JP3172504B2 - Rotor of permanent magnet type reluctance type rotating electric machine - Google Patents

Rotor of permanent magnet type reluctance type rotating electric machine

Info

Publication number
JP3172504B2
JP3172504B2 JP05120199A JP5120199A JP3172504B2 JP 3172504 B2 JP3172504 B2 JP 3172504B2 JP 05120199 A JP05120199 A JP 05120199A JP 5120199 A JP5120199 A JP 5120199A JP 3172504 B2 JP3172504 B2 JP 3172504B2
Authority
JP
Japan
Prior art keywords
rotor
magnetic
permanent magnet
electric machine
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05120199A
Other languages
Japanese (ja)
Other versions
JP2000175416A (en
Inventor
政憲 新
正 徳増
和人 堺
幹生 高畠
良夫 橋立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05120199A priority Critical patent/JP3172504B2/en
Priority to US09/406,772 priority patent/US6274960B1/en
Priority to EP10180891A priority patent/EP2276153A3/en
Priority to EP07013887A priority patent/EP1837981A3/en
Priority to KR10-1999-0041664A priority patent/KR100387554B1/en
Priority to EP10180893A priority patent/EP2273658A3/en
Priority to EP99119045A priority patent/EP0991166A3/en
Priority to EP07013885A priority patent/EP1837980A3/en
Priority to CNB991205693A priority patent/CN1327595C/en
Priority to EP07013886A priority patent/EP1858138A3/en
Publication of JP2000175416A publication Critical patent/JP2000175416A/en
Priority to US09/661,269 priority patent/US6342745B1/en
Application granted granted Critical
Priority to US09/871,891 priority patent/US6552462B2/en
Publication of JP3172504B2 publication Critical patent/JP3172504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石式リラク
タンス型回転電機の回転子に関する。
TECHNICAL FIELD The present invention relates to a permanent magnet type relaxation machine.
The present invention relates to a rotor of a closet type rotating electric machine.

【0002】[0002]

【従来の技術】リラクタンス型回転電機は、一般に、電
機子コイルを有する固定子と、固定子の中で回転する回
転子とによって構成されており、回転子には界磁を形成
するコイルが設けられず、凹凸のある鉄心のみで形成さ
れている。従って、従来の回転子の構造を簡易化できる
特徴がある。
2. Description of the Related Art A reluctance type rotating electric machine generally comprises a stator having an armature coil and a rotor rotating in the stator. The rotor is provided with a coil for forming a field. It is not formed, and is formed only of an iron core having irregularities. Therefore, there is a feature that the structure of the conventional rotor can be simplified.

【0003】このリラクタンス型回転電機は、回転子に
凹凸があるため凸部では磁気抵抗が小となり、凹部では
逆に磁気抵抗が高くなる。これにより、凸部と凹部上の
固定子との空隙部分では、電機子コイルに電流を流すこ
とにより蓄えられる磁気エネルギが異なってくる。リラ
クタンス型回転電機は、この磁気エネルギの変化によっ
て出力が発生する。なお、この凹凸部は幾何的に形成さ
れるのみでなく、磁気的に凹凸を形成できるように、即
ち磁気抵抗、磁束密度が回転子の回転位置によって異な
るような形状であれば良い。
In this reluctance type rotating electric machine, since the rotor has irregularities, the magnetic resistance is small at the convex portions, and the magnetic resistance is high at the concave portions. As a result, in the gap between the protrusion and the stator on the recess, the magnetic energy stored by flowing a current through the armature coil differs. The reluctance type rotating electric machine generates an output due to the change in the magnetic energy. Note that the uneven portion may be formed not only geometrically but also so as to be magnetically capable of forming unevenness, that is, a shape in which the magnetic resistance and the magnetic flux density differ depending on the rotational position of the rotor.

【0004】[0004]

【発明が解決しようとする課題】上述したように、リラ
クタンス型回転電機は、回転子鉄心表面に形成された凹
凸により回転位置に応じて磁気抵抗を異ならせ、以って
変化した磁気エネルギにより出力を得るように構成され
ている。
As described above, the reluctance type rotating electric machine causes the magnetic resistance to vary depending on the rotational position due to the unevenness formed on the surface of the rotor core, and the output is changed by the changed magnetic energy. Are configured to obtain

【0005】しかしながら、固定子コイルに流れる電流
が増加すると、これに伴って鉄心の凸部では磁気飽和領
域が拡大し、磁極間部分となる凹部に漏れる磁束が増加
することとなり、出力が低下するという問題が生じる。
このような現象に対し、本願出願人は先に、凸部となる
磁極部分の側面に永久磁石を配し、磁極間の鉄心凹部分
と磁極の側面に漏れる磁束を抑制することによって有効
磁束を増加させ高出力を得るようにした、所謂永久磁石
型リラクタンス型回転電機の出願を行った(特願平9−
175383号)。
However, when the current flowing through the stator coil increases, the magnetic saturation region expands at the convex portion of the iron core, and the magnetic flux leaking to the concave portion between the magnetic poles increases, and the output decreases. The problem arises.
In response to such a phenomenon, the applicant of the present application has previously arranged a permanent magnet on the side surface of the magnetic pole portion serving as a convex portion, and suppressed the effective magnetic flux by suppressing the magnetic flux leaking to the core concave portion between the magnetic poles and the magnetic pole side surface. A so-called permanent-magnet-type reluctance-type rotating electric machine has been filed to obtain a high output by increasing the output (Japanese Patent Application No. 9-90).
No. 175383).

【0006】しかしながら、この永久磁石型リラクタン
ス型回転電機は、磁極側面に配置された永久磁石によっ
て保持トルクが増加するために自己起動を困難とした。
始動トルクを得て自己起動を行わしめるためには、別途
インバータを使用したり、始動用のカゴで回転子を覆う
ことが考えられるが、構造が複雑となる上、特に始動カ
ゴを採用すると、磁気抵抗が大きくなり主磁束が減少し
てしまう問題が生じる。
However, this permanent magnet type reluctance type rotating electric machine has difficulty in self-starting because the holding torque is increased by the permanent magnets arranged on the side surfaces of the magnetic poles.
In order to obtain the starting torque and perform self-starting, it is conceivable to use a separate inverter or cover the rotor with a starting basket, but the structure becomes complicated, especially if a starting basket is adopted, There is a problem that the magnetic resistance increases and the main magnetic flux decreases.

【0007】そこで本発明は、上記の事情を考慮してな
されたもので、インバータ等の補助起動手段を必要とす
ることなく始動特性を向上させることができる永久磁石
リラクタンス型回転電機の回転子を提供することを目
的とする。
Accordingly, the present invention has been made in view of the above circumstances, and a rotor of a permanent magnet type reluctance type rotating electric machine which can improve starting characteristics without requiring auxiliary starting means such as an inverter. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、磁気的に凹凸部を形成す
る回転子鉄心と、この回転子鉄心の各磁極軸に沿いかつ
半径方向外側に鉄心の外周部分を残して配置される永久
磁石とを有する永久磁石式リラクタンス型回転電機の回
転子において、前記永久磁石は、各磁極間部の回転子円
周方向両端に設けられ、かつ磁極間部を通る電機子の磁
束を打ち消すように磁化されていると共に、前記回転子
鉄心の外周部分には、誘導電流を発生させるための導体
が設けられたことを特徴とする。
To achieve the above object, according to an aspect of, the invention described in claim 1, and a rotor core to form a magnetically uneven portion, along Ikatsu each pole axis of the rotor core
In a rotor of a permanent magnet type reluctance type rotating electric machine having a permanent magnet disposed leaving an outer peripheral portion of an iron core radially outward, the permanent magnets are provided at both ends in the circumferential direction of the rotor between magnetic poles. The rotor is magnetized so as to cancel the magnetic flux of the armature passing through the magnetic pole portion, and a conductor for generating an induced current is provided on an outer peripheral portion of the rotor core.

【0009】このように請求項1に記載の発明は、回転
子鉄心の外周部分に導体を設けたので、起動時、電磁誘
導によって導体に誘導起電力が生じ、自己始動可能にな
る。
According to the first aspect of the present invention, since the conductor is provided on the outer peripheral portion of the rotor core, an induced electromotive force is generated in the conductor by electromagnetic induction at the time of startup, and self-starting is possible.

【0010】なお、永久磁石は、各磁極間部の回転子円
周方向両端に設けられ磁極間部を通る電機子の磁束を打
ち消すように磁化されているため、この方向では磁気抵
抗が高くなり、空隙磁束密度に凹凸ができ、この磁気エ
ネルギ変化によってトルクを発生することができる。
Since the permanent magnets are provided at both ends in the circumferential direction of the rotor between the magnetic poles and are magnetized so as to cancel the magnetic flux of the armature passing through the magnetic poles, the magnetic resistance increases in this direction. As a result, unevenness is generated in the air gap magnetic flux density, and a torque can be generated by this change in magnetic energy.

【0011】請求項2に記載の発明は、請求項1に記載
の永久磁石式リラクタンス型回転電機の回転子におい
て、導体は、前記回転子鉄心の磁極部分の外周面近傍に
埋設され、回転子軸線方向に延びる複数の磁性バーから
構成されたことを特徴とする。
According to a second aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the first aspect, a conductor is embedded near an outer peripheral surface of a magnetic pole portion of the rotor core. It is characterized by comprising a plurality of magnetic bars extending in the axial direction.

【0012】このように、請求項2に記載の発明は、請
求項1に記載の永久磁石式リラクタンス型回転電機の回
転子において、回転子鉄心の磁極部分の外周面近傍に導
体磁性バーを複数埋設するため、その導電性により自己
始動が可能になると共に、バー自体は磁性材料から形成
されるため、請求項1における発明の作用に加えて、磁
極部分を流れる磁束(主磁束)密度が減少せず、トルク
に影響を与えることはない。
As described above, according to a second aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the first aspect, a plurality of conductor magnetic bars are provided near the outer peripheral surface of the magnetic pole portion of the rotor core. Since it is buried, self-starting is enabled by its conductivity, and since the bar itself is formed of a magnetic material, the density of magnetic flux (main magnetic flux) flowing through the magnetic pole portion is reduced in addition to the effect of the invention according to claim 1. No impact on torque.

【0013】請求項3に記載の発明は、請求項2に記載
の永久磁石式リラクタンス型回転電機の回転子永久磁石
の回転子において、半径方向外側の鉄心部分には、空洞
部が形成されたことを特徴とする。
According to a third aspect of the present invention, in the permanent magnet rotor of the permanent magnet type reluctance type rotary electric machine according to the second aspect, a hollow portion is formed in a radially outer core portion. It is characterized by the following.

【0014】このように、請求項3に記載の発明は、請
求項2に記載の永久磁石式リラクタンス型回転電機の回
転子において、永久磁石の回転子半径方向における外側
の鉄心部分に空洞部が形成されるため、磁気回路がここ
で遮断され、磁極間部分の磁気抵抗がさらに増すことに
もなる。従って、請求項2における発明の作用に加え
て、磁極部との磁気エネルギ変化量は増加し大きなトル
クを発生することができる。
As described above, according to a third aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the second aspect, the hollow portion is formed in the outer core portion of the permanent magnet in the radial direction of the rotor. As a result, the magnetic circuit is interrupted here, and the magnetic resistance in the portion between the magnetic poles is further increased. Therefore, in addition to the effect of the invention of claim 2, the amount of change in magnetic energy with the magnetic pole portion increases, and a large torque can be generated.

【0015】請求項4に記載の発明は、請求項3に記載
の永久磁石式リラクタンス型回転電機の回転子におい
て、回転子鉄心の磁極間部分の外周面近傍に、回転子軸
線方向に延びかつ誘導電流が発生する非磁性導体バーが
複数埋設されたことを特徴とする。
According to a fourth aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotary electric machine according to the third aspect, the rotor extends in the axial direction of the rotor near the outer peripheral surface of the portion between the magnetic poles of the rotor core. A plurality of non-magnetic conductor bars for generating an induced current are embedded.

【0016】このように、請求項4に記載の発明は、回
転子鉄心の磁極間部分の外周面近傍にも非磁性導体バー
が埋設されるため、請求項3に記載の発明の作用に加
え、さらに自己始動特性が向上する。また、その非磁性
導体バーの非磁性により磁極間部分の磁気抵抗がさらに
増すことにもなり、磁極部との磁気エネルギ変化量はさ
らに増加する。
As described above, according to the fourth aspect of the present invention, the non-magnetic conductor bar is buried also in the vicinity of the outer peripheral surface of the portion between the magnetic poles of the rotor core. In addition, the self-starting characteristics are further improved. Further, the non-magnetism of the non-magnetic conductor bar further increases the magnetic resistance in the portion between the magnetic poles, and further increases the amount of change in magnetic energy between the magnetic poles.

【0017】請求項5に記載の発明は、請求項4に記載
の永久磁石式リラクタンス型回転電機の回転子におい
て、空洞部に、回転子軸線方向に延びかつ誘導電流が発
生する非磁性導体バーが埋設されたことを特徴とする。
According to a fifth aspect of the present invention, there is provided the rotor of the permanent magnet type reluctance type rotating electric machine according to the fourth aspect, wherein the non-magnetic conductor bar extends in the axial direction of the rotor and generates an induced current in the cavity. Is buried.

【0018】このように、請求項5に記載の発明は、空
洞部にも非磁性導体バーが埋設されるため、磁気回路が
ここで遮断され、請求項4に記載の発明の作用に加え
て、磁極間部分の磁気抵抗がさらに増す。また、空洞部
に非磁性導体バーを埋設するため、回転子自体の強度も
向上する。
As described above, according to the fifth aspect of the present invention, since the nonmagnetic conductor bar is buried also in the hollow portion, the magnetic circuit is interrupted here, and in addition to the effect of the fourth aspect of the present invention. In addition, the magnetic resistance between the magnetic poles further increases. Further, since the nonmagnetic conductor bar is embedded in the hollow portion, the strength of the rotor itself is also improved.

