JP6013269B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP6013269B2
JP6013269B2 JP2013102695A JP2013102695A JP6013269B2 JP 6013269 B2 JP6013269 B2 JP 6013269B2 JP 2013102695 A JP2013102695 A JP 2013102695A JP 2013102695 A JP2013102695 A JP 2013102695A JP 6013269 B2 JP6013269 B2 JP 6013269B2
Authority
JP
Japan
Prior art keywords
permanent magnet
diameter side
outer diameter
spacer
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013102695A
Other languages
Japanese (ja)
Other versions
JP2014225935A (en
Inventor
守田 正夫
正夫 守田
知也 立花
知也 立花
敏則 田中
敏則 田中
瀧口 隆一
隆一 瀧口
秀哲 有田
秀哲 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013102695A priority Critical patent/JP6013269B2/en
Publication of JP2014225935A publication Critical patent/JP2014225935A/en
Application granted granted Critical
Publication of JP6013269B2 publication Critical patent/JP6013269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

この発明は、永久磁石を用いた回転電機に関するものであり、特に永久磁石の配置に関するものである。   The present invention relates to a rotating electrical machine using permanent magnets, and particularly relates to the arrangement of permanent magnets.

産業用の回転電機、更には電気自動車又はハイブリッド自動車などに用いられる回転電機においては、高出力化が要求されており、永久磁石を用いた回転電機は磁束密度を高めることができるため、永久磁石式回転電機が採用されている。永久磁石式回転電機において更なる出力の向上を図ろうとすると、回転子の表面近くだけでなく、回転子のより内径側まで永久磁石を設置することにより、回転子表面の磁束密度の向上を図ることができる。   In a rotating electrical machine for industrial use, and further in a rotating electrical machine used for an electric vehicle or a hybrid vehicle, high output is required, and a rotating electrical machine using a permanent magnet can increase the magnetic flux density. A rotary electric machine is used. In order to further improve the output in the permanent magnet type rotating electrical machine, the magnetic flux density on the rotor surface is improved by installing permanent magnets not only near the rotor surface but also on the inner diameter side of the rotor. be able to.

このとき、永久磁石の量を増やしすぎると、回転子鉄心、特に回転子鉄心の内径側が磁気飽和し、回転子表面の磁束密度の向上を図ることができなくなる。永久磁石の量を増やすためには、永久磁石の厚さを径方向に応じて変えればよい。そのために永久磁石を径方向に分割することが考えられる。径方向に分割された永久磁石を用いた回転電機として以下のものがある。   At this time, if the amount of permanent magnets is increased too much, the rotor core, particularly the inner diameter side of the rotor core, is magnetically saturated, and the magnetic flux density on the rotor surface cannot be improved. In order to increase the amount of permanent magnets, the thickness of the permanent magnets may be changed according to the radial direction. For this purpose, it is conceivable to divide the permanent magnet in the radial direction. Examples of rotating electrical machines using permanent magnets divided in the radial direction include the following.

即ち回転子において、各磁石挿入孔内に同一形状、同一寸法の一対の永久磁石片が互いに径方向に対向配置されて取り付けられているものがあった。(特許文献1参照)
又永久磁石をロータ径方向である磁石厚み方向において、厚みの薄い断面長方形状をなす2つの磁石に分割したものがあった。(特許文献2参照)
更に挿入方向(回転子の径方向)に永久磁石を上、中、下の3つに分割し、分割磁石として構成したものがあった。(特許文献3参照)
That is, in some rotors, a pair of permanent magnet pieces having the same shape and the same size are mounted in each magnet insertion hole so as to be opposed to each other in the radial direction. (See Patent Document 1)
Further, there is a permanent magnet divided into two magnets having a thin cross-sectional rectangular shape in the magnet thickness direction, which is the rotor radial direction. (See Patent Document 2)
Furthermore, there existed what comprised the permanent magnet divided | segmented into upper, middle, and lower three in the insertion direction (radial direction of a rotor), and comprised as a divided magnet. (See Patent Document 3)

特開2007−049805号公報JP 2007-049805 A 特開2010−141989号公報JP 2010-141989 特開2002−218684号公報JP 2002-218684 A

回転電機の更なる出力の向上を図るためには、回転子の表面近くだけでなく、回転子の内径側にまで永久磁石を設けることにより、回転子表面の磁束密度の向上を図ることができるが、永久磁石の量を増やしすぎると、回転子鉄心、特に回転子鉄心の内径側が磁気飽和してしまい、回転子表面の磁束密度の向上を図ることができなくなる。上記特許文献1〜3では、外径側に配置された永久磁石と内径側に配置された永久磁石の周方向長さが同じであるため、永久磁石の量が増えすぎてしまい回転子表面の磁束密度の向上を図ることができなくなるという問題点があった。   In order to further improve the output of the rotating electrical machine, it is possible to improve the magnetic flux density on the rotor surface by providing permanent magnets not only near the rotor surface but also on the inner diameter side of the rotor. However, if the amount of permanent magnets is increased too much, the rotor core, particularly the inner diameter side of the rotor core, is magnetically saturated, and the magnetic flux density on the rotor surface cannot be improved. In Patent Documents 1 to 3, since the circumferential length of the permanent magnet arranged on the outer diameter side and the permanent magnet arranged on the inner diameter side are the same, the amount of the permanent magnets increases too much and the rotor surface There was a problem that it was impossible to improve the magnetic flux density.

この発明は上記のような課題を解決するためになされたものであり、回転子鉄心が磁気飽和し難くした状態で回転子表面の磁束密度の向上を図ることにより、回転電機の出力を向上させることのできる永久磁石式回転電機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and improves the output of the rotating electrical machine by improving the magnetic flux density on the rotor surface in a state where the rotor core is hard to be magnetically saturated. An object of the present invention is to provide a permanent magnet type rotating electrical machine that can perform the above-described operation.

