. In one example, a 0.27 mm electromagnetic steel sheet is used.

固定子鉄心5の外径は、一例では40mm程度である。   The outer diameter of the stator core 5 is, for example, about 40 mm.

回転子1は、回転子鉄心10と、回転子鉄心10の6個の磁石挿入穴4に挿入される平板状の6個の永久磁石3と、回転軸9とを備える。詳細は後述するが、6個の永久磁石3で2極の回転子1を構成する。   The rotor 1 includes a rotor core 10, six plate-like permanent magnets 3 inserted into the six magnet insertion holes 4 of the rotor core 10, and a rotating shaft 9. Although details will be described later, the six-pole permanent magnet 3 constitutes a two-pole rotor 1.

回転子鉄心10も、固定子鉄心1と同様、厚さ0.1〜0.7mm程度の薄い電磁鋼板を一枚一枚打ち抜いて所定の枚数を積層することで構成される。一例では、0.27mmの電磁鋼板を用いている。   Similarly to the stator core 1, the rotor core 10 is formed by punching out thin electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm one by one and laminating a predetermined number. In one example, a 0.27 mm electromagnetic steel sheet is used.

回転子鉄心10の外径は、一例では20mmである。   The outer diameter of the rotor core 10 is 20 mm in one example.

回転子1と固定子2との間の空隙11は、例えば、径方向幅が0.3〜1.0mm程度であり、一例では、0.5mmである。   For example, the gap 11 between the rotor 1 and the stator 2 has a radial width of about 0.3 to 1.0 mm, and in one example, 0.5 mm.

図3は永久磁石埋め込み型回転子である回転子1を示す。回転子鉄心10には、永久磁石3を埋め込むための磁石挿入穴4が設けられている。本実施の形態では、6箇所に磁石挿入穴4があり、6枚の平板状の永久磁石3が埋め込まれている。詳細は後述するが、永久磁石3は、磁力の強い希土類永久磁石が好ましい。但し、他のフェライト磁石等でもよい。   FIG. 3 shows a rotor 1 which is a permanent magnet embedded rotor. The rotor core 10 is provided with a magnet insertion hole 4 for embedding the permanent magnet 3. In the present embodiment, there are magnet insertion holes 4 at six locations, and six flat permanent magnets 3 are embedded. Although details will be described later, the permanent magnet 3 is preferably a rare earth permanent magnet having a strong magnetic force. However, other ferrite magnets may be used.

厚さ0.1〜0.7mm程度の薄い電磁鋼板の積層方法については、本実施の形態では、電磁鋼板の夫々に接着剤を塗布した後、積層し接着にて固定している。但し、カシメ及びリベット等で固定しても良い。   Regarding the method for laminating thin electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm, in this embodiment, an adhesive is applied to each of the electromagnetic steel sheets and then laminated and fixed by adhesion. However, it may be fixed with caulking and rivets.

磁石挿入穴4は、平板状の永久磁石3の形状と同一形状ではなく、全体が略コの字状である。そして、磁石挿入穴4の両端は、内側に屈曲している。この屈曲した部分には、永久磁石3は存在せず、ここは空気領域4aになっている。   The magnet insertion hole 4 is not the same shape as the shape of the flat permanent magnet 3, and the whole is substantially U-shaped. And both ends of the magnet insertion hole 4 are bent inward. The permanent magnet 3 does not exist in the bent portion, and this is an air region 4a.

永久磁石3の周方向端部に隣接して存在する空気領域4aは、電磁鋼板よりも透磁率が低いため磁束が通りにくく、磁束の通る磁路を制御する役割を有する。   The air region 4a existing adjacent to the circumferential end of the permanent magnet 3 has a permeability lower than that of the electromagnetic steel plate, so that the magnetic flux is difficult to pass therethrough and has a role of controlling the magnetic path through which the magnetic flux passes.

永久磁石3の側部(周方向)に関して、通常は異なる極性の永久磁石3間には空気領域4aを広く取り、極間部12の磁路を狭くすることにより,磁束の短絡を低減し、ブラシレスDCモータ100の磁気特性を向上させるよう設計される。回転子1の中心に、回転子1の回転力を伝達する回転軸9と嵌合する軸穴15が設けられている。   Regarding the side part (circumferential direction) of the permanent magnet 3, normally, the air region 4 a is widened between the permanent magnets 3 of different polarities, and the magnetic path of the interpolar part 12 is narrowed, thereby reducing the short circuit of the magnetic flux, Designed to improve the magnetic properties of the brushless DC motor 100. A shaft hole 15 is provided at the center of the rotor 1 to be fitted to the rotating shaft 9 that transmits the rotational force of the rotor 1.

本実施の形態では、回転子1は永久磁石埋め込み型であり、磁石挿入穴4の周方向端部の空気領域4aの端部の形状が円弧4bとなるように構成する。この円弧4bは、磁石挿入穴4の外周側の直線部4cに接する円の一部である。   In the present embodiment, the rotor 1 is a permanent magnet embedded type, and is configured such that the shape of the end of the air region 4a at the end in the circumferential direction of the magnet insertion hole 4 is an arc 4b. The arc 4b is a part of a circle that is in contact with the linear portion 4c on the outer peripheral side of the magnet insertion hole 4.

空気領域4aは、永久磁石外周側表面3aよりも軸穴15側に配置するように構成され、かつ、空気領域4aは、永久磁石内周側表面3bよりも軸穴15側に延びるように構成される。   The air region 4a is configured to be disposed closer to the shaft hole 15 than the outer peripheral surface 3a of the permanent magnet, and the air region 4a is configured to extend closer to the shaft hole 15 than the inner peripheral surface 3b of the permanent magnet. Is done.

尚、空気領域4aの周方向端部の円弧4bの半径を、磁石挿入穴4の外周側の直線部4cの長さを一定として変化させると、円弧4bの半径が大きくなるにつれ、磁石挿入穴間薄肉部14の周方向幅が狭くなる。後述する理由により、円弧4bの半径は大きい程好ましいが、最小限の磁石挿入穴間薄肉部14の周方向幅が確保される範囲内にする必要がある。   If the radius of the circular arc 4b at the circumferential end of the air region 4a is changed with the length of the straight line portion 4c on the outer peripheral side of the magnet insertion hole 4 constant, the magnet insertion hole increases as the radius of the circular arc 4b increases. The circumferential width of the thin wall portion 14 is narrowed. For reasons to be described later, the larger the radius of the arc 4b is, the more preferable, but it is necessary to make it within a range in which the minimum width in the circumferential direction of the thin portion 14 between the magnet insertion holes is ensured.

磁石挿入穴間薄肉部14の最小限の周方向幅は、電磁鋼板の厚さ(0.1〜0.7mm程)である。回転子1が回転すると磁石挿入穴間薄肉部14にも、高速回転時の永久磁石3及び磁石挿入穴4の外側の鉄心部分に作用する遠心力が加わるので、それに耐える強度が必要である。また、回転子鉄心10を所望の形状に打ち抜く際にも、所定値以上の磁石挿入穴間薄肉部14の周方向幅が必要である。   The minimum circumferential width of the thin portion 14 between the magnet insertion holes is the thickness of the electromagnetic steel sheet (about 0.1 to 0.7 mm). When the rotor 1 rotates, the thin portion 14 between the magnet insertion holes is also subjected to centrifugal force acting on the outer core portion of the permanent magnet 3 and the magnet insertion hole 4 at the time of high-speed rotation. Also, when the rotor core 10 is punched into a desired shape, the circumferential width of the thin portion 14 between the magnet insertion holes is required to be equal to or greater than a predetermined value.

次に動作について説明する。
このように構成された永久磁石埋め込み型回転子である回転子1では、高速回転時の永
久磁石3及び磁石挿入穴4の外側の鉄心部分に作用する遠心力による応力が、磁石挿入穴4の空気領域4aの端部(磁石挿入穴間薄肉部14に連結する根元部分)に集中する。
Next, the operation will be described.
In the rotor 1, which is a permanent magnet embedded rotor configured as described above, the stress due to the centrifugal force acting on the outer core portion of the permanent magnet 3 and the magnet insertion hole 4 during high-speed rotation causes the stress in the magnet insertion hole 4. It concentrates on the end of the air region 4a (the root portion connected to the thin portion 14 between the magnet insertion holes).

本実施の形態では、空気領域4aを永久磁石外周側表面3aよりも内側に配置しているため、応力集中する空気領域4aの端部(磁石挿入穴間薄肉部14に連結する根元部分)における外周肉厚を大きく取ることができ、この部分の強度を高くすることができる。   In the present embodiment, since the air region 4a is arranged on the inner side of the permanent magnet outer peripheral surface 3a, the end of the air region 4a where stress concentrates (the root portion connected to the thin portion 14 between the magnet insertion holes). The outer peripheral wall thickness can be increased, and the strength of this portion can be increased.

更に空気領域4aの端部を円弧4bで構成することにより、永久磁石3、及び、磁石挿入穴4の外側の鉄心部分に作用する応力を分散させ、遠心力による強度を向上させることができる。   Furthermore, by constituting the end of the air region 4a with the arc 4b, the stress acting on the permanent magnet 3 and the iron core portion outside the magnet insertion hole 4 can be dispersed and the strength by centrifugal force can be improved.

空気領域4aの端部の円弧4bは、径が大きいほど応力を分散させる効果は大きい。円弧4bの径は、永久磁石3の径方向厚さよりも大きく、最小限の磁石挿入穴間薄肉部14の周方向幅が確保される範囲内になるように設計することが好ましい。磁石挿入穴間薄肉部14の最小限の周方向幅は、電磁鋼板の厚さ(0.1〜0.7mm程)である。   The arc 4b at the end of the air region 4a has a greater effect of dispersing stress as the diameter increases. The diameter of the arc 4b is preferably designed so as to be larger than the radial thickness of the permanent magnet 3 and within a range in which the minimum circumferential width of the thin portion 14 between the magnet insertion holes is ensured. The minimum circumferential width of the thin portion 14 between the magnet insertion holes is the thickness of the electromagnetic steel sheet (about 0.1 to 0.7 mm).

図4は空気領域4aが永久磁石外周側表面3aよりも外側にある仕様1(a)と内側にある仕様2(b)との回転子1を示す断面図である。また、図5は仕様1(図4(a))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)である。さらに、図6は仕様2(図4(b))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)である。回転時における応力解析は、いずれのケースも同一回転数、同一磁石量とした。   FIG. 4 is a cross-sectional view showing the rotor 1 with a specification 1 (a) in which the air region 4a is outside the outer peripheral surface 3a of the permanent magnet and a specification 2 (b) inside. 5 is a stress analysis diagram at the time of rotation of the specification 1 (FIG. 4 (a)) ((a) is a diagram of the entire rotor 1, and (b) is a partially enlarged diagram). Further, FIG. 6 is a stress analysis diagram at the time of rotation of the specification 2 (FIG. 4B) ((a) is a diagram of the entire rotor 1, and (b) is a partially enlarged diagram). In the stress analysis during rotation, the same number of rotations and the same amount of magnet were used in all cases.

図5、図6に示すように、応力の大きさは、色の濃さで表している。色が濃いほど応力は大きく、応力の小さい方からレベル1〜レベル6の6段階で表示している。   As shown in FIG. 5 and FIG. 6, the magnitude of the stress is represented by color intensity. The darker the color is, the greater the stress is, and it is displayed in six levels from level 1 to level 6 from the smaller stress.

図5、図6に示すように、仕様1(図4(a))、仕様2(図4(b))は、ともに磁石挿入穴4の端部から外側にかけてと磁石挿入穴間薄肉部14とに応力集中が見られる。   As shown in FIGS. 5 and 6, the specification 1 (FIG. 4A) and the specification 2 (FIG. 4B) are both thin from the end of the magnet insertion hole 4 toward the outside. Stress concentration is seen.

特に、空気領域4aの端部(磁石挿入穴間薄肉部14に連結する根元部分)の応力集中が顕著である。   In particular, the stress concentration at the end of the air region 4a (the root portion connected to the thin portion 14 between the magnet insertion holes) is remarkable.