【0019】請求項6に記載の発明は、請求項1に記載
の永久磁石式リラクタンス型回転電機の回転子におい
て、導体は、回転子鉄心の磁極部分の外周面近傍に埋設
され、回転子軸線方向に延びる複数の深溝型磁性バー
と、前記回転子鉄心の磁極間部分の外周面近傍に埋設さ
れ、回転子軸線方向に延びる複数の非磁性バーとから構
成されたことを特徴とする。
According to a sixth aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the first aspect, the conductor is embedded near an outer peripheral surface of a magnetic pole portion of the rotor core, and the rotor axis is And a plurality of non-magnetic bars extending in the direction of the rotor and extending in the axial direction of the rotor and embedded near the outer peripheral surface of the portion between the magnetic poles of the rotor core.

【0020】このように、請求項6に記載の発明は、回
転子鉄心の外周面全周に沿って導体バーを埋設するた
め、請求項1に記載の発明の作用に加えて、導体バーの
導電性により始動カゴと同等の始動トルクをもった始動
性が達成される。また、磁極部分では深溝型導体バーは
磁性材料から形成され、磁極間部分では導体バーが非磁
性材料から形成されるため、磁極・磁極間部分の磁気抵
抗差が増し、磁気エネルギ変化量はさらに増加する。
As described above, according to the sixth aspect of the present invention, the conductor bar is buried along the entire outer peripheral surface of the rotor core. Due to the conductivity, a starting property having a starting torque equivalent to that of the starting cage is achieved. In the magnetic pole portion, the deep groove type conductor bar is formed of a magnetic material, and in the portion between the magnetic poles, the conductor bar is formed of a non-magnetic material. To increase.

【0021】請求項7に記載の発明は、請求項1に記載
の永久磁石式リラクタンス型回転電機の回転子におい
て、導体は、回転子鉄心の磁極間部分の外周面近傍に埋
設され、回転子軸線方向に延びる複数の非磁性バーで構
成されたことを特徴とする。
According to a seventh aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the first aspect, the conductor is buried in the vicinity of the outer peripheral surface of the portion between the magnetic poles of the rotor core. It is characterized by comprising a plurality of non-magnetic bars extending in the axial direction.

【0022】このように、請求項7に記載の発明は、回
転子鉄心の磁極間部分にのみ導体の非磁性バーを埋設す
るため、請求項1に記載の発明の作用に加え、非磁性バ
ーの非磁性により磁極間部分の磁気抵抗が増す。また磁
極部分にはバーが埋設されないため、構造が簡単にな
る。
As described above, according to the seventh aspect of the present invention, the non-magnetic bar of the conductor is embedded only in the portion between the magnetic poles of the rotor core. Increases the reluctance of the portion between the magnetic poles. Further, since the bar is not buried in the magnetic pole portion, the structure is simplified.

【0023】請求項8に記載の発明は、請求項1に記載
の永久磁石式リラクタンス型回転電機の回転子におい
て、導体は、回転子鉄心の外周面を被覆するように形成
されたことを特徴とする。
According to an eighth aspect of the present invention, in the rotor of the permanent magnet reluctance type rotating electric machine according to the first aspect, the conductor is formed so as to cover an outer peripheral surface of the rotor core. And

【0024】このように、請求項8に記載の発明は、回
転子鉄心の外周面を導体が被覆するため、始動時におい
ては、その導電性により回転子外周面をスムーズに誘導
電流が流れ、請求項1に記載の発明の作用が得られると
共に、外周面を導体が被覆するので回転子の機械的強度
を向上させることができる。
As described above, according to the present invention, since the outer peripheral surface of the rotor core is covered with the conductor, at the time of starting, an induced current flows smoothly through the outer peripheral surface of the rotor due to its conductivity. The effect of the invention described in claim 1 is obtained, and the outer peripheral surface is covered with the conductor, so that the mechanical strength of the rotor can be improved.

【0025】請求項9に記載の発明は、請求項8に記載
の永久磁石式リラクタンス型回転電機の回転子におい
て、導体は、回転子鉄心の全外周面を覆い、円筒状に形
成されたことを特徴とする。
According to a ninth aspect of the present invention, in the rotor of the permanent magnet reluctance type rotating electric machine according to the eighth aspect, the conductor covers the entire outer peripheral surface of the rotor core and is formed in a cylindrical shape. It is characterized by.

【0026】このように、請求項9に記載の発明は、回
転子鉄心の外周面全面を導体が被覆するため、その導電
性により始動時は誘導電流が流れ、自己始動が可能にな
ると共に、導体は筒状になるため、簡単な構造で機械的
強度を高めることができる。
As described above, according to the ninth aspect of the present invention, since the conductor covers the entire outer peripheral surface of the rotor core, an induced current flows at the time of starting due to its conductivity, and self-starting becomes possible. Since the conductor is cylindrical, the mechanical strength can be increased with a simple structure.

【0027】請求項10に記載の発明は、請求項8に記
載の永久磁石式リラクタンス型回転電機の回転子におい
て、導体は、回転子鉄心の磁極部分の外周面と連結さ
れ、かつ磁極間部分を覆う複数のシェル部材から構成さ
れたことを特徴とする。
According to a tenth aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the eighth aspect, the conductor is connected to the outer peripheral surface of the magnetic pole portion of the rotor core and the portion between the magnetic pole portions is provided. Characterized by a plurality of shell members that cover the shell.

【0028】このように、請求項10に記載の発明は、
回転子鉄心の磁極間部分を導体が被覆するため、その導
電性により始動時はこの部分に誘導電流が流れる。ま
た、導体は磁極部分の外周面に連結されるため、請求項
8に記載の作用に加えて、回転子の空気抵抗(風損)が
低減し回転効率を高めることができる。
Thus, the invention according to claim 10 is
Since the conductor covers the portion between the magnetic poles of the rotor iron core, an induced current flows through this portion during startup due to its conductivity. In addition, since the conductor is connected to the outer peripheral surface of the magnetic pole portion, in addition to the operation described in claim 8, air resistance (windage) of the rotor can be reduced, and rotation efficiency can be increased.

【0029】請求項11に記載の発明は、請求項1に記
載の永久磁石式リラクタンス型回転電機の回転子におい
て、導体は、回転子鉄心の磁極間部分の外周面近傍に配
置され、回転子円周方向に沿って湾曲形成されたことを
特徴とする。
According to an eleventh aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the first aspect, the conductor is disposed near an outer peripheral surface of a portion between the magnetic poles of the rotor core. It is characterized by being curved along the circumferential direction.

【0030】このように、請求項11に記載の発明は、
回転子鉄心の磁極間部分の外周面近傍に導体が配置され
るため、その導電性により始動時はこの部分に誘導電流
が流れ、請求項1に記載の発明と同様、自己始動が可能
になる。
As described above, the invention according to claim 11 is
Since the conductor is arranged in the vicinity of the outer peripheral surface of the portion between the magnetic poles of the rotor core, an induced current flows through this portion at the time of starting due to its conductivity, and self-starting becomes possible as in the first aspect of the present invention. .

【0031】請求項12に記載の発明は、請求項1に記
載の永久磁石式リラクタンス型回転電機の回転子におい
て、導体は、回転子鉄心胴部において周方向に複数のス
リットを有することを特徴とする。
According to a twelfth aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotary electric machine according to the first aspect, the conductor has a plurality of slits in a circumferential direction in the rotor core body. And

【0032】このように、請求項12の発明の永久磁石
リラクタンス型回転電機の回転子では、回転子鉄心の
外周部分に設けた導体が、回転子鉄心胴部において周方
向に複数のスリットを有するため、始動時の誘導電流は
回転子軸方向(周方向)に長いパスを形成して流れる。
従ってその結果、電機子との磁気的結合が強化され、大
きな始動トルクを得ることができる。
As described above, in the rotor of the permanent magnet type reluctance type rotary electric machine according to the twelfth aspect of the present invention, the conductor provided on the outer peripheral portion of the rotor core has a plurality of slits in the circumferential direction in the rotor core body. As a result, the induced current at the time of starting flows while forming a long path in the rotor axial direction (circumferential direction).
Therefore, as a result, the magnetic coupling with the armature is strengthened, and a large starting torque can be obtained.

【0033】請求項13に記載の発明は、請求項12に
記載の永久磁石式リラクタンス型回転電機の回転子にお
いて、導体は、前記回転子鉄心の外周面を被覆するよう
に形成されたことを特徴とする。
According to a thirteenth aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotary electric machine according to the twelfth aspect, the conductor is formed so as to cover an outer peripheral surface of the rotor core. Features.

【0034】このように、請求項13の発明の永久磁石
リラクタンス型回転電機の回転子では、鉄心外周面を
スリットを有する導体で被覆したことにより、誘導電流
は回転子外周面をスムーズに流れ、自己始動がより一層
容易となる。また、鉄心外周面を導体で覆ったので、請
求項12における発明の作用に加えて、回転子の機械的
強度をより向上させることができる。
As described above, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the thirteenth aspect of the present invention, since the outer peripheral surface of the iron core is covered with the conductor having the slit, the induced current flows smoothly on the outer peripheral surface of the rotor. In addition, self-starting is further facilitated. In addition, since the outer peripheral surface of the iron core is covered with the conductor, the mechanical strength of the rotor can be further improved in addition to the effect of the invention of claim 12.

【0035】請求項14に記載の発明は、請求項13に
記載の永久磁石式リラクタンス型回転電機の回転子にお
いて、導体が回転子鉄心の全外周面を覆い、円筒状に形
成されたことを特徴とする。
According to a fourteenth aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the thirteenth aspect, the conductor covers the entire outer peripheral surface of the rotor core and is formed in a cylindrical shape. Features.

【0036】このように、請求項14の発明は、請求項
13に記載の永久磁石式リラクタンス型回転電機の回転
子において、導体は回転子鉄心の全外周面全面を被覆し
たので、請求項13における発明の作用に加えて、回転
子外周面全面にわたりよりス心の全外周面全面を被覆し
た円筒状をなすため、簡単な構成で、回転子の機械的ム
ーズには低減され回転効率を高めることができる。
As described above, according to the invention of claim 14, in the rotor of the permanent magnet type reluctance type rotating electric machine according to claim 13, the conductor covers the entire outer peripheral surface of the rotor core. In addition to the effect of the invention described in the above, a cylindrical structure covering the entire outer peripheral surface of the center more than the entire outer peripheral surface of the rotor is formed, so that the mechanical mood of the rotor is reduced and the rotational efficiency is increased. be able to.

【0037】請求項15に記載の発明は、請求項13に
記載の永久磁石式リラクタンス型回強度を更かつ磁極間
部分を覆う複数のシェル部材により構成されたことを特
徴とする。
According to a fifteenth aspect of the present invention, the permanent magnet type reluctance type rotating strength of the thirteenth aspect is further constituted by a plurality of shell members which cover the portion between the magnetic poles.

【0038】このように、請求項15の発明は、請求項
13に記載の永久磁石式リラクタンス型回転電機の回転
子において、回転子鉄心の磁極間部分が導体により被覆
されるが、その導電性により始動時はこの部分に誘導電
流が流れ自己始動が可能になる。また導体は磁極部分の
外周面に連結されるため、回転子の空気抵抗(風損)は
低減され回転効率を高めることができる。
As described above, according to a fifteenth aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the thirteenth aspect, the portion between the magnetic poles of the rotor core is covered with the conductor. Thus, at the time of starting, an induced current flows through this portion, and self-starting becomes possible. Further, since the conductor is connected to the outer peripheral surface of the magnetic pole portion, the air resistance (windage) of the rotor is reduced, and the rotation efficiency can be increased.

【0039】請求項16に記載の発明は、請求項12に
記載の永久磁石式リラクタンス型回転電機の回転子にお
いて、導体は、回転子鉄心の磁極間部分の外周面近傍に
配置され、回転子の円周方向に沿い湾曲して形成された
ことを特徴とする。
According to a sixteenth aspect of the present invention, in the rotor of the permanent magnet reluctance type rotating electric machine according to the twelfth aspect, the conductor is disposed near an outer peripheral surface of a portion between the magnetic poles of the rotor core. Characterized by being curved along the circumferential direction.

【0040】このように、請求項16の発明は、請求項
12に記載の永久磁石式リラクタンス型回転電機の回転
子において、回転子鉄心の磁極間部分の外周面近傍に導
体が配置されたので、請求項12の発明と同様、始動時
にはその導体部分に誘導電流が流れ、自己始動が可能に
なる。
Thus, according to the invention of claim 16, in the rotor of the permanent magnet type reluctance type rotating electric machine according to claim 12, the conductor is arranged near the outer peripheral surface of the portion between the magnetic poles of the rotor core. Similarly to the twelfth aspect of the invention, at the time of starting, an induced current flows through the conductor portion, and self-starting becomes possible.

【0041】請求項17の発明は、請求項13または請
求項15に記載の永久磁石式リラクタンス回転電機の回
転子において、導体は、導電性磁性材料で構成されたこ
とを特徴とする。
According to a seventeenth aspect of the present invention, in the rotor of the permanent magnet type reluctance rotating electric machine according to the thirteenth or fifteenth aspect, the conductor is made of a conductive magnetic material.