この発明に係る永久磁石式回転電機は、回転軸に取り付けられる回転子と、回転子の外径側に設置されると共に回転子と同一軸上に構成された固定子と、回転子に埋め込まれた永久磁石とを有するものであって、永久磁石は、直方体形状に形成されると共に回転電機の径方向に複数に分割されており、複数に分割された永久磁石は回転軸を中心として放射状かつ縦長になるよう回転子に埋め込まれるとともに、永久磁石は周方向において同極が対抗するように配置されており、複数に分割された永久磁石のうち内径側永久磁石の周方向幅を当該内径側永久磁石より外径側に位置する外径側永久磁石の周方向幅よりも小さく構成し、内径側永久磁石の周方向幅が外径側永久磁石の周方向幅内に収まるように内径側永久磁石を外径側永久磁石に接触させて配置したものである。 A permanent magnet type rotating electrical machine according to the present invention includes a rotor attached to a rotating shaft, a stator installed on the outer diameter side of the rotor and configured on the same axis as the rotor, and embedded in the rotor. and be one having a permanent magnet radially, permanent magnets, Rutotomoni formed into a rectangular parallelepiped is divided into a plurality of radial direction of the rotating electrical machine, the permanent magnet is divided into a plurality around the rotational axis The permanent magnets are embedded in the rotor so as to be vertically long, and the permanent magnets are arranged so that the same poles oppose each other in the circumferential direction. It is configured to be smaller than the circumferential width of the outer diameter side permanent magnet located on the outer diameter side of the side permanent magnet so that the circumferential width of the inner diameter side permanent magnet is within the circumferential width of the outer diameter side permanent magnet. a permanent magnet on the outer diameter side permanent magnet In which was placed in touch.

上記のように構成された永久磁石式回転電機によれば、磁気飽和を緩和しながら回転子表面の磁束密度の向上を図ることができ、回転電機の出力を向上させることができる。   According to the permanent magnet type rotating electric machine configured as described above, the magnetic flux density on the rotor surface can be improved while relaxing the magnetic saturation, and the output of the rotating electric machine can be improved.

実施の形態1に係る永久磁石式回転電機の軸方向に垂直な面で切断した断面図である。FIG. 3 is a cross-sectional view taken along a plane perpendicular to the axial direction of the permanent magnet type rotating electric machine according to the first embodiment. 回転子の一部を拡大して示した拡大断面図である。It is the expanded sectional view which expanded and showed a part of rotor. 回転子の一部を拡大して示した拡大断面図である。It is the expanded sectional view which expanded and showed a part of rotor. 回転子の一部を拡大して示した拡大断面図である。It is the expanded sectional view which expanded and showed a part of rotor. 実施の形態2に係る永久磁石式回転電機の回転子の一部を拡大して示した拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a part of a rotor of a permanent magnet type rotating electric machine according to a second embodiment. 実施の形態3に係る永久磁石式回転電機の回転子の一部を拡大して示した拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a part of a rotor of a permanent magnet type rotating electrical machine according to a third embodiment. 回転子の一部を拡大して示した拡大断面図である。It is the expanded sectional view which expanded and showed a part of rotor. 実施の形態4に係る永久磁石式回転電機の回転子の一部を拡大して示した拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing an enlarged part of a rotor of a permanent magnet type rotating electric machine according to a fourth embodiment. 回転子の一部を拡大して示した拡大断面図である。It is the expanded sectional view which expanded and showed a part of rotor. 実施の形態5に係る永久磁石式回転電機の回転子の一部を拡大して示した拡大断面図である。FIG. 9 is an enlarged cross-sectional view showing a part of a rotor of a permanent magnet type rotating electric machine according to a fifth embodiment. 回転子の一部を拡大して示した拡大断面図である。It is the expanded sectional view which expanded and showed a part of rotor.

実施の形態1.
図1は実施の形態1に係る永久磁石式回転電機の軸方向に垂直な面で切断した断面図、図2は図1において、回転子の一部を拡大して示した拡大断面図であり、永久磁石の着磁方向と磁束の関係を示したものである。尚本実施形態においては、永久磁石式回転電機として同期電動機である場合について説明する。図1に示すように、実施の形態1による永久磁石式回転電機は、回転軸10に回転子9が取り付けられると共に、回転子9の外径側には固定子3が設置され、回転子9と固定子3は同一軸上に構成されている。
Embodiment 1 FIG.
1 is a cross-sectional view taken along a plane perpendicular to the axial direction of the permanent magnet type rotating electric machine according to the first embodiment, and FIG. 2 is an enlarged cross-sectional view showing a part of the rotor in FIG. The relationship between the magnetization direction of a permanent magnet and magnetic flux is shown. In the present embodiment, a case where the permanent magnet type rotating electric machine is a synchronous motor will be described. As shown in FIG. 1, in the permanent magnet type rotating electrical machine according to the first embodiment, a rotor 9 is attached to a rotating shaft 10, and a stator 3 is installed on the outer diameter side of the rotor 9. And the stator 3 are configured on the same axis.

外径側永久磁石4と内径側永久磁石5は、回転軸10を中心として放射状に設けられ、更に周方向において同極が対抗するように回転子鉄心8に埋め込まれている。また外径側永久磁石4、内径側永久磁石5は、回転子9に縦長に埋め込まれた縦埋込(スポーク)型の埋込磁石方式となっている。   The outer diameter side permanent magnet 4 and the inner diameter side permanent magnet 5 are provided radially around the rotation shaft 10 and are embedded in the rotor core 8 so that the same poles oppose each other in the circumferential direction. Further, the outer diameter side permanent magnet 4 and the inner diameter side permanent magnet 5 are of a vertically embedded (spoke) type embedded magnet system embedded vertically in the rotor 9.

回転子鉄心8においては、固定子3と径方向に対向する位置に外径側永久磁石4を保持するための永久磁石保持材7が設けられており、更に外径側永久磁石4と内径側永久磁石5の間にはスペーサ6が設けられている。そして回転子鉄心8は通しボルト、またはかしめによって軸方向に積層して構成されている。また固定子3も同様に磁性部材を積層して構成されている。内径側永久磁石5の周方向幅は外径側永久磁石4の周方向幅よりも小さく構成されており、内径側永久磁石5は外径側永久磁石4の周方向幅内に収まって配置されている。   In the rotor core 8, a permanent magnet holding material 7 for holding the outer diameter side permanent magnet 4 is provided at a position facing the stator 3 in the radial direction, and the outer diameter side permanent magnet 4 and the inner diameter side are further provided. Spacers 6 are provided between the permanent magnets 5. The rotor core 8 is configured to be laminated in the axial direction by through bolts or caulking. The stator 3 is similarly configured by laminating magnetic members. The circumferential width of the inner diameter side permanent magnet 5 is configured to be smaller than the circumferential width of the outer diameter side permanent magnet 4, and the inner diameter side permanent magnet 5 is disposed within the circumferential width of the outer diameter side permanent magnet 4. ing.