図7は仕様1(図4(a))、仕様2(図4(b))の最大応力を比較した図である。仕様1(図4(a))を基準にすると、仕様2(図4(b))は約11%最大応力が減少している。これは、永久磁石3の側部にある空気領域4aが永久磁石外周側表面3aよりも内側にあることの効果である。   FIG. 7 is a diagram comparing the maximum stresses of specification 1 (FIG. 4A) and specification 2 (FIG. 4B). Based on the specification 1 (FIG. 4A), the maximum stress is reduced by about 11% in the specification 2 (FIG. 4B). This is an effect that the air region 4a on the side portion of the permanent magnet 3 is on the inner side of the permanent magnet outer peripheral surface 3a.

図8に空気領域4aの周方向端部の円弧4bの半径を磁石挿入穴4の外周側の直線部4cの長さを一定として変化させた仕様3(a)と仕様4(b)との回転子1の断面図である。また、図9は仕様3(図8(a))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)、さらに図10は仕様4(図8(b))の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)である。   FIG. 8 shows specifications 3 (a) and 4 (b) in which the radius of the circular arc 4b at the circumferential end of the air region 4a is changed with the length of the linear portion 4c on the outer peripheral side of the magnet insertion hole 4 being constant. 1 is a cross-sectional view of a rotor 1. 9 is a stress analysis diagram during rotation of specification 3 (FIG. 8A) ((a) is a view of the entire rotor 1, (b) is a partially enlarged view), and FIG. 10 is a specification. 4 (FIG. 8B) is a stress analysis diagram during rotation ((a) is a diagram of the entire rotor 1, and (b) is a partially enlarged diagram).

図6に示すように、仕様2(図4(b))では、空気領域4aの端部(磁石挿入穴間薄肉部14に連結する根元部分)でレベル6の応力集中が見られたが、仕様2(図4(b))よりも円弧4bの半径が大きくなる仕様3(図8(a))では、図9に示すように、空気領域4aの端部(磁石挿入穴間薄肉部14に連結する根元部分)でレベル6の応力集中が僅かに認められる程度に低減している。   As shown in FIG. 6, in the specification 2 (FIG. 4B), level 6 stress concentration was observed at the end of the air region 4a (the root portion connected to the thin portion 14 between the magnet insertion holes). In the specification 3 (FIG. 8A) in which the radius of the arc 4b is larger than the specification 2 (FIG. 4B), as shown in FIG. 9, the end of the air region 4a (the thin portion 14 between the magnet insertion holes). The stress concentration of level 6 is reduced to a slight extent at the root portion connected to the surface.

さらに、円弧4bの半径が大きい仕様4(図8(b))では、認められるレベル6の応
力はさらに少なくなる程度に、空気領域4aの端部の応力が低減している。
Further, in the specification 4 (FIG. 8B) in which the radius of the arc 4b is large, the stress at the end of the air region 4a is reduced to such an extent that the recognized level 6 stress is further reduced.

図11は仕様2(図4(b))を基準にして、各仕様の最大応力を比較した表である。図11からわかるように、仕様3(図8(a))は、仕様2(図4(b))に対して最大応力が約11%減少している。   FIG. 11 is a table comparing the maximum stress of each specification based on the specification 2 (FIG. 4B). As can be seen from FIG. 11, the maximum stress in specification 3 (FIG. 8A) is reduced by about 11% compared to specification 2 (FIG. 4B).

また、仕様4(図8(b))は、仕様2(図4(b))に対して最大応力が22%減少している。   In addition, in specification 4 (FIG. 8B), the maximum stress is reduced by 22% compared to specification 2 (FIG. 4B).

このように、空気領域4aの周方向端部の円弧4bの半径を、最小限の磁石挿入穴間薄肉部14の周方向幅(電磁鋼板の厚さ程度)が確保される範囲内で極力大きくすることにより、高速回転を行う回転子1の強度を大幅に向上し、製品の耐久性、安全性を大幅に向上できる。   Thus, the radius of the circular arc 4b at the circumferential end of the air region 4a is as large as possible within a range in which the circumferential width of the thin portion 14 between the magnet insertion holes (the thickness of the electromagnetic steel sheet) is ensured. By doing so, the strength of the rotor 1 that performs high-speed rotation can be greatly improved, and the durability and safety of the product can be greatly improved.

また、通常異極間の磁路では、永久磁石3の磁束が短絡し、トルクに寄与するステータ鎖交磁束が低下してしまうので極間の磁路を狭くする構成が好ましい。   Moreover, in the magnetic path between different poles, the magnetic flux of the permanent magnet 3 is short-circuited, and the stator linkage magnetic flux contributing to the torque is reduced. Therefore, a configuration in which the magnetic path between the poles is narrowed is preferable.

図12に固定子2及び回転子1内の磁束線の分布を示す。図12に示すように、本実施の形態の回転子1は2極の構成であるが、応力集中を緩和するため、1極の永久磁石3を分割している。図12の例は、1極の永久磁石3を3分割している。   FIG. 12 shows the distribution of magnetic flux lines in the stator 2 and the rotor 1. As shown in FIG. 12, the rotor 1 of the present embodiment has a two-pole configuration, but the one-pole permanent magnet 3 is divided in order to reduce stress concentration. In the example of FIG. 12, the one-pole permanent magnet 3 is divided into three.

本実施の形態では、空気領域4aを永久磁石内周側表面3bよりも内側に延びるよう構成しているので、極間の磁束の短絡の原因となる磁石挿入穴間薄肉部14を、永久磁石3よりも内側の強度の高い部位に配置し、磁石挿入穴間薄肉部14を狭く設計することができる。そのため、磁気特性に優れた回転子1を構成できる。   In the present embodiment, since the air region 4a is configured to extend inward from the inner surface 3b of the permanent magnet, the thin portion 14 between the magnet insertion holes that causes a short circuit of the magnetic flux between the poles is replaced with the permanent magnet. The thin portion 14 between the magnet insertion holes can be designed to be narrow by arranging it in a portion having a high strength inside 3. Therefore, the rotor 1 excellent in magnetic characteristics can be configured.

なお、遠心力による応力集中を緩和させるために、空気領域4a端部の円弧4bの半径を大きくとるほど磁石挿入穴間薄肉部14が狭くなるように設計できるため、強度向上と磁気特性向上の両立を実現できる。   In order to alleviate the stress concentration due to centrifugal force, the thin portion 14 between the magnet insertion holes can be designed to be narrower as the radius of the arc 4b at the end of the air region 4a is increased. A balance can be realized.

図4、図8からわかるように、仕様2(図4(b))に対し、円弧4bの半径の大きい仕様3(図8(a))、仕様4(図8(b))は、遠心力による応力が低く、かつ、磁石挿入穴間薄肉部14が狭くなっており、とくに仕様4(図8(b))は極間の磁束の短絡の少ない磁気特性に優れた構成である。   As can be seen from FIG. 4 and FIG. 8, the specification 3 (FIG. 8 (a)) and the specification 4 (FIG. 8 (b)) in which the radius of the arc 4b is larger than the specification 2 (FIG. 4 (b)) are centrifugal. The stress due to the force is low, and the thin portion 14 between the magnet insertion holes is narrow. Particularly, the specification 4 (FIG. 8B) is a configuration excellent in magnetic characteristics with few short circuits of magnetic flux between the poles.

本実施の形態1は、6枚の永久磁石3で構成されるが、図13に示すように、4枚の永久磁石3で構成される回転子1にも適用できる。永久磁石3の枚数、サイズ、形状にはよらず、前記と同様の効果が得られる。   Although this Embodiment 1 is comprised with the six permanent magnets 3, as shown in FIG. 13, it is applicable also to the rotor 1 comprised with the four permanent magnets 3. As shown in FIG. The same effects as described above can be obtained regardless of the number, size, and shape of the permanent magnets 3.

特に、遠心力による応力が問題となる場合は、1枚の永久磁石3を分割して1枚あたりの磁石サイズを小さくすることで遠心力を低減し、応力を低減する。しかし、磁石枚数が多い分、一つの極における永久磁石3自身及び永久磁石3同士の磁束の漏れが多くなるため、磁石挿入穴間薄肉部14を狭く設計できる本実施の形態は有効であるといえる。   In particular, when stress due to centrifugal force becomes a problem, the centrifugal force is reduced by dividing one permanent magnet 3 and reducing the magnet size per sheet, thereby reducing the stress. However, as the number of magnets increases, the leakage of magnetic flux between the permanent magnet 3 itself and the permanent magnets 3 in one pole increases. Therefore, this embodiment in which the thin portion 14 between the magnet insertion holes can be designed to be narrow is effective. I can say that.

図14は回転子1が2極で構成される場合に2枚の永久磁石3で構成した従来の回転子1と、1極を3枚の永久磁石3に分割して6枚の永久磁石3で構成し且つ本実施の形態の形状で構成した回転子1を示す断面図である。また、図15は従来の回転子1の回転時における応力解析図((a)は回転子1全体の図、(b)は一部を拡大した図)である。さらに、図16は従来の回転子1を基準にして最大応力を比較した結果を表で示す図である。   FIG. 14 shows a conventional rotor 1 constituted by two permanent magnets 3 when the rotor 1 is constituted by two poles, and six permanent magnets 3 by dividing one pole into three permanent magnets 3. It is sectional drawing which shows the rotor 1 comprised by and having the shape of this Embodiment. FIG. 15 is a stress analysis diagram during rotation of the conventional rotor 1 ((a) is a diagram of the entire rotor 1 and (b) is a partially enlarged diagram). Further, FIG. 16 is a table showing the result of comparing the maximum stress with the conventional rotor 1 as a reference.

図16からわかるように、各極の永久磁石3を3分割した仕様4は、従来のものよりも最大応力が71%低減できている。単に永久磁石3を分割した場合には、各極における永久磁石3自身及び永久磁石3同士の磁束の漏れが多くなるが、本実施の形態(例えば、仕様4)のように円弧4bの径が大きく、且つ磁石挿入穴間薄肉部14が電磁鋼板の厚さと同程度まで狭い構成にすれば、各極における永久磁石3の磁束漏れを抑制でき、回転子1の磁気特性も優れている。   As can be seen from FIG. 16, in the specification 4 in which the permanent magnet 3 of each pole is divided into three, the maximum stress can be reduced by 71% compared to the conventional one. When the permanent magnet 3 is simply divided, the leakage of magnetic flux between the permanent magnet 3 itself and each of the permanent magnets 3 at each pole increases, but the diameter of the arc 4b is the same as in this embodiment (for example, specification 4). If the large and thin portion 14 between the magnet insertion holes is narrow to the same thickness as the electromagnetic steel sheet, magnetic flux leakage of the permanent magnet 3 at each pole can be suppressed, and the magnetic characteristics of the rotor 1 are excellent.

また、実施の形態1は、ロータの遠心力に対する強度を向上させることを目的としているため、既に述べたように、本実施の形態では、電磁鋼板の夫々に接着剤を塗布した後、積層し接着にて固定している。それにより、より強度の高い回転子1を得ることができる。   In addition, since the first embodiment is intended to improve the strength against the centrifugal force of the rotor, as described above, in the present embodiment, the adhesive is applied to each of the electromagnetic steel sheets and then laminated. It is fixed by bonding. Thereby, the rotor 1 with higher strength can be obtained.

以上のような回転子1を構成する場合、永久磁石3の周方向へのすべりを抑制するために、図17に示すように永久磁石3の周方向の端部を固定する磁石固定部4dを、磁石挿入穴4に設けるのが好ましい。尚、図17では、磁石挿入穴4の数は4個のものを示しているが、磁石挿入穴4の数は任意でよい。   When the rotor 1 as described above is configured, in order to suppress the slip of the permanent magnet 3 in the circumferential direction, a magnet fixing portion 4d for fixing the circumferential end of the permanent magnet 3 as shown in FIG. The magnet insertion hole 4 is preferably provided. In FIG. 17, the number of magnet insertion holes 4 is four, but the number of magnet insertion holes 4 may be arbitrary.