【0042】このように、請求項17の発明の永久磁石
リラクタンス型回転電機の回転子は、回転子鉄心の少
なくとも外周面を被覆した導体を、磁性材であり良導電
性を有する導電性磁性材料で構成したので、請求項13
または14の各発明における作用に加えて、主磁束に対
する回転子の磁気抵抗を小さく、主磁束を大きくでき、
かつ同期引き入れ時の滑りが小さくなるためより大きな
トルクを必要とする負荷に対してまで、始動、引き入れ
が可能となる。
As described above, in the rotor of the permanent magnet type reluctance type rotating electric machine according to the seventeenth aspect of the present invention, the conductor covering at least the outer peripheral surface of the rotor iron core is made of a conductive material having good conductivity and made of a magnetic material. Claim 13 is made of a material.
Or in addition to the effect of the invention of 14 above, the magnetic resistance of the rotor to the main magnetic flux can be reduced, and the main magnetic flux can be increased,
In addition, starting and pulling in can be performed even with respect to a load that requires a larger torque because slippage during synchronous pulling in is reduced.

【0043】[0043]

【発明の実施の形態】以下、本発明に係る永久磁石式
ラクタンス型回転電機の回転子の一実施の形態を添付図
面を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the permanent magnet type Li according to the present invention
One embodiment of a rotor of a lactance type rotating electric machine will be described with reference to the accompanying drawings.

【0044】図1は本発明による第1の実施の形態を適
用した永久磁石式リラクタンス型回転電機の半径方向断
面を示している。この永久磁石式リラクタンス型回転電
機は、4極の電機子コイル2を備えた固定子1と、この
固定子1に収容される回転子3とから構成される。
FIG. 1 shows a radial cross section of a permanent magnet type reluctance type rotary electric machine to which the first embodiment according to the present invention is applied. The permanent magnet type reluctance type rotating electric machine includes a stator 1 having a four-pole armature coil 2 and a rotor 3 housed in the stator 1.

【0045】回転子3は、中央に磁性材料からなる回転
子シャフト30を有し、これに嵌合する回転子鉄心4
は、円筒形状の軟鋼S45C、または積層された略円形
状の珪素鋼板などの磁性材料で構成される。回転子鉄心
4の各磁極軸に沿った方向には、磁極幅の間隔をあけて
断面矩形の空洞部5が形成され、ここには例えばNdF
eB系の矩形の永久磁石6が、例えば接着剤で堅固に埋
設される。即ち、この実施の形態では、回転子3は、4
つの磁極部分4aが十字状に形成され、永久磁石6は各
磁極部分4aを両側から挟み込む位置に配置されること
となる。なお、次に説明する複数の実施の形態の回転子
3でも、積層された回転子鉄心4の中央を磁性材料の回
転子シャフト30が貫通する構造となっているが、回転
子シャフト30を介さず、中央に開口部を備えない円板
状鉄心を積層接着することで回転子3を形成しても良
い。
The rotor 3 has a rotor shaft 30 made of a magnetic material in the center, and a rotor core 4 fitted to the rotor shaft 30.
Is made of a magnetic material such as cylindrical mild steel S45C or laminated substantially circular silicon steel plates. In the direction along each magnetic pole axis of the rotor core 4, hollow portions 5 having a rectangular cross section are formed at intervals of the magnetic pole width.
An eB-based rectangular permanent magnet 6 is firmly embedded with, for example, an adhesive. That is, in this embodiment, the rotor 3 is
The two magnetic pole portions 4a are formed in a cross shape, and the permanent magnet 6 is arranged at a position sandwiching each magnetic pole portion 4a from both sides. In the rotors 3 of a plurality of embodiments described below, the rotor shaft 30 made of a magnetic material passes through the center of the stacked rotor cores 4. Instead, the rotor 3 may be formed by laminating and bonding a disc-shaped iron core having no opening at the center.

【0046】永久磁石6は磁極軸と直交する方向に磁化
されていて、ほぼ直角を成す2つの永久磁石6に挟まれ
た扇形の磁極間部分4bへ流れてくる電機子コイル2の
漏れ磁束に対し、永久磁石6からの磁束が抵抗するよう
な方向に配置されている。すなわち、磁極部分4aを中
心としてその両側面にある永久磁石6の関係は、磁化方
向が同一であり、磁極と直交する方向となる。また、磁
極間部分4bの両側に位置する2つの永久磁石6は、回
転子鉄心4の円周方向において互いに磁化方向は逆とな
る。
The permanent magnet 6 is magnetized in a direction perpendicular to the magnetic pole axis, and generates a magnetic flux leaking from the armature coil 2 flowing to the sector-shaped magnetic pole portion 4b sandwiched between the two permanent magnets 6 that are substantially perpendicular to each other. On the other hand, they are arranged in such a direction that the magnetic flux from the permanent magnet 6 resists. That is, the relationship between the permanent magnets 6 on both sides of the magnetic pole portion 4a is the direction in which the magnetization directions are the same and are orthogonal to the magnetic poles. Further, the two permanent magnets 6 located on both sides of the inter-magnetic pole portion 4b have opposite magnetization directions in the circumferential direction of the rotor core 4.

【0047】対向する永久磁石6によって挟まれた十字
状磁極部分4aの外周面近傍には、図面に垂直な回転子
軸線方向に、断面2等辺三角形の深溝型のバー(棒材)
7がその頂点を外側に向けるようにして複数本(例えば
5本)埋め込まれる。このバー7は、例えばアルミニウ
ム添加鉄、或はシリコン添加鉄などに代表されるよう
な、いわゆる導電性磁性材料から形成され、各磁性導体
バー7は回転子3の軸線方向両端において、例えば導通
板(図示せず)などを介して互いに導通するように構成
されている。この深溝型のバー7の断面形状は、長方
形、楕円形であっても良い。しかして、これら磁性導体
バー7の作用は、回転電機始動時においては電機子コイ
ル2からの磁束によって、バー内に誘導電流が流れ、回
転子3に対し起動トルクが発生して自己始動が可能とな
る。なお、磁性バー7自体は上述したように、鉄心4と
同様に磁性材料から形成されるため、磁極部分4aを流
れる磁束(主磁束)には悪影響が生じない。
In the vicinity of the outer peripheral surface of the cross-shaped magnetic pole portion 4a sandwiched between the opposed permanent magnets 6, a deep groove type bar (bar) having an isosceles triangular cross section in the direction of the rotor axis perpendicular to the drawing.
A plurality (for example, five) 7 are embedded with their vertices facing outward. The bars 7 are formed of a so-called conductive magnetic material typified by aluminum-added iron or silicon-added iron, for example. (Not shown) and the like. The cross-sectional shape of the deep groove type bar 7 may be rectangular or elliptical. The operation of these magnetic conductor bars 7 is such that when the rotating electric machine starts, the magnetic flux from the armature coil 2 causes an induced current to flow through the bars, and a starting torque is generated in the rotor 3 to enable self-starting. Becomes As described above, since the magnetic bar 7 itself is formed of a magnetic material similarly to the iron core 4, there is no adverse effect on the magnetic flux (main magnetic flux) flowing through the magnetic pole portion 4a.

【0048】さらに本実施の形態によれば、上述した各
磁極部分4aに埋設される磁性バー7群の両側であっ
て、かつ各永久磁石6の回転子半径方向外側の鉄心部分
には、断面円形の空洞部8が形成される。これにより、
磁極部分4aと磁極間部分4bとの境界が明確となり、
磁気回路がここで遮断され磁極間部分4bの磁気抵抗が
さらに増すことにもなる。従って、磁極部分4aとの磁
気エネルギ変化量は増加することにもなり、大きなトル
クを発生させることができる。
Further, according to the present embodiment, the core portions on both sides of the magnetic bar group 7 embedded in each of the magnetic pole portions 4a and radially outside the rotor of each permanent magnet 6 have a cross section. A circular cavity 8 is formed. This allows
The boundary between the magnetic pole portion 4a and the inter-magnetic pole portion 4b becomes clear,
The magnetic circuit is interrupted here, and the magnetic resistance of the inter-pole portion 4b is further increased. Therefore, the amount of change in magnetic energy with the magnetic pole portion 4a increases, and a large torque can be generated.

【0049】本発明は上記実施の形態による構造に限ら
れることなく、種々の変形が可能である。図2は、第2
の実施の形態による永久磁石式回転電機の回転子の半径
方向断面を示している。なお、以下説明する各実施の形
態に共通して、第1の実施の形態と同様の構成要素に
は、同一番号を付し詳細な説明は省略する。
The present invention is not limited to the structure according to the above embodiment, and various modifications are possible. FIG. 2 shows the second
2 shows a radial cross section of the rotor of the permanent magnet type rotating electric machine according to the embodiment. Note that, in common with each embodiment described below, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0050】この第2の実施の形態の回転子は、先の第
1の実施の形態における永久磁石用空洞部5とその外側
の空洞部8を矩形断面の1つの空洞部9で構成し、永久
磁石6の長手方向一端を空洞部9の内側端部に接するよ
うに配置したものである。しかして、その作用は第1の
実施の形態の回転子3と同様であり、永久磁石6外側に
残留した空洞部(部分)により磁極部分4aと磁極間部
分4bとの境界が明確となり、磁気回路がここで遮断さ
れる。なお、第1の実施の形態の永久磁石用空洞部5と
空洞部8の合体化により、製造上は2つの型抜き工程が
1つで済むというメリットがある。
In the rotor according to the second embodiment, the permanent magnet cavity 5 and the outer cavity 8 in the first embodiment are constituted by one cavity 9 having a rectangular cross section. The permanent magnet 6 is arranged such that one end in the longitudinal direction is in contact with the inner end of the cavity 9. The operation is the same as that of the rotor 3 of the first embodiment, and the boundary between the magnetic pole portion 4a and the inter-magnetic pole portion 4b is clarified by the cavity (portion) remaining outside the permanent magnet 6, and the magnetic field is reduced. The circuit is interrupted here. The merging of the permanent magnet cavity 5 and the cavity 8 according to the first embodiment has an advantage that two die-cutting steps are required in manufacturing.

【0051】図3は、第3の実施の形態による回転子の
半径方向断面を示している。この第3の実施の形態で
は、第1の実施の形態における回転子3の磁極間部分4
bに、断面円形状の導体バー10が回転子外周面に沿っ
て複数本、埋設される。但し、この導体バー10は、例
えば銅、アルミニウムなどのいわゆる非磁性材料から形
成される。これにより、始動時においては回転子3の磁
極間部分4bの外周面近傍にも誘導電流が流れ、自己始
動特性が向上する。また、その非磁性により磁極間部分
4bでは、第1及び第2の実施の形態の回転子3に比較
して磁気抵抗がさらに増すことにもなり、磁極部4aと
の磁気エネルギ変化量はさらに増加して出力が向上す
る。
FIG. 3 shows a radial cross section of a rotor according to the third embodiment. In the third embodiment, the portion 4 between the magnetic poles of the rotor 3 according to the first embodiment is used.
A plurality of conductor bars 10 having a circular cross section are buried in the outer peripheral surface of the rotor b. However, the conductor bar 10 is formed from a so-called non-magnetic material such as copper or aluminum. Thereby, at the time of starting, an induced current also flows near the outer peripheral surface of the portion 4b between the magnetic poles of the rotor 3, and the self-starting characteristic is improved. Further, due to the non-magnetism, the magnetic resistance in the inter-magnetic pole portion 4b is further increased as compared with the rotor 3 of the first and second embodiments, and the amount of change in magnetic energy with the magnetic pole portion 4a is further increased. The output increases with an increase.

【0052】図4は、第4の実施の形態による回転子の
半径方向断面を示しており、第3の実施の形態と同様
に、第2の実施の形態における回転子3の磁極間部分4
bに、複数の非磁性導体バー10を回転子外周面に沿っ
て設けたものである。作用は第3の実施の形態と同様で
ある。
FIG. 4 shows a radial cross section of the rotor according to the fourth embodiment. As in the third embodiment, the portion 4 between the magnetic poles of the rotor 3 according to the second embodiment is shown in FIG.
b, a plurality of nonmagnetic conductor bars 10 are provided along the outer peripheral surface of the rotor. The operation is the same as that of the third embodiment.

【0053】図5は、第5の実施の形態による回転子の
半径方向断面を示している。この第5の実施の形態の回
転子では、第3の実施の形態における回転子3の空洞部
8に、断面円形の非磁性導体バー11を埋設したもので
ある。これにより、回転子3の磁極部分4aと磁極間部
分4bの境界は更に明確になり、磁極部4aとの磁気エ
ネルギ変化量はさらに増加して出力が向上する。
FIG. 5 shows a radial cross section of a rotor according to a fifth embodiment. In the rotor according to the fifth embodiment, a nonmagnetic conductor bar 11 having a circular cross section is embedded in the hollow portion 8 of the rotor 3 according to the third embodiment. As a result, the boundary between the magnetic pole portion 4a and the inter-magnetic pole portion 4b of the rotor 3 becomes clearer, and the amount of change in magnetic energy between the magnetic pole portion 4a and the magnetic pole portion 4a further increases, thereby improving the output.

【0054】図6は、第6の実施の形態による回転子の
半径方向断面を示している。この実施の形態の回転子
は、第1の実施の形態における回転子鉄心4の形状を変
形させたものであって、磁極間部分4bに扇形状の空洞
部12が4箇所形成される。この結果、永久磁石6と空
洞部12の高磁気抵抗の作用により、磁極間軸に沿った
方向の成分の磁束が低下し、磁極部4aとの磁気エネル
ギ変化量はさらに増加して出力が向上することとなる。
FIG. 6 shows a radial cross section of a rotor according to a sixth embodiment. The rotor of this embodiment is obtained by modifying the shape of the rotor core 4 of the first embodiment, and has four fan-shaped hollow portions 12 formed in the inter-magnetic pole portion 4b. As a result, due to the action of the high magnetic resistance of the permanent magnet 6 and the cavity 12, the magnetic flux of the component along the axis between the magnetic poles is reduced, and the amount of change in magnetic energy with the magnetic pole 4a is further increased and the output is improved. Will be done.