外径側永久磁石4および内径側永久磁石5の着磁方向11は、図2の黒塗矢印で示されている。また、外径側永久磁石4および内径側永久磁石5の作る磁束12は、概略図2の白抜き細矢印で示したように分布している。たとえば磁束12は、隣り合う外径側永久磁石4同士の間、及び隣り合う内径側永久磁石5同士の間の回転子鉄心8を、略径方向外方に向かって通過している。また磁束は別の隣り合う外径側永久磁石4同士の間、及び別の隣り合う内径側永久磁石5同士の間の回転子鉄心8を、略径方向外方から外径側永久磁石4及び内径側永久磁石5に向かって通過している。   The magnetization direction 11 of the outer diameter side permanent magnet 4 and the inner diameter side permanent magnet 5 is indicated by black arrows in FIG. Further, the magnetic flux 12 produced by the outer diameter side permanent magnet 4 and the inner diameter side permanent magnet 5 is distributed as indicated by the outlined thin arrows in FIG. For example, the magnetic flux 12 passes through the rotor core 8 between the adjacent outer diameter side permanent magnets 4 and between the adjacent inner diameter side permanent magnets 5 substantially outward in the radial direction. Further, the magnetic flux passes through the rotor core 8 between the other adjacent outer diameter side permanent magnets 4 and between the other adjacent inner diameter side permanent magnets 5 from the outer diameter side permanent magnet 4 and the outer diameter side permanent magnet 4. It passes toward the inner diameter side permanent magnet 5.

図1においては、永久磁石4の数(極数)は10個、固定子3のスロット数は12個の場合を示しており、極数とスロット数の比は5:6であるが、これ以外の極数とスロット数の組合せでも構わない。   In FIG. 1, the number of permanent magnets 4 (number of poles) is 10 and the number of slots of stator 3 is 12, and the ratio of the number of poles to the number of slots is 5: 6. Other combinations of the number of poles and the number of slots may be used.

図2に示したように、外径側永久磁石4及び内径側永久磁石5の作る磁束12は回転子鉄心8を略径方向に通過する。たとえば幅の大きな外径側永久磁石4をより内径側まで延設したとすると、内径側の回転子鉄心部分が非常に細くなり、すぐに磁気飽和を起こしてしまい、回転子表面の磁束密度向上を図ることができない。回転子鉄心8を磁気飽和させることなく外径側永久磁石4及び内径側永久磁石5の量を増やすためには、永久磁石の形状を外径側ほど周方向の長さが大きい扇形形状、あるいは台形形状に形成することが望ましい。しかし扇形形状や台形形状の永久磁石は作りにくく、現実的ではない。   As shown in FIG. 2, the magnetic flux 12 produced by the outer diameter side permanent magnet 4 and the inner diameter side permanent magnet 5 passes through the rotor core 8 in a substantially radial direction. For example, if the outer diameter side permanent magnet 4 having a large width is extended to the inner diameter side, the rotor core portion on the inner diameter side becomes very thin, causing magnetic saturation immediately, and improving the magnetic flux density on the rotor surface. I can't plan. In order to increase the amount of the outer diameter side permanent magnet 4 and the inner diameter side permanent magnet 5 without magnetically saturating the rotor core 8, the shape of the permanent magnet is a sector shape having a greater circumferential length toward the outer diameter side, or It is desirable to form a trapezoidal shape. However, fan-shaped or trapezoidal permanent magnets are difficult to make and are not realistic.

そこで現実的な永久磁石の形状として、略直方体形状の永久磁石を組み合わせることが考えられる。例えば径方向に永久磁石を2分割し、周方向長さが大きい永久磁石を外径側永久磁石4とし、周方向長さが小さい永久磁石を内径側永久磁石5とすると、理想的な扇形形状や台形形状の永久磁石に比べると回転子鉄心8の径方向に段差を生じるので磁気飽和しやすくなるが、外径側永久磁石4と同じ周方向長さを有する内径側永久磁石5を用いた場合よりも磁気飽和が大幅に緩和される。すなわち回転子表面の磁束密度が向上し、回転電機としての出力密度も向上する。尚上記においては2分割した場合を説明したが、3分割以上に分割してもよい。   Thus, it is conceivable to combine a substantially rectangular parallelepiped permanent magnet as a practical permanent magnet shape. For example, when the permanent magnet is divided into two in the radial direction, the permanent magnet having a large circumferential length is defined as the outer diameter side permanent magnet 4, and the permanent magnet having a small circumferential length is defined as the inner diameter side permanent magnet 5, the ideal sector shape. Compared with a permanent magnet having a trapezoidal shape, a step is generated in the radial direction of the rotor core 8, so that magnetic saturation is likely to occur, but the inner diameter side permanent magnet 5 having the same circumferential length as the outer diameter side permanent magnet 4 is used. The magnetic saturation is greatly relaxed compared to the case. That is, the magnetic flux density on the rotor surface is improved, and the output density as a rotating electrical machine is also improved. In addition, although the case where it divided into 2 was demonstrated in the above, you may divide | segment into 3 or more divisions.

また回転子9が回転すると外径側永久磁石4及び内径側永久磁石5には遠心力が加わる。内径側永久磁石5に加わった遠心力により、外径側永久磁石4には外径側に押し出される力が加わる。内径側永久磁石5が外径側永久磁石4の周方向幅よりも小さい場合には、内径側永久磁石5の周方向の幅分のみ遠心力が外径側永久磁石4に加わる。そのとき外径側永久磁石4においては、内径側永久磁石5から受ける遠心力が一様ではなくなる。従ってスペーサ6がない場合には、外径側永久磁石4においては、周方向の位置により加わる遠心力が異なり局所的に応力差が生じる。即ち内径側永久磁石5の周方向両端部に対応する外径側永久磁石4の位置に大きな力の差が加わるようになり、外径側永久磁石4の割れ等が生じやすくなる。   When the rotor 9 rotates, centrifugal force is applied to the outer diameter side permanent magnet 4 and the inner diameter side permanent magnet 5. Due to the centrifugal force applied to the inner diameter side permanent magnet 5, a force pushed to the outer diameter side is applied to the outer diameter side permanent magnet 4. When the inner diameter side permanent magnet 5 is smaller than the circumferential width of the outer diameter side permanent magnet 4, centrifugal force is applied to the outer diameter side permanent magnet 4 only by the circumferential width of the inner diameter side permanent magnet 5. At that time, the centrifugal force received from the inner diameter side permanent magnet 5 is not uniform in the outer diameter side permanent magnet 4. Therefore, when the spacer 6 is not provided, in the outer diameter side permanent magnet 4, the centrifugal force applied differs depending on the position in the circumferential direction, and a local stress difference occurs. That is, a large difference in force is applied to the position of the outer diameter side permanent magnet 4 corresponding to both ends in the circumferential direction of the inner diameter side permanent magnet 5, and the outer diameter side permanent magnet 4 is likely to be cracked.