また、磁石固定部4dがない場合でも、図18に示すように、空気領域4aに接着剤もしくは樹脂等を流し込み固めて、永久磁石3の固定を行っても良い。これにより、永久磁石3の磁石挿入穴4内での回転時の変位を抑制するため、より強度の高い回転子1を構成することができる。   Further, even when there is no magnet fixing portion 4d, as shown in FIG. 18, the permanent magnet 3 may be fixed by pouring an adhesive or resin into the air region 4a and hardening it. Thereby, in order to suppress the displacement at the time of rotation in the magnet insertion hole 4 of the permanent magnet 3, the rotor 1 with higher intensity | strength can be comprised.

実施の形態2.
上記実施の形態1では、永久磁石3の周方向側部の空気領域4aの端部を一部円弧4bとなるような形状で構成し、空気領域4aを永久磁石外周側表面3aよりも内側に配置するよう構成し、且つ空気領域4aを永久磁石外周側表面3aよりも内側に延びるように構成し、高速回転時の遠心力を緩和するようにしたものであるが、この場合、強度は高くても、永久磁石3の極間の磁束の漏れが大きく十分な磁気特性を得られない場合がある。このような場合に、回転子1の遠心力に対する強度を保ったまま、極間部12の磁束の漏れを低減できる実施の形態2について説明する。
Embodiment 2. FIG.
In Embodiment 1 described above, the end of the air region 4a on the circumferential side of the permanent magnet 3 is configured to have a partial arc 4b, and the air region 4a is located on the inner side of the permanent magnet outer peripheral surface 3a. The air region 4a is configured to extend inward from the outer peripheral surface 3a of the permanent magnet so as to reduce the centrifugal force during high-speed rotation. In this case, the strength is high. However, there is a case where the leakage of magnetic flux between the poles of the permanent magnet 3 is large and sufficient magnetic properties cannot be obtained. In such a case, the second embodiment that can reduce the leakage of magnetic flux in the interpolar portion 12 while maintaining the strength of the rotor 1 against the centrifugal force will be described.

図19乃至図21は実施の形態2を示す図で、図19は極間部12に空気孔16を設けた回転子1の横断面図((a)は空気孔16が円で永久磁石3が4個で4極の例、(b)は空気孔16が円で永久磁石3が6個で2極の例、(c)は空気孔16が略三角形で永久磁石3が4個で4極の例)、図20は極間部12の外周部に窪み17を設けた回転子1の横断面図、図21は極間部12の外周部付近にカシメ18(a)もしくはリベット19(b)を設けた回転子1を示す横断面図である。   FIGS. 19 to 21 are diagrams showing the second embodiment. FIG. 19 is a cross-sectional view of the rotor 1 in which the air holes 16 are provided in the inter-pole portion 12 ((a) shows the permanent magnet 3 in which the air holes 16 are circles). (B) is an example in which the air holes 16 are circular and the permanent magnets 3 are six and two poles, and (c) is an example in which the air holes 16 are substantially triangular and the four permanent magnets 3 are four. 20 is a cross-sectional view of the rotor 1 provided with a recess 17 in the outer peripheral portion of the interpolar portion 12, and FIG. 21 is a caulking 18 (a) or rivet 19 ( It is a cross-sectional view which shows the rotor 1 which provided b).

図19は極間部12に空気孔16を設けた回転子1を示す。本実施の形態は、異極間の磁束の漏れを低減させるため、実施の形態1との組合せで、隣り合う永久磁石3が異極である場合に、極間部12の外周表面付近に空気孔16を設けた構成をとる。   FIG. 19 shows the rotor 1 in which the air holes 16 are provided in the inter-electrode portion 12. In the present embodiment, in order to reduce the leakage of magnetic flux between the different poles, in the combination with the first embodiment, when the adjacent permanent magnets 3 have different poles, air is present near the outer peripheral surface of the interpolar portion 12. The structure which provided the hole 16 is taken.

図8〜図11に示すように、実施の形態1では高速回転時の遠心力による応力を永久磁石外周側表面3aより内側の空気領域4aの円弧4b部で分散させるため、極間部12の外周部付近の応力は大きく低減している。   As shown in FIGS. 8 to 11, in the first embodiment, stress due to centrifugal force during high-speed rotation is dispersed in the arc 4 b of the air region 4 a inside the permanent magnet outer peripheral surface 3 a, so The stress near the outer periphery is greatly reduced.

図19に示すよう、極間部12に円もしくは一部に円弧の形状を持ち略三角形の空気孔16を設けることにより、応力を大きく増加させることはないが、空気孔16により極間部12の磁路が狭く設計できるため、極間部12の磁束の漏れを低減させ、磁気特性を大
幅に向上させることができる。一つの空気孔16の代わりに、小さい孔を多数設けることでもよい。
As shown in FIG. 19, by providing a substantially triangular air hole 16 having a circular shape or a partial arc shape in the inter-electrode portion 12, the stress is not greatly increased. Since the magnetic path can be designed to be narrow, leakage of magnetic flux in the inter-pole portion 12 can be reduced and the magnetic characteristics can be greatly improved. Instead of one air hole 16, a large number of small holes may be provided.

図19(a)に示す例は、永久磁石3を4個使用した4極の回転子1である。この例では、極間部12が4箇所にあり、夫々に円形の空気孔16を設けている。   An example shown in FIG. 19A is a four-pole rotor 1 using four permanent magnets 3. In this example, there are four inter-pole portions 12 and circular air holes 16 are provided respectively.

図19(b)に示す例は、永久磁石3を6個使用した2極の回転子1である。この例では、極間部12が2箇所にあり、夫々に円形の空気孔16を設けている。   The example shown in FIG. 19B is a two-pole rotor 1 using six permanent magnets 3. In this example, there are two inter-electrode portions 12, and circular air holes 16 are provided respectively.

図19(c)に示す例は、永久磁石3を4個使用した4極の回転子1である。この例では、極間部12が4箇所にあり、夫々に略三角形の空気孔16を設けている。   The example shown in FIG. 19C is a 4-pole rotor 1 using four permanent magnets 3. In this example, there are four inter-pole portions 12 provided with substantially triangular air holes 16, respectively.

図20に示すように、極間部12に空気孔16を設ける代わりに、極間部12の外周部に窪み17を設けてもよい。この場合も、窪み17の分だけ極間部12の磁路が狭くなるため、極間部12の磁束の漏れを低減させ、磁気特性を大幅に向上させることができる。   As shown in FIG. 20, instead of providing the air holes 16 in the inter-electrode portion 12, a recess 17 may be provided in the outer peripheral portion of the inter-electrode portion 12. Also in this case, since the magnetic path of the interpolar portion 12 is narrowed by the amount of the depression 17, leakage of magnetic flux in the interpolar portion 12 can be reduced, and the magnetic characteristics can be greatly improved.

また、図21に示すように、隣り合う永久磁石3が異極である場合に、極間部12の外周部付近にカシメ18もしくは、リベット19を設けても良い。   Further, as shown in FIG. 21, when adjacent permanent magnets 3 have different polarities, caulking 18 or rivets 19 may be provided in the vicinity of the outer peripheral portion of the interpolar portion 12.

図21(a)は、永久磁石3を4個使用した4極の回転子1であり、4箇所にある極間部12の外周部付近にカシメ18を夫々設けている。   FIG. 21A shows a four-pole rotor 1 using four permanent magnets 3, and caulkings 18 are provided in the vicinity of the outer peripheral portion of the interpolar portion 12 at four locations.

図21(b)は、永久磁石3を4個使用した4極の回転子1であり、4箇所にある極間部12の外周部付近にリベット19を夫々設けている。   FIG. 21 (b) shows a four-pole rotor 1 using four permanent magnets 3, and rivets 19 are provided in the vicinity of the outer peripheral portion of the interpolar portion 12 at four locations.

カシメ18やリベット19は、電磁鋼板の磁気特性を劣化させるため、極間部12の磁路を狭くしたのと同様の効果を得ることができ、磁気特性を大幅に向上させることができる。同時に電磁鋼板の積層して固定する働きをもち、回転子1の強度向上にも有効である。   Since the caulking 18 and the rivet 19 deteriorate the magnetic characteristics of the electromagnetic steel sheet, the same effect as that of narrowing the magnetic path of the interpolar portion 12 can be obtained, and the magnetic characteristics can be greatly improved. At the same time, it has the function of laminating and fixing electromagnetic steel sheets, and is effective in improving the strength of the rotor 1.

空気孔16、カシメ18、リベット19は、夫々を単独に使用する以外に、それらを適宜組み合わせて用いることでもよい。   The air hole 16, the caulking 18, and the rivet 19 may be used in combination as appropriate, in addition to using each independently.

空気孔16、カシメ18、リベット19は、極間部12の磁路を狭くして磁束漏れを抑制するように作用するので、これらを総称して、「磁束漏れ抑制部」と呼ぶ。   The air hole 16, the caulking 18, and the rivet 19 act so as to suppress the magnetic flux leakage by narrowing the magnetic path of the inter-pole portion 12, and are collectively referred to as “magnetic flux leakage suppressing portion”.

空気孔16もしくは窪み17は、極間部12の磁束漏れを抑制するとともに、それらの大きさを調節することにより回転子のバランスをとり、高速回転時の遠心力による強度を確保しつつ、振動・騒音を抑制することができる。   The air holes 16 or the depressions 17 vibrate while suppressing magnetic flux leakage of the inter-pole portion 12 and balancing the rotor by adjusting the size of the air holes 16 or securing the strength due to centrifugal force during high-speed rotation. -Noise can be suppressed.

尚、空気孔16、または窪み17は軸方向に連通させる必要はなく、回転子の重量バランスがとれる範囲で設ければよい。   The air holes 16 or the recesses 17 do not need to be communicated in the axial direction, and may be provided within a range in which the weight balance of the rotor can be achieved.

空気孔16及び窪み17は、夫々が同じ形状でなくてもよい。即ち、対称性は問わない。   The air holes 16 and the recesses 17 do not have to have the same shape. That is, symmetry is not a problem.

実施の形態3.
遠心力を分散させるために1つの極の永久磁石3を分割して、1枚あたりの磁石サイズを小さくし、遠心力を低減させることについては、既に述べた。
Embodiment 3 FIG.
As described above, the permanent magnet 3 having one pole is divided to reduce the centrifugal force by dividing the permanent magnet 3 having one pole in order to disperse the centrifugal force.

実施の形態2の方法では、隣り合う永久磁石3が同極の場合には、空気孔16、窪み17、カシメ18、リベット19等の「磁束漏れ抑制部」は、有効磁束の磁路の妨害となる。そこで、実施の形態3では、隣り合う永久磁石3が異極の場合には、極間部12の外周部付近に「磁束漏れ抑制部」を設け、隣り合う永久磁石3が同極の場合には、同極間部20の内側で磁石挿入穴4よりも軸穴15側に「磁束漏れ抑制部」を設ける構成をとるものである。   In the method of the second embodiment, when the adjacent permanent magnets 3 have the same polarity, the “magnetic flux leakage suppression portions” such as the air holes 16, the depressions 17, the caulking 18, and the rivets 19 are used to block the magnetic path of the effective magnetic flux. It becomes. Therefore, in the third embodiment, when the adjacent permanent magnets 3 have different polarities, a “magnetic flux leakage suppressing portion” is provided near the outer peripheral portion of the interpolar portion 12, and the adjacent permanent magnets 3 have the same polarity. Is a configuration in which a “magnetic flux leakage suppressing portion” is provided on the shaft hole 15 side with respect to the magnet insertion hole 4 inside the interpolar portion 20.