【0055】図7は、第7の実施の形態による回転子の
半径方向断面を示しており、第2の実施の形態における
回転子鉄心4に対し、第6の実施の形態と同様に扇形状
の空洞部12を4箇所形成したものである。作用も第6
の実施の形態と同様である。
FIG. 7 shows a radial cross section of the rotor according to the seventh embodiment. The rotor core 4 in the second embodiment differs from the rotor core 4 in the fan-shaped shape as in the sixth embodiment. Are formed at four locations. Action is also sixth
This is the same as the embodiment.

【0056】なお、第3、4、5の各実施の形態に示し
た非磁性導体バー10の断面は必ずしも円形状である必
要はなく、矩形状や三角形状でも良い。
The cross section of the nonmagnetic conductor bar 10 shown in each of the third, fourth and fifth embodiments does not necessarily have to be circular, but may be rectangular or triangular.

【0057】図8、図9及び図10は、それぞれ第8、
第9及び第10の実施の形態による永久磁石式回転電機
の回転子の半径方向断面を示している。これらの各実施
の形態の回転子は、それぞれ第3、第4及び第5の各実
施の形態における回転子鉄心4に対し、第6の実施の形
態と同様に扇形状の空洞部12を4箇所形成したもので
あって、空洞部12を設けたことによる磁極間部分4b
の磁気抵抗の増加作用以外は、第3、第4及び第5の各
実施の形態における回転子3の作用と同一である。
FIGS. 8, 9 and 10 show the eighth,
14 shows a radial cross section of a rotor of a permanent magnet type rotating electric machine according to ninth and tenth embodiments. The rotor of each of these embodiments is different from the rotor core 4 of each of the third, fourth, and fifth embodiments in that a fan-shaped hollow portion 12 is provided in the same manner as in the sixth embodiment. The portion 4b between the magnetic poles formed by providing the cavity 12
Are the same as those of the rotor 3 in the third, fourth and fifth embodiments, except for the effect of increasing the magnetic resistance.

【0058】図11は、本発明の第11の実施の形態に
よる回転子の半径方向断面を示している。この実施の形
態の回転子は、第10の実施の形態の変形例であって、
回転子3の全周に亙って同一断面の空洞部8を等間隔に
形成し、磁極部分4aに位置する空洞部8には、磁性導
体バー14を回転子軸線方向に埋設し、片や磁極間部分
4bに位置する空洞部8には先の非磁性導体バー11を
埋設したものである。この結果、回転子3の周囲には均
一に同一形状の導体バー11、14が配置されることと
なり、回転電機始動時においては電機子コイル2からの
磁束によって、各バー11、14内に誘導電流が流れ、
自己始動が可能となる。
FIG. 11 shows a radial cross section of a rotor according to an eleventh embodiment of the present invention. The rotor according to this embodiment is a modification of the tenth embodiment,
Cavities 8 having the same cross section are formed at equal intervals over the entire circumference of the rotor 3, and a magnetic conductor bar 14 is embedded in the cavity 8 located at the magnetic pole portion 4 a in the axial direction of the rotor 3. The nonmagnetic conductor bar 11 is buried in the hollow portion 8 located at the portion 4b between the magnetic poles. As a result, the conductor bars 11 and 14 having the same shape are uniformly arranged around the rotor 3, and when the rotating electric machine is started, the conductor bars 11 and 14 are guided into the respective bars 11 and 14 by the magnetic flux from the armature coil 2. Electric current flows,
Self-start is possible.

【0059】図12は、この第11の実施の形態に類似
した第12の実施の形態による回転子を示しており、第
11の実施の形態の回転子3から磁極部分4aに位置す
る空洞部8を廃し、磁性導体バーを設けないものであ
る。しかして、この回転子3においても回転電機始動時
においては導体バー11に充分な大きさの誘導電流が流
れ、自己始動が確保される。
FIG. 12 shows a rotor according to a twelfth embodiment similar to the eleventh embodiment. The rotator 3 according to the eleventh embodiment includes a hollow portion located at the magnetic pole portion 4a. 8 is abolished and no magnetic conductor bar is provided. Thus, also in the rotor 3, when the rotating electric machine is started, a sufficiently large induced current flows through the conductor bar 11, and self-starting is ensured.

【0060】ところで、前述した第6ないし第11の各
実施の形態のように、磁極間部分4bに大きな空洞部1
2を形成する回転子3では共通して、高速回転時、遠心
力によって回転子3のブリッジ部分(磁極間部分4bに
位置する外周鉄心部分)が外側に変形する傾向がある。
Incidentally, as in the sixth to eleventh embodiments described above, the large hollow portion 1 is formed in the inter-magnetic pole portion 4b.
In common with the rotors 3 forming the rotor 2, the bridge portion of the rotor 3 (the outer core located at the portion 4b between magnetic poles) tends to deform outward due to centrifugal force during high-speed rotation.

【0061】そこで、図13ないし図16は、高回転運
転に伴う回転子3の変形防止を目的として提供された回
転子鉄心4の各断面を示すものであって、例えば図11
に示す円形プレートを多数積層する回転子鉄心4におい
て、その軸方向両端、あるいはその中間位置に介挿され
得るものである。
FIGS. 13 to 16 show cross sections of the rotor core 4 provided for the purpose of preventing deformation of the rotor 3 during high-speed operation.
In the rotor core 4 in which a number of circular plates are laminated as shown in FIG.

【0062】すなわち、図13に示す本発明の第13の
実施の形態によれば、図11の回転子鉄心4に対し、磁
極間部分4bの扇状空洞部12が全て廃され、回転子鉄
心プレート4Aには永久磁石6を収容する空洞部5以外
にはいかなる空洞部も形成されない状態とした。これに
より、この回転子鉄心プレート4Aを端面配置、或は中
間介挿する回転子鉄心4にあっては、磁極間部分4bが
補強されることとなり、高回転時の遠心力に対し抵抗す
ることができる。
That is, according to the thirteenth embodiment of the present invention shown in FIG. 13, the fan-shaped hollow portion 12 of the portion 4b between the magnetic poles is eliminated from the rotor core 4 of FIG. No cavity was formed in 4A except for the cavity 5 accommodating the permanent magnet 6. As a result, in the rotor core 4 in which the rotor core plate 4A is disposed on the end face or in the intermediate position, the portion 4b between the magnetic poles is reinforced and resists the centrifugal force at the time of high rotation. Can be.

【0063】また、図14に示す第14の実施の形態で
は、回転子鉄心プレート4Bの磁極間部分4bに、図1
1の扇状空洞部12より若干小さめの空洞部15を形成
した。これにより、この回転子鉄心プレート4Bを端面
配置、或は中間介挿する回転子3にあっては、この部分
において磁極間部分4bが補強される。
In the fourteenth embodiment shown in FIG. 14, the inter-pole portion 4b of the rotor core plate 4B is
A cavity 15 slightly smaller than the fan-shaped cavity 12 was formed. As a result, in the rotor 3 in which the rotor core plate 4B is disposed at the end face or in the intermediate state, the inter-magnetic pole portion 4b is reinforced at this portion.

【0064】また、磁極間部分4bを補強する他の手段
としては、本発明の第15及び第16の実施形態として
図15、16にそれぞれ示すように、回転子中心より半
径方向外方にブリッジ部材16(鉄心の一部)を延ば
し、円弧状の磁極間部分4bを内側から支持するように
しても良い。なお、図15に示す回転子鉄心プレート4
Cは、図11の積層構造の回転子鉄心4に、また図16
に示す回転子鉄心プレート4Dは、図12の積層構造の
回転子鉄心4にそれぞれ介装されて、磁極間部分4bを
補強するものである。
As another means for reinforcing the inter-magnetic pole portion 4b, as shown in FIGS. 15 and 16 as the fifteenth and sixteenth embodiments of the present invention, a bridge is provided radially outward from the center of the rotor. The member 16 (a part of the iron core) may be extended to support the arc-shaped inter-magnetic pole portion 4b from the inside. The rotor core plate 4 shown in FIG.
C shows the rotor core 4 having the laminated structure shown in FIG.
The rotor core plate 4D shown in FIG. 3 is interposed in the rotor core 4 having the laminated structure shown in FIG. 12 to reinforce the inter-magnetic pole portion 4b.

【0065】図17は、本発明の第17の実施の形態に
よる回転子の半径方向断面を示している。この実施の形
態の回転子では、磁極間部分4bに空洞部12を有して
形成され、その外周面にその全域に亙って導電性材料か
らなる円筒部材17が嵌合されている。円筒部材17の
材料は例えば銅、アルミニウム等のいわゆる非磁性材料
でも良いし、良導電性の磁性材料でも良い。
FIG. 17 shows a radial cross section of a rotor according to a seventeenth embodiment of the present invention. In the rotor of this embodiment, a hollow portion 12 is formed in the portion 4b between the magnetic poles, and a cylindrical member 17 made of a conductive material is fitted over the entire outer peripheral surface thereof. The material of the cylindrical member 17 may be a so-called non-magnetic material such as copper or aluminum, or a magnetic material having good conductivity.

【0066】この結果、回転電機始動時においては、部
材17を回転子軸線方向に流れる誘導電流により始動ト
ルクが発生し、回転子3の自己始動が可能になる。な
お、この導電性円筒部材17はそのシンプルな構造に起
因して、前述した多数の導電バーを埋設した実施の形態
に比較して部品点数も少なく、機械的強度も向上し、製
造も容易である。
As a result, at the time of starting the rotating electric machine, a starting torque is generated by the induced current flowing through the member 17 in the axial direction of the rotor, and the rotor 3 can start itself. The conductive cylindrical member 17 has a smaller number of parts, a higher mechanical strength, and is easier to manufacture than the above-described embodiment in which a large number of conductive bars are embedded, due to its simple structure. is there.

【0067】なお、良導電性の材料としては、銅と鉄の
合金等があるが、この実施の形態では、円筒部材の厚み
を透磁率と電気伝導度から決まる表皮厚さの1倍ないし
4倍にすることにより、始動トルクは大きく、また同期
のすべりが小さくなり引き入れが特に容易となる。
As a material having good conductivity, there is an alloy of copper and iron, etc., but in this embodiment, the thickness of the cylindrical member is from one to four times the skin thickness determined by the magnetic permeability and the electric conductivity. By doubling, the starting torque is large, and the slip of synchronization is small, so that the pull-in is particularly easy.

【0068】図18は、本発明の第18の実施の形態に
よる回転子の半径方向断面である。本実施の形態によれ
ば、回転子3は、鋼板抜きの際の歩留まり向上を目的と
して、磁極間部分の連結部(ブリッジ部)を廃し磁極軸
に沿った略十字状の鉄心18から形成される。また、鉄
心18の磁極部分18a先端は、ダブテール状に形成さ
れ、さらにその外周には、導電性材料からなる円筒部材
19が、ダブテール状先端に係合するアリ溝形状に形成
される。円筒部材19と十字形状の鉄心18とで囲まれ
た部分は空洞部12となる。しかして、その作用は、第
17の実施の形態と全く同様であり、さらに鉄心形状に
起因して材料歩留まりが向上し、製造コストを低下させ
ることができる。また、鉄心18と円筒部材19の嵌合
は、ダブテール状先端とアリ溝の係合によって堅固に固
定されるため、回転子高速回転に伴う滑りの問題はな
く、強度を向上させることができる。なお、これら導電
性円筒部材17、19の磁性に関しては、非磁性材料よ
り形成することで磁極間部分4bの磁気抵抗を増やし、
この磁極間軸に沿った磁束を減少することが好ましい
が、良導電性の磁性材料でも良い。
FIG. 18 is a radial cross section of a rotor according to an eighteenth embodiment of the present invention. According to the present embodiment, rotor 3 is formed of a substantially cross-shaped iron core 18 along the magnetic pole axis by eliminating the connecting portion (bridge portion) between the magnetic poles for the purpose of improving the yield at the time of removing the steel plate. You. The tip of the magnetic pole portion 18a of the iron core 18 is formed in a dovetail shape, and a cylindrical member 19 made of a conductive material is formed on the outer periphery thereof in a dovetail shape to engage with the dovetail-shaped tip. The portion surrounded by the cylindrical member 19 and the cross-shaped iron core 18 becomes the hollow portion 12. The operation is exactly the same as that of the seventeenth embodiment, and the material yield is improved due to the iron core shape, and the manufacturing cost can be reduced. In addition, since the fitting between the iron core 18 and the cylindrical member 19 is firmly fixed by the engagement between the dovetail-shaped tip and the dovetail groove, there is no problem of slippage due to the high-speed rotation of the rotor, and the strength can be improved. Regarding the magnetism of the conductive cylindrical members 17 and 19, the magnetic resistance of the portion 4b between the magnetic poles is increased by forming the cylindrical members 17 and 19 from a non-magnetic material.
Although it is preferable to reduce the magnetic flux along the axis between the magnetic poles, a magnetic material having good conductivity may be used.

【0069】良導電性の材料を用いる場合は、第17の
実施の形態と同様に、円筒部材の厚みを透磁率と電気伝
導度から決まる表皮厚さの1倍ないし4倍にすることに
より、始動トルクは大きく、また同期のすべりが小さく
なり引き入れが特に容易となる。
When a good conductive material is used, as in the seventeenth embodiment, the thickness of the cylindrical member is set to be one to four times the skin thickness determined by the magnetic permeability and the electric conductivity. The starting torque is high and the slippage of the synchronization is small, making it particularly easy to pull in.