スペーサ6を設けると、内径側永久磁石5の周方向両端部に生じる大きな応力差はスペーサ6にかかり、スペーサ6内で応力差が緩和されて、外径側永久磁石4に伝達される。したがって外径側永久磁石4には大きな応力差は存在しなくなり、外径側永久磁石4の割れ等が生じにくくなる。したがってスペーサ6を設けることにより、永久磁石の割れ等を生じることなく、回転子表面の磁束密度が向上し、回転電機としての出力密度も向上する。   When the spacer 6 is provided, a large stress difference generated at both ends in the circumferential direction of the inner diameter side permanent magnet 5 is applied to the spacer 6, and the stress difference is relaxed in the spacer 6 and transmitted to the outer diameter side permanent magnet 4. Therefore, there is no large stress difference in the outer diameter side permanent magnet 4, and the outer diameter side permanent magnet 4 is less likely to crack. Therefore, by providing the spacer 6, the magnetic flux density on the rotor surface is improved and the output density as a rotating electrical machine is also improved without causing the permanent magnet to break.

なお永久磁石保持材7が回転子9の略最外径部に設けられるとともに、回転子鉄心8に対して楔状に保持されており、外径側永久磁石4及び内径側磁石5に加わる遠心力は、この永久磁石保持材7で受け止めることができる。又スペーサ6を非磁性材で構成すれば、外径側永久磁石4及び内径側永久磁石5より発生した磁束がスペーサ6を通ることなく、余分なもれ磁束が生じなくなるので、回転電機の出力密度の低下を防止できる。   The permanent magnet holding member 7 is provided at the substantially outermost diameter portion of the rotor 9 and held in a wedge shape with respect to the rotor core 8, and the centrifugal force applied to the outer diameter side permanent magnet 4 and the inner diameter side magnet 5. Can be received by the permanent magnet holding member 7. If the spacer 6 is made of a non-magnetic material, the magnetic flux generated from the outer diameter side permanent magnet 4 and the inner diameter side permanent magnet 5 does not pass through the spacer 6, and no extra leakage flux is generated. A decrease in density can be prevented.

図3、図4は他の形態による回転子を示す拡大断面図である。図3においては、永久磁石保持材7bの周方向の長さを外径側永久磁石4の周方向の長さよりも大きく構成すると共に、回転子鉄心8の開口幅8aを外径側永久磁石4の周方向の長さと略同程度のものとしたものである。また図4においては、永久磁石保持材7cの周方向の長さを外径側永久磁石4の周方向の長さと略同程度とするとともに、回転子鉄心8の開口幅8aを外径側永久磁石4の周方向の長さよりも小さくしたものである。   3 and 4 are enlarged sectional views showing a rotor according to another embodiment. In FIG. 3, the circumferential length of the permanent magnet holding member 7 b is configured to be larger than the circumferential length of the outer diameter side permanent magnet 4, and the opening width 8 a of the rotor core 8 is set to the outer diameter side permanent magnet 4. The length in the circumferential direction is approximately the same. In FIG. 4, the circumferential length of the permanent magnet holding member 7 c is substantially the same as the circumferential length of the outer diameter side permanent magnet 4, and the opening width 8 a of the rotor core 8 is set to the outer diameter side permanent. This is smaller than the circumferential length of the magnet 4.

永久磁石保持材を図3、図4に示すような形状に構成しても、図1における永久磁石保持材7の場合とほぼ同様の効果を奏する。なお、外径側永久磁石4の周方向幅の範囲からはみ出るような箇所に内径側永久磁石5が位置するように内径側永久磁石5の周方向位置を配置すると、回転子鉄心8において、スペーサ6の近くで磁束12が通る幅が狭くなる箇所ができてしまい、磁気飽和しやすくなるので好ましくない。外径側永久磁石4の周方向幅の範囲内に収まる箇所に内径側永久磁石5の周方向幅が位置するように配置することが望ましい。   Even if the permanent magnet holding member is configured in the shape shown in FIGS. 3 and 4, the same effect as that of the permanent magnet holding member 7 in FIG. 1 can be obtained. In addition, when the circumferential position of the inner diameter side permanent magnet 5 is arranged so that the inner diameter side permanent magnet 5 is located at a position that protrudes from the range of the circumferential width of the outer diameter side permanent magnet 4, a spacer is provided in the rotor core 8. A portion where the width of the magnetic flux 12 is narrowed near 6 is formed, and magnetic saturation is likely to occur. It is desirable to arrange so that the circumferential width of the inner diameter side permanent magnet 5 is located at a location that falls within the circumferential width of the outer diameter side permanent magnet 4.

実施の形態2.
図5は実施の形態2に係る永久磁石式回転電機の回転子の一部を拡大して示した拡大断面図である。実施の形態1では、スペーサ6の周方向幅が外径側永久磁石4の周方向幅と略等しく、スペーサ6が内径側永久磁石5の遠心力を受け持ち、受けた遠心力を外径側永久磁石4に伝達する構造であり、回転子鉄心8にスペーサ6の遠心力を受け持つ係止部がないものについて説明した。
Embodiment 2. FIG.
FIG. 5 is an enlarged cross-sectional view illustrating a part of the rotor of the permanent magnet type rotating electric machine according to the second embodiment. In the first embodiment, the circumferential width of the spacer 6 is substantially equal to the circumferential width of the outer diameter side permanent magnet 4, the spacer 6 takes on the centrifugal force of the inner diameter side permanent magnet 5, and the received centrifugal force is applied to the outer diameter side permanent magnet. A structure that transmits to the magnet 4 and that does not have a locking portion that handles the centrifugal force of the spacer 6 on the rotor core 8 has been described.