図22は実施の形態3を示す図で、回転子1の横断面図((a)は永久磁石3を2分割した2極の回転子1で空気孔16を用いる回転子1の横断面図、(b)は永久磁石3を3分割した2極の回転子1で空気孔16を用いる回転子1の横断面図、(c)は永久磁石3を2分割した2極の回転子1でカシメ18を用いる回転子1の横断面図、(d)は永久磁石3を2分割した2極の回転子1で軸位置決め用キー溝15aを用いる回転子1の横断面図)である。   FIG. 22 is a diagram showing the third embodiment, and a cross-sectional view of the rotor 1 ((a) is a cross-sectional view of the rotor 1 using the air holes 16 in the two-pole rotor 1 obtained by dividing the permanent magnet 3 into two parts). (B) is a cross-sectional view of the rotor 1 using the air hole 16 in the two-pole rotor 1 obtained by dividing the permanent magnet 3 into three parts, and (c) is the two-pole rotor 1 obtained by dividing the permanent magnet 3 into two parts. FIG. 4D is a cross-sectional view of the rotor 1 using the caulking 18, and FIG. 4D is a cross-sectional view of the rotor 1 using the shaft positioning keyway 15 a in the two-pole rotor 1 obtained by dividing the permanent magnet 3 into two parts.

図22(a)に示す回転子1は、永久磁石3を2分割した2極の回転子1である。極間部12には外周部付近に円形の空気孔16が設けられる。また、同極の分割された永久磁石3の間の同極間部20(2箇所)には、磁石挿入穴4よりも内側に空気孔16を配置する。これにより、有効磁束の磁路を妨害することを回避できる。   A rotor 1 shown in FIG. 22A is a two-pole rotor 1 in which a permanent magnet 3 is divided into two. A circular air hole 16 is provided in the vicinity of the outer periphery of the inter-electrode portion 12. In addition, air holes 16 are arranged inside the magnet insertion holes 4 in the same-polarity portions 20 (two places) between the divided permanent magnets 3 having the same polarity. Thereby, obstruction of the magnetic path of the effective magnetic flux can be avoided.

図22(b)に示す回転子1は、永久磁石3を3分割した2極の回転子1である。極間部12には外周部付近に空気孔16が設けられる。また、同極の分割された永久磁石3の間の同極間部20(4箇所)には、磁石挿入穴4よりも内側に空気孔16を配置する。これにより、有効磁束の磁路を妨害することを回避できる。   A rotor 1 shown in FIG. 22B is a two-pole rotor 1 in which a permanent magnet 3 is divided into three. An air hole 16 is provided in the vicinity of the outer peripheral portion of the interelectrode portion 12. In addition, air holes 16 are arranged on the inner side of the magnet insertion holes 4 in the same-polarity portions 20 (four places) between the divided permanent magnets 3 having the same polarity. Thereby, obstruction of the magnetic path of the effective magnetic flux can be avoided.

図22(c)に示す回転子1は、永久磁石3を2分割した2極の回転子1である。極間部12には外周部付近にカシメ18が設けられる。また、同極の分割された永久磁石3の間の同極間部20(2箇所)には、磁石挿入穴4よりも内側にカシメ18を配置する。これにより、有効磁束の磁路を妨害することを回避できる。   A rotor 1 shown in FIG. 22C is a two-pole rotor 1 in which a permanent magnet 3 is divided into two. A caulking 18 is provided near the outer periphery of the inter-electrode portion 12. Further, the caulking 18 is disposed on the inner side of the magnet insertion hole 4 at the same pole portion 20 (two places) between the divided permanent magnets 3 having the same pole. Thereby, obstruction of the magnetic path of the effective magnetic flux can be avoided.

図22(d)に示す回転子1は、永久磁石3を2分割した2極の回転子1である。極間部12には外周部付近に円形の空気孔16が設けられる。また、同極の分割された永久磁石3の間の同極間部20(2箇所)には、磁石挿入穴4よりも内側に位置する軸穴15に形成される軸位置決め用キー溝15aを配置する。これにより、有効磁束の磁路を妨害することを回避できる。   The rotor 1 shown in FIG. 22D is a two-pole rotor 1 in which the permanent magnet 3 is divided into two. A circular air hole 16 is provided in the vicinity of the outer periphery of the inter-electrode portion 12. Further, shaft positioning key grooves 15 a formed in shaft holes 15 located on the inner side of the magnet insertion holes 4 are formed in the same-polarity portions 20 (two places) between the divided permanent magnets 3 of the same polarity. Deploy. Thereby, obstruction of the magnetic path of the effective magnetic flux can be avoided.

以上のように、本実施の形態によれば、異極間の磁束の漏れは低減し、同極間の磁束は有効に利用することができ、磁気特性を大幅に向上させることができる。   As described above, according to the present embodiment, the leakage of magnetic flux between different poles can be reduced, the magnetic flux between the same poles can be used effectively, and the magnetic characteristics can be greatly improved.

実施の形態4.
上記実施の形態1〜3のような回転子1よりも、更に強度、磁気特性を向上させる構成を説明する。
Embodiment 4 FIG.
A configuration for further improving the strength and magnetic characteristics as compared with the rotor 1 as in the first to third embodiments will be described.

図23は実施の形態4を示す図で、永久磁石外周側表面3aの外側にスリット21を設けた回転子1の断面図である。   FIG. 23 is a diagram showing the fourth embodiment, and is a cross-sectional view of the rotor 1 in which a slit 21 is provided outside the permanent magnet outer peripheral surface 3a.

図23に示すように、永久磁石3の永久磁石外周側表面3aの外側にスリット21を設ける。この例では、長穴状のスリット21が、一つの永久磁石3に対して4個形成されている。但し、スリット21の形状、個数はこれに限定されない。   As shown in FIG. 23, the slit 21 is provided outside the permanent magnet outer peripheral surface 3 a of the permanent magnet 3. In this example, four long hole-shaped slits 21 are formed for one permanent magnet 3. However, the shape and number of the slits 21 are not limited to this.

このスリット21は、回転子1から固定子2へ流れる磁束の高調波成分を低減する効果
を有する。更に、回転子1の外周部の鉄の量を削減させるため、重量低減による遠心力低減効果があり、応力低減に有効である。
The slit 21 has an effect of reducing harmonic components of the magnetic flux flowing from the rotor 1 to the stator 2. Furthermore, since the amount of iron in the outer peripheral portion of the rotor 1 is reduced, there is an effect of reducing centrifugal force due to weight reduction, which is effective in reducing stress.

実施の形態1〜4は、ブラシレスDCモータのトルクに寄与する有効磁束を向上させるので、とくに磁束密度の高くなる希土類磁石を用いた回転子1においてより大きな効果を得ることができる。   Since Embodiments 1 to 4 improve the effective magnetic flux that contributes to the torque of the brushless DC motor, a greater effect can be obtained particularly in the rotor 1 using a rare earth magnet having a high magnetic flux density.

実施の形態5.
先ず、本実施の形態の概要について説明する。永久磁石埋め込み型回転子においては、回転時の永久磁石及び磁石挿入穴の外側の鉄心部分に作用する遠心力による応力が、磁石挿入穴の空気領域の端部(円弧部分)に集中する。
Embodiment 5 FIG.
First, an outline of the present embodiment will be described. In the permanent magnet embedded type rotor, stress due to centrifugal force acting on the permanent magnet and the iron core portion outside the magnet insertion hole at the time of rotation concentrates on the end portion (arc portion) of the air region of the magnet insertion hole.

このとき、空気領域を永久磁石外周側表面よりも内側に配置すると、応力集中する空気領域の端部(円弧部分)における外周肉厚を大きく取ることができ、この部分の強度を高くすることができる。   At this time, if the air region is arranged on the inner side of the outer peripheral surface of the permanent magnet, the thickness of the outer periphery at the end (arc portion) of the air region where stress is concentrated can be increased, and the strength of this portion can be increased. it can.

更に空気領域の端部を円弧で構成することにより、永久磁石、及び、磁石挿入穴外側の鉄心部分に作用する遠心力による応力を分散させ、遠心力による強度を向上させることができる。   Further, by configuring the end of the air region with an arc, the stress due to the centrifugal force acting on the permanent magnet and the iron core portion outside the magnet insertion hole can be dispersed, and the strength due to the centrifugal force can be improved.

但し、外周肉厚が大きいことは、磁気的には磁束が流れやすいということなので、極間部では磁石間で短絡する磁束が増加し、マグネットトルクを有効に利用することができない。   However, the fact that the outer peripheral wall thickness is large means that magnetic flux is likely to flow magnetically, so that the magnetic flux that is short-circuited between the magnets increases between the poles, and the magnet torque cannot be used effectively.

本実施の形態では、例えば極間部をストレートにカットし、極間部の磁路を狭くすることで、極間部の磁束の短絡を低減し、固定子に鎖交する有効磁束量を増加させている。   In the present embodiment, for example, the distance between the poles is cut straight, and the magnetic path in the distance between the poles is narrowed, thereby reducing the short circuit of the magnetic flux between the poles and increasing the amount of effective magnetic flux linked to the stator. I am letting.

通常だと、ここで極間部の外周肉厚を薄くしたことにより、永久磁石、及び、磁石挿入穴の外側の鉄心部分に作用する遠心力による応力集中が大きくなり、局所的な強度の低下をもたらしてしまう。   Normally, by reducing the outer peripheral wall thickness of the inter-electrode part here, the stress concentration due to the centrifugal force acting on the core part outside the permanent magnet and the magnet insertion hole increases, and the local strength decreases. Will bring.

本実施の形態では、更に、磁石挿入穴の周方向端部の空気領域を構成する円弧を、極間部に位置する円弧の半径が極間部以外の円弧の半径よりも大きくなるように構成することで、極間部の応力集中をより大きな効果で分散し緩和することができる。   In the present embodiment, the arc that forms the air region at the circumferential end of the magnet insertion hole is further configured such that the radius of the arc positioned at the inter-pole portion is larger than the radius of the arc other than the inter-pole portion. By doing so, it is possible to disperse and relieve the stress concentration at the interelectrode portion with a greater effect.

磁石挿入穴の周方向端部の空気領域を構成する円弧形状を、極間部に位置する円弧の半径が極間部以外の円弧の半径よりも大きくなるように構成することで、漏れ磁束の多い極間部の磁路を狭くすることを可能としたことが本実施の形態の特徴である。   By configuring the arc shape that forms the air region at the circumferential end of the magnet insertion hole so that the radius of the arc located at the inter-pole portion is larger than the radius of the arc other than the inter-pole portion, A feature of the present embodiment is that it is possible to narrow the magnetic paths in many inter-polar portions.

極間部をストレートにカットすることで、極間部の固定子と回転子の間の空隙が広がり、磁気抵抗が大きくなるため、モータのq軸インダクタンスが低下する。モータのインダクタンスを低減でき制御性を向上させることができる。   Since the gap between the poles is cut straight, a gap between the stator and the rotor in the gap is widened and the magnetic resistance is increased, so that the q-axis inductance of the motor is reduced. The inductance of the motor can be reduced and the controllability can be improved.

以上のように、極間部の磁路を狭くなるよう構成するので、極間部の漏れ磁束が低減し、固定子の鎖交磁束を増加させ、マグネットトルクを増加することができる。これにより、電機子磁束が低減し、銅損を低減した高効率なブラシレスDCモータを構成することができる。   As described above, since the magnetic path in the interpolar part is configured to be narrow, the leakage magnetic flux in the interpolar part is reduced, the interlinkage magnetic flux of the stator is increased, and the magnet torque can be increased. Thereby, a highly efficient brushless DC motor with reduced armature magnetic flux and reduced copper loss can be configured.