【0070】図19は、本発明の第19の実施の形態に
よる回転子の半径方向断面を示している。この実施の形
態の回転子は、前述した第18の実施の形態の変形であ
って、回転子外周面に設けられる導体を、その磁極部分
4aの外周面に連なる4枚の湾曲したシェル部材20か
ら構成したものである。各シェル部材20は、図示する
ように、磁極部分4a先端よりも半径方向内側に位置決
めされた磁極間部分4bの上に被さり、夫々アリ溝・ダ
ブテール状突起の係合関係により一体化される。この第
19の実施の形態による回転子では、磁極間部分4bを
シェル部材20が被覆するため、始動時はこの部分に誘
導電流が流れ、自己始動が可能になる。またシェル部材
20は磁極部分4aの外周面に連なり、円形断面の回転
子3を成すべく形成されるため、その空気抵抗(風損)
を低減して回転効率を高めることもできる。
FIG. 19 shows a radial cross section of a rotor according to a nineteenth embodiment of the present invention. The rotor according to this embodiment is a modification of the eighteenth embodiment described above, in which a conductor provided on the outer peripheral surface of the rotor is replaced by four curved shell members 20 connected to the outer peripheral surface of the magnetic pole portion 4a. It consists of. As shown, each shell member 20 covers the inter-magnetic pole portion 4b positioned radially inward of the tip of the magnetic pole portion 4a, and is integrated by the engagement of the dovetail-shaped and dovetail-shaped projections. In the rotor according to the nineteenth embodiment, since the portion 4b between the magnetic poles is covered with the shell member 20, an induced current flows through this portion at the time of starting, and self-starting is possible. Further, since the shell member 20 is connected to the outer peripheral surface of the magnetic pole portion 4a and is formed to form the rotor 3 having a circular cross section, its air resistance (windage loss)
And the rotational efficiency can be increased.

【0071】図20は、本発明の第20の実施の形態に
よる回転子の半径方向断面を示している。この実施の形
態の回転子は、前述したシェル部材20に類似した導電
性シェル部材21を、空洞部12を有する円筒状回転子
鉄心4の空洞部外壁に固定したものであって、始動時
は、磁極間部分4bの比較的外側に位置するシェル部材
21部分に誘導電流が流れ、自己始動が可能になる。
FIG. 20 shows a radial cross section of a rotor according to a twentieth embodiment of the present invention. The rotor according to this embodiment has a conductive shell member 21 similar to the above-described shell member 20 fixed to the outer wall of the hollow portion of the cylindrical rotor core 4 having the hollow portion 12. The induced current flows through the shell member 21 located relatively outside the inter-magnetic pole portion 4b, thereby enabling self-starting.

【0072】図21は、先の第18及び第19の実施の
形態に類似した、第21の実施の形態による回転子の半
径方面断面を示している。この実施の形態では、回転子
鉄心4は図19の磁極間部分(ブリッジ部)4bが廃さ
れ、略十字断面を有するように形成される。また、その
磁極部分4aの円周方向両端は、導電性シェル部材22
の円周方向両端と係合するように鉤状に形成され、回転
子3の遠心力がかかった状態でも、シェル部材22が回
転子3より脱落しないように係合・固定される。このよ
うに、この第21の実施の形態では、回転子3の磁極間
部分にシェル部材22が円筒回転子の一部を成して設け
られる、始動時はこの部分に誘導電流が流れ、自己始動
が可能になる。またシェル部材22は磁極部分4aの外
周面に連なるため、その空気抵抗(風損)を低減して回
転効率を高めることもできる。なお、このように形成さ
れたシェル部材22は、回転子3の各磁極間部分に対応
して夫々別体として提供されるものであるが、図22に
示すように、回転子の軸線方向両端部においてそれぞれ
のシェル部分22がリング23を介して短絡されるよう
な1つの円筒形導電部材24によって提供されるように
しても良い。
FIG. 21 shows a radial cross section of a rotor according to the twenty-first embodiment, similar to the eighteenth and nineteenth embodiments. In this embodiment, the rotor core 4 is formed so as to have a substantially cross-section without the magnetic pole portion (bridge portion) 4b in FIG. The circumferential ends of the magnetic pole portion 4a are connected to the conductive shell member 22.
The shell member 22 is engaged and fixed so that the shell member 22 does not fall off from the rotor 3 even when a centrifugal force is applied to the rotor 3. As described above, in the twenty-first embodiment, the shell member 22 is provided as a part of the cylindrical rotor in the portion between the magnetic poles of the rotor 3. Start is possible. Further, since the shell member 22 is connected to the outer peripheral surface of the magnetic pole portion 4a, its air resistance (windage loss) can be reduced and the rotation efficiency can be increased. The shell member 22 thus formed is provided as a separate body corresponding to each portion between the magnetic poles of the rotor 3, but as shown in FIG. 22, both ends in the axial direction of the rotor 3 are provided. The parts may be provided by one cylindrical conductive member 24 such that each shell part 22 is short-circuited via a ring 23.

【0073】図23は、本発明の第22の実施の形態を
適用したリラクタンス型回転電機の半径方向断面を示し
ている。この永久磁石式リラクタンス型回転電機は、第
1の実施の形態等と同様に、4極の電機子コイル2を備
えた固定子1と、この固定子1内に収容される回転子3
とから構成される。
FIG. 23 shows a radial cross section of a reluctance type rotating electric machine to which the twenty-second embodiment of the present invention has been applied. This permanent magnet type reluctance type rotating electric machine has a stator 1 provided with a four-pole armature coil 2 and a rotor 3 housed in the stator 1 as in the first embodiment.
It is composed of

【0074】そこで、この実施の形態では、回転子3の
外周面に、その全域に亙って導体、すなわち導電性材料
からなる図24に示した構造の円筒部材25が嵌合され
ており、円筒部材25は、回転子鉄心胴部において、周
方向に長い複数のスリット25aを有する。
In this embodiment, a cylindrical member 25 having a structure shown in FIG. 24 made of a conductor, that is, a conductive material is fitted over the entire outer peripheral surface of the rotor 3. The cylindrical member 25 has a plurality of circumferentially long slits 25a in the rotor core body.

【0075】回転子3に誘導電流が流れるが、始動時に
円筒部材25における鉄心胴部の位置の誘導電流は、図
24に矢印Aで示すように、このスリット25a方向に
沿い両端部を介して回転子軸方向全長にわたる長いパス
を流れるので、電機子との磁気的結合が強化され大きな
自己始動トルクが得られ、自己始動が容易となる。
An induced current flows through the rotor 3. At the time of starting, the induced current at the position of the iron core body in the cylindrical member 25 passes through both ends along the direction of the slit 25 a as shown by an arrow A in FIG. Since the gas flows through a long path over the entire length in the axial direction of the rotor, magnetic coupling with the armature is strengthened, a large self-starting torque is obtained, and self-starting is facilitated.

【0076】このように、回転電機始動時においては、
円筒部材25を回転子軸線方向に流れる誘導電流により
始動トルクが発生するので、回転子3の自己始動が可能
になるとともに、この導電性の円筒部材25はそのシン
プル(簡単)な構造に起因して、製造が容易であると同
時に十分な機械的強度が得られる。また、円筒部材25
は回転し外周面を滑らかにするので、空気抵抗(風損)
を低減し、回転効率を高めるよう作用する。
As described above, when starting the rotating electric machine,
Since a starting torque is generated by an induced current flowing through the cylindrical member 25 in the axial direction of the rotor, the rotor 3 can be self-started, and the conductive cylindrical member 25 has a simple (simple) structure. As a result, it is easy to manufacture, and at the same time, sufficient mechanical strength is obtained. Also, the cylindrical member 25
Rotates and smoothes the outer peripheral surface, so air resistance (windage)
In order to increase the rotational efficiency.

【0077】なお、円筒部材25には、良導電性の磁性
材料として、例えばアルミニウム添加鉄、或はシリコン
添加鉄や、銅と鉄の合金などを採用することができる
が、この場合には、円筒部材25の厚みを透磁率と電気
伝導度とから決まる表皮厚さの1倍から4倍にすること
によって、始動トルクが大きく、同期時のすべりが小さ
くなり引き入れを容易にすることができる。また、円筒
部材25を、鉄心4と同様に磁性材料の形成によれば、
磁極部分4aを流れる磁束(主磁束)に悪影響を及ぼす
ことはない。
For the cylindrical member 25, for example, aluminum-added iron, silicon-added iron, or an alloy of copper and iron can be adopted as a magnetic material having good conductivity. By setting the thickness of the cylindrical member 25 to be 1 to 4 times the skin thickness determined by the magnetic permeability and the electric conductivity, the starting torque is large, the slip at the time of synchronization is small, and the pull-in can be easily performed. According to the formation of the magnetic material in the same manner as the iron core 4,
There is no adverse effect on the magnetic flux (main magnetic flux) flowing through the magnetic pole portion 4a.

【0078】図25は、本発明の第23の実施の形態に
よる永久磁石式リラクタンス型回転電機の回転子の半径
方向断面を示している。この実施の形態の永久磁石式リ
ラクタンス型回転電機では、第22の実施の形態におけ
る回転子鉄心4の形状を変形させたものであって、第2
2の実施の形態におけると同様に、外周面全域に亙る回
転子鉄心胴部において、周方向に複数のスリット25a
を入れた導電性材料からなる円筒部材25が嵌合される
とともに、回転子3の磁極間部分4bに空洞部12を4
箇所形成した点で相違する。
FIG. 25 shows a radial cross section of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twenty-third embodiment of the present invention. The permanent magnet type reluctance type rotating electric machine according to this embodiment is obtained by modifying the shape of the rotor core 4 in the twenty-second embodiment,
As in the second embodiment, a plurality of slits 25a are formed in the circumferential direction in the rotor core body over the entire outer peripheral surface.
A cylindrical member 25 made of a conductive material containing a hole is fitted therein, and the hollow portion 12 is
They differ in that they are formed in places.

【0079】この結果、第22の実施の形態の作用に加
え、永久磁石6と空洞部12の高磁気抵抗の作用によ
り、磁極間軸に沿った方向の成分の磁束がより低下する
ので、磁極部4aとの磁気エネルギ変化量はさらに増加
し出力が向上する。
As a result, in addition to the action of the twenty-second embodiment, the action of the high reluctance of the permanent magnet 6 and the hollow portion 12 further reduces the magnetic flux of the component along the axis between the poles. The amount of change in magnetic energy with the portion 4a further increases, and the output is improved.

【0080】図26は、本発明の第24の実施の形態に
よる永久磁石式リラクタンス型回転電機の回転子の半径
方向断面である。本実施の形態は第23の実施の形態に
おける回転子鉄心4の形状を変形させたものであって、
回転子3は、鋼板抜きの際の歩留まり向上を目的とし
て、図18に示した実施の形態と同様に、磁極間部分の
連結部(ブリッジ部)を廃し、磁極軸に沿った略十字状
の鉄心18を形成した。従って、鉄心18の磁極部分1
8a先端はダブテール状に形成され、このダブテール状
先端に係合するアリ溝形状を内側に形成した円筒部材2
5を外側に構成した。
FIG. 26 is a radial cross section of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twenty-fourth embodiment of the present invention. In the present embodiment, the shape of the rotor core 4 in the twenty-third embodiment is modified.
As with the embodiment shown in FIG. 18, the rotor 3 eliminates the connecting portion (bridge portion) between the magnetic poles and improves the yield at the time of removing the steel plate, and forms a substantially cross shape along the magnetic pole axis. An iron core 18 was formed. Therefore, the magnetic pole portion 1 of the iron core 18
The cylindrical member 2 has a dovetail shape at the tip and a dovetail shape formed on the inside thereof to engage with the dovetail shape.
5 was constructed outside.

【0081】この円筒部材25は、上記第22及び第2
3の実施の形態と同様に、回転子鉄心胴部において図2
4に示したように周方向に複数のスリット25aを有し
た導電性材料からなり、円筒部材7と十字形状の鉄心1
8とで囲まれた部分が空洞部12が形成されている。
This cylindrical member 25 is formed by
As in the third embodiment, the rotor core body shown in FIG.
4, a cylindrical member 7 and a cross-shaped iron core 1 made of a conductive material having a plurality of slits 25a in the circumferential direction.
A hollow portion 12 is formed in a portion surrounded by 8.

【0082】しかして、円筒部材25の作用は、第22
及び第23の実施の形態のそれと全く同様であり、さら
に鉄心18形状に起因して材料歩留まりを向上させるこ
とができる。また、鉄心18と円筒部材25との嵌合
は、ダブテール状先端とアリ溝の係合によって堅固に固
定されるため、回転子高速回転に伴う滑りの問題を生じ
ることなく、機械的強度を向上させることができる。
Thus, the function of the cylindrical member 25 is
This is exactly the same as that of the twenty-third embodiment, and the material yield can be improved due to the iron core 18 shape. Further, the fitting between the iron core 18 and the cylindrical member 25 is firmly fixed by the engagement between the dovetail-shaped tip and the dovetail groove, so that the mechanical strength is improved without causing a slip problem due to the high-speed rotation of the rotor. Can be done.

【0083】なお、円筒部材25に導電性の良好な磁性
材料を用いた場合には、第22及び第23の実施の形態
と同様に、円筒部材25の厚みを、透磁率と電気伝導度
とから決まる表皮厚さの1倍から4倍にするこにより、
始動トルクが大きく、同期時のすべりが小さくなり引き
入れが特に容易となる。
When a magnetic material having good conductivity is used for the cylindrical member 25, the thickness of the cylindrical member 25 is set to a value corresponding to the magnetic permeability, electric conductivity, and the like as in the twenty-second and twenty-third embodiments. By making it 1 to 4 times the skin thickness determined by
The starting torque is large, the slip at the time of synchronization is small, and the pull-in is particularly easy.

【0084】もっとも、上記第22ないし第24の各実
施の形態において、円筒部材7を導電性の非磁性材料に
より形成することにより、特に磁極間部分4bの磁気抵
抗を増やし、この磁極間軸に沿った磁束を減少するよう
に構成しても良い。
In each of the twenty-fourth to twenty-fourth embodiments, the cylindrical member 7 is formed of a conductive non-magnetic material, so that the magnetic resistance of the inter-magnetic pole portion 4b is increased, and that It may be configured to reduce the magnetic flux along.