本実施形態においては、スペーサ6bの周方向幅を外径側永久磁石4の周方向幅よりも大きくなるよう構成し、スペーサ6bの周方向幅内に外径側永久磁石4の周方向幅が収まるように構成した。スペーサ6bは、少なくとも外径側の幅が回転子鉄心8に設けられた磁石配置スペースの周方向幅よりも大きくなるよう構成されている。また磁石配置スペースの周方向幅よりも大きいスペーサ6bが収まるように、回転子鉄心8に磁石配置スペースの周方向幅よりも大きい周方向幅を有するスペーサ係止部20が設けられ、スペーサ6bの両端の一部がスペーサ係止部20に収まり、遠心力によって発生するスペーサ6bの力を係止するように配置されている。   In the present embodiment, the circumferential width of the spacer 6b is configured to be larger than the circumferential width of the outer diameter side permanent magnet 4, and the circumferential width of the outer diameter side permanent magnet 4 is within the circumferential width of the spacer 6b. Configured to fit. The spacer 6 b is configured such that at least the width on the outer diameter side is larger than the circumferential width of the magnet arrangement space provided in the rotor core 8. The rotor core 8 is provided with a spacer locking portion 20 having a circumferential width larger than the circumferential width of the magnet arrangement space so that the spacer 6b larger than the circumferential width of the magnet arrangement space is accommodated. A part of both ends is accommodated in the spacer locking part 20, and it arrange | positions so that the force of the spacer 6b generated by centrifugal force may be locked.

内径側永久磁石5に働く遠心力は、まずスペーサ6bに伝達される。スペーサ6bに伝達された力は、スペーサ6bの両端部が係止されている回転子鉄心8のスペーサ係止部20に伝わり、回転子鉄心8でスペーサ6bは支持される。内径側永久磁石5にかかる遠心力によりスペーサ6bは変形する。スペーサ6bが変形することにより、外径側永久磁石4を径方向外方に押し出す力が働くが、内径側永久磁石5に働く遠心力の一部を回転子鉄心8のスペーサ係止部20で保持するので、外径側永久磁石4に働く力はその分小さくなる。したがって実施の形態1に比べて更に外径側永久磁石4は割れ等を生じにくくなる。   The centrifugal force acting on the inner diameter side permanent magnet 5 is first transmitted to the spacer 6b. The force transmitted to the spacer 6b is transmitted to the spacer locking portion 20 of the rotor core 8 where both ends of the spacer 6b are locked, and the spacer 6b is supported by the rotor core 8. The spacer 6 b is deformed by the centrifugal force applied to the inner diameter side permanent magnet 5. The deformation of the spacer 6b causes a force to push the outer diameter side permanent magnet 4 radially outward. A part of the centrifugal force acting on the inner diameter side permanent magnet 5 is caused by the spacer locking portion 20 of the rotor core 8. Since it is held, the force acting on the outer diameter side permanent magnet 4 is reduced accordingly. Therefore, as compared with the first embodiment, the outer diameter side permanent magnet 4 is less likely to crack.

実施の形態3.
図6は実施の形態3に係る永久磁石式回転電機の回転子の一部を拡大して示した拡大断面図である。実施の形態1、2では、スペーサの形状に関して特に規定していない場合について説明した。本実施形態においてはスペーサの形状を規定したものである。図6においてスペーサ6cは外径側の周方向長さが外径側永久磁石4の幅と略等しく、内径側の周方向長さが外径側の周方向長さと比べて短くなるよう構成されている。またスペーサ6cを収納する回転子鉄心8に設けられたスペースもスペーサ6cに合わせた形状となっている。
Embodiment 3 FIG.
FIG. 6 is an enlarged cross-sectional view showing a part of the rotor of the permanent magnet type rotating electric machine according to the third embodiment. In the first and second embodiments, the case where the shape of the spacer is not particularly defined has been described. In this embodiment, the shape of the spacer is defined. In FIG. 6, the spacer 6 c is configured such that the circumferential length on the outer diameter side is substantially equal to the width of the outer permanent magnet 4, and the circumferential length on the inner diameter side is shorter than the circumferential length on the outer diameter side. ing. The space provided in the rotor core 8 that houses the spacer 6c is also shaped to match the spacer 6c.

スペーサ6cの外径側の周方向長さを外径側永久磁石4の幅と略等しく、内径側の周方向長さを外径側の周方向長さと比べて短くしたことにより、実施の形態1の場合と比較して、内径側になるに従い、周方向に隣り合うスペーサ6c間における回転子鉄心8の周方向長さが長くなる。したがって実施の形態1の場合と比較して、内径側になるに従い磁気飽和が生じやすくなることを防止することができる。   The circumferential length on the outer diameter side of the spacer 6c is substantially equal to the width of the outer diameter side permanent magnet 4, and the circumferential length on the inner diameter side is made shorter than the circumferential length on the outer diameter side. Compared with the case of 1, the circumferential length of the rotor core 8 between the spacers 6c adjacent in the circumferential direction becomes longer as it becomes the inner diameter side. Therefore, as compared with the case of the first embodiment, it is possible to prevent magnetic saturation from being easily generated as the inner diameter is increased.

図7は他の形態に係る永久磁石式回転電機の回転子の一部を拡大して示した拡大断面図である。図7においては実施の形態2と同様にスペーサ6dの外径側周方向長さを外径側永久磁石4の周方向幅よりも大きくなるよう構成し、更にスペーサ6dにおいては、内径側の周方向長さが、外径側の周方向長さと比べて短くなっている。またスペーサ6dを収納する回転子鉄心8に設けられたスペースも、スペーサ6dに合わせた形状となっている。そしてスペーサ6dの形状に沿ったスペーサ係止部20bを有している。   FIG. 7 is an enlarged cross-sectional view showing a part of a rotor of a permanent magnet type rotating electrical machine according to another embodiment. In FIG. 7, as in the second embodiment, the outer circumferential side length of the spacer 6d is configured to be larger than the circumferential width of the outer permanent magnet 4, and the spacer 6d has a circumferential diameter on the inner diameter side. The direction length is shorter than the circumferential length on the outer diameter side. The space provided in the rotor core 8 that houses the spacer 6d is also shaped to match the spacer 6d. And it has the spacer latching | locking part 20b along the shape of the spacer 6d.

スペーサ6dの内径側の周方向長さを外径側の周方向長さと比べて短くしたことにより、実施の形態2の場合と比較して、内径側になるに従い周方向に隣り合うスペーサ間の回転子鉄心8の周方向長さが長くなる。したがって実施の形態2の場合と比較して、内径になるに従い磁気飽和が生じやすくなるのを防止することができる。   Since the circumferential length on the inner diameter side of the spacer 6d is shorter than the circumferential length on the outer diameter side, compared to the case of the second embodiment, the distance between the spacers adjacent in the circumferential direction becomes closer to the inner diameter side. The circumferential length of the rotor core 8 is increased. Therefore, as compared with the case of the second embodiment, it is possible to prevent magnetic saturation from being easily generated as the inner diameter is increased.