図24乃至図36は実施の形態5を示す図で、図24はブラシレスDCモータ200の横断面図、図25はブラシレスDCモータ200の縦断面図、図26は回転子1の断面図
、図27は回転子鉄心110の平面図、図28は円弧104bの半径が小さい回転子の応力解析結果を示す図、図29は図28と同じ磁石量(肉厚も同じ)で円弧104bの半径を大きくした回転子の応力解析結果を示す図、図30は図1に示すブラシレスDCモータ100の無負荷時の磁束線図、図31はブラシレスDCモータ200の無負荷時の磁束線図、図32は極間部112を直線状にカットし極間外周部を狭くした回転子の応力解析結果を示す図、図33は図32に対して極間部112の円弧104bの半径を大きくした回転子の応力解析結果を示す図、図34は変形例1の回転子201の断面図、図35は変形例2の回転子301の断面図、図36は磁石挿入穴104の空気領域104aに接着剤もしくは樹脂を流し込み永久磁石103を固定した回転子101の横断面図である。
24 to 36 are diagrams showing the fifth embodiment. FIG. 24 is a transverse sectional view of the brushless DC motor 200. FIG. 25 is a longitudinal sectional view of the brushless DC motor 200. FIG. 27 is a plan view of the rotor core 110, FIG. 28 is a diagram showing a stress analysis result of a rotor with a small radius of the arc 104b, and FIG. 29 is a graph showing the radius of the arc 104b with the same magnet amount (same thickness) as FIG. FIG. 30 is a diagram showing the stress analysis result of the enlarged rotor, FIG. 30 is a magnetic flux diagram when the brushless DC motor 100 shown in FIG. 1 is unloaded, FIG. 31 is a magnetic flux diagram when the brushless DC motor 200 is unloaded, and FIG. FIG. 33 is a diagram showing a stress analysis result of a rotor in which the inter-electrode portion 112 is cut in a straight line and the outer peripheral portion of the inter-electrode is narrowed. FIG. The figure which shows the stress analysis result of 34 is a cross-sectional view of the rotor 201 of the first modification, FIG. 35 is a cross-sectional view of the rotor 301 of the second modification, and FIG. 36 is to fix the permanent magnet 103 by pouring adhesive or resin into the air region 104a of the magnet insertion hole 104. FIG.

図24、図25により、ブラシレスDCモータ200の構成を説明する。尚、ブラシレスDCモータ200を、単にモータと呼ぶ場合もある。   The configuration of the brushless DC motor 200 will be described with reference to FIGS. Note that the brushless DC motor 200 may be simply referred to as a motor.

ブラシレスDCモータ200は、固定子102と、永久磁石埋め込み型回転子である回転子101とを備える。   The brushless DC motor 200 includes a stator 102 and a rotor 101 that is a permanent magnet embedded rotor.

固定子102は、周方向に略等間隔に配置される6個のティース106がリング状のコアバック108の内側に形成されるとともに、ティース106の間にスロット113が形成された固定子鉄心105と、各スロット113に施される分布巻の巻線107とを備える。巻線107には、銅線に絶縁被覆が施されたマグネットワイヤが用いられる。但し、巻線107の巻線方式は、分布巻に限定されない。集中巻でもよい。   In the stator 102, six teeth 106 arranged at substantially equal intervals in the circumferential direction are formed inside the ring-shaped core back 108, and a stator core 105 in which a slot 113 is formed between the teeth 106. And distributed windings 107 applied to the slots 113. For the winding 107, a magnet wire in which a copper wire is coated with an insulating coating is used. However, the winding method of the winding 107 is not limited to distributed winding. A concentrated winding may be used.

図示はしていないが、巻線107とスロット113の間に、絶縁材が施される。   Although not shown, an insulating material is applied between the winding 107 and the slot 113.

ティース106は、コアバック108側から内側に向かって略平行に延びている。ティース106の先端部106a(内径側)は、両サイドが周方向に広がるような円弧状をなしている。但し、円弧状でなくてもよく、例えば、直線状でもよい。   The teeth 106 extend from the core back 108 side inward substantially in parallel. The tip end portion 106a (inner diameter side) of the tooth 106 has an arc shape in which both sides spread in the circumferential direction. However, it does not have to be arcuate, and may be linear, for example.

分布巻方式の巻線107により、三相の巻線(例えば、三相Y結線の巻線)が形成される。   The distributed winding type winding 107 forms a three-phase winding (for example, a three-phase Y-connection winding).

固定子鉄心105は、厚さ0.1〜0.7mm程度の薄い電磁鋼板を一枚一枚所定の形状に打ち抜いて所定の枚数を積層することで構成される。一例では、0.27mmの電磁鋼板を用いている。   The stator core 105 is formed by punching thin electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm one by one into a predetermined shape and laminating a predetermined number. In one example, a 0.27 mm electromagnetic steel sheet is used.

固定子鉄心105の外径は、一例では40mm程度である。   The outer diameter of the stator core 105 is, for example, about 40 mm.

回転子101は、回転子鉄心110と、回転子鉄心110の6個の磁石挿入穴104に挿入される平板状の6個の永久磁石103と、回転子鉄心110の軸方向の両端面に設けられ、永久磁石103の軸方向の抜けを防止する二枚の端板122と、回転子鉄心110の略中心部に設けられる回転軸109とを備える。詳細は後述するが、6個の永久磁石103で2極の回転子101を構成する。   The rotor 101 is provided on a rotor core 110, six plate-like permanent magnets 103 inserted into the six magnet insertion holes 104 of the rotor core 110, and both axial end surfaces of the rotor core 110. And two end plates 122 for preventing the permanent magnet 103 from coming off in the axial direction, and a rotating shaft 109 provided at a substantially central portion of the rotor core 110. Although details will be described later, the six-pole permanent magnet 103 constitutes a two-pole rotor 101.

回転子鉄心110も、固定子鉄心105と同様、厚さ0.1〜0.7mm程度の薄い電磁鋼板を一枚一枚打ち抜いて所定の枚数を積層することで構成される。一例では、0.27mmの電磁鋼板を用いている。   Similarly to the stator core 105, the rotor core 110 is formed by punching out thin electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm one by one and laminating a predetermined number. In one example, a 0.27 mm electromagnetic steel sheet is used.

回転子鉄心110の外径は、一例では20mmである。   In one example, the outer diameter of the rotor core 110 is 20 mm.

回転子101と固定子102との間の空隙111は、例えば、径方向幅が0.3〜1.
0mm程度であり、一例では、0.5mmである。
For example, the gap 111 between the rotor 101 and the stator 102 has a radial width of 0.3 to 1.
It is about 0 mm, and in one example, it is 0.5 mm.

図26、図27により、回転子101と、回転子鉄心110とについて、説明する。   26 and 27, the rotor 101 and the rotor core 110 will be described.

図26は永久磁石埋め込み型回転子である回転子101を示す。回転子101は2極の構成である。1極を構成する永久磁石103が、複数に分割されている。ここで示す一例は、1極を構成する永久磁石103が、3分割されている。1極を構成する永久磁石103を分割することにより、1枚あたりの磁石重量が小さくなり、高速回転時の遠心力により発生する応力を低減することができる。また,磁石を分割することで,磁石の面内に流れる渦電流損を低減し、発熱を抑制し、磁石の信頼性が向上する。   FIG. 26 shows a rotor 101 which is a permanent magnet embedded rotor. The rotor 101 has a two-pole configuration. A permanent magnet 103 constituting one pole is divided into a plurality of pieces. In the example shown here, the permanent magnet 103 constituting one pole is divided into three. By dividing the permanent magnet 103 constituting one pole, the magnet weight per sheet is reduced, and the stress generated by the centrifugal force during high-speed rotation can be reduced. Moreover, by dividing the magnet, eddy current loss flowing in the surface of the magnet is reduced, heat generation is suppressed, and the reliability of the magnet is improved.

回転子101が2極の構成であり、1極を構成する永久磁石103が3分割されているので、回転子101全体では、6個の永久磁石103が使用される。   Since the rotor 101 has a configuration of two poles, and the permanent magnet 103 that constitutes one pole is divided into three, the rotor 101 as a whole uses six permanent magnets 103.

永久磁石103の材料は、Nd−Fe−B(ネオジ、鉄、ホウ素)を主成分とするネオジウム希土類磁石であり、厚さは1〜2mm程度である。   The material of the permanent magnet 103 is a neodymium rare earth magnet mainly composed of Nd—Fe—B (neodymium, iron, boron), and has a thickness of about 1 to 2 mm.

回転子鉄心110には、6個の永久磁石103を埋め込むための6個の磁石挿入穴104が設けられる。   The rotor core 110 is provided with six magnet insertion holes 104 for embedding the six permanent magnets 103.

厚さ0.1〜0.7mm程度の薄い電磁鋼板の積層方法については、本実施の形態では、電磁鋼板の夫々に接着剤を塗布した後、積層し接着にて固定している。但し、カシメ及びリベット等で固定しても良い。   Regarding the method for laminating thin electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm, in this embodiment, an adhesive is applied to each of the electromagnetic steel sheets and then laminated and fixed by adhesion. However, it may be fixed with caulking and rivets.

磁石挿入穴104は、平板状の永久磁石103の形状と同一形状ではなく、全体が略コの字状である。そして、磁石挿入穴104の両端は、内側に屈曲している。この屈曲した部分には、永久磁石103は存在せず、ここは空気領域104aになっている。   The magnet insertion hole 104 is not the same shape as that of the flat permanent magnet 103, but is generally U-shaped. And both ends of the magnet insertion hole 104 are bent inward. The permanent magnet 103 does not exist in this bent portion, and this is an air region 104a.

永久磁石103の周方向端部に隣接して存在する空気領域104aは、電磁鋼板よりも透磁率が低いため磁束が通りにくく、磁束の通る磁路を制御する役割を有する。   The air region 104a existing adjacent to the circumferential end of the permanent magnet 103 has a lower magnetic permeability than the electromagnetic steel plate, so that it is difficult for the magnetic flux to pass therethrough and has a role of controlling the magnetic path through which the magnetic flux passes.

回転子101の中心に、回転子101の回転力を伝達する回転軸109と嵌合する軸穴115が設けられている。   A shaft hole 115 is provided at the center of the rotor 101 so as to be fitted to the rotation shaft 109 that transmits the rotational force of the rotor 101.

本実施の形態では、回転子101は永久磁石埋め込み型であり、磁石挿入穴104の周方向端部の空気領域104aの端部の形状が円弧104bとなるように構成する。この円弧104bは、磁石挿入穴104の外周側の直線部104cに接する円の一部である。   In the present embodiment, the rotor 101 is a permanent magnet embedded type, and is configured such that the shape of the end of the air region 104a at the end in the circumferential direction of the magnet insertion hole 104 is an arc 104b. The arc 104b is a part of a circle that is in contact with the linear portion 104c on the outer peripheral side of the magnet insertion hole 104.

空気領域104aは、永久磁石外周側表面103aよりも軸穴115側に配置するように構成され、かつ、空気領域104aは、永久磁石内周側表面103bよりも軸穴115側に延びるように構成される。   The air region 104a is configured to be disposed on the shaft hole 115 side with respect to the permanent magnet outer peripheral surface 103a, and the air region 104a is configured to extend on the shaft hole 115 side with respect to the permanent magnet inner peripheral surface 103b. Is done.

尚、空気領域104aの周方向端部の円弧104bの半径を、磁石挿入穴104の外周側の直線部104cの長さを一定として変化させると、円弧104bの半径が大きくなるにつれ、磁石挿入穴間薄肉部114の周方向幅が狭くなる。円弧104bの半径は大きい程好ましいが、最小限の磁石挿入穴間薄肉部114の周方向幅が確保される範囲内にする必要がある。磁石挿入穴間薄肉部114の最小限の周方向幅は、電磁鋼板の厚さ(0.1〜0.7mm程)である。   If the radius of the circular arc 104b at the circumferential end of the air region 104a is changed with the length of the linear portion 104c on the outer peripheral side of the magnet insertion hole 104 constant, the magnet insertion hole is increased as the radius of the circular arc 104b increases. The circumferential width of the thin wall portion 114 is narrowed. Although it is preferable that the radius of the arc 104b is larger, it is necessary to make it within a range in which a minimum circumferential width of the thin portion 114 between the magnet insertion holes is ensured. The minimum circumferential width of the thin portion 114 between the magnet insertion holes is the thickness of the electromagnetic steel sheet (about 0.1 to 0.7 mm).

本実施の形態の回転子101は、外周が円ではなく、極間部112における回転子鉄心
110の外周が略直線状にカット(切り欠く)されている。この部分を、切り欠き部123とする。
In the rotor 101 of the present embodiment, the outer periphery is not a circle, and the outer periphery of the rotor core 110 in the inter-electrode portion 112 is cut (notched) in a substantially linear shape. This portion is referred to as a notch portion 123.