【0085】図27(a)は、本発明の第25の実施の
形態による永久磁石式リラクタンス型回転電機の回転子
の半径方向断面を示している。この実施の形態の回転子
は、前述した第24の実施の形態を変形させたものであ
って、回転子外周面に設けられる導体は、図27(b)
に示すように、回転子鉄心胴部において円周方向に沿っ
て湾曲形成されるとともに周方向に複数のスリット26
aを有し、かつ磁極部分4aの外周面に連なる4枚のシ
ェル部材26で構成したものである。
FIG. 27 (a) shows a radial cross section of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twenty-fifth embodiment of the present invention. The rotor of this embodiment is a modification of the twenty-fourth embodiment described above. The conductor provided on the outer peripheral surface of the rotor is shown in FIG.
As shown in the figure, a plurality of slits 26 are formed in the rotor core body portion so as to be curved in the circumferential direction and to extend in the circumferential direction.
and four shell members 26 connected to the outer peripheral surface of the magnetic pole portion 4a.

【0086】各シェル部材26は、図27(a)に示す
ように、磁極部分4a先端よりも半径方向内側に位置決
めされた磁極間部分4bの上に被さり、夫々アリ溝・ダ
ブテール状突起の係合関係により嵌め込み一体化され
る。この第25の実施の形態としての永久磁石式リラク
タンス型回転電機では、回転子の磁極間部分4bを導体
であるシェル部材26が被覆するため、始動時はこの部
分に誘導電流が流れ、上述の作用により自己始動が可能
になる。またシェル部材26は、磁極部分4aの外周面
に連なり、円形断面の回転子3を成すように形成された
ため、外周面が滑らかになり、回転時の空気抵抗(風
損)を低減して回転効率を高めることができる。
As shown in FIG. 27 (a), each shell member 26 covers the inter-magnetic pole portion 4b positioned radially inward of the tip of the magnetic pole portion 4a, and engages with the dovetail-shaped and dovetail-shaped projections, respectively. It is fitted and integrated by the mating relationship. In the permanent magnet type reluctance type rotating electric machine according to the twenty-fifth embodiment, the portion 4b between the magnetic poles of the rotor is covered by the shell member 26 as a conductor. The action allows self-starting. Further, since the shell member 26 is formed so as to be continuous with the outer peripheral surface of the magnetic pole portion 4a and form the rotor 3 having a circular cross section, the outer peripheral surface is smooth, and the air resistance (windage loss) during rotation is reduced and the rotation is reduced. Efficiency can be increased.

【0087】また、この実施の形態では、シェル部材2
6は、例えば銅、アルミニウム等のいわゆる良導電性の
非磁性材料で構成した。これにより、始動時においては
回転子3の磁極間部分4bの外周面近傍にも誘導電流が
流れ、自己始動特性が向上すると同時に、その非磁性に
より磁極間部分4bでは磁気抵抗がさらに増すことにな
り、磁極部4aとの磁気エネルギ変化量は増加して出力
が向上する。
In this embodiment, the shell member 2
6 is made of a so-called good conductive non-magnetic material such as copper and aluminum. As a result, at the time of starting, an induced current flows also in the vicinity of the outer peripheral surface of the portion 4b between the magnetic poles of the rotor 3, and the self-starting characteristic is improved. Thus, the amount of change in magnetic energy with the magnetic pole portion 4a increases, and the output improves.

【0088】図28は、本発明の第26の実施の形態に
よる永久磁石式リラクタンス型回転電機の回転子の半径
方向断面を示している。この実施の形態の回転子におい
て導体は、前述したシェル部材26と同様に、回転子鉄
心胴部において円周方向に沿い湾曲して形成されるとと
もに周方向に複数のスリット26aを有し、空洞部12
の外壁側に固定させた4枚のシェル部材261で構成し
た。
FIG. 28 shows a radial cross section of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twenty-sixth embodiment of the present invention. In the rotor of this embodiment, the conductor is formed in the rotor core body in a curved manner along the circumferential direction and has a plurality of slits 26a in the circumferential direction, like the shell member 26 described above, and has a cavity. Part 12
And four shell members 261 fixed to the outer wall side.

【0089】従って、この実施の形態においても、始動
時は、磁極間部分4bの比較的外側に位置するシェル部
材261部分に、周方向にパスの長い誘導電流が流れる
ので、自己始動が容易となる。
Therefore, also in this embodiment, at the time of starting, an induced current having a long path in the circumferential direction flows through the shell member 261 located relatively outside the inter-magnetic pole portion 4b, which facilitates self-starting. Become.

【0090】図29(a)は、上記第25及び第26の
実施形の態に類似した、第27の実施の形態による永久
磁石式リラクタンス型回転電機の回転子の半径方向断面
を示している。
FIG. 29A shows a radial cross section of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twenty-seventh embodiment, which is similar to the twenty-fifth and twenty-sixth embodiments. .

【0091】この実施の形態では、回転子鉄心4自体
は、図27に示した回転子における回転子鉄心の磁極間
部分(ブリッジ部)4bを削除し、略十字断面となるよ
うに形成し、磁極部分4aの円周方向両端は、4枚の導
電性のシェル部材262の円周方向両端と係合するよう
に鉤状に形成され、回転子3に遠心力がかかった状態で
も、シェル部材262が回転子3より脱落しないように
係合・固定した。
In this embodiment, the rotor core 4 itself is formed so as to have a substantially cross section by removing the portion (bridge portion) 4b between the magnetic poles of the rotor core in the rotor shown in FIG. Both ends of the magnetic pole portion 4a in the circumferential direction are formed in a hook shape so as to engage with both ends of the four conductive shell members 262 in the circumferential direction. 262 was engaged and fixed so as not to fall off from the rotor 3.

【0092】また、この実施の形態において4枚の導電
性のシェル部材262で構成された導体は、図29
(b)に示すように、回転子軸方向の両端部に導電性リ
ング262b,262cを貼り付けたもので、この結
果、回転子3の磁極間部分に回転子鉄心胴部において周
方向(軸線方向)に長いパスのスリット262aを形成
できると同時に、磁極部分4aの外周面と滑らかに接続
される。
Further, in this embodiment, a conductor constituted by four conductive shell members 262 corresponds to FIG.
As shown in (b), conductive rings 262b and 262c are attached to both ends in the rotor axial direction. As a result, the rotor core 3 has a portion between the magnetic poles of the rotor 3 in the circumferential direction (axial line). Direction), a slit 262a having a long path can be formed, and at the same time, it is smoothly connected to the outer peripheral surface of the magnetic pole portion 4a.

【0093】この結果、鉄心4については図26に示し
た実施の形態と同様な効果が得られるほか、シェル部材
262が磁極部分4aの外周面に連なるため、回転時の
空気抵抗は低減され、回転効率を高めることもでき、始
動時はこのシェル部材262部分にパスの長い誘導電流
の流れによって自己始動が容易となる。
As a result, the same effect as that of the embodiment shown in FIG. 26 is obtained for the iron core 4, and the shell member 262 is connected to the outer peripheral surface of the magnetic pole portion 4a, so that the air resistance during rotation is reduced. Rotational efficiency can be increased, and self-starting is facilitated by the flow of induced current having a long path in the shell member 262 at the time of starting.

【0094】なお、この実施の形態において、シェル部
材262は、図29(b)に示すように、回転子の軸線
方向両端部においてそれぞれのシェル部材262が導電
性リング262b,262cを介して短絡された1つの
円筒形導電部材を構成であることを説明したが、導電性
リング262b,262cを省略し、第25及び第26
の実施の形態と同様に、回転子3の各磁極間部分に個々
に対応した別体としてそれぞれ構成しても良い。
In this embodiment, as shown in FIG. 29B, the shell members 262 are short-circuited at both ends in the axial direction of the rotor via conductive rings 262b and 262c. However, the conductive rings 262b and 262c are omitted, and the twenty-fifth and twenty-sixth conductive members are omitted.
Similarly to the embodiment, the rotor 3 may be configured as a separate body corresponding to each portion between the magnetic poles.

【0095】以上のように、第22ないし第27の各実
施の形態における回転子は、回転子鉄心の外周部分に設
けた導体が、いずれも回転子鉄心胴部において周方向
(軸線方向)に複数のスリットを有し、始動時の誘導電
流は回転子軸方向に長いパスを形成して流れるので、電
機子との磁気的結合が強化され、大きな始動トルクを得
ることができる。
As described above, in the rotors of the twenty-second to twenty-seventh embodiments, the conductors provided on the outer peripheral portion of the rotor core are all arranged in the circumferential direction (axial direction) in the rotor core body. Since it has a plurality of slits and the induced current at the time of starting forms a long path in the rotor axial direction and flows, the magnetic coupling with the armature is strengthened, and a large starting torque can be obtained.

【0096】いずれにしても、本発明による永久磁石式
リラクタンス型回転電機の回転子は、導体を回転子鉄心
の外周部分に設けるという簡単な構造により、自己始動
を可能としたもので実用上大きな効果を得ることができ
る。
In any case, the permanent magnet type according to the present invention
The rotor of the reluctance type rotating electric machine has a simple structure in which the conductor is provided on the outer peripheral portion of the rotor core, and is capable of self-starting, so that a large practical effect can be obtained.

【0097】[0097]

【発明の効果】以上説明したように請求項1に記載の発
明によれば、起動時、電磁誘導によって回転子鉄心の外
周部分に設けられた導体に誘導起電力が生じ、自己始動
可能になる。なお、永久磁石は、各磁極間部の回転子円
周方向両端に設けられ磁極間部を通る電機子の磁束を打
ち消すように磁化されているため、この方向では磁気抵
抗が高くなり、空隙磁束密度に凹凸ができ、この磁気エ
ネルギ変化によってトルクを発生させることができる。
As described above, according to the first aspect of the present invention, at the time of startup, an induced electromotive force is generated in the conductor provided on the outer peripheral portion of the rotor core by electromagnetic induction, and self-starting is possible. . The permanent magnets are provided at both ends in the circumferential direction of the rotor between the magnetic poles and are magnetized so as to cancel the magnetic flux of the armature passing through the magnetic poles. In this direction, the magnetic resistance increases, and the air gap magnetic flux increases. The density has irregularities, and a torque can be generated by the change in magnetic energy.

【0098】請求項2に記載の発明によれば、回転子鉄
心の磁極部分の外周面近傍に導体磁性バーを複数埋設す
るため、その導電性により自己始動が可能となると共
に、バー自体は磁性材料で形成されたため、磁極部分を
流れる磁束(磁束数)密度が減少せず、トルクには影響
を与えない効果が得られる。
According to the second aspect of the present invention, since a plurality of conductive magnetic bars are buried near the outer peripheral surface of the magnetic pole portion of the rotor core, self-starting is possible due to the conductivity, and the bars themselves are magnetic. Since it is formed of a material, the density of the magnetic flux (number of magnetic fluxes) flowing through the magnetic pole portion does not decrease, and an effect that does not affect the torque can be obtained.

【0099】請求項3に記載の発明によれば、永久磁石
の回転子半径方向における外側の鉄心部分に空洞部が形
成されるため、磁気回路がここで遮断され、磁極間部分
の磁気抵抗がさらに増すことになる。従って、磁極部と
の磁気エネルギ変化量は増加し大きなトルクを発生させ
ることができる。
According to the third aspect of the present invention, since the hollow portion is formed in the outer core portion of the permanent magnet in the radial direction of the rotor, the magnetic circuit is interrupted here, and the magnetic resistance of the portion between the magnetic poles is reduced. It will increase further. Therefore, the amount of change in magnetic energy with the magnetic pole portion increases, and a large torque can be generated.

【0100】請求項4に記載の発明によれば、回転子鉄
心の磁極間部分の外周面近傍にも導体バーが埋設される
ため、さらに自己始動特性が向上する。また、その非磁
性特性により磁極間部分の磁気抵抗がさらに増すことに
なり、磁極部との磁気エネルギ変化量はさらに増加す
る。
According to the fourth aspect of the present invention, since the conductor bar is also buried near the outer peripheral surface of the portion between the magnetic poles of the rotor core, the self-starting characteristic is further improved. Further, due to the non-magnetic characteristics, the magnetic resistance in the portion between the magnetic poles further increases, and the amount of change in magnetic energy between the magnetic poles further increases.

【0101】さらに請求項5に記載の発明によれば、空
洞部にも非磁性導体バーが埋設されるため、磁気回路が
ここで遮断され、磁極間部分の磁気抵抗がさらに増す。
また、空洞部を非磁性導体バーで充填するため、回転子
自体の強度も向上する。
According to the fifth aspect of the present invention, since the nonmagnetic conductor bar is also buried in the cavity, the magnetic circuit is interrupted here, and the magnetic resistance between the magnetic poles is further increased.
Further, since the hollow portion is filled with the nonmagnetic conductor bar, the strength of the rotor itself is also improved.

【0102】また、請求項6に記載の発明によれば、回
転子の外周面全周に沿って導体バーを埋設するため、そ
の導電性により始動カゴと同等の始動トルクを持った始
動性が達成される。また、磁極部分では導体バーは磁性
材料から形成され、磁極間部分では導体バーが非磁性材
料で形成されているため、磁極と磁極間部分の磁気抵抗
差が増し、磁気エネルギ量はさらに増加する。
According to the sixth aspect of the present invention, since the conductor bar is buried along the entire outer peripheral surface of the rotor, the startability having the same starting torque as the starting cage due to its conductivity is achieved. Achieved. In the magnetic pole portion, the conductor bar is formed of a magnetic material, and in the portion between the magnetic poles, the conductor bar is formed of a non-magnetic material. .