実施の形態4.
図8は実施の形態4に係る永久磁石式回転電機の回転子の一部を拡大して示した拡大断面図である。図において、スペーサ6eには内径側永久磁石5を包囲するように、内径側永久磁石5と接するスペーサ6eの表面に凹部を設けている。スペーサ6eに設けた凹部に内径側永久磁石5の一部が収納される構造となっている。
Embodiment 4 FIG.
FIG. 8 is an enlarged cross-sectional view showing a part of the rotor of the permanent magnet type rotating electric machine according to the fourth embodiment. In the figure, the spacer 6e is provided with a recess on the surface of the spacer 6e in contact with the inner diameter side permanent magnet 5 so as to surround the inner diameter side permanent magnet 5. A part of the inner diameter side permanent magnet 5 is accommodated in a recess provided in the spacer 6e.

スペーサ6eと内径側永久磁石5とを嵌合させ、あるいは接着等させることにより、スペーサ6eに内径側永久磁石5を包囲させ取り付けることで、スペーサ6eと内径側永久磁石5を一体化できる。スペーサ6eと内径側永久磁石5という2つの部品を一体化できるので、組立時には部品点数を1点減らすことができ、組立性能が向上する。   The spacer 6e and the inner diameter side permanent magnet 5 can be integrated by surrounding the inner diameter side permanent magnet 5 by fitting the spacer 6e and the inner diameter side permanent magnet 5 together or by bonding them. Since the two parts of the spacer 6e and the inner diameter side permanent magnet 5 can be integrated, the number of parts can be reduced by one at the time of assembly, and the assembly performance is improved.

図9は別の形態による回転子部分を示す拡大断面図である。スペーサ6fには凸部を設けると共に凸部の先端面が内径側永久磁石5と接触するように構成されている。スペーサ6fに設けた凸部と内径側永久磁石5の周方向長さが同じで、しかも対向する状態となっている。組立方法としては、まず内径側永久磁石5を回転子鉄心に挿入し、次にスペーサ6fを挿入する。このときスペーサ6fの凸部が内径側永久磁石5を収納する収納スペース内に収まっているので、スペーサ6fの位置決めができる。たとえばスペーサ6fの周方向長さが、外径側永久磁石4の周方向長さよりも若干小さい場合でも、容易にスペーサ6fを中央部に配置できるので組立性能が向上する。   FIG. 9 is an enlarged sectional view showing a rotor portion according to another embodiment. The spacer 6 f is provided with a convex portion, and the tip end surface of the convex portion is configured to contact the inner diameter side permanent magnet 5. The convex portions provided on the spacer 6f and the circumferential length of the inner diameter side permanent magnet 5 are the same, and are opposed to each other. As an assembling method, first, the inner diameter side permanent magnet 5 is inserted into the rotor core, and then the spacer 6f is inserted. At this time, since the convex portion of the spacer 6f is within the storage space for storing the inner diameter side permanent magnet 5, the spacer 6f can be positioned. For example, even when the circumferential length of the spacer 6f is slightly smaller than the circumferential length of the outer-diameter-side permanent magnet 4, the spacer 6f can be easily arranged at the center portion, so that the assembling performance is improved.

本実施の形態では実施の形態1の構造において、スペーサ形状を変形させて凹部及び凸部を設けた場合について説明したが、実施の形態2、3に示したスペーサに本実施の形態で示した凹部、凸部を設けても良い。特に実施の形態2で述べたスペーサ6bでは、スペーサ6bの周方向長さが、外径側永久磁石4の周方向幅よりも大きく、一部がスペーサ係止部20に収納されている。スペーサ6bの周方向幅が外径側永久磁石の幅より大きいので、スペーサ係止部20にほとんど隙間なくスペーサ6bを挿入することは困難となる。本実施形態によるスペーサ6e、6fのような形状を採用すれば、スペーサ6bの中心位置決めを容易かつ正確に行うことができるので、スペーサ係止部20の周方向に空間を生じ易くさせることができ、スペーサ6bを軸方向に挿入しやすくなる。即ち外径側永久磁石4の収納スペースとスペーサ6bとの間の隙間を大きくした状態でスペーサ6bを挿入できるので、スペーサ6bを挿入し易くなる。   In this embodiment mode, the case where the spacer shape is deformed and the concave portion and the convex portion are provided in the structure of the first embodiment mode is described. However, the spacer shown in Embodiment Modes 2 and 3 is shown in the present embodiment mode. You may provide a recessed part and a convex part. In particular, in the spacer 6b described in the second embodiment, the circumferential length of the spacer 6b is larger than the circumferential width of the outer diameter side permanent magnet 4, and a part of the spacer 6b is accommodated in the spacer locking portion 20. Since the circumferential width of the spacer 6b is larger than the width of the outer permanent magnet, it is difficult to insert the spacer 6b in the spacer locking portion 20 with almost no gap. If the shapes such as the spacers 6e and 6f according to the present embodiment are adopted, the center positioning of the spacer 6b can be easily and accurately performed, so that a space can be easily generated in the circumferential direction of the spacer locking portion 20. The spacer 6b can be easily inserted in the axial direction. That is, since the spacer 6b can be inserted in a state where the space between the storage space for the outer diameter side permanent magnet 4 and the spacer 6b is increased, the spacer 6b can be easily inserted.

実施の形態5.
図10は実施の形態5による永久磁石式回転電機の回転子部分を示す拡大断面図である。図において、外径側永久磁石4bを2枚組み合わせて外径側永久磁石全体を構成している。内径側永久磁石については、図10においては分割していない例を示しているが、分割してもよい。また外径側永久磁石4bについて図10では2分割した場合を示しているが、3つ以上に分割しても良い。
Embodiment 5 FIG.
FIG. 10 is an enlarged sectional view showing a rotor portion of the permanent magnet type rotating electric machine according to the fifth embodiment. In the drawing, two outer diameter side permanent magnets 4b are combined to constitute the entire outer diameter side permanent magnet. The inner diameter side permanent magnet is not divided in FIG. 10, but may be divided. Further, although the outer diameter side permanent magnet 4b is divided into two in FIG. 10, it may be divided into three or more.