直線状(ストレート)でなくても極間部112の外周を窪ませても同様の効果がある。   Even if the outer periphery of the inter-electrode portion 112 is not straight, the same effect can be obtained.

そのため、極間部112における磁路は、極における磁路よりも狭くなっている。   For this reason, the magnetic path in the inter-pole portion 112 is narrower than the magnetic path in the pole.

即ち、ここで、
L1=極における磁路の径方向寸法の最小値
L2=極間部112における磁路の径方向寸法の最小値
とすると、
L1>L2
の関係となる。
That is, where
L1 = Minimum value of the radial dimension of the magnetic path in the pole L2 = Minimum value of the radial dimension of the magnetic path in the inter-pole portion 112
L1> L2
It becomes the relationship.

また、極間部112における円弧104bの半径は、極における円弧104bの半径よりも大きい。   The radius of the arc 104b in the inter-pole portion 112 is larger than the radius of the arc 104b in the pole.

即ち、ここで、
R1=極における円弧104bの半径
R2=極間部112における円弧104bの半径
とすると、
R1<R2
の関係となる。
That is, where
R1 = radius of the arc 104b at the pole R2 = radius of the arc 104b at the inter-pole portion 112
R1 <R2
It becomes the relationship.

極間部112における磁路(回転子鉄心110の外周部における磁路)が、極における磁路よりも狭くなっているので、例えば、図1に示すブラシレスDCモータ100に比べて極間部112における漏れ磁束(短絡磁束)が減少する。そのため、トルクに寄与する磁束(ステータ鎖交磁束)が増加する。   Since the magnetic path in the interpolar part 112 (magnetic path in the outer peripheral part of the rotor core 110) is narrower than the magnetic path in the pole, for example, the interpolar part 112 compared to the brushless DC motor 100 shown in FIG. Leakage magnetic flux (short-circuit magnetic flux) is reduced. Therefore, the magnetic flux (stator interlinkage magnetic flux) contributing to torque increases.

また、極間部112における回転子鉄心110の外周部を切り欠くことで、空隙111が大きくなり、インダクタンス(q軸インダクタンス)が低減して、ブラシレスDCモータ200の制御性が向上する。   Moreover, by notching the outer peripheral part of the rotor core 110 in the interpolar part 112, the space | gap 111 becomes large, an inductance (q-axis inductance) reduces, and the controllability of the brushless DC motor 200 improves.

但し、極間部112における回転子鉄心110の外周部を切り欠いて、極間部112における磁路(回転子鉄心110の外周部における磁路)を狭くすると、高速回転時の永久磁石103及び磁石挿入穴104の外側の鉄心部分に作用する遠心力により、極間部112における磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分、図26のX付近)に集中する応力が局所的に大きくなる。   However, if the outer peripheral portion of the rotor core 110 in the interpolar portion 112 is notched and the magnetic path in the interpolar portion 112 (magnetic path in the outer peripheral portion of the rotor core 110) is narrowed, the permanent magnet 103 during high-speed rotation and The end of the air region 104a of the magnet insertion hole 104 in the inter-pole portion 112 (the root portion connected to the thin portion 114 between the magnet insertion holes, X in FIG. 26) due to the centrifugal force acting on the iron core portion outside the magnet insertion hole 104. The stress concentrated in the vicinity is locally increased.

そこで、極間部112における円弧104bの半径R1を、極における円弧104bの半径R2よりも大きくすることにより、極間部112における磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分、図26のX付近)に集中する局所的な応力を緩和することができる。   Therefore, by making the radius R1 of the arc 104b in the inter-pole portion 112 larger than the radius R2 of the arc 104b in the pole, the end of the air region 104a of the magnet insertion hole 104 in the inter-pole portion 112 (thin wall between the magnet insertion holes). The local stress concentrated on the root portion connected to the portion 114 (in the vicinity of X in FIG. 26) can be alleviated.

次に、以下の構成要件と、磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分)に集中する局所的な応力との関係を応力解析の結果を用いて説明する。
(1)円弧104bの半径;
(2)極間部112における磁路を、極における磁路よりも狭くする(即ち、L1>L2);
(3)極間部112における円弧104bの半径R2を、極における円弧104bの半径R1より大きくする。
Next, the relationship between the following structural requirements and the local stress concentrated on the end of the air region 104a of the magnet insertion hole 104 (the root portion connected to the thin portion 114 between the magnet insertion holes) is the result of the stress analysis. It explains using.
(1) radius of arc 104b;
(2) The magnetic path in the inter-pole portion 112 is narrower than the magnetic path in the pole (that is, L1>L2);
(3) The radius R2 of the arc 104b in the inter-pole portion 112 is made larger than the radius R1 of the arc 104b in the pole.

図28は、本実施の形態5のブラシレスDCモータ200よりも磁石挿入穴104の空気領域104aにおける円弧104bの半径が小さい場合の応力解析結果を示している。応力の大小は、色の濃さで表わしている。色の濃い方が、応力が大きい。応力の最も小さい部分をレベル1とし、応力の最も大きい部分をレベル6とし、その間は応力に応じて、小さい方から順次レベル2〜レベル5で表わしている。   FIG. 28 shows the stress analysis result when the radius of the arc 104b in the air region 104a of the magnet insertion hole 104 is smaller than that of the brushless DC motor 200 of the fifth embodiment. The magnitude of the stress is expressed by the color intensity. The darker the color, the greater the stress. The portion with the smallest stress is set as level 1, the portion with the largest stress is set as level 6, and the interval between them is expressed as level 2 to level 5 in order from the smallest according to the stress.

この場合の空気領域104aは、永久磁石外周側表面103aよりも軸穴115側に配置するように構成されるが、空気領域104aは、永久磁石内周側表面103bより軸穴115側に延びていない。空気領域104aは、永久磁石内周側表面103bより外側に位置する。   The air region 104a in this case is configured to be disposed closer to the shaft hole 115 than the permanent magnet outer peripheral surface 103a, but the air region 104a extends from the permanent magnet inner peripheral surface 103b to the shaft hole 115 side. Absent. The air region 104a is located outside the inner surface 103b of the permanent magnet.

図に示すように、応力は、磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分)に集中する。レベル6の箇所が若干ある。   As shown in the figure, the stress is concentrated on the end portion of the air region 104a of the magnet insertion hole 104 (the root portion connected to the thin portion 114 between the magnet insertion holes). There are some level 6 spots.

図29は、図28と同じ磁石量(肉厚も同じ)、同じ回転数で円弧104bの半径を大きくした回転子の応力解析結果を示している。   FIG. 29 shows the stress analysis result of the rotor having the same magnet amount (same thickness) as in FIG. 28 and the same rotation speed and the larger radius of the arc 104b.

空気領域104aは、永久磁石外周側表面103aよりも軸穴115側に配置するように構成され、且つ、空気領域104aは、永久磁石内周側表面103bよりも軸穴115側に延びるように構成される。要するに、図1のブラシレスDCモータ100の構成である。   The air region 104a is configured to be disposed on the shaft hole 115 side with respect to the permanent magnet outer peripheral surface 103a, and the air region 104a is configured to extend on the shaft hole 115 side with respect to the permanent magnet inner peripheral surface 103b. Is done. In short, this is the configuration of the brushless DC motor 100 of FIG.

図に示すように、図28に比べて、空気領域104aの円弧104bの半径を大きくし、空気領域104aが永久磁石内周側表面103bよりも軸穴115側に延びるように構成することにより、磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分)に集中する応力は、レベル3〜4程度まで小さくなる。   As shown in the figure, compared with FIG. 28, the radius of the arc 104b of the air region 104a is increased, and the air region 104a is configured to extend to the axial hole 115 side from the inner surface 103b of the permanent magnet. The stress concentrated on the end of the air region 104a of the magnet insertion hole 104 (the root portion connected to the thin portion 114 between the magnet insertion holes) is reduced to about 3 to 4.

しかしながら、図30に示すように、図1のブラシレスDCモータ100は、極間部112における漏れ磁束が多く、トルクに寄与する有効磁束が十分とは言えない。   However, as shown in FIG. 30, the brushless DC motor 100 of FIG. 1 has a large amount of leakage magnetic flux in the inter-pole portion 112, and it cannot be said that the effective magnetic flux contributing to the torque is sufficient.

図30は、実施の形態1におけるブラシレスDCモータ100(図1)の無負荷時の磁束線図であり、図1のブラシレスDCモータ100は、極間部112の磁路が広いために、極間部112の漏れ磁束(短絡磁束)が多いことを示している。   FIG. 30 is a magnetic flux diagram at the time of no load of the brushless DC motor 100 (FIG. 1) according to the first embodiment. The brushless DC motor 100 of FIG. It shows that there is much leakage magnetic flux (short-circuit magnetic flux) in the intermediate portion 112.

そこで、極間部112の磁路を狭くするために、例えば、図31に示すように、図1のブラシレスDCモータ100における回転子1の極間部112付近の外周をカットして、切り欠き部123を設けると、極間部112の漏れ磁束が減少し、トルクに寄与する有効磁束(ステータ鎖交磁束)が増加する。   Therefore, in order to narrow the magnetic path of the inter-pole portion 112, for example, as shown in FIG. 31, the outer periphery in the vicinity of the inter-pole portion 112 of the rotor 1 in the brushless DC motor 100 of FIG. When the portion 123 is provided, the leakage magnetic flux of the inter-electrode portion 112 is reduced, and the effective magnetic flux (stator interlinkage magnetic flux) contributing to the torque is increased.

しかし、図1のブラシレスDCモータ100における回転子1の極間部112付近の外周をカットして、切り欠き部123を設けると、極間部112の鉄心外周部が狭くなるため、極間部112の磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分、図26のX付近)に集中する応力が大きくなる。   However, if the outer periphery in the vicinity of the inter-electrode portion 112 of the rotor 1 in the brushless DC motor 100 of FIG. 1 is cut and the notch portion 123 is provided, the outer peripheral portion of the iron core of the inter-electrode portion 112 becomes narrow, so the inter-electrode portion The stress concentrated at the end of the air region 104a of the magnet insertion hole 104 of 112 (the root portion connected to the thin portion 114 between the magnet insertion holes, near X in FIG. 26) increases.

図32は、図29に対して極間部112を直線状にカットし極間外周部を狭くした回転子の応力解析結果を示す図であり、極間部112の磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分、図26のX付近)に集中する応
力が、レベル5程度まで増加している。
FIG. 32 is a diagram showing a stress analysis result of the rotor in which the inter-electrode portion 112 is cut linearly and the inter-electrode outer peripheral portion is narrowed with respect to FIG. 29, and the air region of the magnet insertion hole 104 in the inter-electrode portion 112 The stress concentrated on the end portion 104a (the root portion connected to the thin portion 114 between the magnet insertion holes, near X in FIG. 26) is increased to about level 5.

そこで、本実施の形態5のように、極間部112における円弧104bの半径R2を、極における円弧104bの半径R1より大きくすることにより、極間部112の磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分、図26のX付近)に集中する応力を小さくすることができる。   Therefore, as in the fifth embodiment, the radius R2 of the arc 104b in the inter-pole portion 112 is made larger than the radius R1 of the arc 104b in the pole, so that the air region 104a of the magnet insertion hole 104 in the inter-pole portion 112 is formed. The stress concentrated at the end (the root portion connected to the thin portion 114 between the magnet insertion holes, near X in FIG. 26) can be reduced.

図33は、図32に対して極間部112の円弧104bの半径を大きくした(極における円弧104bの半径R1より大きくした)回転子の応力解析結果を示す図であり、R2>R1とすることにより、極間部112における磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分)に集中する応力が、レベル3〜4まで小さくなっていることがわかる。   FIG. 33 is a diagram showing a stress analysis result of the rotor in which the radius of the arc 104b of the inter-pole portion 112 is larger than that of FIG. 32 (larger than the radius R1 of the arc 104b in the pole), and R2> R1. As a result, the stress concentrated on the end of the air region 104a of the magnet insertion hole 104 in the inter-electrode portion 112 (the root portion connected to the thin portion 114 between the magnet insertion holes) is reduced to levels 3 to 4. Recognize.