【0103】請求項7に記載の発明によれば、回転子鉄
心の磁極間部分にのみ導体の非磁性バーを埋設するた
め、その導電性により自己始動が確保されることに加
え、その非磁性により磁極間部分の磁気抵抗が増す。ま
た磁極部分には非磁性バーが埋設されないため、構造が
簡単になる。
According to the seventh aspect of the present invention, since the non-magnetic bar of the conductor is buried only in the portion between the magnetic poles of the rotor core, the self-start is ensured by the conductivity, and the non-magnetic bar is formed. As a result, the magnetic resistance in the portion between the magnetic poles increases. Further, since the nonmagnetic bar is not embedded in the magnetic pole portion, the structure is simplified.

【0104】請求項8に記載の発明によれば、回転子鉄
心の外周面を導体が被覆するため、始動時においては、
その導電性により回転子外周面をスムーズに誘導電流が
流れ、自己始動が可能になる。
According to the eighth aspect of the present invention, since the conductor covers the outer peripheral surface of the rotor core,
Due to the conductivity, an induced current flows smoothly on the outer peripheral surface of the rotor, and self-starting becomes possible.

【0105】また請求項9に記載の発明によれば、回転
子鉄心の外周面全面を導体が被覆するため、その導電性
により始動時は誘導電流が流れ、自己始動が可能にな
る。また導体は筒状になるため、多数のバーを埋設する
ものに比較して部品点数も少なく、機械的強度が向上す
ると共に製造が容易となる。
According to the ninth aspect of the present invention, since the conductor covers the entire outer peripheral surface of the rotor core, an induced current flows at the time of starting due to its conductivity, and self-starting becomes possible. In addition, since the conductor is cylindrical, the number of parts is smaller than that in which a large number of bars are embedded, so that the mechanical strength is improved and the manufacture is easy.

【0106】また請求項10に記載の発明によれば、回
転子鉄心の磁極間部分を導体が被覆するため、その導電
性により始動時はこの部分に誘導電流が流れ、自己始動
が可能になる。また導体は磁極部分の外周面に連なるた
め、回転子の風損が低減し回転効率を高めることができ
る。
According to the tenth aspect of the present invention, since the conductor covers the portion between the magnetic poles of the rotor core, an induced current flows through this portion at the time of starting due to its conductivity, and self-starting becomes possible. . Further, since the conductor is continuous with the outer peripheral surface of the magnetic pole portion, windage loss of the rotor can be reduced and rotation efficiency can be increased.

【0107】また請求項11に記載の発明によれば、回
転子鉄心の磁極間部分の近傍に導体が配置されるため、
その導電性により始動時はこの部分に誘導電流が流れ、
自己始動が可能になる。
According to the eleventh aspect of the present invention, since the conductor is arranged near the portion between the magnetic poles of the rotor core,
At the time of starting, induced current flows in this part due to its conductivity,
Self-starting becomes possible.

【0108】請求項12に記載の発明によれば永久磁石
リラクタンス型回転電機の回転子において、回転子鉄
心の外周部分に設けた導体が、回転子鉄心胴部において
周方向に複数のスリットを有するので、始動時の誘導電
流は回転子軸方向に長いパスを形成して流れ、電機子と
の磁気的結合が強化されるので、請求項1における発明
の効果に加えて、更により大きな始動トルクを得ること
ができる。
According to the twelfth aspect of the present invention, in the rotor of the permanent magnet type reluctance type rotary electric machine, the conductor provided on the outer peripheral portion of the rotor core has a plurality of slits in the circumferential direction in the rotor core body. As a result, the induced current at the time of starting forms a long path in the axial direction of the rotor and flows therethrough, and the magnetic coupling with the armature is strengthened. The torque can be obtained.

【0109】請求項13に記載の発明によれば、導体が
回転子鉄心の外周面を被覆したので、誘導電流は回転子
外周面をスムーズに流れ、請求項12における発明の効
果に加えて、自己始動がより一層容易となる。また、導
体による外周面の覆いにより、回転子の空気抵抗(風
損)が低減されるとともに、回転子の機械的強度が向上
する。
According to the thirteenth aspect of the present invention, since the conductor covers the outer peripheral surface of the rotor core, the induced current flows smoothly on the outer peripheral surface of the rotor. Self-starting is much easier. In addition, by covering the outer peripheral surface with the conductor, the air resistance (windage loss) of the rotor is reduced and the mechanical strength of the rotor is improved.

【0110】請求項14に記載の発明によれば、導体が
回転子鉄心の全外周面全面を被覆するため、請求項13
における発明の効果に加えて、回転子外周面全面にわた
って誘導電流が流れるので自己始動がさらに容易とな
る。また、導体は回転子鉄心の全外周面全面を被覆した
筒状をなすので、簡単な構成により、回転子の機械的強
度をより一層向上させることができる。
According to the fourteenth aspect, the conductor covers the entire outer peripheral surface of the rotor core.
In addition to the effect of the invention, the self-starting is further facilitated because the induced current flows over the entire outer peripheral surface of the rotor. Further, since the conductor has a cylindrical shape covering the entire outer peripheral surface of the rotor core, the mechanical strength of the rotor can be further improved with a simple configuration.

【0111】請求項15に記載の発明においても、導体
は磁極部分の外周面に連結されたシェル部材で構成され
るので、請求項13に記載の効果に加え、回転子の空気
抵抗は低減し回転効率を高めることができる。
Also in the invention according to claim 15, since the conductor is constituted by a shell member connected to the outer peripheral surface of the magnetic pole portion, the air resistance of the rotor is reduced in addition to the effect described in claim 13. Rotation efficiency can be increased.

【0112】請求項16に記載の発明によれば、回転子
鉄心の磁極間部分の外周面近傍に湾曲形成された導体を
配置したので、始動時にはその導体部分に誘導電流が流
れ、請求項12の発明と同様に、自己始動が可能にな
る。
According to the sixteenth aspect of the present invention, since the curved conductor is disposed near the outer peripheral surface of the portion between the magnetic poles of the rotor core, an induced current flows through the conductor at the time of starting. In the same manner as in the invention described above, self-starting is enabled.

【0113】請求項17に記載の発明によれば、回転子
鉄心の少なくとも外周面を被覆した導体を、導電性磁性
材料で構成したので、請求項13または14の各発明に
おける効果に加えて、大きな主磁束が得られ、同期引き
入れ時の滑りが小さくなるためより大きなトルクを必要
とする負荷まで始動、引き入れが可能となる。
According to the seventeenth aspect, the conductor covering at least the outer peripheral surface of the rotor core is made of a conductive magnetic material. Since a large main magnetic flux is obtained and slip during synchronous pull-in is reduced, it is possible to start and pull-in a load requiring a larger torque.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を適用した永久磁石
リラクタンス型回転電機の径方向断面図である。
FIG. 1 is a radial sectional view of a permanent magnet type reluctance type rotary electric machine to which a first embodiment of the present invention is applied.

【図2】本発明の第2の実施の形態による永久磁石式
ラクタンス型回転電機の回転子の径方向断面図である。
FIG. 2 is a perspective view of a permanent magnet type remote controller according to a second embodiment of the present invention;
FIG. 2 is a radial cross-sectional view of a rotor of a lactance type rotating electric machine.

【図3】本発明の第3の実施の形態による永久磁石式
ラクタンス型回転電機の回転子の径方向断面図である。
FIG. 3 is a perspective view of a permanent magnet type remote controller according to a third embodiment of the present invention;
FIG. 2 is a radial cross-sectional view of a rotor of a lactance type rotating electric machine.

【図4】本発明の第4の実施の形態による永久磁石式
ラクタンス型回転電機の回転子の径方向断面図である。
FIG. 4 is a perspective view of a permanent magnet type remote controller according to a fourth embodiment of the present invention.
FIG. 2 is a radial cross-sectional view of a rotor of a lactance type rotating electric machine.

【図5】本発明の第5の実施の形態による永久磁石式
ラクタンス型回転電機の回転子の径方向断面図である。
FIG. 5 is a perspective view of a permanent magnet type remote controller according to a fifth embodiment of the present invention.
FIG. 2 is a radial cross-sectional view of a rotor of a lactance type rotating electric machine.

【図6】本発明の第6の実施の形態による永久磁石式
ラクタンス型回転電機の回転子の径方向断面図である。
FIG. 6 shows a permanent magnet type remote controller according to a sixth embodiment of the present invention.
FIG. 2 is a radial cross-sectional view of a rotor of a lactance type rotating electric machine.

【図7】本発明の第7の実施の形態による永久磁石式
ラクタンス型回転電機の回転子の径方向断面図である。
FIG. 7 is a perspective view of a permanent magnet type remote controller according to a seventh embodiment of the present invention.
FIG. 2 is a radial cross-sectional view of a rotor of a lactance type rotating electric machine.

【図8】本発明の第8の実施の形態による永久磁石式
ラクタンス型回転電機の回転子の径方向断面図である。
FIG. 8 shows a permanent magnet type refill according to an eighth embodiment of the present invention.
FIG. 2 is a radial cross-sectional view of a rotor of a lactance type rotating electric machine.

【図9】本発明の第9の実施の形態による永久磁石式
ラクタンス型回転電機の回転子の径方向断面図である。
FIG. 9 is a perspective view of a permanent magnet type remote controller according to a ninth embodiment of the present invention;
FIG. 2 is a radial cross-sectional view of a rotor of a lactance type rotating electric machine.

【図10】本発明の第10の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 10 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a tenth embodiment of the present invention.

【図11】本発明の第11の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 11 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotary electric machine according to an eleventh embodiment of the present invention.

【図12】本発明の第12の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 12 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twelfth embodiment of the present invention.

【図13】本発明の第13の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 13 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a thirteenth embodiment of the present invention.

【図14】本発明の第14の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 14 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a fourteenth embodiment of the present invention.

【図15】本発明の第15の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 15 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotary electric machine according to a fifteenth embodiment of the present invention.

【図16】本発明の第16の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 16 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a sixteenth embodiment of the present invention.

【図17】本発明の第17の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 17 is a radial cross-sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a seventeenth embodiment of the present invention.

【図18】本発明の第18の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 18 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to an eighteenth embodiment of the present invention.

【図19】本発明の第19の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 19 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a nineteenth embodiment of the present invention.

【図20】本発明の第20の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 20 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a twentieth embodiment of the present invention.

【図21】本発明の第21の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 21 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twenty-first embodiment of the present invention.

【図22】図21の回転子に用いる円筒型導電部材を示
す斜視図である。
FIG. 22 is a perspective view showing a cylindrical conductive member used for the rotor of FIG. 21;

【図23】本発明による永久磁石式リラクタンス型回転
電機の回転子の第22の実施の形態を適用した永久磁石
リラクタンス型回転電機の径方向断面図である。
FIG. 23 is a radial sectional view of a permanent magnet type reluctance type rotary electric machine to which a twenty-second embodiment of the rotor of the permanent magnet type reluctance type rotary electric machine according to the present invention is applied.

【図24】図23に示した回転子の円筒部材(導体)を
示す斜視図である。
24 is a perspective view showing a cylindrical member (conductor) of the rotor shown in FIG.

【図25】本発明の第23の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 25 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a twenty-third embodiment of the present invention.

【図26】本発明の第24の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 26 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twenty-fourth embodiment of the present invention.

【図27】図27(a)は本発明の第25の実施の形態
による永久磁石式リラクタンス型回転電機の回転子の径
方向断面図、図27(b)は図27(a)のシェル部材
(導体)を示す斜視図である。
FIG. 27 (a) is a radial sectional view of a rotor of a permanent magnet type reluctance type rotary electric machine according to a twenty-fifth embodiment of the present invention, and FIG. 27 (b) is a shell member of FIG. 27 (a). It is a perspective view which shows (conductor).

【図28】本発明の第26の実施の形態による永久磁石
リラクタンス型回転電機の回転子の径方向断面図であ
る。
FIG. 28 is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a twenty-sixth embodiment of the present invention.

【図29】図29(a)は、本発明の第27の実施の形
態による永久磁石式リラクタンス型回転電機の回転子の
径方向断面図、図29(b)は図29(a)に示すシェ
ル部材で構成された導体の斜視図である。
29 (a) is a radial sectional view of a rotor of a permanent magnet type reluctance type rotating electric machine according to a twenty-seventh embodiment of the present invention, and FIG. 29 (b) is shown in FIG. 29 (a). It is a perspective view of the conductor comprised by the shell member.