永久磁石は一般的に厚さ(周方向長さ)が厚くなると焼結時に割れが生じ、製作性が低下する。そのため外径側永久磁石4の周方向長さが大きくなる場合には、製作性の低下を防止するために、周方向に複数に分割するのがよい。外径側永久磁石4bと内径側永久磁石5の間には、スペーサ6が存在するので、外径側永久磁石を複数に分割しても、スペーサ6の存在により、外径側永久磁石4bの周方向全長にわたって、内径側永久磁石5からの遠心力を受けることができる。   In general, when the thickness (circumferential length) of a permanent magnet is increased, cracks occur during sintering, resulting in a decrease in manufacturability. Therefore, when the circumferential length of the outer diameter side permanent magnet 4 is increased, it is preferable to divide the outer diameter side permanent magnet 4 into a plurality of pieces in the circumferential direction in order to prevent a decrease in manufacturability. Since the spacer 6 exists between the outer diameter side permanent magnet 4b and the inner diameter side permanent magnet 5, even if the outer diameter side permanent magnet is divided into a plurality of parts, the presence of the spacer 6 causes the outer diameter side permanent magnet 4b to The centrifugal force from the inner diameter side permanent magnet 5 can be received over the entire length in the circumferential direction.

外径側永久磁石4bの外径部には永久磁石保持材7があるので、外径側永久磁石4bからの遠心力に対しては永久磁石保持材7が受け持つ。そのため外径側永久磁石4bが複数に分割されていても遠心力をほぼ均等に保持することができる。図11は他の形態による回転子部分を示す拡大断面図である。外径側永久磁石4cと内径側永久磁石5bは同じ寸法(同一の周方向幅)に構成されている。外径側永久磁石4cを3個用いて外径側永久磁石全体を構成すると共に、内径側永久磁石5bを2個用いて内径側永久磁石全体を構成している。このように、外径側永久磁石4cと内径側永久磁石5bを同じ寸法の永久磁石で周方向に分割して構成したので、部品点数の削減を図ることができ、生産コストを低減できる。尚図10、図11の構成においては、実施の形態1で示した構成に対して永久磁石を周方向に分割した場合を示したが、実施の形態2、3、4で示した永久磁石を周方向に分割するようにしても良い。   Since there is a permanent magnet holding material 7 at the outer diameter portion of the outer diameter side permanent magnet 4b, the permanent magnet holding material 7 takes charge of the centrifugal force from the outer diameter side permanent magnet 4b. Therefore, even if the outer diameter side permanent magnet 4b is divided into a plurality of parts, the centrifugal force can be maintained substantially evenly. FIG. 11 is an enlarged cross-sectional view showing a rotor portion according to another embodiment. The outer diameter side permanent magnet 4c and the inner diameter side permanent magnet 5b are configured to have the same dimensions (the same circumferential width). The entire outer diameter side permanent magnet is configured using three outer diameter side permanent magnets 4c, and the entire inner diameter side permanent magnet is configured using two inner diameter side permanent magnets 5b. Thus, since the outer diameter side permanent magnet 4c and the inner diameter side permanent magnet 5b are configured by dividing the outer diameter side permanent magnet 5b with the same size permanent magnet in the circumferential direction, the number of parts can be reduced, and the production cost can be reduced. 10 and 11 show the case where the permanent magnet is divided in the circumferential direction with respect to the configuration shown in the first embodiment, the permanent magnet shown in the second, third, and fourth embodiments. You may make it divide | segment into the circumferential direction.

尚本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

3 固定子、4 外径側永久磁石、5 内径側永久磁石、6,6b,6c スペーサ、6e 凹部、6f 凸部、7 永久磁石保持材、9 回転子、10 回転軸。   3 Stator, 4 Outer diameter side permanent magnet, 5 Inner diameter side permanent magnet, 6, 6b, 6c Spacer, 6e Concavity, 6f Convex, 7 Permanent magnet holder, 9 Rotor, 10 Rotating shaft.

Claims (9)