以上のように、実施の形態1のブラシレスDCモータ100に対して、極間部112における磁路を、極における磁路よりも狭くする(即ち、L1>L2)とともに、極間部112における円弧104bの半径R2を、極における円弧104bの半径R1より大きくすることにより、極間部112における磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分、図26のX付近)に集中する応力をレベル3〜4程度に抑えつつ、極間部112の漏れ磁束を低減し、トルクに寄与する有効磁束(ステータ鎖交磁束)を増加することができる。   As described above, with respect to the brushless DC motor 100 of the first embodiment, the magnetic path in the interpolar part 112 is narrower than the magnetic path in the pole (that is, L1> L2), and the arc in the interpolar part 112 is obtained. By making the radius R2 of 104b larger than the radius R1 of the arc 104b in the pole, the end of the air region 104a of the magnet insertion hole 104 in the pole portion 112 (the root portion connected to the thin portion 114 between the magnet insertion holes, FIG. 26, the leakage flux of the inter-electrode portion 112 can be reduced, and the effective magnetic flux (stator interlinkage magnetic flux) contributing to the torque can be increased.

図34により変形例1の回転子201について説明する。図26に示す回転子101は、回転子鉄心110の極間部112付近の外周部を切り欠いて、極間部112の磁路を狭くするようにしたが、磁石挿入穴104の配置を変えることで、極間部112の磁路を狭くするようにしてもよい。   A rotor 201 according to the first modification will be described with reference to FIG. In the rotor 101 shown in FIG. 26, the outer periphery of the rotor core 110 in the vicinity of the inter-pole portion 112 is cut out to narrow the magnetic path of the inter-pole portion 112, but the arrangement of the magnet insertion holes 104 is changed. Thus, the magnetic path of the inter-pole portion 112 may be narrowed.

図34に示す変形例1の回転子201は、回転子鉄心110の外形は円である。極間部112において、磁石挿入穴104の極間部112側の端部(空気領域104a)を、回転子鉄心110の外周に近づくように配置する。それにより、極間部112における磁路は、極における磁路よりも狭くなっている。   In the rotor 201 of the first modification shown in FIG. 34, the outer shape of the rotor core 110 is a circle. In the inter-electrode portion 112, the end portion (air region 104 a) on the inter-electrode portion 112 side of the magnet insertion hole 104 is disposed so as to approach the outer periphery of the rotor core 110. Thereby, the magnetic path in the interpolar part 112 is narrower than the magnetic path in the pole.

即ち、ここで、
L1=極における磁路の径方向寸法の最小値
L2=極間部112における磁路の径方向寸法の最小値
とすると、
L1>L2
の関係となる。
That is, where
L1 = Minimum value of the radial dimension of the magnetic path in the pole L2 = Minimum value of the radial dimension of the magnetic path in the inter-pole portion 112
L1> L2
It becomes the relationship.

このままだと、極間部112における磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分)に集中する応力が大きくなるので、極間部112の円弧104bの半径R2を、極における円弧104bの半径R1より大きくする。   If this is left, the stress concentrated on the end of the air region 104a of the magnet insertion hole 104 in the inter-electrode portion 112 (the root portion connected to the thin-wall portion 114 between the magnet insertion holes) increases, so the arc 104b of the inter-electrode portion 112 Is made larger than the radius R1 of the arc 104b at the pole.

即ち、
R1=極における円弧104bの半径
R2=極間部112における円弧104bの半径
とすると、
R1<R2
の関係となる。
That is,
R1 = radius of the arc 104b at the pole R2 = radius of the arc 104b at the inter-pole portion 112
R1 <R2
It becomes the relationship.

このようにしても、図26に示す回転子101と同様、極間部112における磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分)に集中する応力をレベル3〜4程度に抑えつつ、極間部112の漏れ磁束を低減し、トルクに寄与する有効磁束(ステータ鎖交磁束)を増加することができる。   Even in this case, similar to the rotor 101 shown in FIG. 26, the stress concentrated on the end of the air region 104a of the magnet insertion hole 104 in the inter-electrode portion 112 (the root portion connected to the thin portion 114 between the magnet insertion holes). The magnetic flux leakage at the inter-pole portion 112 can be reduced and the effective magnetic flux (stator interlinkage magnetic flux) contributing to the torque can be increased while suppressing the level to about 3-4.

図35により変形例2の回転子301について説明する。変形例2の回転子301は、2極のものであり、分割された二つの永久磁石103で1極を構成する。従って、四個の永久磁石103が使用される。   A rotor 301 according to the second modification will be described with reference to FIG. The rotor 301 of the second modification is of a two-pole type, and one pole is constituted by two divided permanent magnets 103. Therefore, four permanent magnets 103 are used.

図35に示すように、1極を構成する分割された二つの永久磁石103は、略V字状に配置される。それにより、直線状に分割する場合よりも、永久磁石103の磁石量を増やすことができる。   As shown in FIG. 35, the two divided permanent magnets 103 constituting one pole are arranged in a substantially V shape. Thereby, the magnet quantity of the permanent magnet 103 can be increased compared with the case where it divides | segments linearly.

また、図34の3分割のときと同様に、極間部112における磁路を、極間部112での漏れ磁束を低減してトルクに寄与する有効磁束を増やすことができるように狭くする。極間部112における磁路の最小寸法(径方向)は、所定の寸法(L2)とする。   Further, as in the case of the three divisions in FIG. 34, the magnetic path in the interpolar portion 112 is narrowed so that the effective magnetic flux contributing to the torque can be increased by reducing the leakage magnetic flux in the interpolar portion 112. The minimum dimension (radial direction) of the magnetic path in the inter-pole portion 112 is a predetermined dimension (L2).

所定の寸法(L2)は、極間部112での漏れ磁束を低減してトルクに寄与する有効磁束(ステータ鎖交磁束)を増やすことができるような寸法である。具体的には、例えば、回転子鉄心110の外径が20mmの場合、L2は1mm程度である。但し、電磁鋼板の板厚(0.1〜0.7mm)が好ましい。   The predetermined dimension (L2) is a dimension such that the effective magnetic flux (stator interlinkage magnetic flux) contributing to the torque can be increased by reducing the leakage magnetic flux at the inter-pole portion 112. Specifically, for example, when the outer diameter of the rotor core 110 is 20 mm, L2 is about 1 mm. However, the thickness (0.1 to 0.7 mm) of the electromagnetic steel sheet is preferable.

実施の形態1と同様、回転子110を構成する場合、永久磁石103の周方向へのすべりを抑制するために、永久磁石103の周方向の端部を固定する磁石固定部104dを、磁石挿入穴104に設けるのが好ましい。   As in the first embodiment, when the rotor 110 is configured, the magnet fixing portion 104d for fixing the circumferential end of the permanent magnet 103 is inserted into the magnet in order to suppress the slip of the permanent magnet 103 in the circumferential direction. The hole 104 is preferably provided.

また、図36に示すように、空気領域104aに接着剤もしくは樹脂等を流し込み固めて、永久磁石103の固定を行っても良い。これにより、永久磁石103の磁石挿入穴104内での回転時の変位を抑制するため、より強度の高い回転子110を構成することができる。   In addition, as shown in FIG. 36, the permanent magnet 103 may be fixed by pouring an adhesive or resin into the air region 104a and hardening it. Thereby, in order to suppress the displacement at the time of rotation in the magnet insertion hole 104 of the permanent magnet 103, the rotor 110 with higher intensity | strength can be comprised.

また、永久磁石103の周方向端部を、円弧状(丸取り)に形成することにより、回転子101が超高速(1万rpm(回転数/分)を超える)で回転する場合に、永久磁石が磁石挿入穴104の空気領域104aの端部(磁石挿入穴間薄肉部114に連結する根元部分)に局所的に接触することを防止し、局所的な応力集中を緩和することができる。   Further, by forming the circumferential end of the permanent magnet 103 in an arc shape (rounded), the permanent magnet 103 is permanent when the rotor 101 rotates at an extremely high speed (exceeding 10,000 rpm (number of rotations / minute)). It is possible to prevent the magnet from locally contacting the end of the air region 104a of the magnet insertion hole 104 (the root portion connected to the thin portion 114 between the magnet insertion holes), and to reduce local stress concentration.

以上のように、極間部112の磁路を狭くなるよう構成するので、極間部112の漏れ磁束が低減し、固定子102の鎖交磁束を増加させ、マグネットトルクを増加することができる。これにより、電機子磁束が低減し、銅損を低減した高効率なブラシレスDCモータ200を構成することができる。   As described above, since the magnetic path of the interpolar portion 112 is configured to be narrow, the leakage magnetic flux of the interpolar portion 112 is reduced, the interlinkage magnetic flux of the stator 102 is increased, and the magnet torque can be increased. . Thereby, the highly efficient brushless DC motor 200 which reduced the armature magnetic flux and reduced the copper loss can be comprised.

磁石挿入穴104の周方向端部の空気領域104aを構成する円弧104bの形状を、極間部112に位置する円弧104bの半径が極間部112以外の円弧104bの半径よりも大きくなるように構成することで、極間部112の磁路を狭くした場合でも、局所的な応力集中を緩和し、強度の低下を抑制できる。   The shape of the circular arc 104b constituting the air region 104a at the circumferential end of the magnet insertion hole 104 is set so that the radius of the circular arc 104b located at the interpolar portion 112 is larger than the radius of the circular arc 104b other than the interpolar portion 112. By configuring, even when the magnetic path of the inter-pole portion 112 is narrowed, local stress concentration can be relaxed and a decrease in strength can be suppressed.

更に、極間部112を直線状(ストレート)にカットし、極間部112の磁路を狭くすることで、ブラシレスDCモータ200のインダクタンスを低減でき制御性を向上させることができる。   Furthermore, the inductance of the brushless DC motor 200 can be reduced and the controllability can be improved by cutting the inter-electrode portion 112 into a straight line and narrowing the magnetic path of the inter-electrode portion 112.

本発明は、最高回転数が1×10rpm以上のモータの耐久性を大幅に向上させ、製品の寿命、安全性を向上させることができると共に、回転子の漏れ磁束を低減し、モータの効率を向上させることができる。 The present invention can greatly improve the durability of a motor having a maximum rotational speed of 1 × 10 4 rpm or more, improve the life and safety of the product, reduce the magnetic flux leakage of the rotor, Efficiency can be improved.

具体的には、例えば掃除機用モータ等の高速回転を行うモータの耐久性を大幅に向上させ、製品の寿命、安全性を向上させると共に、省エネ性を向上させることができる。   Specifically, for example, the durability of a motor that performs high-speed rotation, such as a motor for a vacuum cleaner, can be greatly improved, and the life and safety of the product can be improved, and the energy saving performance can be improved.

1 回転子、2 固定子、3 永久磁石、3a 永久磁石外周側表面、3b 永久磁石内周側表面、4 磁石挿入穴、4a 空気領域、4b 円弧、4c 直線部、4d 磁石固定部、5 固定子鉄心、6 ティース、6a 先端部、7 巻線、8 コアバック、9
回転軸、10 回転子鉄心、11 空隙、12 極間部、14 磁石挿入穴間薄肉部、15 軸穴、15a 軸位置決め用キー溝、16 空気孔、17 窪み、18 カシメ、19 リベット、20 同極間部、21 スリット、100 ブラシレスDCモータ、101 回転子、102 固定子、103 永久磁石、103a 永久磁石外周側表面、103b 永久磁石内周側表面、104 磁石挿入穴、104a 空気領域、104b 円弧、104c 直線部、104d 磁石固定部、105 固定子鉄心、106 ティース、106a 先端部、107 巻線、108 コアバック、109 回転軸、110 回転子鉄心、111 空隙、112 極間部、114 磁石挿入穴間薄肉部、115 軸穴、122 端板、123 切り欠き部、200 ブラシレスDCモータ。
DESCRIPTION OF SYMBOLS 1 Rotor, 2 Stator, 3 Permanent magnet, 3a Permanent magnet outer peripheral side surface, 3b Permanent magnet inner peripheral side surface, 4 Magnet insertion hole, 4a Air area, 4b Arc, 4c Straight part, 4d Magnet fixing part, 5 Fixing Core, 6 teeth, 6a tip, 7 windings, 8 core back, 9
Rotating shaft, 10 Rotor core, 11 Air gap, 12 Pole area, 14 Thin portion between magnet insertion holes, 15 Shaft hole, 15a Shaft positioning keyway, 16 Air hole, 17 Recess, 18 Caulking, 19 Rivet, 20 Same Inter-polar part, 21 slit, 100 brushless DC motor, 101 rotor, 102 stator, 103 permanent magnet, 103a permanent magnet outer peripheral surface, 103b permanent magnet inner peripheral surface, 104 magnet insertion hole, 104a air region, 104b arc , 104c Linear part, 104d Magnet fixing part, 105 Stator core, 106 Teeth, 106a Tip part, 107 Winding, 108 Core back, 109 Rotating shaft, 110 Rotor core, 111 Air gap, 112 Pole part, 114 Magnet insertion Thin portion between holes, 115 shaft hole, 122 end plate, 123 notch, 200 brushless DC motor.

Claims (9)

電磁鋼板を積層して形成される回転子鉄心を備えるとともに
1極を形成する複数の永久磁石を、磁極数分備え、
前記回転子鉄心には、前記回転子鉄心の外周部に沿って直線状に延び、その両端が前記回転子鉄心の中心部側に屈曲して円弧状の領域が形成された複数の磁石挿入穴であって、前記直線状に延びた部分に前記複数の永久磁石の各々が埋め込まれ、前記円弧状の領域に永久磁石が存在しない複数の磁石挿入穴が、磁極ごとに設けられ
前記回転子鉄心は、前記回転子鉄心の周方向において隣り合い、互いに異なる磁極を形成する永久磁石の間を極間部として、前記極間部における前記回転子鉄心の外周部と前記円弧状の領域との間の距離の最小値前記極間部以外における前記回転子鉄心の外周部と前記円弧状の領域との間の距離の最小値より小さくなり、かつ、前記極間部に位置する前記円弧状の領域の円弧の半径が前記極間部以外に位置する前記円弧状の領域の円弧の半径よりも大きくなるように構成されたことを特徴とする永久磁石埋め込み型回転子。
Provided with a rotor core formed by laminating magnetic steel plates,
A plurality of permanent magnets forming one pole are provided for the number of magnetic poles,
The rotor core has a plurality of magnet insertion holes that extend linearly along the outer periphery of the rotor core , and whose both ends are bent toward the center of the rotor core to form an arcuate region. a is, the linearly extending portion to the plurality of each of embedding the permanent magnet rare, a plurality of magnet insertion holes permanent magnets in said arcuate region is not present, provided for each pole,
The rotor core is adjacent to the circumferential direction of the rotor core, and a permanent magnet that forms different magnetic poles is used as an interpolar part, and the outer peripheral part of the rotor core and the arcuate part in the interpolar part . Ri of less than the minimum value of the distance between the outer peripheral portion and the arc-shaped region minimum of the rotor core in other than the inter-electrode portion of the distance between the region and the inter-electrode gap portion the arcuate region the radius of the arc permanent magnet embedded rotor characterized in that it is configured to be larger than the radius of the arc of the interpolar portion and the arc-shaped region you position other than that located .
前記回転子鉄心は、前記極間部付近の外周部切り欠かれていることにより、前記極間部における前記回転子鉄心の外周部と前記円弧状の領域との間の距離の最小値が前記極間部以外における前記回転子鉄心の外周部と前記円弧状の領域との間の距離の最小値より小さくなるように構成されることを特徴とする請求項1記載の永久磁石埋め込み型回転子。 The rotor core, by the outer peripheral portion of the vicinity of the electrode The inter have him notch, the minimum value of the distance between the outer peripheral portion and the arc-shaped region of the rotor core in the interpolar portion the rotor core outer periphery and said arcuate region and distance minimum permanent magnet to that請 Motomeko 1 wherein characterized in that it is configured to be smaller than the between the in other than the interpolar portions Embedded rotor. 前記回転子鉄心は、外周部が円形状であり、前記極間部に位置する前記円弧状の領域が前記極間部以外に位置する前記円弧状の領域よりも前記回転子鉄心の外周部に近づけられていることにより、前記極間部における前記回転子鉄心の外周部と前記円弧状の領域との間の距離の最小値が前記極間部以外における前記回転子鉄心の外周部と前記円弧状の領域との間の距離の最小値より小さくなるように構成されることを特徴とする請求項1記載の永久磁石埋め込み型回転子。 The rotor core has a circular outer peripheral portion, and the arc-shaped region located in the inter-polar portion is closer to the outer peripheral portion of the rotor core than the arc-shaped region located outside the inter-polar portion. the Rukoto been brought close, the outer peripheral portion of the rotor core minimum value of the distance is in other than the machining gap portion between the outer peripheral portion of the rotor core in the interpolar portion the arcuate region circle claim 1 permanent magnet embedded rotor according to characterized in that it is configured to be smaller than the minimum value of the distance between the arcuate region. 前記回転子鉄心は、前記回転子鉄心の周方向において隣り合い、互いに異なる磁石挿入穴に形成される前記円弧状の領域の間を薄肉部として、前記回転子鉄心の周方向における前記薄肉部の最小値前記電磁鋼板の厚さと同じになるように構成されることを特徴とする請求項1乃至3のいずれかに記載の永久磁石埋め込み型回転子。 The rotor cores are adjacent to each other in the circumferential direction of the rotor core, and the thin-walled portion between the arc-shaped regions formed in different magnet insertion holes is used as the thin-walled portion in the circumferential direction of the rotor core . The permanent magnet embedded rotor according to any one of claims 1 to 3, wherein a minimum value of the width is configured to be the same as a thickness of the electromagnetic steel sheet . 前記複数の磁石挿入穴の各々に、前記複数の永久磁石の各々の端部を固定する磁石固定部設けられたことを特徴とする請求項1乃至4のいずれかに記載の永久磁石埋め込み型回転子。 5. The permanent magnet embedded type according to claim 1, wherein a magnet fixing portion for fixing an end of each of the plurality of permanent magnets is provided in each of the plurality of magnet insertion holes. Rotor. 前記円弧状の領域には、接着剤もしくは樹脂充填されることを特徴とする請求項1乃至5のいずれかに記載の永久磁石埋め込み型回転子。 Wherein the arcuate region, the permanent magnet embedded rotor according to any one of claims 1 to 5 adhesive or resin is characterized Rukoto filled. 前記複数の永久磁石の各々は、希土類磁石で構成されることを特徴とする請求項1乃至6のいずれかに記載の永久磁石埋め込み型回転子。 Wherein each of the plurality of permanent magnets, the permanent magnet embedded rotor according to any one of claims 1 to 6, characterized in that it is constituted by a rare earth magnet. 前記回転子鉄心は、前記電磁鋼板接着剤により着して積層することにより形成されることを特徴とする請求項1乃至7のいずれかに記載の永久磁石埋め込み型回転子。 The rotor core, a permanent magnet embedded rotor according to any one of claims 1 to 7, characterized in that it is formed by laminating and contact wear by adhesive the electromagnetic steel sheet. 請求項1乃至8のいずれかに記載の永久磁石埋め込み型回転子を搭載したことを特徴とする掃除機。   A vacuum cleaner comprising the embedded permanent magnet rotor according to claim 1.
JP2009158797A 2009-07-03 2009-07-03 Permanent magnet embedded rotor and vacuum cleaner Active JP5202455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158797A JP5202455B2 (en) 2009-07-03 2009-07-03 Permanent magnet embedded rotor and vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158797A JP5202455B2 (en) 2009-07-03 2009-07-03 Permanent magnet embedded rotor and vacuum cleaner

Publications (2)

Publication Number Publication Date
JP2011015572A JP2011015572A (en) 2011-01-20
JP5202455B2 true JP5202455B2 (en) 2013-06-05

Family

ID=43593887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158797A Active JP5202455B2 (en) 2009-07-03 2009-07-03 Permanent magnet embedded rotor and vacuum cleaner

Country Status (1)

Country Link
JP (1) JP5202455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022017712A1 (en) * 2020-07-22 2022-01-27 Valeo Siemens Eautomotive Germany Gmbh Rotor lamination, laminated rotor core, rotor, electrical machine, and vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861124B2 (en) * 2011-02-10 2016-02-16 パナソニックIpマネジメント株式会社 Motor rotor and fan driving motor having the same
JP5957767B2 (en) * 2011-02-10 2016-07-27 パナソニックIpマネジメント株式会社 Motor rotor and fan driving motor having the same
JP5677212B2 (en) * 2011-06-30 2015-02-25 三菱電機株式会社 Rotating electric machine
JP5743873B2 (en) * 2011-12-15 2015-07-01 三菱電機株式会社 Embedded magnet type rotor and embedded magnet type permanent magnet rotating electric machine using this rotor
JP5994269B2 (en) * 2012-02-09 2016-09-21 マツダ株式会社 Motor torque setting method and setting device
DE102012101822A1 (en) * 2012-03-05 2013-10-10 Feaam Gmbh Rotor and electric machine
ES2773911T3 (en) 2012-12-12 2020-07-15 Mitsubishi Electric Corp Motor rotor
WO2018005544A1 (en) * 2016-06-27 2018-01-04 Nidec Motor Corporation High power density motor having bridged spoked rotor and prewound bobbins for stator
CN107370269A (en) * 2017-09-15 2017-11-21 青岛理工大学 A kind of p-m rotor and asynchronous starting permanent magnet synchronous motor
JP6380640B2 (en) * 2017-10-04 2018-08-29 株式会社デンソー Rotating electric machine and manufacturing method thereof
JPWO2023112829A1 (en) * 2021-12-14 2023-06-22

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143714A (en) * 1993-11-16 1995-06-02 Toyota Motor Corp Synchronous motor and its stator structure
JP4566319B2 (en) * 2000-03-10 2010-10-20 三菱電機株式会社 Permanent magnet embedded rotor for permanent magnet motor
JP3852930B2 (en) * 2003-02-27 2006-12-06 アイチエレック株式会社 Permanent magnet rotating machine
JP2007074899A (en) * 2006-12-15 2007-03-22 Matsushita Electric Ind Co Ltd Rotor of motor-driven blower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022017712A1 (en) * 2020-07-22 2022-01-27 Valeo Siemens Eautomotive Germany Gmbh Rotor lamination, laminated rotor core, rotor, electrical machine, and vehicle

Also Published As

Publication number Publication date
JP2011015572A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5202455B2 (en) Permanent magnet embedded rotor and vacuum cleaner
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
KR101911978B1 (en) Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
JP4396537B2 (en) Permanent magnet type motor
JP5472200B2 (en) Rotating electrical machine rotor
JP5677584B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP4844570B2 (en) Permanent magnet type motor
JP5208088B2 (en) Permanent magnet embedded motor and blower
JP4900132B2 (en) Rotor and rotating electric machine
JP2010088219A (en) Embedded permanent magnet rotor and cleaner
WO2014046228A1 (en) Permanent magnet-embedded electric motor
JP2006509483A (en) Electric machines, especially brushless synchronous motors
JP2008206308A (en) Permanent-magnet rotating electric machine
US10680475B2 (en) Rotor for rotary electric machine
JP2009131070A (en) Magnet type synchronous machine
US10749385B2 (en) Dual magnetic phase material rings for AC electric machines
WO2014162804A1 (en) Rotating electrical machine with embedded permanent magnet
JP3740353B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP2008283806A (en) Buried-magnet motor
JP2011199946A (en) Permanent magnet embedded rotor for rotary electric machine, and rotary electric machine
CN114785004A (en) Stator assembly flux alignment
JP2006340507A (en) Stator of rotary electric machine
JP2010246301A (en) Rotor for permanent magnet type motor
JP2002136074A (en) Rotor core

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5202455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250