フロントページの続き (72)発明者 高畠 幹生 神奈川県横浜市鶴見区末広町2丁目4番 地 株式会社東芝 京浜事業所内 (72)発明者 橋立 良夫 神奈川県横浜市鶴見区末広町2丁目4番 地 株式会社東芝 京浜事業所内 (56)参考文献 特開 昭52−13605(JP,A) 特開 平5−22916(JP,A) 特開 平10−257702(JP,A) 米国特許4924130(US,A) 米国特許4476408(US,A) 米国特許4139790(US,A) 米国特許3465181(US,A) (58)調査した分野(Int.Cl.7,DB名) H02K 19/10 H02K 1/27 501 H02K 21/00,29/00 Continued on the front page (72) Inventor Mikio Takahata 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Keihin Works, Toshiba Corporation (72) Inventor Yoshio Hashidate 2-4-2, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa (56) References JP-A-52-13605 (JP, A) JP-A-5-22916 (JP, A) JP-A-10-257702 (JP, A) US Patent 4,924,130 (US, a) United States Patent 4476408 (US, a) United States Patent 4139790 (US, a) United States Patent 3465181 (US, a) (58 ) investigated the field (Int.Cl. 7, DB name) H02K 19/10 H02K 1/27 501 H02K 21 / 00,29 / 00

Claims (17)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁気的に凹凸部を形成する回転子鉄心
と、この回転子鉄心の各磁極軸に沿いかつ半径方向外側
に鉄心の外周部分を残して配置される永久磁石とを有す
る永久磁石式リラクタンス型回転電機の回転子におい
て、 前記永久磁石は、各磁極間部の回転子円周方向両端に設
けられ、かつ磁極間部を通る電機子の磁束を打ち消すよ
うに磁化されていると共に、 前記回転子鉄心の外周部分には、誘導電流を発生させる
ための導体が設けられたことを特徴とする永久磁石式
ラクタンス型回転電機の回転子。
1. A rotor core to form a magnetically uneven portion, along Ikatsu radially outwardly respective pole axes of the rotor core
In the rotor of the permanent-magnet reluctance electrical rotary machine having a permanent magnet is disposed leaving a peripheral portion of the iron core, the permanent magnet is provided on the rotor circumferentially opposite ends of each inter-pole portion and pole together are magnetized so as to cancel the magnetic flux of the armature passing between portions, the rotor on the outer peripheral portion of the iron core, the permanent magnet type Li, wherein a conductor for generating the induced current is provided
A rotor of a lactance type rotating electric machine.
【請求項2】 前記導体は、前記回転子鉄心の磁極部分
の外周面近傍に埋設され、回転子軸線方向に延びる複数
の磁性バーから構成されたことを特徴とする請求項1に
記載の永久磁石式リラクタンス型回転電機の回転子。
2. The permanent magnet according to claim 1, wherein the conductor is constituted by a plurality of magnetic bars embedded near an outer peripheral surface of a magnetic pole portion of the rotor core and extending in an axial direction of the rotor. Rotor of magnet type reluctance type rotating electric machine.
【請求項3】 前記永久磁石の回転子半径方向外側の鉄
心部分には、空洞部が形成されたことを特徴とする請求
項2に記載の永久磁石式リラクタンス型回転電機の回転
子。
3. The rotor of a permanent magnet type reluctance type rotating electric machine according to claim 2, wherein a cavity is formed in an iron core portion of the permanent magnet on a radially outer side of the rotor.
【請求項4】 前記回転子鉄心の磁極間部分の外周面近
傍に、回転子軸線方向に延びかつ誘導電流が発生する非
磁性導体バーが複数埋設されたことを特徴とする請求項
3に記載の永久磁石式リラクタンス型回転電機の回転
子。
4. The non-magnetic conductor bar, which extends in the axial direction of the rotor and generates an induced current, is buried in the vicinity of the outer peripheral surface of the portion between the magnetic poles of the rotor core. Rotor of permanent magnet type reluctance type rotary electric machine.
【請求項5】 前記空洞部に、回転子軸線方向に延びか
つ誘導電流が発生する非磁性導体バーが埋設されたこと
を特徴とする請求項4に記載の永久磁石式リラクタンス
回転電機の回転子。
5. The permanent magnet reluctance according to claim 4, wherein a non-magnetic conductor bar extending in the axial direction of the rotor and generating an induced current is embedded in the hollow portion.
Type electric rotating machine.
【請求項6】 前記導体は、前記回転子鉄心の磁極部分
の外周面近傍に埋設され、回転子軸線方向に延びる複数
の深溝型磁性バーと、前記回転子鉄心の磁極間部分の外
周面近傍に埋設され、回転子軸線方向に延びる複数の非
磁性バーとから構成されたことを特徴とする請求項1に
記載の永久磁石式リラクタンス型回転電機の回転子。
6. A plurality of deep-groove magnetic bars buried near the outer peripheral surface of a magnetic pole portion of the rotor core and extending in the axial direction of the rotor, and near an outer peripheral surface of a portion between the magnetic poles of the rotor core. 2. The rotor of the permanent magnet type reluctance type rotating electric machine according to claim 1, comprising: a plurality of non-magnetic bars embedded in the rotor and extending in the rotor axis direction. 3.
【請求項7】 前記導体は、前記回転子鉄心の磁極間部
分の外周面近傍に埋設され、回転子軸線方向に延びる複
数の非磁性バーで構成されたことを特徴とする請求項1
に記載の永久磁石式リラクタンス型回転電機の回転子。
7. The rotor according to claim 1, wherein the conductor comprises a plurality of non-magnetic bars buried in the vicinity of the outer peripheral surface of the portion between the magnetic poles of the rotor core and extending in the axial direction of the rotor.
The rotor of the permanent-magnet-type reluctance-type rotary electric machine according to Claim 1.
【請求項8】 前記導体は、前記回転子鉄心の外周面を
被覆するように形成されたことを特徴とする請求項1に
記載の永久磁石式リラクタンス型回転電機の回転子。
8. The rotor for a permanent magnet type reluctance type rotating electric machine according to claim 1, wherein the conductor is formed so as to cover an outer peripheral surface of the rotor core.
【請求項9】 前記導体は、前記回転子鉄心の全外周面
を覆い、円筒状に形成されたことを特徴とする請求項8
に記載の永久磁石式リラクタンス型回転電機の回転子。
9. The rotor according to claim 8, wherein the conductor covers the entire outer peripheral surface of the rotor core and is formed in a cylindrical shape.
The rotor of the permanent-magnet-type reluctance-type rotary electric machine according to Claim 1.
【請求項10】 前記導体は、前記回転子鉄心の磁極部
分の外周面と連結され、かつ磁極間部分を覆う複数のシ
ェル部材から構成されたことを特徴とする請求項8に記
載の永久磁石式リラクタンス型回転電機の回転子。
10. The permanent magnet according to claim 8, wherein the conductor is composed of a plurality of shell members connected to an outer peripheral surface of a magnetic pole portion of the rotor core and covering a portion between the magnetic poles. Rotor of reluctance type rotary electric machine.
【請求項11】 前記導体は、前記回転子鉄心の磁極間
部分の外周面近傍に配置され、回転子円周方向に沿って
湾曲形成されたことを特徴とする請求項1に記載の永久
磁石式リラクタンス型回転電機の回転子。
11. The permanent magnet according to claim 1, wherein the conductor is disposed near an outer peripheral surface of a portion between the magnetic poles of the rotor core, and is curved along a circumferential direction of the rotor. Rotor of reluctance type rotary electric machine.
【請求項12】 前記導体は、回転子鉄心胴部において
周方向に複数のスリットを有することを特徴とする請求
項1記載の永久磁石式リラクタンス型回転電機の回転
子。
12. The rotor for a permanent magnet type reluctance type rotating electric machine according to claim 1, wherein the conductor has a plurality of slits in a circumferential direction in a rotor core body.
【請求項13】 前記導体は、前記回転子鉄心の外周面
を被覆するように形成されたことを特徴とする請求項1
2に記載の永久磁石式リラクタンス型回転電機の回転
子。
13. The rotor according to claim 1, wherein the conductor is formed so as to cover an outer peripheral surface of the rotor core.
3. The rotor of the permanent magnet type reluctance type rotating electric machine according to 2.
【請求項14】 前記導体は、前記回転子鉄心の全外周
面を覆い、円筒状に形成されたことを特徴とする請求項
13に記載の永久磁石式リラクタンス型回転電機の回転
子。
14. The rotor for a permanent magnet type reluctance type rotating electric machine according to claim 13, wherein the conductor covers the entire outer peripheral surface of the rotor core and is formed in a cylindrical shape.
【請求項15】 前記導体は、前記回転子鉄心の磁極部
分の外周面に連結され、かつ磁極間部分を覆う複数のシ
ェル部材により構成されたことを特徴とする請求項13
に記載の永久磁石式リラクタンス型回転電機の回転子。
15. The rotor according to claim 13, wherein the conductor is formed of a plurality of shell members connected to an outer peripheral surface of a magnetic pole portion of the rotor core and covering a portion between the magnetic poles.
The rotor of the permanent-magnet-type reluctance-type rotary electric machine according to Claim 1.
【請求項16】 前記導体は、前記回転子鉄心の磁極間
部分の外周面近傍に配置され、回転子円周方向に沿い湾
曲して形成されたことを特徴とする請求項12に記載の
永久磁石式リラクタンス型回転電機の回転子。
16. The permanent magnet according to claim 12, wherein the conductor is disposed near an outer peripheral surface of a portion between the magnetic poles of the rotor core, and is formed to be curved along a circumferential direction of the rotor. Rotor of magnet type reluctance type rotating electric machine.
【請求項17】 前記導体は、導電性磁性材料で構成さ
れたことを特徴とする請求項13または請求項14に記
載の永久磁石式リラクタンス型回転電機の回転子。
17. The rotor of a permanent magnet type reluctance type rotating electric machine according to claim 13, wherein the conductor is made of a conductive magnetic material.
JP05120199A 1998-09-29 1999-02-26 Rotor of permanent magnet type reluctance type rotating electric machine Expired - Lifetime JP3172504B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP05120199A JP3172504B2 (en) 1998-09-29 1999-02-26 Rotor of permanent magnet type reluctance type rotating electric machine
US09/406,772 US6274960B1 (en) 1998-09-29 1999-09-28 Reluctance type rotating machine with permanent magnets
EP07013886A EP1858138A3 (en) 1998-09-29 1999-09-29 Reluctance type rotating machine with permanent magnets
KR10-1999-0041664A KR100387554B1 (en) 1998-09-29 1999-09-29 Reluctance type rotating machine with permanent magnets
EP10180893A EP2273658A3 (en) 1998-09-29 1999-09-29 Reluctance type rotating machine with permanent magnets
EP99119045A EP0991166A3 (en) 1998-09-29 1999-09-29 Reluctance type rotating machine with permanent magnets
EP10180891A EP2276153A3 (en) 1998-09-29 1999-09-29 Reluctance type rotating machine with permanent magnets
CNB991205693A CN1327595C (en) 1998-09-29 1999-09-29 Reluctance electric rotating machine with permanent magnet
EP07013887A EP1837981A3 (en) 1998-09-29 1999-09-29 Reluctance type rotating machine with permanent magnets
EP07013885A EP1837980A3 (en) 1998-09-29 1999-09-29 Reluctance type rotating machine with permanent magnets
US09/661,269 US6342745B1 (en) 1998-09-29 2000-09-13 Reluctance type rotating machine with permanent magnets
US09/871,891 US6552462B2 (en) 1998-09-29 2001-06-04 Reluctance type rotating machine with permanent magnets

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27579798 1998-09-29
JP10-275797 1998-09-29
JP05120199A JP3172504B2 (en) 1998-09-29 1999-02-26 Rotor of permanent magnet type reluctance type rotating electric machine

Publications (2)

Publication Number Publication Date
JP2000175416A JP2000175416A (en) 2000-06-23
JP3172504B2 true JP3172504B2 (en) 2001-06-04

Family

ID=26391736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05120199A Expired - Lifetime JP3172504B2 (en) 1998-09-29 1999-02-26 Rotor of permanent magnet type reluctance type rotating electric machine

Country Status (1)

Country Link
JP (1) JP3172504B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055961A1 (en) * 1999-03-17 2000-09-21 Aisin Aw Co., Ltd. Reluctance motor
JP3740353B2 (en) * 2000-07-17 2006-02-01 株式会社東芝 Permanent magnet type reluctance type rotating electrical machine
JP2003259615A (en) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp Reluctance motor
JP2006121765A (en) * 2004-10-19 2006-05-11 Mitsubishi Electric Corp Reluctance rotary electric machine
JP2006230087A (en) * 2005-02-17 2006-08-31 Hitachi Ltd Electric motor, compressor, and air conditioner
KR101143991B1 (en) 2006-04-24 2012-05-09 주식회사 동서전자 Rotor of a line start permanent magnet synchronous motor
JP2009284588A (en) * 2008-05-20 2009-12-03 Hitachi Appliances Inc Self-start type permanent magnet synchronous motor and compressor using the same
EP2372885B1 (en) 2008-12-15 2017-07-05 Kabushiki Kaisha Toshiba Permanent magnet type rotary electrical machine
JP5305887B2 (en) * 2008-12-18 2013-10-02 株式会社東芝 Permanent magnet rotating electric machine
JP5673327B2 (en) * 2010-05-12 2015-02-18 株式会社デンソー Rotating electrical machine rotor
JP5557713B2 (en) * 2010-12-03 2014-07-23 本田技研工業株式会社 Rotor
JP6546042B2 (en) * 2015-08-31 2019-07-17 東芝インフラシステムズ株式会社 Synchronous reluctance motor

Also Published As

Publication number Publication date
JP2000175416A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP3816727B2 (en) Permanent magnet type reluctance type rotating electrical machine
US6274960B1 (en) Reluctance type rotating machine with permanent magnets
US7514833B2 (en) Axial gap permanent-magnet machine with reluctance poles and PM element covers
JP3308828B2 (en) Permanent magnet rotating electric machine and electric vehicle using the same
KR100362905B1 (en) The rotor of permanent magnet type rotation electrical machine
JP2000156947A (en) Magnet-type motor and power generator
JP3785982B2 (en) Rotating electric machine
JP2004096850A (en) Rotor for induction start type synchronous dynamo-electric machine
JPH08251848A (en) Rotor of permanent magnet type synchronous rotary machine
JP4291517B2 (en) Improved permanent magnet / reluctance variable rotating electrical equipment
JP3172504B2 (en) Rotor of permanent magnet type reluctance type rotating electric machine
JP3835231B2 (en) Electric motor
JP3928297B2 (en) Electric motor and manufacturing method thereof
US5130591A (en) Shaded pole motor
JP6755840B2 (en) Rotating machine
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP2000041367A (en) Hybrid excitation type synchronous machine
JP3172497B2 (en) Permanent magnet type reluctance type rotating electric machine
JP3772819B2 (en) Coaxial motor rotor structure
JP2003333813A (en) Rotor of synchronous reluctance motor
JP2018198534A (en) Rotary electric machine
JP6466612B1 (en) Rotating electric machine
KR19990065127A (en) Rotor of embedded permanent magnet synchronous motor
JP3857017B2 (en) Permanent magnet type reluctance type rotating electrical machine
JPWO2019187205A1 (en) Rotating machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

EXPY Cancellation because of completion of term