回転軸に取り付けられる回転子と、
上記回転子の外径側に設置されると共に上記回転子と同一軸上に構成された固定子と、
上記回転子に埋め込まれた永久磁石とを有する永久磁石式回転電機であって、
上記永久磁石は、直方体形状に形成されると共に、上記回転電機の径方向に複数に分割されており、
上記複数に分割された永久磁石は上記回転軸を中心として放射状かつ縦長になるよう上記回転子に埋め込まれるとともに、上記永久磁石は周方向において同極が対抗するように配置されており、
上記複数に分割された永久磁石のうち内径側永久磁石の周方向幅を当該内径側永久磁石より外径側に位置する外径側永久磁石の周方向幅よりも小さく構成し、
上記内径側永久磁石の周方向幅が上記外径側永久磁石の周方向幅内に収まるように上記内径側永久磁石を上記外径側永久磁石に接触させて配置したことを特徴とする永久磁石式回転電機。
A rotor attached to the rotating shaft;
A stator installed on the outer diameter side of the rotor and configured on the same axis as the rotor;
A permanent magnet type rotating electrical machine having a permanent magnet embedded in the rotor,
The permanent magnet is formed into a rectangular parallelepiped Rutotomoni is divided into a plurality of radial direction of the upper Symbol rotary electric machine,
The permanent magnets divided into a plurality are embedded in the rotor so as to be radially and vertically long around the rotation axis, and the permanent magnets are arranged so that the same poles oppose each other in the circumferential direction,
The circumferential width of the inner diameter side permanent magnet among the plurality of divided permanent magnets is configured to be smaller than the circumferential width of the outer diameter side permanent magnet located on the outer diameter side of the inner diameter side permanent magnet,
The permanent magnet, wherein the inner diameter side permanent magnet is disposed in contact with the outer diameter side permanent magnet so that the circumferential width of the inner diameter side permanent magnet is within the circumferential width of the outer diameter side permanent magnet. Rotary electric machine.
上記内径側永久磁石と上記外径側永久磁石の間にスペーサを設けたことを特徴とする請求項1記載の永久磁石式回転電機。 The permanent magnet type rotating electric machine according to claim 1, wherein a spacer is provided between the inner diameter side permanent magnet and the outer diameter side permanent magnet. 上記スペーサを非磁性材で構成したことを特徴とする請求項2記載の永久磁石式回転電機。 The permanent magnet type rotating electric machine according to claim 2, wherein the spacer is made of a nonmagnetic material. 上記スペーサの周方向幅を上記外径側永久磁石の周方向幅よりも大きくなるよう構成するとともに、上記スペーサの周方向幅内に上記外径側永久磁石の周方向幅が収まるように構成したことを特徴とする請求項2又は請求項3記載の永久磁石式回転電機。 The circumferential width of the spacer is configured to be larger than the circumferential width of the outer diameter side permanent magnet, and the circumferential width of the outer diameter side permanent magnet is set within the circumferential width of the spacer. The permanent magnet type rotating electric machine according to claim 2 or claim 3, wherein 上記スペーサの内径側の周方向長さが外径側の周方向長さよりも短くなるよう構成されたことを特徴とする請求項2から請求項4のいずれか1項に記載の永久磁石式回転電機。 5. The permanent magnet type rotation according to claim 2, wherein a circumferential length on the inner diameter side of the spacer is shorter than a circumferential length on the outer diameter side. Electric. 上記スペーサの表面に凹部を設けるとともに、この凹部に上記内径側永久磁石の一部を収納したことを特徴とする請求項2から請求項5のいずれか1項に記載の永久磁石式回転電機。 The permanent magnet type rotating electric machine according to any one of claims 2 to 5, wherein a concave portion is provided on a surface of the spacer, and a part of the inner diameter side permanent magnet is accommodated in the concave portion. 上記スペーサには凸部を設けるとともに、この凸部の先端面が上記内径側永久磁石と接触するように構成したことを特徴とする請求項2から請求項5のいずれか1項に記載の永久磁石式回転電機。 The permanent structure according to any one of claims 2 to 5, wherein the spacer is provided with a convex portion and a tip end surface of the convex portion is in contact with the inner diameter side permanent magnet. Magnet rotating electric machine. 上記内径側永久磁石及び上記外径側永久磁石のうちの少なくともいずれか1つは周方向において複数に分割して構成するとともに、上記外径側永久磁石の外径部には永久磁石保持材を設けたことを特徴とする請求項1から請求項7のいずれか1項に記載の永久磁石式回転電機。 At least one of the inner diameter side permanent magnet and the outer diameter side permanent magnet is divided into a plurality in the circumferential direction, and a permanent magnet holding material is provided on the outer diameter portion of the outer diameter side permanent magnet. The permanent magnet type rotating electrical machine according to any one of claims 1 to 7, wherein the permanent magnet type rotating electrical machine is provided. 上記複数に分割して構成された永久磁石のそれぞれの周方向幅を同一に構成したことを特徴とする請求項8記載の永久磁石式回転電機。 9. The permanent magnet type rotating electrical machine according to claim 8, wherein each of the permanent magnets divided into a plurality of parts has the same circumferential width.
JP2013102695A 2013-05-15 2013-05-15 Permanent magnet rotating electric machine Expired - Fee Related JP6013269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102695A JP6013269B2 (en) 2013-05-15 2013-05-15 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102695A JP6013269B2 (en) 2013-05-15 2013-05-15 Permanent magnet rotating electric machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016183004A Division JP6176379B2 (en) 2016-09-20 2016-09-20 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2014225935A JP2014225935A (en) 2014-12-04
JP6013269B2 true JP6013269B2 (en) 2016-10-25

Family

ID=52124225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102695A Expired - Fee Related JP6013269B2 (en) 2013-05-15 2013-05-15 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP6013269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102554171B1 (en) * 2017-11-29 2023-07-12 엘지이노텍 주식회사 Rotor and motor having the same
KR102635352B1 (en) 2019-01-17 2024-02-08 엘지이노텍 주식회사 Rotor and motor having the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696957A1 (en) * 2017-04-05 2020-08-19 KONE Corporation Linear flux switching permanent magnet motor
CN108777518B (en) * 2018-06-15 2020-07-31 江苏大学 Rotor structure of asymmetric mixed rare earth-less permanent magnet motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3597821B2 (en) * 2002-01-17 2004-12-08 株式会社東芝 Permanent magnet type reluctance type rotating electric machine
JP2007049805A (en) * 2005-08-09 2007-02-22 Honda Motor Co Ltd Permanent magnet type rotor
JP2009273304A (en) * 2008-05-09 2009-11-19 Asmo Co Ltd Rotor of rotating electric machine, and rotating electric machine
JP2010141989A (en) * 2008-12-10 2010-06-24 Nissan Motor Co Ltd Permanent magnet motor and permanent magnet fixing method
KR101021120B1 (en) * 2009-07-14 2011-03-14 한양대학교 산학협력단 Rotator of interior permanent magnet synchronous motor
JP5521820B2 (en) * 2009-09-07 2014-06-18 株式会社安川電機 Rotating electric machine and manufacturing method thereof
JP2012223068A (en) * 2011-04-14 2012-11-12 Daikin Ind Ltd Rotary electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102554171B1 (en) * 2017-11-29 2023-07-12 엘지이노텍 주식회사 Rotor and motor having the same
KR102635352B1 (en) 2019-01-17 2024-02-08 엘지이노텍 주식회사 Rotor and motor having the same

Also Published As

Publication number Publication date
JP2014225935A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US9793770B2 (en) Permanent magnets rotor for rotating electric machine
US9923436B2 (en) Rotor for a rotary electric machine
JP5958502B2 (en) Rotor and rotating electric machine using the same
WO2014034344A1 (en) Rotating electric machine
JP6460159B2 (en) Rotor and motor
JP6385588B2 (en) Rotor and rotating electric machine
JP6512060B2 (en) Rotor of electric rotating machine
US20180041080A1 (en) Rotor, rotary electric machine, and method for manufacturing rotor
JP2009050099A (en) Rotor core, permanent magnet rotor, and permanent magnet synchronous electric rotating machine
JP2015012679A (en) Axial gap type rotary electric machine
JP6013269B2 (en) Permanent magnet rotating electric machine
JP2014045634A (en) Rotor and rotary electric machine including the same
JP2013220030A (en) Permanent magnet type synchronous motor
JP2020088879A (en) Rotor, and rotary electric machine provided with the same
JP6176379B2 (en) Permanent magnet rotating electric machine
JP2015220846A (en) Rotor of dynamo-electric machine
JP2011205753A (en) Electric motor, and manufacturing method of rotor of electric motor
JP5901436B2 (en) Permanent magnet synchronous machine
JP2016105696A (en) Permanent magnet synchronous machine
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP2010200573A (en) Permanent magnet type synchronous motor
JP2015216786A (en) Permanent magnet embedded rotary electric machine
JP6685166B2 (en) Axial gap type rotating electric machine
JP2017046386A (en) Permanent magnet electric motor
JP2020108275A (en) Rotor of dynamo-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160921

R150 Certificate of patent or registration of utility model

Ref document number: 6013269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees